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Controlled formation and reflection
of a bright solitary matter-wave
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Bright solitons are non-dispersive wave solutions, arising in a diverse range of nonlinear,

one-dimensional systems, including atomic Bose–Einstein condensates with attractive

interactions. In reality, cold-atom experiments can only approach the idealized one-dimen-

sional limit necessary for the realization of true solitons. Nevertheless, it remains possible to

create bright solitary waves, the three-dimensional analogue of solitons, which maintain

many of the key properties of their one-dimensional counterparts. Such solitary waves offer

many potential applications and provide a rich testing ground for theoretical treatments of

many-body quantum systems. Here we report the controlled formation of a bright solitary

matter-wave from a Bose–Einstein condensate of 85Rb, which is observed to propagate over a

distance of B1.1 mm in 150 ms with no observable dispersion. We demonstrate the reflection

of a solitary wave from a repulsive Gaussian barrier and contrast this to the case of a

repulsive condensate, in both cases finding excellent agreement with theoretical simulations

using the three-dimensional Gross–Pitaevskii equation.
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S
olitons are non-dispersive wave solutions that arise in a
diverse range of nonlinear systems, stabilised by a focussing
or defocussing nonlinearity. First observed in shallow

water1, solitons have subsequently been studied in many other
fields including nonlinear optics, biophysics, astrophysics, plasma
and particle physics2. They are characterized by well localized
wavepackets in one-dimension (1D) that maintain their initial
shape and amplitude for all time, even following collisions with
other solitons. Bose–Einstein condensates (BECs) formed from
dilute atomic gases support bright soliton solutions in 1D for
attractive interatomic interactions (focussing nonlinearity),
manifesting themselves as localized humps in the field
amplitude. In contrast, dark solitons appear as localized
reductions in an otherwise uniform field amplitude, preserved
by a defocussing nonlinearity (repulsive interactions). The control
with which these systems can be manipulated, combined with the
unique properties of matter-wave solitons, leads to a rich testing
ground for theoretical descriptions of quantum many-body
systems3–5.

BECs are commonly described by a mean-field treatment6,7

leading to the well-known Gross–Pitaevskii equation (GPE) in
which the atomic interactions are described by a nonlinear term
proportional to the s-wave scattering length as and the condensate
density. In the 1D, homogeneous limit the GPE takes the form of a
nonlinear Schrödinger equation that supports a spectrum of exact
soliton solutions. Experiments approach this mathematically ideal
scenario by confining the condensate in an elongated, prolate trap
typically with tight radial confinement. However, this quasi-1D
geometry is usually accompanied by the presence of weak axial
harmonic trapping, which removes the integrability of the system
and prevents the appearance of true solitons. Nevertheless, solitary
wave solutions remain that retain many similarities to the classical
soliton solutions8–11, such as propagation without dispersion. The
formation of bright solitary matter-waves, the three-dimensional
(3D) analogue to the bright soliton solutions of the 1D nonlinear
Schrödinger equation, from BECs allows one to explore an array
of potential applications including novel interferometric devices12

using narrow Gaussian potentials as beam splitters13, the study of
short-range atom-surface potentials14 and the realization of
Schrödinger-cat states5,15.

Previously, bright solitary matter-waves have been realised
in three separate experiments using 7Li (refs 16,17) and 85Rb
(ref. 18). In each case, a Feshbach resonance was used to switch
the interactions from repulsive (as40) to attractive (aso0) in
order to form solitary waves out of the collapse instability19. In
two of these experiments16,18, multiple wavepackets were created,
allowing the study of the dynamics during collisions in the trap.
The observation of solitary waves raises many interesting
questions regarding the relationship between the mathematical
ideal and the experimental reality. It is unclear how soliton-like
the solitary waves created in experiments with finite radial
trapping and harmonic axial confinement are. An answer to this
question needs to be established before potential applications
utilizing solitary waves can be realised. At a more fundamental
level it remains to be tested whether or not the GPE treatment
fully describes the solitary waves created in experiments. Solitary
waves realised experimentally typically contain t1,000 atoms,
placing them well outside of the thermodynamic limit and
potentially outside the reach of the mean-field description.
Several theoretical studies of bright solitary waves beyond the
mean-field description have now been performed, either
including effects of quantum noise using the truncated Wigner
method3 or using approximate analytic and numerical methods
to simulate the full many-body problem4,5,20. These generate
results potentially in conflict with the behaviour predicted by the
GPE treatment.

