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Abstract. Denote by Ln the perimeter length of the convex hull of an n-step
planar random walk whose increments have finite second moment and non-

zero mean. Snyder and Steele showed that n−1Ln converges almost surely to

a deterministic limit, and proved an upper bound on the variance Var[Ln] =
O(n). We show that n−1Var[Ln] converges and give a simple expression for

the limit, which is non-zero for walks outside a certain degenerate class. This

answers a question of Snyder and Steele. Furthermore, we prove a central limit
theorem for Ln in the non-degenerate case.

1. Introduction and main results

On each of n unsteady steps, a drunken gardener drops a seed. Once the flow-
ers have bloomed, what is the minimum length of fencing required to enclose the
garden?

Let Z1, Z2, . . . be a sequence of independent, identically distributed (i.i.d.) ran-
dom vectors on R2. Write 0 for the origin in R2. Define the random walk
(Sn;n ∈ Z+) by S0 := 0 and for n ≥ 1, Sn :=

∑n
i=1 Zi. Let Hn := hull(S0, . . . , Sn),

the convex hull of positions of the walk up to and including the nth step, and let
Ln := |∂Hn| denote the length of the perimeter of Hn. Assume that the increments
of the random walk have finite mean: E‖Z1‖ <∞.
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Figure 1. Example with mean drift E[Z1] of magnitude µ = 1/4
and n = 103 steps.
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Convex hulls of random points have received much attention over the last several
decades: see [3] for an extensive survey, including more than 150 bibliographic
references, and sources of motivation more serious than our drunken gardener, such
as modelling the ‘home-range’ of animal populations. An important tool in the
study of random convex hulls is provided by a result of Cauchy in classical convex
geometry. Spitzer and Widom [5], using Cauchy’s formula, and later Baxter [1],
using a combinatorial argument, showed that

E[Ln] = 2
n∑
i=1

1
i
E‖Si‖.

Note that E[Ln] thus scales like n in the case where the one-step mean drift vector
E[Z1] 6= 0 but like n1/2 in the case where E[Z1] = 0 (provided E[‖Z1‖2] < ∞).
The Spitzer–Widdom–Baxter result, in common with much of the literature, is
concerned with first-order properties of Ln: see [3] for a summary of results in this
direction for various random convex hulls, with a specific focus on (driftless) planar
Brownian motion.

Much less is known about higher-order properties of Ln. Assuming that E[‖Z1‖2] <
∞, Snyder and Steele [4] obtained an upper bound for Var[Ln] using Cauchy’s for-
mula together with a version of the Efron–Stein inequality. Snyder and Steele’s
result (Theorem 2.3 of [4]) can be expressed as

(1.1) n−1Var[Ln] ≤ π2

2
(
E[‖Z1‖2]− ‖E[Z1]‖2

)
, (n ∈ N := {1, 2, . . .}).

As far as we are aware, there are no lower bounds for Var[Ln] in the literature.
According to the discussion in [4, §5], Snyder and Steele had “no compelling reason
to expect that O(n) is the correct order of magnitude” in their upper bound for
Var[Ln], and they speculated that perhaps Var[Ln] = o(n) (maybe with a distinc-
tion between the cases of zero and non-zero drift). Our first main result settles
this question under minimal conditions, confirming that (1.1) is indeed of the cor-
rect order, apart from in certain degenerate cases, while demonstrating that the
constant on the right-hand side of (1.1) is not, in general, sharp.

Theorem 1.1. Suppose that E[‖Z1‖2] <∞ and ‖E[Z1]‖ 6= 0. Then

(1.2) lim
n→∞

n−1Var[Ln] =
4E[((Z1 − E[Z1]) · E[Z1])2]

‖E[Z1]‖2
=: σ2 ∈ [0,∞).

