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ABSTRACT
We report new, sensitive observations of twoz∼3–3.5 far-infrared-luminous radio galaxies,
6C 1909+72 and B3 J2330+3927, in the12CO J =1−0 transition with the Karl Jansky Very
Large Array and at 100–500µm usingHerschel, alongside new and archival12CO J = 4−

3 observations from the Plateau de Bure Interferometer. We introduce a new colour-colour
diagnostic plot to constrain the redshifts of several distant, dusty galaxies in our target fields.
A bright SMG near 6C 1909+72 likely shares the same node or filament as the signpost active
galactic nuclei (AGN), but it is not detected in12CO despite∼20,000km s−1 of velocity
coverage. Also in the 6C 1909+72 field, a large, red dust feature spanning≈500 kpc is aligned
with the radio jet. We suggest several processes by which metal-rich material may have been
transported, favouring a collimated outflow reminiscent ofthe jet-oriented metal enrichment
seen in local cluster environments. Our interferometric imaging reveals a gas-rich companion
to B3 J2330+3927; indeed, all bar one of the eightz >

∼ 2 radio galaxies (or companions)
detected in12CO provide some evidence that starburst activity in radio-loud AGN at high
redshift is driven by the interaction of two or more gas-richsystems in which a significant
mass of stars has already formed, rather than via steady accretion of cold gas from the cosmic
web. We find that the12CO brightness temperature ratios in radio-loud AGN host galaxies are
significantly higher than those seen in similarly intense starbursts where AGN activity is less
pronounced. Our most extreme example, whereL′

CO4−3
/L′

CO1−0
> 2.7, provides evidence

that significant energy is being deposited rapidly into the molecular gas via X-rays and/or
mechanical (‘quasar-mode’) feedback from the AGN, leadingto a high degree of turbulence
globally and a low optical depth in12CO – feedback that may lead to the cessation of star
formation on a timescale commensurate with that of the jet activity, <

∼10 Myr.

Key words: galaxies: active — galaxies: high-redshift — galaxies: starburst — submillimetre
— infrared: galaxies — radio lines: galaxies

1 INTRODUCTION

High-redshift radio galaxies (HzRGs) are typically identified via
their ultra-steep-spectrum radio emission (α < −1 whereSν ∝
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να) in flux-limited surveys (e.g. Tielens, Miley & Willis 1979;
Röttgering et al. 1994). Despite the inevitable and extreme youth
of the radio jets that draw our attention to these distant galax-
ies, they are associated with the most massive stellar popula-
tions of any known galaxy class – and presumably the most
massive black holes and host galaxies – out to the highest
redshifts (Best, Longair & Röttgering 1998; Blundell & Rawlings
1999; Seymour et al. 2007).

In the submillimetre (submm; rest-frame far-infrared, FIR)
regime, HzRGs were first explored using relatively primitive
submm detectors such as UKT14 on the James Clerk Maxwell
Telescope (e.g. Dunlop et al. 1994). Later, with the advent of sen-
sitive submm cameras, their submm luminosities (and hence dust
masses) were found to be a strongly increasing function of red-
shift (Archibald et al. 2001; Reuland et al. 2004), even beyond the
peak epoch of activity for submm galaxies (SMGs,z ∼ 1–3 –
Chapman et al. 2005).

As rare, massive systems, HzRGs are often employed as
signposts to what are expected – based on our understand-
ing of how cosmic structures form and evolve (e.g. Davis et al.
1985) – to be over-dense regions of the early Universe. Surveys
found excesses of various galaxy types around HzRGs, includ-
ing Lyman-break galaxies, Lyα emitters and SMGs (Ivison et al.
2000; Miley et al. 2004; Greve et al. 2007; Venemans et al. 2007;
Overzier et al. 2008; Hatch et al. 2011). Stevens et al. (2003) pre-
sented submm imaging of seven HzRGs, several of which appear
to contain extended (∼5–20 arcsec,∼35–150 kpc) dust emission,
co-spatial with similarly extended UV emission in several cases
(Hippelein & Meisenheimer 1993; Hatch et al. 2008). This sug-
gests that obscured starbursts in these over-dense regionsat z >

∼ 3
may differ from the compact (<∼0.5 arcsec, or<∼4 kpc) events seen in
local ultraluminous IR galaxies (ULIRGs) and, indeed, as seen by
high-resolution12CO and radio continuum imaging of the general
z ∼ 2 SMG field population (Tacconi et al. 2008; Biggs & Ivison
2008; Younger et al. 2008). From this we might conclude that the
mechanism for the formation of the very massive galaxies in these
over-dense regions may be fundamentally different to that of the
>
∼L⋆ galaxies forming from SMGs (Smail et al. 2004), although the
earliest12CO J =1−0 imaging of SMGs (e.g. Carilli et al. 2011;
Ivison et al. 2011; Riechers et al. 2011a,b; Hodge et al. 2011) using
the Karl Jansky Very Large Array (JVLA) (Perley et al. 2011) sug-
gests their cold gas may be more extended than the high-J 12CO
tracers employed previously.

Valiant, early attempts to detect12CO towards HzRGs with
single-dish telescopes ended in failure (e.g. Evans et al. 1996;
van Ojik et al. 1997), but the stable spectral baselines afforded by
interferometers eventually allowed the secure detection of 12CO
J = 3− 2 towards 53W002 atz = 2.39 (Scoville et al. 1997;
Alloin, Barvainis & Guilloteau 2000) and12CO J = 4− 3 to-
wards 4C 60.07 atz = 3.79 and 6C 1909+72 atz = 3.53
(Papadopoulos et al. 2000, hereafter P00), B3 2330+3927 atz =
3.09 (De Breuck et al. 2003, hereafter DB03), TN J0121+1320
at z = 3.52 (De Breuck, Neri & Omont 2003) and 4C 41.17 at
z = 3.80 (De Breuck et al. 2005). Detections of the12COJ=1−0
line – that most sensitive to cold gas (Papadopoulos & Ivison2002)
– are particularly difficult towards radio galaxies: synchrotron
emission often dominates at the frequency of the line,∼115 GHz,
which is expected to be roughly an order of magnitude fainter
than 12CO J = 4− 3. The robust detection of12CO J = 1− 0
by Emonts et al. (2011) towards MRC 0152−209 is the excep-
tion that proves the rule, albeit at a modest redshift (z = 1.92).
More often,J = 1− 0 has proved elusive (Ivison et al. 1996;

Papadopoulos et al. 2005) or detections have been of a tentative na-
ture (e.g. Greve, Ivison & Papadopoulos 2004; Klamer et al. 2005).