In this work, we report the controlled formation of bright
solitary matter-waves from a 85Rb BEC. The experimental
geometry is such that the velocity of the wavepackets can be
precisely controlled, a key factor in facilitating the future
exploration of solitary wave interactions and collisions. In
addition, we observe and model the controlled reflection of
solitary waves from a broad Gaussian potential barrier,
demonstrating their particle-like nature. These results pave the
way for new experimental studies of bright solitary matter-wave
dynamics to elucidate the wealth of existing theoretical work.

Results
Controlled expansion of a tunable BEC. 85Rb is a prime can-
didate for solitary wave experiments owing to the existence of a
broad Feshbach resonance at B155 G in collisions between atoms
in the F¼ 2, mF¼ � 2 state. We use this resonance to form a
stable, repulsively interacting condensate in a crossed optical
dipole trap, shown in Fig. 1a. The condensate is then loaded into
a quasi-1D waveguide, better suited geometrically to the obser-
vation of solitary waves. At the point of release into the wave-
guide, the magnetic bias field controlling the atomic scattering
length is jumped to a new value (see Fig. 1b). As the BEC pro-
pagates along the waveguide, the value of as determines the rate of
expansion of the condensate in the axial direction. We probe this
expansion by measuring the condensate size (using destructive
absorption imaging) as a function of time for different values of as

as shown in Fig. 1c. Fitting the experimental data we can extract
an expansion rate for the BEC, dependent on as and N. This
is shown in Fig. 1d, along with a 3D GPE simulation of the
expansion (the solid line). At as¼ � 11 a0 and N¼ 2,000 we see
the expansion rate of the BEC becomes consistent with zero. This
lack of dispersion with time indicates the formation of a bright
solitary matter-wave.

Figure 2 shows the propagation of this solitary wave, contrasted
to that of a repulsively interacting BEC. As the repulsive wave-
packet propagates the axial expansion causes a significant drop in
optical depth not seen for the solitary wave. We observe the
solitary wave propagating over a distance of 1.1 mm in a time of
B150 ms with very little distortion.

Reflection from a broad and repulsive Gaussian barrier. To
probe the stability of the solitary wave we investigate reflection of
the wavepacket from a repulsive Gaussian barrier with a 1/e2

radius of 130mm, shown in Fig. 3a. Figure 3b,c show the position
of the solitary wave as a function of time in the presence of a
760 nK barrier potential. In this case, the barrier height is greater
than the kinetic energy of the solitary wave and the wavepacket is
cleanly reflected.

Using a barrier much wider than the solitary wave size the
atomic centre-of-mass coordinate behaves classically, with the
solitary wave acting as a single particle ‘rolling up a potential hill’.
By varying the height of the potential barrier it is possible to select
whether the solitary wave is reflected or allowed to travel over the
barrier. The position of the solitary wave after 150 ms is shown in
Fig. 3d as a function of barrier height. The solid line is a theo-
retical trajectory, calculated using Newtonian mechanics with no
free parameters, and shows excellent agreement with the data.

In Fig. 3e we compare the effect of reflection from the barrier
for a solitary wave and a repulsive BEC and contrast the change in
width to the case of a repulsive BEC propagating along the
waveguide in the absence of the barrier. The solid lines are the
theoretical predictions for the condensate widths. We find that in
the parameter regime of the experiment a 1D treatment is
insufficient, and so we determine the theoretical widths using a
3D (cylindrically symmetric) GPE. This observation is consistent
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with other recent theoretical studies21. As expected, the solitary
wave is robust against collisions with a repulsive Gaussian barrier
and following the reflection maintains its shape, continuing to
propagate without dispersion. In the absence of the barrier, the
repulsive BEC expands steadily in time. (We attribute the
disagreement between experiment and theory at longer times to
a small thermal component making the measurement of the
condensate width less accurate.) In the barrier reflection case, an
oscillation in the condensate width is induced as a result of the
larger spatial extent of the repulsive BEC causing it to be strongly
compressed as it is reflected from the barrier. Such contrast in the
behaviour of the repulsive BEC and the solitary wave reflection

lends weight to previous theoretical prediction regarding the
superior characteristics of solitary waves for observing quantum
reflection from surfaces14.