Remarks 1.1. (i) The assumptions E[‖Z1‖2] <∞ and ‖E[Z1]‖ 6= 0 ensure σ2 <∞.
(ii) To compare the limit result (1.2) with Snyder and Steele’s upper bound (1.1),

observe that

σ2 = 4
(

E[(Z1 · E[Z1])2]− ‖E[Z1]‖4

‖E[Z1]‖2

)
≤ 4

(
E[‖Z1‖2]− ‖E[Z1]‖2

)
.

(iii) The limit σ2 is zero if and only if (Z1 − E[Z1]) · E[Z1] = 0 with probability
1, i.e., if Z1 − E[Z1] is always orthogonal to E[Z1]. In such a degenerate case,
(1.2) says that Var[Ln] = o(n). This is the case, for example, if Z1 takes values
(1, 1) and (1,−1) each with probability 1/2. Note that the Snyder–Steele bound
(1.1) applied in this example says only that Var[Ln] ≤ (π2/2)n, which is not the
correct order. Here, the two-dimensional trajectory can be viewed as a space-time
trajectory of a one-dimensional simple symmetric random walk. We conjecture
that in fact Var[Ln] = O(log n). Steele [6] obtains variance results for the number
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of faces of the convex hull of one-dimensional simple random walk, and comments
that such results for Ln seem “far out of reach” [6, p. 242].

In the case where E[‖Z1‖2] < ∞ and ‖E[Z1]‖ = µ > 0, Snyder and Steele
deduce from their bound (1.1) a strong law of large numbers for Ln, namely
limn→∞ n−1Ln = 2µ, a.s. (see [4, p. 1168]). Given this and the variance asymp-
totics of Theorem 1.1, it is natural to ask whether there is an accompanying central
limit theorem. Our next result gives a positive answer in the non-degenerate case,
again with essentially minimal assumptions.

Theorem 1.2. Suppose that E[‖Z1‖2] < ∞ and ‖E[Z1]‖ 6= 0. Suppose that σ2 as
defined in (1.2) satisfies σ2 > 0. Then for any x ∈ R,

(1.3) lim
n→∞

P
[
Ln − E[Ln]√

Var[Ln]
≤ x

]
= lim
n→∞

P
[
Ln − E[Ln]√

σ2n
≤ x

]
= Φ(x),

where Φ is the standard normal distribution function.

Our Theorems 1.1 and 1.2 will be deduced as consequences of the following result,
which shows, perhaps surprisingly, that Ln −E[Ln] can be well-approximated by a
sum of i.i.d. random variables.

Theorem 1.3. Suppose that E[‖Z1‖2] <∞ and ‖E[Z1]‖ 6= 0. Then, as n→∞,

n−1/2

∣∣∣∣∣Ln − E[Ln]−
n∑
i=1

2(Zi − E[Z1]) · E[Z1]
‖E[Z1]‖

∣∣∣∣∣→ 0, in L2.

The subsequent sections of the paper present the proofs of these theorems. The
main ingredients, which we present in turn, include a martingale difference repre-
sentation, Cauchy’s formula from convex geometry, and an analysis of the geometry
of the convex hull via extrema (the strong law of large numbers with the non-zero
drift provides much of the regularity that we need).

To finish this section we discuss some simulations. We considered a specific
form of random walk with increments Zi − E[Zi] = (cos Θi, sin Θi), where Θi was
uniformly distributed on [0, 2π), corresponding to a uniform distribution on a unit
circle centred at E[Zi] = (µ, 0), say. We took one example with µ = 0, and two
examples with µ 6= 0 of different magnitudes. In these latter cases, the results
above take the form: limn→∞ n−1Var[Ln] = 4E[cos2 Θ1] = 2 (Theorem 1.1) and
(2n)−1/2(Ln − E[Ln]) converges in distribution to a standard normal distribution
(Theorem 1.2). The corresponding pictures in Figures 2 and 3 show an agreement
between the simulations and theory.