Here, we present new observations of two HzRGs,
6C 1909+72 (also known as 4C 72.26 and TXS J1908+7220) and
B3 J2330+3927 (Pentericci et al. 2000, DB03) using JVLA, theIn-
stitut de Radioastronomie Millimétrique’s Plateau de Bure Inter-
ferometer (IRAM PdBI) andHerschel1 (Pilbratt et al. 2010). The
PACS and SPIRE instruments (Griffin et al. 2010; Poglitsch etal.
2010) aboardHerscheloffer unprecedented sensitivity, with reso-
lution well-matched to ground-based predecessors such as SCUBA
(Holland et al. 1999). They cover the decade of wavelengths from
70 to 500µm with λ/∆λ ∼ 3, which allows us to probe the peak
of the spectral energy distribution (SED) of a dusty galaxy out to
z ∼ 4, thereby determining its star-formation rate (SFR, via its
FIR luminosity,LIR, across rest-frame 8–1,000µm, e.g. Kennicutt
1998) and its characteristic dust temperature,Td. Beyond the local
Universe, these quantities have only rarely been well constrained
until now. Alternatively, we can adopt a reasonable value for Td

and then estimate the redshifts of the SMGs seen in the vicinity
of HzRG signposts (e.g. Stevens et al. 2003) using their rest-frame
FIR colours (e.g. Eales et al. 2003; Greve et al. 2008; Penneret al.
2011), i.e. without resorting to conventional spectroscopy, thereby
determining the likelihood that they inhabit a massive structure
alongside the HzRG.

In the next section we describe an extensive set of obser-
vations, then present the reduced images, spectra and associated
analysis in§3. §4 contains our interpretation of those data and
discussion of their implications. We finish with our conclusions
in §5. Throughout the paper we use a cosmology withH0 =
71 km s−1 Mpc−1, Ωm = 0.27 andΩΛ = 0.73.

2 OBSERVATIONS

The observations described hereafter targeted the HzRGs,
6C 1909+72 and B3 J2330+3927. The former presents a clas-
sic double-lobed (plus core) radio morphology, subtending
∼15 arcsec, and has a total 1.4-GHz flux density,S1.4GHz ∼
259mJy; the latter is brighter,S1.4GHz ∼ 405mJy, with what
appears at first sight to be a similar morphology, if more com-
pact (∼2 arcsec), but which high-resolution radio imaging re-
vealed to be an unusually one-sided jet driven by a compact,
flat-spectrum core (Pérez-Torres & De Breuck 2005). Alongside
PKS 1138−262, 6C 1909+72 and B3 J2330+3927 are the most lu-
minous of the 69 HzRGs explored by Seymour et al. (2007) in the
rest-frame near-IR usingSpitzer.

2.1 JVLA observations

Whilst the JVLA was in its most compact configuration during
2011 September–November, we acquired amongst the first data
taken in a new mode offering almost an order of magnitude more
bandwidth than was previously possible, tuning to the12CO J =
1−0 transition at 115.27120256 GHz (Morton & Noreau 1994) for
our target HzRGs.

Short slots, usually 2–3 hr long, were scheduled dynamically
to ensure excellent phase stability and transparency in theK and Ka

1 Herschelis an ESA space observatory with science instruments provided
by European-led Principal Investigator consortia and withimportant partic-
ipation from NASA.
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Mergers and feedback amongst starbursting radio galaxies3

Table 1. 12CO emission-line properties.

Target R.A. Dec. PeakSν z FWHM ICO

(J2000) (J2000) (mJy) (km s−1) (Jy km s−1)

J=1−0:
6C 1909+72 19:08:23.70±0.07 +72:20:11.63±0.36 0.26± 0.04 3.5324± 0.0007 570 ± 90 0.222± 0.049

B3 J2330+3927 (AGN host) – – 3σ < 0.28 – – 3σ < 0.074

JVLA J233024.69+392708.6 (c) 23:30:24.69±0.02 +39:27:08.58±0.16 0.21± 0.04 3.0884± 0.0010 720 ± 170 0.162± 0.034

J=4−3:
6C 1909+72 19:08:23.73±0.02 +72:20:11.54±0.11 3.3± 0.3 3.5324± 0.0006 800 ± 90 2.69± 0.27

B3 J2330+3927 (AGN host) 23:30:24.85±0.02 +39:27:12.04±0.15 2.7± 0.3 3.0934± 0.0005 830 ± 100 3.29± 0.51

JVLA J233024.69+392708.6 (c) 23:30:24.62±0.02 +39:27:08.46±0.18 1.9± 0.4 3.0901± 0.0006 520 ± 110 1.12± 0.17

atmospheric windows for 6C 1909+72 and B3 J2330+392, respec-
tively. During these slots, data were recorded2 every 3 sec in each
of 2× 8 contiguous baseband (dual-polarisation) pairs, each base-
band comprising64×2-MHz channels for a total dual-polarisation
bandwidth of 2,048 MHz, well over 20,000 km s−1 at the redshift
of 6C 1909+72. Bright, compact calibration sources – flat-spectrum
blazars lying within a few degrees of our target galaxies – were
observed every few minutes to determine accurate complex gain
solutions and bandpass corrections. 3C 48 and 3C 286 were also
observed to set the absolute flux scale, and the pointing accuracy
was checked locally every hour.

For 6C 1909+72 the two sets of eight contiguous baseband
pairs were themselves placed contiguously. We shifted the12CO
J=1−0 line (expected at 25.434 GHz forz = 3.5322) by 180 MHz
from the centre of the available bandwidth to avoid the edge of a
baseband, or one of the end basebands.

For B3 J2330+3927, the12COJ=1−0 line lies below 32 GHz
in the Ka band. As such, only one set of eight contiguous baseband
pairs could be deployed on the line (expected at 28.156 GHz for
z = 3.094, but purposefully offset by 64MHz to avoid the edge of a
baseband); the other set of eight basebands were tuned to 32.5 GHz.

The data were reduced and imaged usingAIPS following
the recipes described by Ivison et al. (2011), though with a number
of significant changes: data were loaded usingBDF2AIPS, avoid-
ing any compression, andFRING was used to optimise the de-
lays, in software, based on 1 min of data for 3C 48 or 3C 286. The
basebands were knitted together using theNOIFS task, yieldinguv
datasets with either 1,024 or 512× 2-MHz channels. Continuum
images were made, using all of these data to obtain very deep maps
of the synchrotron emission at 25.4 and 28.2 GHz (for 6C 1909+72
and B3 J2330+3927, respectively), which was then cleaned and
subtracted from theuv data (usingUVSUB). The channels were
then imaged in groups of four (yielding∼90 km s−1 velocity res-
olution) over∼3-arcmin-diameter fields, with natural weighting
(ROBUST = 5), to form large cubes centred on the radio galaxies.
The resulting spatial resolutions were4.0× 3.0 arcsec2 at position
angle (PA), 171◦, for 6C 1909+72 and3.4×2.8 arcsec2 at PA, 72◦,
for B3 J2330+3927.

2 A bug in the Correlator Back End computer during this period resulted
in only 1 sec of data being saved per integration, meaning that a significant
fraction of the useful data were lost.