Discussion
There is currently much theoretical interest21–25 in the scattering
of solitary waves from narrow potential barriers where, if the
barrier width is on the order of the solitary wave width, quantum
effects are observable. At high kinetic energy, soliton splitting is
energetically allowed at narrow repulsive barriers. The effect of
quantum tunnelling means the barrier can act as a beam splitter,
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Figure 2 | Propagation in the waveguide. (a) As a repulsive BEC (as¼ 58 a0, N¼ 3.5� 103) propagates along the waveguide the atomic interactions cause

the condensate to spread, leading to a drop in optical depth. (b) In contrast, the attractive interactions present in a bright solitary matter-wave

(as¼ � 11 a0, N¼ 2.0� 103) hold the atomic wavepacket together as it propagates, maintaining its shape with time. Crosscuts shown are the horizontal

optical depth profiles of the condensates after 140 ms propagation time along the waveguide.
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Figure 1 | Expansion in the waveguide. (a) Experimental setup showing the glass science cell, the crossed dipole trap used to create the BEC, the optical

waveguide and the quadrupole, bias and offset coils. Also shown in the cell is a super-polished Dove prism (blue), mounted on a macor support, to be used

for future experiments. (b) Schematic of the release of the condensate from the crossed dipole trap into the waveguide. (c) Condensate expansion

in the waveguide for as¼ 165 a0 (black), 23 a0 (red), 4 a0 (blue), � 7 a0 (green) and � 11 a0 (purple). Solid lines are linear fits to the experimental data

where the widths are rms values. (d) Condensate expansion rate in the waveguide as a function of atom number and scattering length. The solid line

is the theoretical expansion rate calculated from a zero-temperature simulation of the experimental expansion using a cylindrically symmetric, 3D GPE. As

in the data, the expansion rate is defined using the change in the width of the BEC between 10 and 100 ms after release into the waveguide potential, which

is approximately linear over this time interval in all cases. Error bars in c,d are the s.e. calculated from repeated measurements.
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dividing the soliton into two parts13,22. These multiple
wavepackets can then be used to investigate the phase
dependence of binary collisions23, the behaviour of collisions of
two solitary waves on a barrier22,24 and would provide a solid first
step towards the realization of a bright solitary wave
interferometer. In the limit of low kinetic energy, a mean-field
GPE treatment of the problem begins to break down26 and
quantum behaviour, (described in the 1D limit by the Lieb-
Liniger Hamiltonian27), becomes more significant. Here, splitting
of the soliton is energetically forbidden and it becomes possible to
create Schrödinger-cat states5,15.

The use of a narrow potential to controllably split a solitary
wave presents an opportunity to investigate one of the key open
questions arising from previous work; what governs the dynamics
and stability of multiple solitary waves existing in the same trap?
The long-lived nature of the solitary waves and their apparent
stability during binary collisions has been the subject of a wealth
of theoretical work3,28–31. Within the framework of the GPE, the
observed stability of soliton collisions can only be explained by
imposing a relative phase j¼p between neighbouring solitary
waves16,28,30 such that the collisions are effectively repulsive in
character32. This stabilizes the solitons as it avoids the formation
of a large density peak which may lead to collapse8,23,30,33. Several
other studies address the apparent stability of solitary waves in
binary collisions, offering different interpretations, which do not
require the imposition of a relative phase j¼ p between

neighbouring solitary waves. The inclusion of quantum noise3

or accounting for many-body effects4 both result in effectively
repulsive interactions between solitary waves, irrespective of
initial phase. Interestingly, incoherent, fragmented objects are
also predicted to form in the many-body formalism4. Further
experimental studies are undoubtedly required to address the role
of the relative phase in solitary wave collisions and to test the
different theoretical descriptions of quantum many-body systems.