The results of this paper do not cover the case where ‖E[Z1]‖ = 0. The simula-
tions in this case suggest that, for the example we considered, limn→∞ n−1Var[Ln]
exists (see the leftmost plot in Figure 2), but Figure 3 does not appear to be con-
sistent with a normal distribution as a limiting distribution. The method of the
present paper provides a promising approach to the zero-drift case, but a new idea
will be needed to gain control over the geometry in that case.

2. Martingale difference representation

The first step in the proofs is a martingale difference argument, based on re-
sampling members of the sequence Z1, . . . , Zn, to get an expression for Var[Ln]
amenable to analysis. Let F0 denote the trivial σ-algebra, and for n ∈ N set
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Figure 2. Plots of y = Var[Ln] estimates against x = n for about
25 values of n in the range 102 to 2.5×105 for 3 examples with µ =
(left to right) 0, 0.2, 0.36. Each point is estimated from the sample
variance of 103 repeated simulations. Also plotted are straight lines
y = 0.536x (leftmost plot) and y = 2x (other two plots).
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Figure 3. Simulated histogram estimates for the distribution of
Ln−E[Ln]√

Var[Ln]
with n = 5×103 in the three examples described in Figure

2. Each histogram is compiled from 103 samples.

Fn := σ(Z1, . . . , Zn), the σ-algebra generated by the first n steps of the random
walk. Then Sn is Fn-measurable, and for n ∈ N we can write Ln = Λn(Z1, . . . , Zn)
for Λn : R2n → [0,∞) a measurable function.

Let Z ′1, Z
′
2, . . . be an independent copy of the sequence Z1, Z2, . . .. Fix n ∈ N.

For i ∈ {1, . . . , n}, we ‘resample’ the ith increment, replacing Zi with Z ′i, as follows.
Set

(2.1) S
(i)
j :=

{
Sj if j < i

Sj − Zi + Z ′i if j ≥ i;

then (S(i)
j ; 0 ≤ j ≤ n) is the random walk (Sj ; 0 ≤ j ≤ n) but with the ith

step independently resampled. We let L(i)
n denote the perimeter length of the

corresponding convex hull for this modified walk, namely hull(S(i)
0 , . . . , S

(i)
n ), i.e.,

L(i)
n := Λn(Z1, . . . , Zi−1, Z

′
i, Zi+1, . . . , Zn).

For i ∈ {1, . . . , n}, define

(2.2) Dn,i := E[Ln − L(i)
n | Fi];

in words, −Dn,i is the expected change in the perimeter length of the convex hull,
given Fi, on replacing Zi by Z ′i. The point of this construction is the following
result.
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Lemma 2.1. Let n ∈ N. Then (i) Ln − E[Ln] =
∑n
i=1Dn,i; and (ii) Var[Ln] =∑n

i=1 E[D2
n,i], whenever the latter sum is finite.

Proof. The idea is well known. Since L
(i)
n is independent of Zi, E[L(i)

n | Fi] =
E[L(i)

n | Fi−1] = E[Ln | Fi−1], so that (2.2) may be written as

(2.3) Dn,i = E[Ln | Fi]− E[Ln | Fi−1].

Then (2.3) yields the representation
∑n
i=1Dn,i = E[Ln | Fn] − E[Ln | F0], giving

(i). Here (Dn,i; 1 ≤ i ≤ n) is a martingale difference sequence, and orthogonality
(see e.g. [2, p. 218]) readily yields (ii). �

Remark 2.1. Lemma 2.1 with the conditional Jensen’s inequality gives the bound

Var[Ln] ≤
n∑
i=1

E[(L(i)
n − Ln)2],

which is a factor of 2 larger than the upper bound obtained from the Efron–Stein
inequality: see equation (2.3) in [4].

3. Cauchy formula

Let eθ = (cos θ, sin θ) be the unit vector in direction θ ∈ (−π, π]. For θ ∈ [0, π],
define

Mn(θ) := max
0≤j≤n

(Sj · eθ), and mn(θ) := min
0≤j≤n

(Sj · eθ).