2.2 IRAM PdBI imaging

Observations of 6C 1909+72 were made in12CO J = 4−3 us-
ing PdBI’s C and D configurations in the 3-mm atmospheric win-
dow during 2007 July (with five antennas) and December (with six
antennas) in a series of∼6–11-hr tracks with good phase stabil-
ity (0.6–1.0 arcsec seeing) and transparency (1.5–2.5 mm ofwater
vapour). The local calibrator, 1928+738, was used to track ampli-
tude and phase, with 1642+690 used for an independent check.Ab-
solute fluxes were calibrated using MWC 349. Data cubes were
made viaAIPS using a natural weighting scheme, yielding a
3.1× 2.7 arcsec2 beam with the major axis at a PA of 47◦.

The original PdBI data acquired by DB03 for B3 J2330+3927
were re-imaged usingAIPS using a natural weighting scheme,
discarding those channels observed only in the compact configura-
tion, yielding a3.2× 2.4 arcsec2 beam with the major axis at a PA
of 72◦.

2.3 Herschelimaging

The Herscheldata presented in this paper comprise a small part
of the HerschelRadio Galaxy Evolution Project (HeRGE) OT1
programme (Seymour et al. 2012). With PACS, we made near-
orthogonal scans of our HzRG targets at nominal speed (i.e. with
the telescope tracking at 20 arcsec s−1) using mini-map mode,
spending a total of 288 sec on source, recording data simultane-
ously at 100 and 160µm, each scan comprising12×4-arcmin scan
legs separated by 4 arcsec. With SPIRE we approached the confu-
sion limit (Nguyen et al. 2010) with just three repetitions (111 sec
on source) of its ‘small map’ mode, obtaining data simultaneously
at 250, 350 and 500µm. The SPIRE images were produced using
the standard pipeline; the PACS data were tackled with a variant of
the pipeline developed by Ibar et al. (2010).

Flux densities for SPIRE were measured usingSUSSEXTRAC-
TOR (Smith et al. 2012), as implemented in theHerschelData Pro-
cessing System. For PACS, we used apertures of radius 9 and
13.8 arcsec at 100 and 160µm, respectively, with appropriate aper-
ture corrections, with errors determined by placing many random
apertures in regions of the image with integration times similar to
those of our targets.

3 RESULTS

3.1 6C 1909+72

The synchrotron continuum emission from 6C 1909+72 dominates
the observed flux density at 25 GHz, being almost an order of mag-

c© 0000 RAS, MNRAS000, 000–000



4 Ivison et al.

Figure 1. Left: False colour image of12COJ=1−0 emission from 6C 1909+72, as measured by JVLA. N is up; E is left. Inset:12COJ=4−3 as measured at
IRAM PdBI, on the same spatial scale. Emission coming towards and going away from us relative to the systemic velocity is represented with the appropriate
colours, revealing hints of a velocity field common to both12CO lines, though not globally. The much brighter 25-GHz synchrotron emission, against which
we have struggled to discern the12CO J = 1−0 emission, is represented with isophotal contours at−3, 3, 6, 12...× the local noise level.Right: 12CO
J=1−0 spectrum of 6C 1909+72, after subtraction of the dominant synchrotron emission component, smoothed with a 140-km s−1 FWHM Gaussian. Inset:
zoomed in on the line, with the new IRAM PdBI12COJ=4−3 spectrum (§2.2) shown in red, binned to 100 km s−1 and scaled by16−1× to be on the same
Rayleigh-Jeans brightness temperature (Tb) scale as the12CO J = 1−0 spectrum. The velocity scales correspond toz = 3.5322, approximately midway
between the two components (z = 3.5203 and3.5401) identified by Smith et al. (2010). The red horizontal line shows the spectral region summed to create
the12COJ=1−0 image shown alongside, and to determineICO.

Figure 2. Left: GreyscaleK ′ image of the B3 J2330+3927 field (DB03) with isophotal contours of the12COJ =1−0 emission in red (−3, 3,3
√
2, 6...×

local noise level). N is up; E is left. The12CO J =1−0 is associated with component c (circled, lower right), rather than the core of the AGN host galaxy
(also circled, betrayed by its powerful synchrotron emission – cyan contours – Pérez-Torres & De Breuck 2005).12COJ=4−3 emission is shown in yellow
– a radically different morphology from that presented by DB03. The brightest component is centred on the AGN while a fainter clump lies to the south-west,
coincident with component c. The astrometric uncertainties here are<∼0.5 arcsec.Right: 12COJ=1−0 spectrum of JVLA 233024.69+392708.6 (component
c), near B3 J2330+3927. Inset: zoomed in on the line, with theIRAM PdBI 12CO J = 4−3 spectrum of the same galaxy (§2.2) shown in red, binned to
53 km s−1 and scaled by16−1× to be on the same Rayleigh-JeansTb scale as the12COJ=1−0 spectrum. The red horizontal line shows the spectral region
summed to create the12COJ=1−0 image shown alongside, and to determineICO.

c© 0000 RAS, MNRAS000, 000–000
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Table 2. Measured flux densities and properties of HzRGs and brightest field SMGs.

Target S100µm S160µm S
†
250µm S

†
350µm S

†
500µm S850µm

(mJy) (mJy) (mJy) (mJy) (mJy) (mJy)

6C 1909+72 17.0± 3.0 34.9± 6.5 57.2± 2.7 69.6± 2.8 63.4± 3.3 34.9± 3.0

SMM J190827.5+721928 0.0± 2.9 −0.1± 6.7 45.1± 2.6 65.1± 2.7 61.2± 3.0 23.0± 2.5

B3 J2330+3927 11.3± 2.9‡ 27.0± 6.2‡ 52.0± 2.7 60.3± 2.7 57.3± 3.3 22.2± 2.7

SMM J233019.1+392703 5.4± 3.3 4.2± 11.9 31.6± 2.8 35.4± 2.6 21.1± 3.4 8.2± 1.9

† Uncertainty does not include the contribution from confusion noise, nor any possible systematic offset in flux calibration.
‡ Astrometry is consistent with a significant fraction of the PACS emission originating from JVLA 233024.69+392708.6 (Fig. 3).

nitude brighter than the12CO line peak (Fig. 1, left). To assess the
12CO line properties we subtracted an accurate model of the contin-
uum emission, exploiting the impressive bandwidth now available
at JVLA.

In the resulting continuum-free JVLA datacube,12CO J =
1−0 line emission is seen clearly, centred atz = 3.5324± 0.0007
(Fig. 1, right), closely matching that seen in our12CO J = 4−3
spectrum from IRAM PdBI,z = 3.5324±0.0006. The basic char-
acteristics of the12CO line emission – peak and total flux densi-
ties, line widths, etc. – are listed in Table 1, for both transitions.
It is notable that we measureICO4−3 = 2.69 ± 0.27 Jy km s−1,
cf. the1.62±0.30 Jy km s−1 measured by P00, who may also have
under-estimated the line width due to a lack of available bandwidth.

Both the12CO J = 1−0 andJ = 4−3 emission are par-
tially resolved, even with a natural weighting scheme. Someveloc-
ity structure can be discerned in Fig. 1, common to both transitions,
but there does not appear to be a strong, coherent gradient.