Although reflection and splitting experiments show the
potential to settle the theoretical debate over the solitary wave
formation and dynamics, the ability to probe such narrow and
hence rapidly varying potentials using these wavepackets also
lends itself to an obvious application in precision measurement.
Atoms close to a surface are subject to the short-range Casimir–
Polder and van der Waals potentials, which can be measured
using the classical and quantum reflection of bright solitary
matter-waves14. Our apparatus includes a super-polished Dove
prism for such studies, see Fig. 1a. Further in the future, the
ability to deliver and manipulate ultracold atoms near to a solid
surface may open up new routes to probe short-range corrections
to gravity34 due to exotic forces beyond the Standard Model.

Methods
Production of a tunable BEC. We create a BEC with tunable atomic interactions
using the method described in ref. 35. A magnetic Feshbach resonance is used to
tune both the elastic and inelastic scattering properties of the atomic sample to
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Figure 3 | Reflection from a repulsive Gaussian barrier. (a) Potential in the axial direction along the waveguide in the presence of the repulsive barrier.

(Inset, upper: combined waveguide and Gaussian barrier potential. Lower: experimental setup.) (b) False colour images of a solitary wave reflecting

from the barrier. The white line shows the location of the barrier centre. (c) Horizontal position, relative to the crossed dipole trap (XDT), of a solitary wave

propagating in the waveguide in the absence (red) and presence (black) of the repulsive barrier. (d) The position of a solitary wave after 150 ms

propagation time as a function of the barrier height. Red (black) points correspond to the solitary wave travelling over (being reflected from) the barrier.

Solid lines in (c,d): theoretical trajectory calculated using a classical particle model with no free parameters. (e) Condensate width following reflection from

the barrier. In the absence of a barrier, a repulsive BEC (as¼ 58 a0, N¼ 3.5� 103) will expand as it propagates (red). With the barrier in place, an oscillation

in the condensate width is set up following the strong compression of the condensate at the barrier due to the shape of the potential (black). A solitary

wave (as¼ � 11 a0, N¼ 2.0� 103) undergoing the same collision emerges unaltered (blue). Solid lines are the theoretical condensate widths calculated by

solving the 3D (cylindrically symmetric) GPE.
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achieve efficient evaporation. Importantly, the resonance at 155 G in collisions
between 85Rb atoms in the F¼ 2, mF¼ � 2 state gives control over the s-wave
scattering length close to the zero crossing of B40 a0/G.

The use of a magnetic Feshbach resonance means it is advantageous to work
with a levitated crossed optical dipole trap. This is formed from a single 10.1 W,
l¼ 1,064 nm laser beam (IPG: YLR-15-1064-LP-SF) used in a bow-tie
configuration as shown in Fig. 1a. The term ‘levitated’ refers to the use of an
additional magnetic quadrupole field whose vertical gradient is set to just less than
that required to support atoms against gravity. This trap allows the magnetic field,
and hence scattering length, to be changed independently of the trapping
frequencies.

Loading the optical waveguide. To investigate the creation of solitary waves we
begin by forming a BEC containing up to 10,000 atoms at a scattering length of
asE300 a0. The crossed beam trap in which the BEC is created has a roughly
spherically symmetric geometry at the point of condensation, with final trap fre-
quencies of ox,y,z¼ 2p� (31, 27, 25) Hz. This trap is ill-suited to the observation of
bright solitary matter-waves and thus we transfer the condensate into a more
quasi-1D waveguide created by an additional 1,064 nm laser beam, focused to a
waist of 117mm and intersecting the crossed trap at 45� to each beam. This enters
the glass science cell through the back surface of an anti-reflection coated fused
silica Dove prism (to be later used for the study of atom-surface interactions14).

To load the condensate into the waveguide the scattering length is ramped close
to as¼ 0 in 50 ms thus reducing the condensate size and creating a BEC
approximately in the harmonic oscillator ground state of the crossed trap. The BEC
is then held for 10 ms to allow the magnetic field to stabilize before simultaneously
switching the waveguide beam on, the crossed beams off and jumping the
quadrupole gradient in the vertical direction from B0 ¼ 21.5 G cm� 1 to 26 G cm� 1.
Although it is advantageous in terms of the evaporation to be under levitated
during the condensation phase, we must increase the gradient once we wish to
transfer the atoms. This ensures a truer levitation of the atoms in the waveguide
trap, thus maximizing the trap depth of the beam. In addition, the presence of the
quadrupole gradient provides much of the, albeit weak, axial trapping along the
beam, oaxial ¼ 1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mB02=mB0