Note that since S0 = 0, we have Mn(θ) ≥ 0 and mn(θ) ≤ 0, a.s. In the present
setting (see [4], formula (2.1)), Cauchy’s formula for convex sets yields

Ln =
∫ π

0

(Mn(θ)−mn(θ)) dθ =
∫ π

0

Rn(θ)dθ,

where Rn(θ) := Mn(θ) −mn(θ) ≥ 0 is the parametrized range function. Similarly,
when the ith increment is resampled as described in Section 2,

L(i)
n =

∫ π

0

(
M (i)
n (θ)−m(i)

n (θ)
)

dθ =
∫ π

0

R(i)
n (θ)dθ,

where R(i)
n (θ) = M

(i)
n (θ)−m(i)

n (θ), defining

M (i)
n (θ) := max

0≤j≤n
(S(i)
j · eθ), and m(i)

n (θ) := min
0≤j≤n

(S(i)
j · eθ).

Thus to study Dn,i = E[Ln − L(i)
n | Fi] we will consider

(3.1) Ln − L(i)
n =

∫ π

0

(
Rn(θ)−R(i)

n (θ)
)

dθ =
∫ π

0

∆(i)
n (θ)dθ,

where ∆(i)
n (θ) := Rn(θ)−R(i)

n (θ). For θ ∈ [0, π], let

Jn(θ) := arg min
0≤j≤n

(Sj · eθ), and J̄n(θ) := arg max
0≤j≤n

(Sj · eθ),

so mn(θ) = SJn(θ) · eθ and Mn(θ) = SJ̄n(θ) · eθ. Similarly, recalling (2.1), define

J (i)
n (θ) := arg min

0≤j≤n
(S(i)
j · eθ), and J̄ (i)

n (θ) := arg max
0≤j≤n

(S(i)
j · eθ).

(Apply the following conventions in the event of ties: arg min takes the maximum
argument among tied values, and arg max the minimum.)
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We will use the following simple bound repeatedly in the arguments that follow.
In fact, with a little more work one can reduce the bound on the right-hand side of
(3.2) by a factor of 2 (cf [4], Lemma 2.1), but the form given here is good enough
for us.

Lemma 3.1. Almost surely, for any θ ∈ [0, π] and any i ∈ {1, 2, . . . , n},

(3.2) |∆(i)
n (θ)| ≤ 2‖Zi‖+ 2‖Z ′i‖.

Proof. The triangle inequality implies that

|∆(i)
n (θ)| ≤ |M (i)

n (θ)−Mn(θ)|+ |m(i)
n (θ)−mn(θ)|.

For some J̄n(θ) ∈ {0, 1, . . . , n}, we have Mn(θ) = SJ̄n(θ) · eθ and, by definition,

M
(i)
n (θ) ≥ S(i)

J̄n(θ)
·eθ. If J̄n(θ) < i, then, by (2.1), S(i)

J̄n(θ)
= SJ̄n(θ) and so M (i)

n (θ) ≥

Mn(θ). Otherwise, if J̄n(θ) ≥ i, then, by (2.1), S(i)

J̄n(θ)
= SJ̄n(θ) − Zi + Z ′i and so

M (i)
n (θ) ≥ SJ̄n(θ) · eθ − Zi · eθ + Z ′i · eθ

≥Mn(θ)− ‖Zi‖ − ‖Z ′i‖.

Hence we conclude that, a.s., M (i)
n (θ) ≥ Mn(θ) − ‖Zi‖ − ‖Z ′i‖. The analogous

argument in the other direction shows that |M (i)
n (θ) − Mn(θ)| ≤ ‖Zi‖ + ‖Z ′i‖.

Moreover, a similar argument shows that the same bound holds for |m(i)
n (θ)−mn(θ)|,

and (3.2) follows. �

4. Control of extrema

For the remainder of the paper, without loss of generality, we suppose that
E[Z1] = µeπ/2 with µ ∈ (0,∞). Observe that (Sj · eθ; 0 ≤ j ≤ n) is a one-
dimensional random walk: indeed, Sj · eθ =

∑j
k=1 Zk · eθ. The mean drift of this

one-dimensional random walk is

(4.1) E[Z1 · eθ] = E[Z1] · eθ = µ sin θ.