From the measured12CO properties, we findL′
CO1−0 =

(1.19 ± 0.26) × 1011 K km s−1 pc2 and the molecular gas mass,
Mgas (H2 + He), is therefore likely around∼ 1011 M⊙,
naively adopting Mgas/L

′
CO = 0.8M⊙ (K km s−1 pc2)−1

(Downes & Solomon 1998).

3.2 B3 J2330+3927

At the position of the radio galaxy core, as identified by
Pérez-Torres & De Breuck (2005) and detected in12CO J =4−3
using PdBI by (DB03), we find synchrotron emission (S28.2GHz =
5.14 ± 0.02mJy centred at23h30m24.s866,+39◦27′11.84′′

J2000) but there is no evidence of12CO J = 1 − 0 emis-
sion in a synchrotron-subtracted data cube. The (3-σ) limit we
can set, assuming the same line width as the12CO J = 4−
3 emission (830 km s−1 FWHM) and following Appendix A of
Seaquist, Ivison & Hall (1995) isICO < 0.074 Jy km s−1. The ba-
sic characteristics of the12CO line emission are again listed in Ta-
ble 1, for both transitions.

Fig. 2 shows the Keck/NIRCK-band imaging (from DB03)
as a greyscale, superimposed with contours to show the emission
in 8.4-GHz continuum (synchrotron),12CO J = 1−0 and 12CO
J = 4−3. Approximately 4 arcsec to the SSW of the AGN (and
∼260 km s−1 bluewards of its12CO J = 4− 3 redshift) we do
see emission in12CO J = 1−0. It is coincident with what DB03
labelled component ‘c’ and tentatively suggested might lieat the
same redshift as the radio galaxy. We show its spectra in12CO
J = 1− 0 and J = 4− 3 in Fig. 2. Our new12CO J = 1− 0
imaging and our re-analysis of the12CO J = 4−3 data make it
clear that component c is in fact a gas-rich galaxy in the immediate
vicinity of the radio-loud AGN, which is presumably interacting
with (and thereby triggering activity in) the host galaxy ofthe AGN.

Figure 3. Three velocity slices in12COJ=4−3 towards B3 J2330+3927
displayed as a false-colour RGB image, showing how the super-thermal
emission centred near the radio-loud AGN (shown as black dots) is offset to
the red from the12CO emission associated with the neighbouring, gas-rich
galaxy, JVLA 233024.69+392708.6. Cyan, yellow and red contours (start-
ing at 3σ and spaced by

√
2) show the 160-, 250- and 850-µm continuum

emission as seen byHerscheland SCUBA (Stevens et al. 2003), with no as-
trometric tweaks applied, consistent with cold dust distributed throughout
the system. N is up; E is left.

Component c is detected in at least three IRAC bands and so has
a significant stellar population. It is not obvious that it contributes
significantly to the Lymanα halo that surrounds B3 J2330+3927
(Matsuda et al. 2009).

Fig. 3 reveals the dynamical structure of the12CO emission,
with a blue–red gradient leading from component c to beyond the
radio-loud AGN. The continuum emission atλobs = 160, 250 and
850µm (rest-frame 40, 60 and 200µm) seen by PACS, SPIRE and
SCUBA are also shown. Atλobs = 24µm, the emission is pre-
dominantly from the AGN; atλobs = 100 and 160µm, it is pre-
dominantly from component c; atλobs > 250µm the emission is
centred between the two. We have evidence, then, that dust ata va-
riety of temperatures is distributed throughout the system, yet we
lack the spatial resolution to disentangle these components reliably.

The total flux in 12CO J = 1 − 0 for component c,
ICO = 0.162 ± 0.034 Jy km s−1. The excitation situation for
component c is comparable to that of SMGs (Harris et al. 2010;
Ivison et al. 2011), with a brightness temperature (Tb) ratio,
L′

CO4−3/L
′
CO1−0 = r4−3/1−0 = 0.43 ± 0.11 (cf. 0.41 ± 0.07 –

c© 0000 RAS, MNRAS000, 000–000



6 Ivison et al.
 

 

 

 

0.0 0.5 1.0 1.5 2.0 2.5 3.0
S160/S250

0.0

0.5

1.0

1.5

2.0

2.5

3.0
S 35

0/S
25

0

 

 

 

 

 

 

 

 

  
 

  

 

 

 

 

 

0

1

2

3

4

 

 

 

 

 

0.0 0.5 1.0 1.5 2.0 2.5 3.0
S250/S350

0.0

0.5

1.0

1.5

2.0

2.5

3.0

S 50
0/S

35
0

 

 

 

 

 

 

 

 

  
 

  

 

 

 

 

 

0

1

2

3

4

 

 

 

 

 

0.0 0.5 1.0 1.5 2.0 2.5 3.0
S350/S500

0.0

0.5

1.0

1.5

2.0

2.5

3.0

S 85
0/S

50
0

 

 

 

 

 

 

 

 

  
 

  

 

 

 

 

 

0

1

2

3

4

 

Figure 4. Colour-colour plots for the HzRGs and their neighbouring
SMGs, adapted from Amblard et al. (2010), together with a newplot de-
signed to exploit our SCUBA 850-µm photometry. For galaxies/bands with-
out robust detections in Table 2, upper limits are shown (calculated as
Sλ + 3σλ). for The coloured backgrounds indicate the redshifts of model
SEDs (Amblard et al. 2010). The red crosses represent B3 J2330+3927
(thick lines) and SMM J233019.1+392703, where the latter appears to lie
at a lower redshift than the radio galaxy. The black crosses represent
6C 1909+72 (thick lines) and SMM J190827.5+721928, which have re-
markably similar colours, consistent with a shared redshift of >∼3.

Bothwell et al. 2012). This differs strikingly from that of the radio
galaxy core, where theTb ratio is entirely inconsistent with thermal

emission,r4−3/1−0 > 2.7 (3σ), i.e. the emission is super-thermal3

(see§4.1).
DB03 assumedr4−3/1−0 = 0.45 to extrapolate their12CO

J = 4− 3 measurement toJ = 1− 0 and calculate a gas mass
for B3 J2330+3927. We can see now that this will have resulted
in an over-estimate ofMgas for the AGN host galaxy. Our limit
on ICO1−0 impliesL′

CO < 2.9 × 1010 K km s−1 pc2 andMgas <
2.3× 1010 M⊙ whereMgas/L

′
CO = 0.8M⊙ (K km s−1 pc2)−1.

For the gas-rich galaxy previously known as component c,
which we re-name JVLA 233024.69+392708.6, we findL′

CO =
(6.9± 1.5) × 1010 K km s−1 pc2 andMgas ∼ 5.5 × 1010 M⊙.