p
¼ 2p�1 Hz (ref. 36). Here, m is the magnetic

moment of atoms with mass m and B0 is the magnetic bias field. The waveguide
beam itself contributes o0.1 Hz to the axial trapping, hence the magnetic
confinement dominates in this direction. At a beam power of 0.17 W, the
waveguide and quadrupole potential produce a trap of ox,y,z¼ 2p� (1, 27, 27) Hz.
Here, the radial trap frequency (oy,z) approximately matches that of the crossed
beam trap at the point of condensation.

Propagation in the waveguide. A small offset (2.6 mm) between the crossed
dipole trap, that is, the waveguide loading position, and the quadrupole centre
means that once loaded into the waveguide, the BEC propagates freely towards the
magnetic field minimum along the direction of the waveguide, undergoing har-
monic motion. As the BEC propagates its rate of expansion in the axial direction is
determined by the scattering length. Although strictly speaking the expansion is
nonlinear over the full-range of times measured, a linear approximation is valid
over the range 10 msoto100 ms from which we can extract a ‘rate’.

Control of the solitary wave velocity. The position of the magnetic field zero in
the axial direction of the waveguide can be displaced by an amount determined by
the magnetic field gradient in this direction, B0/2, and a moderate offset field, Boffset,
according to Dx¼Boffset/(B0/2) (ref. 37). In this way, the amplitude, and hence
velocity, of the solitary wave motion can be precisely controlled due to the
dominance of the magnetic potential over the optical confinement of the waveguide
along the axial direction. The maximum velocity is given by v¼Aoaxial, where A is
the amplitude of the motion, set by the separation between the minimum of the
magnetic potential along the axis of the waveguide and the release point from the
crossed dipole trap. Using this technique the solitary wave can reach velocities of
tens of mm s� 1 when travelling through the centre of the harmonic potential or,
alternatively, be brought to a near standstill, achieving velocities o0.5 mm s� 1.

Classical reflection from a Gaussian barrier. To produce the repulsive potential
barrier we use a 532 nm Gaussian laser beam (derived from a Laser Quantum
Finesse laser), focussed to a waist of 131 mm horizontally and 495mm vertically,
with a power of up to 2 W. The barrier is aligned to cross the waveguide in the
horizontal plane at an angle of B45� and is offset by 455 mm from where the BEC
is released from the crossed dipole trap, see Fig. 3a. This angle is restricted by the
available optical access close to the trap centre.

Theoretical modelling. The release of the BEC into the waveguide potential, and
its subsequent expansion, was modelled at zero-temperature by solving the GPE in
3D using a cylindrically symmetric Fourier pseudospectral method. In all cases, the
initial non-interacting ground state of a harmonic trap with axial (radial) frequency
30 (27) Hz (corresponding to the crossed dipole trap potential) was released
instantaneously into another harmonic trap with axial (radial) frequency 1 (27) Hz
and offset by 2.6 mm along the axial direction (corresponding to the waveguide

potential). The scattering length was instantaneously changed to the appropriate
value of as at the time of release.

In cases where the barrier was present this was modelled as a Gaussian ‘light-
sheet’ potential centred on a plane perpendicular to the axial direction, offset from
the initial harmonic trap by 2.145 mm, and with height 760 nK and width
131

ffiffiffi
2
p

mm. Compared with the experimental barrier beam, this model neglects
the vertical width of the beam, which is large compared with the radial extent of the
BEC in the waveguide, and includes the geometric factor

ffiffiffi
2
p

to account for
the 45� angle of the beam.

Expansion rates were calculated from the full-width at half maximum of the BEC
axial density profile predicted by the GPE (obtained by integrating over the
radial coordinate) after 10 and 100 ms of expansion. In all cases, the change in
radius over this time interval was approximately linear. For the simulations in
Fig. 3e, the width was calculated by convolving the BEC axial density profile
predicted by the GPE with a 10 mm width Gaussian (to account for finite imaging
resolution), and fitting a Gaussian distribution to the resulting profile using
nonlinear least-squares.
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