3.3 On the HzRGs and their environments

The over-density of bright SMGs found around HzRGs, their faint-
ness at optical/IR wavebands and the alignment of those SMGs
with the jets from the central AGN were taken as tentative evi-
dence that HzRGs are signposting massive structures in which other
galaxies are also undergoing intense starbursts (Ivison etal. 2000;
Stevens et al. 2003).

Our deepHerschelimaging allows us to assess the likely red-
shifts of these bright neighbouring SMGs via their FIR/submm
colours (e.g. Amblard et al. 2010, though such colours are only sen-
sitive to(1+ z)/Td – see Blain 1999). We report their FIR/submm
flux densities in Table 2.

The upper panels of Fig. 4 show two of the colour-colour di-
agnostic plots employed by Amblard et al. (2010) to assess the red-
shift andTd of galaxies detected by H-ATLAS (Eales et al. 2010),
probing their colours across the rest-frame∼100-µm bump. The
coloured backgrounds indicate the redshifts of model SEDs.The
new, lower panel of Fig. 4 is based on the same model SEDs and is
designed to exploit information from our SCUBA 850-µm imaging
that is particularly relevant to galaxies atz > 2.

The red crosses represent B3 J2330+3927 and its brightest
SMG neighbour, SMM J233019.1+392703. The position of the lat-
ter – particularly in the lower two plots – suggests stronglythat it
lies at a lower redshift than the radio galaxy, nearer the peak of
the radio-detected SMG population atz ∼ 2.2 (e.g. Chapman et al.
2005).

The black crosses represent 6C 1909+72 and the very bright,
nearby SMG, SMM J190827.5+721928. Their rest-frame FIR
colours are remarkably similar in the lower two colour-colour plots.
The two galaxies differ inS160/S250, i.e. the colours on the Wien
side of their SEDs. The limit for the bright companion is consistent
with the known redshift of the radio galaxy, but the colour ofthe ra-
dio galaxy is bluer than we might expect. On balance, the evidence
is consistent with the proposition that these two dusty starbursts
share the same node or filament4 of the cosmic web.

With the∆v > 10, 000 km s−1 of velocity coverage available
to us via the WIDAR correlator at JVLA, we should be sensitive
to 12COJ=1−0 emission from bright SMGs in our target fields,
should they have a similar ratio ofSCO/S850µm and if – as seems
likely, at least for 6C 1909+72 and SMM J190827.5+721928 – they
lie in the same cosmic structure as the central HzRG.

3 Strictly, super-thermalexcitation exists only where local thermodynamic
equilibrium has been violated by a population inversion. Here, we use it as
short-hand forr > 1.
4 A typical filament atz ∼ 3.5 spans of order≈ 30h−1 Mpc (e.g.
Springel et al. 2005). SMM J190827.5+721928 is separated by45 arcsec
(335 kpc) in the plane of the sky from 6C 1909+72. It would needto lie
within δz <∼ 0.04 to inhabit the same sheet or filament.
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Figure 5. 850-µm continuum emission (
√
2-spaced contours, starting at 3σ, Stevens et al. 2003) for the fields surrounding B3 J2330+3927 (left) and

6C 1909+72 (right), superimposed on false-colour images made using theHerschel160-, 250- and 350-µm imaging, described in§2.3, convolved to the
350-µm spatial resolution. N is up; E is left. The SMGs identified byStevens et al. (2003) are circled. Unsurprisingly, these are revealed here as the reddest
objects in each field. The red structure apparent in the 6C 1909+72 field is co-aligned with both the radio jets (recall Fig.1) and a prominent extension seen
previously at 850µm. A less prominent extension is seen to the WNW of B3 J2330+3927.

We do not detect12CO J = 1 − 0 emission from
SMM J233019.1+392703 in the B3 J2330+3927 field. However,
this SMG is less than half as bright as the nearby HzRG its emis-
sion is attenuated severely (82 per cent) by the JVLA’s primary
beam at 28.2 GHz, so this does not rule out the possibility that it
shares the same structure atz ∼ 3.09. We set a 3-σ upper limit of
ICO1−0 < 0.41 Jy km s−1 where we have adopted a line width of
800 km s−1, typical for SMGs (e.g. Greve et al. 2005).

SMM J190827.5+721928, in the 6C 1909+72 field, is suffi-
ciently bright that we would expect to detect its12CO J = 1−0
emission, given our∆v ∼ 20, 000 km s−1 [3.39 < z < 3.75] of
velocity [redshift] coverage in this field, if it were to havea similar
ratio of SCO1−0/S850µm and be part of the same structure as the
nearby HzRG. We searched the12CO J = 1−0 velocity cube at
the position of the SMG, at spectral resolutions ranging from 95–
380 km s−1. Despite being amongst the brightest known SMGs, its
position is ill-defined since it lacks a convincing counterpart in the
availableSpitzer3.6–24-µm imaging. The most convincing peak
lies atνobs = 25.124 ± 0.006GHz, which would correspond to
ICO1−0 = 0.110±0.033 Jy km s−1 atz = 3.588±0.001 (after pri-
mary beam correction). The best-fit line width (430± 120 km s−1)
would be narrower than the majority of SMG12COJ=3−2 lines
(Greve et al. 2005; Bothwell et al. 2012) and we do not view this as
a robust detection, but it would be an obvious place to begin search-
ing for 12COJ=4−3 with IRAM’s new WideX correlator. Several
other 2–3-σ peaks are also present, but none with a line width even
remotely commensurate with an SMG (e.g. Greve et al. 2005). The
1-σ ICO level for a line of width 800 km s−1 is 0.06 Jy km s−1. We
are forced to conclude that the presence of two unusually bright
SMGs in this field may be due to the chance alignment of distant
starbursts.

The lack of a convincing detection of12CO towards the
brightest SMG in the vicinity of 6C 1909+72 casts doubt on the

idea that it co-habits a proto-cluster environment with thera-
dio galaxy (Stevens et al. 2003). However, ourHerschel imag-
ing does hint at the presence of a dust-rich strand of the cosmic
web centred on 6C 1909+72. Fig. 5 reveals a large (≈500 kpc)
red structure, the majority of which is co-aligned with a promi-
nent extension (∼150 kpc, somewhat larger than the∼50-kpc
scale of the northern radio jet – recall Fig. 1) seen previously
at 850µm (Stevens et al. 2003). We might imagine this as a fil-
ament of gas that is being accreted slowly onto the AGN host
galaxy, but in our view it is no less likely that this structure is
due to the outflow of metal-rich material from the radio galaxy
host, heated by a network of unresolved LIRGs. A dusty out-
flow could be driven by radiation pressure from a strong nuclear
starburst and/or AGN on dust (e.g. Prochaska & Hennawi 2009;
Lehnert et al. 2011; Faucher-Giguere & Quataert 2012; Roth et al.
2012; Wagner, Bicknell & Umemura 2012) with material trans-
ported well beyond the AGN host galaxy, as witnessed in the
near-IR on smaller scales for radio galaxies atz ∼ 2 −
3 (Nesvadba et al. 2008; Harrison et al. 2012), for M 87 in the
Virgo cluster (Simionescu et al. 2008, 2009; Werner et al. 2010),
for the brightest cluster galaxy (BCG) in the Hydra A cluster
(Kirkpatrick et al. 2009; Gitti et al. 2011) and for BCGs moregen-
erally (Kirkpatrick et al. 2011; O’Sullivan et al. 2011). Wenote
that the presence of∼3,000-km s−1 absorption features5 against
an unpolarised optical continuum led Dey (1997) to classify
6C 1909+72 as a broad-absorption-line radio galaxy, and is con-
sistent with a powerful outflow. Of course, we must also bear in
mind the well-rehearsed argument that radio galaxies are most eas-

5 For a∼3,000-km s−1 outflow, with a dynamical timescale of a few×108

yr, a single epoch of starburst and/or AGN activity would be sufficient to
generate a structure on the scale seen here.
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Figure 6. Radio-through-optical SEDs of the radio galaxies, B3 J2330+3927(left) and 6C 1909+72(right). Note that all quantities are observed rather than
rest-frame. Their entire 3µm to 74 MHz SEDs can be fitted adequately (see§4.1) using only thermal dust and synchrotron emission components, whose
characteristics are listed in Table 3. Our new measurementsfrom PACS and SPIRE – which probe the SED peaks, constrainingLIR andTd – are shown in
red. Lacking the spatial resolution to account for contamination of flux densities for B3 J2330+3927 by component c (JVLA233024.69+392708.6), we fit to
the summed flux densities of both galaxies.

ily discovered when their jets are encountering a working surface
(e.g. Barthel & Arnaud 1996).

4 DISCUSSION

4.1 On the HzRG SEDs and Tb ratios

Fig. 6 shows the observed radio-through-optical SEDs of
6C 1909+72 and B3 J2330+3927. For both galaxies, the photom-
etry between 3µm and 74 MHz can be described adequately with
a model comprising only synchrotron and thermal dust emission,
following Kovács et al. (2010). Table 3 lists the results ofa simul-
taneous fit to the following free parameters: the dominant cold dust
temperature,Td, and the power-law index,γ, of a dust tempera-
ture distribution,dMd/dTd ∝ T−γ

d , designed to offer a physi-
cally motivated treatment of the Wien side of the thermal emission
spectrum (in Kovács et al.,Tc ≡ Td, the low-temperature cutoff
of the distribution), the dust mass,Md (for a characteristic pho-
ton cross-section to mass ratio,κ850µm = 0.15m2 kg−1, from
Dunne, Eales & Edmunds 2003, where the frequency dependence
of the dust emissivity,β, was fixed to +1.5) and the synchrotron
power-law index,α. The resulting measurements ofLIR andqIR
(as defined by Helou et al. 1985, but whereSIR is measured across
λrest = 8− 1, 000µm, as isLIR) are also listed.

Both radio galaxies have warmer dust temperatures,THzRG
d ∼

45 K, than those seen for similarly luminous, dusty starbursts at
z ∼ 3 (T SMG

d ∼ 35 K when calculated using a power-law tem-
perature distribution, as we have here – Magnelli et al. 2012). De-
termining the contribution of the AGN toLIR is a long-standing
problem that we cannot hope to solve without dramatically im-
proved spatial resolution. The relatively warm dust does imply sig-
nificant AGN contributions toLIR for these two radio galaxies,
though even this cannot be asserted with certainty since thebright-
est 100–160-µm emission in the B3 J2330+3927 system (§3.2)
is centred near the gas-rich companion (which may contain its
own AGN, if it is anything like the interacting system seen to-
wards 4C 60.07 – Ivison et al. 2008). On the other hand, the de-

Table 3. Tb ratios and parameters from spectral energy distributions.

Parameter 6C 1909+72 B3 J2330+3927

r4−3/1−0 0.76± 0.18 3σ > 2.7

χ2
red

1.14 1.00
Td (K) 45.7± 1.3 41.4± 1.1

log Md (M⊙) 9.37± 0.04 9.26± 0.17

γ 5.51± 0.05 5.54± 0.04

α −1.22± 0.04 −0.95± 0.07

qIR −1.02± 0.04 −0.40± 0.11

log LIR (L⊙) 13.69± 0.08 13.52± 0.07

tection of dust and molecular gas towards the radio galaxy hosts
makes it likely that significant levels of star formation aretak-
ing place in both. Given the strong dependence ofLIR on Td

(e.g. Eales et al. 2000), we might expect that the fraction ofLIR

due to the AGN,LAGN
IR /LIR ≈ 1 − η(THzRG

d /T SMG
d )−6, where

η ≈ 0.5 is the fractional AGN contribution toLIR estimated for
typical SMGs (e.g. Frayer et al. 1998). This suggests a≈90-per-
cent AGN-related contribution toLIR for our HzRGs, which still
leaves room for vigorous starburst activity in the radio galaxy hosts,
with SFR ∼ 500M⊙ yr−1 (Kennicutt 1998).

The super-thermalTb ratio, r4−3/1−0 > 2.7(3σ), observed
towards the AGN host galaxy, B3 J2330+3927, reveals the pres-
ence of highly excited molecular gas, given the excitation re-
quirements of12CO J = 4− 3 (E4−3/k ∼ 55 K and ncrit ∼
1.9× 104 cm−3). Even for 6C 1909+72, theTb ratio,r4−3/1−0 =
0.76 ± 0.18, is significantly higher than the average value seen
for SMGs by Bothwell et al. (2012). IRAM PdBI and VLA ob-
servations of 4C 41.17 atz = 3.80 revealed a similar story, with
r4−3/1−0 likely super-thermal (Papadopoulos et al. 2005). In com-
parison, the same line ratio averaged over the entire Milky Way is
r4−3/1−0 ∼ 0.1−0.2 (Fixsen, Bennett & Mather 1999), indicative
of quiescent gas in the interstellar medium (ISM).

In contrast to B3 J2330+3927, theTb ratio that we find for
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its companion galaxy, JVLA 233024.69+392708.6 (r4−3/1−0 =
0.43 ± 0.11) is consistent with the average value seen for SMGs
and with star-forming regions within nearby starburst galaxies
such as M 82 and NGC 253, which have values in the range
∼0.5–0.8 (Güsten et al. 1993; Mao et al. 2000). TheTb ratio in
JVLA 233024.69+392708.6 is thus consistent with gas heatedby
UV radiation from star formation, i.e. less extreme ISM conditions
than those of the radio galaxy.

Tb ratios as high as that observed towards B3 J2330+3927
are expected in environments where the gas energetics are dom-
inated by X-rays. These can penetrate large columns of gas
and maintain a high kinetic gas temperature,Tk, much deeper
into molecular clouds than far-ultraviolet (FUV) photons (e.g.
Meijerink, Spaans & Israel 2006; Schleicher, Spaans & Klessen
2010; van der Werf et al. 2010), with this gas thermally decoupled
from the cooler dust. Powerful radio-loud AGN are often found
to have high X-ray luminosities, capable of powering extended X-
ray-dominated regions (XDRs); while B3 J2330+3927 has no X-
ray measurements, this is one possible explanation for the observed
r4−3/1−0.

Another possible explanation is shock-excited gas (e.g.
Flower & Pineau Des Forêts 2010) caused by its radio jet ramming
into the molecular environment, bearing in mind that the mechan-
ical power of a radio jet can be orders of magnitude larger than
that of its synchrotron emission. An example of this is observed
in the powerful radio galaxy, 3C 293, which has Milky Way-like
levels of star formation and a very low X-ray luminosity (seealso
Matsushita et al. 2004, regarding the central region of M 51). Its
super-thermal12CO (as measured in12COJ=1−0 andJ=4−3)
has been attributed to turbulent heating from the dissipation of
shocks caused by the interaction of its powerful radio jet with
its molecular gas (Papadopoulos et al. 2008; Nesvadba et al.2010;
Guillard et al. 2012) – an interaction that seemingly also drives a
∼1,400-km s−1 outflow in H I (Morganti et al. 2003). Such mecha-
nisms are often proposed to provide the feedback needed to recon-
cile models of galaxy formation with a variety of observations (e.g.
Granato et al. 2004; McNamara & Nulsen 2012; Fabian 2012, and
references therein).

A large fraction of the radio emission from B3 J2330+3927
comes from its core (∼50 per cent at 8.4 GHz) and it displays an
unusually one-sided jet: ‘one of the most asymmetric radio struc-
tures ever reported for a typeII AGN’ (Pérez-Torres & De Breuck
2005). This may be due to relativistic Doppler beaming (e.g.
Riley & Warner 1990) or because of the launch mechanism (e.g.
Chagelishvili, Bodo & Trussoni 1996) but if a survey of such
galaxies were to find relatively highTb ratios relative to galaxies
hosting two-sided jets then it would suggest a more prosaic reason:
a blockage that causes an unusually high fraction of the mechanical
energy from AGN-driven outflow to be deposited into the molecu-
lar gas.

According to Wagner & Bicknell (2011), the kinetic energy
and momentum of a jet can be transfered to dense gas with a high
efficiency (10–70 per cent), causing turbulent heating and shock
excitation of the molecular gas and – in extreme cases – driving
gas outflows and inhibiting star formation. The kinetic energy of
the radio jet in B3 J2330+3927 can be estimated following Punsly
(2005) and Punsly et al. (2008), assumingS151MHz = 0.90 Jy
(from S365MHz = 0.394 Jy andα365MHz

74MHz = −0.93 Douglas et al.
1996; Cohen et al. 2007, though see also Bı̂rzan et al. 2008 and
Cavagnolo et al. 2010). The jet’s kinetic luminosity,Q, is then
∼ 2×1046 erg s−1, roughly two orders of magnitude larger than the
12COJ=4−3 luminosity,L′

CO4−3 = 3.4×1044 erg s−1. This sim-

plistic approach assumes that the 151-MHz emission comprises op-
tically thin radiation from the lobes, whereas a substantial fraction
may come from a Doppler-boosted jet. Nevertheless, over the∼10-
Myr lifetime of the radio source we can expect a few1060 erg to be
deposited into the multi-phase ISM (enough to quench a cooling
flow for ∼ 109 yr, as argued by McNamara et al. 2005). The turbu-
lent kinetic energy of the molecular gas can be calculated through
Eturb

kin = 3
2
MH2

σH2

2, whereσH2
= FWHM/2

√
2 ln 2 is the ve-

locity dispersion of the gas. From§3.2,MH2
< 2.3 × 1010 M⊙

so if σCO1−0 ∼ σCO4−3 = 350 km s−1 and is solely due to the
velocity dispersion of the gas (i.e. no components due to rotation
or bulk outflow), thenEturb

kin < 1059 erg. We can thus conclude,
as did (as did Nesvadba et al. 2008, for an analagous situation) that
the radio jet carries sufficient energy to explain the observed CO
characteristics. The jet can influence the gas properties inprecisely
the way required to stop star formation, though questions clearly
remain about the ultimate fate of the gas and deeper observations
are required to search for any high-velocity molecular component
(see, e.g., Polletta et al. 2011).

Taking another approach, if we adopt a fiducial jet ad-
vance speed,vjet ∼ 0.1c, then the gas is heated toTshock ≈
3/16µmH/k v

2
jet ≈ 1010 K, whereµ is the reduced mass andk is

Boltzmann’s constant. For a large fraction of the gas that has been
shock-heated by the jet, the density will be low (10−2–10−3 cm−3,
Wagner & Bicknell 2011). This over-pressurised gas will expand
(Begelman & Cioffi 1989), running into the denser, ambient ISM,
which will be engulfed and destroyed by the resulting shock (e.g.
Klein, McKee & Colella 1994). The velocity of the shock that is
driven into the dense clouds,vs,cloud = vwind(ρwind/ρcloud)

1/2,
where ρwind is the density of the hot plasma created by the
outward-moving radio jet andρcloud is the density of the engulfed
ISM. For typical molecular clouds,ρcloud ∼104 cm3, so we ar-
rive atvs,cloud ∼ 20–40 km s−1 (Begelman & Cioffi 1989). Such
molecular shocks would be significant emitters in high-J CO lines
(Flower & Pineau Des Forêts 2010).

At what rate must the gas must be shock-heated to main-
tain this CO emission? For a C-type shock wave withvs,cloud ∼
40 km s−1 (assuming a lower velocity or a denser ambient ISM
will make little difference, and a J-type shock will producea line
luminosity almost two orders of magnitude fainter), we find that
to explainL′

CO4−3 requires a mass shock rate of∼ 30M⊙ yr−1

(Flower & Pineau Des Forêts 2010). Over the age of the jet, only a
few ×109 M⊙ of gas needs to be shock heated, perhaps much less
if this is a special, short-lived phase due to the initial passage of
the radio jet. The gas may return to a higher density following the
passage of the shock (Cooper et al. 2008), perhaps re-forming H2

(Guillard et al. 2009), so the amount of shock-heated gas required
to explain the observedTb ratios is not restrictive.

Whatever the excitation mechanism, the12CO optical depth
must be moderate to low (τ1−0 <

∼ 1) since in the optically thick
regime theTb of a transition is equal to the excitation temperature,
i.e. Tb ∼ Tex (with the latter being the same for all levels when
thermalised – see Papadopoulos et al. 2011). In the optically thin
case,T 4−3

b /T 1−0
b ∝ τ4−3/τ1−0 and sinceτJ+1,J ∝ (J + 1) (at

least up toJ ∼ 7), we findT 1−0
b < T 4−3

b (true for thermalised gas,
but also for sub-thermal gas if the effect due to optical depth is suf-
ficiently large). Optically thin12CO emission can be achieved if the
medium is highly turbulent, as is the case for the Galactic Centre – a
local region where the12CO ladder is observed to be super-thermal.
The super-thermalTb ratio observed towards B3 J2330+3927 is
thus likely an indication of mechanical energy deposited into the
ISM from the radio jet and/or the ongoing starburst, inducing a de-
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gree of turbulence sufficient to make the12CO lines optically thin,
allied with a high density (> ncrit) and a relatively high kinetic
temperature; moreover, this must happen globally, rather than in
some small fraction of the gas, as seen in the nucleus of M 82, for
example (Knapp et al. 1980; Weiß et al. 2001).

4.2 The merger fraction amongst starbursting HzRGs

The degree to which various populations of star-forming galaxies
are driven by violent mergers of gas-rich galaxies or by the accre-
tion of cold gas streams – sometimes smooth, sometimes clumpy –
via dark matter filaments into spiral disks (Dekel, Sari & Ceverino
2009) has been a topic of intense debate in recent years. Evenfor
SMGs – the most extreme star-formation events in the Universe,
where the evidence for merger-driven activity was thought by many
to be overwhelming (Engel et al. 2010) – the seeds of doubt have
been sown.

What of radio galaxies? We cannot generalise to the entire
population, even though that population is small in number:the
time-consuming interferometric observations of molecular gas that
are capable of laying bare the processes leading to star formation
have generally been obtained towards systems from which rest-
frame FIR emission has already been detected, i.e. we are limited to
systems pre-selected to be undergoing intense starbursts.Even so,
it is interesting to add our findings to those studies ofz >

∼ 2 radio
galaxies in the literature and explore the overall statistics. Taking
the eight systems listed in§1 in order of decreasing redshift:

• The interferometric12CO J = 4− 3 study of 4C 41.17, at
z = 3.80, by De Breuck et al. (2005) revealed activity driven
by a merger between two massive, gas-rich galaxies separated by
∼2 arcsec (∼13 kpc) and∼400 km s−1.
• High-resolution interferometric imaging of 4C 60.07 atz =

3.79 by Ivison et al. (2008) revealed two components of roughly
equal integrated flux, separated by∼30 kpc – evidence of an early-
stage merger between the host galaxy of an actively-fueled black
hole (the HzRG), and a gas-rich starburst/AGN, caught priorto its
eventual equilibrium state. This separation is typical of SMGs with
multiple radio identifications (Ivison et al. 2007) and for the intense
burst of star formation near first passage in merger simulations (e.g.
Springel, Di Matteo & Hernquist 2005).
• Smith et al. (2010) use rest-frame UV spectroscopy to show

that 6C 1909+72, atz = 3.53, comprises two galaxies separated
by∼1,300 km s−1 along the line of sight, with the radio-loud AGN
hosted by the more distant component.
• TN J0121+1320 atz = 3.52 was detected in12COJ =4−3

by De Breuck et al. (2003). There were no obvious signs of a gas-
rich companion, but the available sensitivity, velocity coverage and
spatial resolution were poor compared to recent studies.
• We have shown here that the immediate environment of

B3 J2330+3927 atz = 3.09 contains at least two gas-rich com-
ponents, again separated by∼30 kpc.
• Nesvadba et al. (2009) presented interferometric12CO imag-

ing of thez = 2.58 radio galaxy, TXS 0828+193, finding two large
gas reservoirs separated by 720 km s−1 along a shared line of sight
roughly 80 kpc SW of the AGN host galaxy, which was itself de-
tected only in synchrotron at 96.6 GHz.
• 53W002 atz = 2.39 was observed and detected in12CO

(Yamada et al. 1995; Scoville et al. 1997) without knowledgeof its
FIR luminosity, though it was known to sit amongst a clump of
Ly-α emitting galaxies (Pascarelle et al. 1996) through which the
radio galaxy is suspected to be assembling a large fraction of its

eventual stellar mass through mergers (e.g. Motohara et al.2001).
At least one of these – 330 kpc and>∼300 km s−1 from 53W002
– is FIR-luminous (Smail et al. 2003). Based on their12CO imag-
ing, Scoville et al. (1997) concluded ‘it is clear that the emission
is resolved’, but this was not corroborated by Alloin et al. (2000).
However, with a∼6-arcsec synthesised beam the latter data would
be insensitive to close companions.
• Finally, Hubble Space Telescopenear-IR imaging of

MRC 0152−209 atz = 1.92 revealed a morphology consistent
with an advanced-stage merger (Pentericci et al. 2001) where we
would expect the gas to have been driven into a compact configu-
ration, well within the 7–10-arcsecFWHM synthesised beam of the
available12CO observations (Emonts et al. 2011).

Overall, we have six mergers or close galaxy pairs, one am-
biguous case, and one case where no merger activity can be dis-
cerned (albeit with relatively poor sensitivity and resolution avail-
able). The statistics suggest, then, that violent interactions are as
ubiquitous amongst starbursting high-redshift radio galaxies as
they are amongst SMGs (Engel et al. 2010).

5 CONCLUSIONS

Combining our new interferometric12CO data for two distant radio
galaxies with those for six more, reported elsewhere, we findthat
activity in starbursting radio-loud AGN at high redshift isdriven by
the merger or interaction of two or more systems in which signifi-
cant masses of molecular gas and stars have already formed, rather
than the steady6 accretion of cold gas from the cosmic web.

We introduce a new colour-colour diagnostic plot to constrain
the redshifts of several distant, dusty galaxies found previously in
our target fields. We conclude that the SMG south of 6C 1909+72
likely shares the same node or filament, but we fail to detect this
FIR-luminous galaxy in12CO, despite∼20,000 km s−1 of velocity
coverage.

We introduce a new colour-colour diagnostic plot, exploiting
the power of 350–850-µm photometry to constrain the redshifts of
several distant, dusty galaxies found previously in our target fields.
We conclude that the bright SMG near 6C 1909+72 likely shares
the same node or filament of the cosmic web atz ∼ 3.5 as the
signpost AGN. However, we fail to detect this SMG in12CO J =
1−0, despite our∼20,000 km s−1 of velocity coverage.

Also in the 6C 1909+72 field, we find an unusually large, red
dust feature, aligned with the radio jet. We suggest that metal-rich
material may have been dispersed on>

∼100-kpc scales by a col-
limated outflow, reminiscent of the jet-oriented metal enrichment
seen in X-ray observations of local cluster environments.

We find that12CO brightness temperature ratios in the host
galaxies of radio-loud AGN are significantly higher than those
seen in similarly intense starbursts where AGN activity is less pro-
nounced. In our most extreme example, the super-thermalTb ratio
suggests that significant energy is being deposited rapidlyinto the
molecular gas via X-rays and/or mechanical (‘quasar-mode’) feed-
back from the AGN, leading to a high degree of turbulenceglobally
and a low optical depth in12CO – feedback that will lead to the ces-
sation of star formation on a timescale commensurate with that of
the jet activity,<∼10 Myr.

6 Often denoted ‘secular’, which in astronomy indicates thata process
occurs continuously, as opposed to a discrete or periodic event such as a
merger.
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