Note that the drift µ sin θ is positive if θ ∈ (0, π). This crucial fact gives us
control over the behaviour of the extrema such as Mn(θ) and mn(θ) that contribute
to (3.1), and this will allow us to estimate the conditional expectation of the final
term in (3.1) (see Lemma 5.1 below).

For γ ∈ (0, 1/2) and δ ∈ (0, π/2) (two constants that will be chosen to be suitably
small later in our arguments), we denote by En,i(δ, γ) the event that the following
occur:

• for all θ ∈ [δ, π − δ], Jn(θ) < γn and J̄n(θ) > (1− γ)n;
• for all θ ∈ [δ, π − δ], J (i)

n (θ) < γn and J̄
(i)
n (θ) > (1− γ)n.

We write Ec
n,i(δ, γ) for the complement of En,i(δ, γ). The idea is that En,i(δ, γ)

will occur with high probability, and on this event we have good control over
∆(i)
n (θ). The next result formalizes these assertions. For γ ∈ (0, 1/2), define

In,γ := {1, . . . , n} ∩ [γn, (1− γ)n].

Lemma 4.1. For any γ ∈ (0, 1/2) and any δ ∈ (0, π/2), the following hold.
(i) If i ∈ In,γ , then, a.s., for any θ ∈ [δ, π − δ],

(4.2) ∆(i)
n (θ)1(En,i(δ, γ)) = (Zi − Z ′i) · eθ1(En,i(δ, γ)).
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(ii) If E‖Z1‖ <∞ and ‖E[Z1]‖ 6= 0, then min1≤i≤n P[En,i(δ, γ)]→ 1 as n→∞.

Proof. First we prove part (i). Suppose that i ∈ In,γ , so γn ≤ i ≤ (1−γ)n. Suppose
that θ ∈ [δ, π− δ]. Then on En,i(δ, γ), we have Jn(θ) < i < J̄n(θ) and J (i)

n (θ) < i <

J̄
(i)
n (θ). Then from (2.1) it follows that in fact Jn(θ) = J

(i)
n (θ) and J̄n(θ) = J̄

(i)
n (θ).

Hence mn(θ) = m
(i)
n (θ) and M (i)

n (θ) = S
(i)

J̄n(θ)
·eθ = Mn(θ) + (Z ′i−Zi) ·eθ, by (2.1).

Equation (4.2) follows.
Next we prove part (ii). Suppose that µ = ‖E[Z1]‖ > 0. Since E‖Z1‖ <∞, the

strong law of large numbers implies that ‖n−1Sn −E[Z1]‖ → 0, a.s., as n→∞. In
other words, for any ε1 > 0, there exists N := N(ε1) such that P[N <∞] = 1 and
‖n−1Sn − E[Z1]‖ < ε1 for all n ≥ N . In particular, for n ≥ N , by (4.1),

(4.3)
∣∣n−1Sn · eθ − µ sin θ

∣∣ =
∣∣n−1Sn · eθ − E[Z1] · eθ

∣∣ ≤ ∥∥n−1Sn − E[Z1]
∥∥ < ε1,

for all θ ∈ [0, 2π).
Take ε1 < µ sin δ. If n ≥ N , then, by (4.3),

Sn · eθ > (µ sin θ − ε1)n ≥ (µ sin δ − ε1)n,

provided θ ∈ [δ, π − δ]. By choice of ε1, the last term in the previous display is
strictly positive. Hence, for n ≥ N , for any θ ∈ [δ, π − δ], Sn · eθ > 0. But,
S0 · eθ = 0. So Jn(θ) < N for all θ ∈ [δ, π − δ], and

P
[
∩θ∈[δ,π−δ]{Jn(θ) < γn}

]
≥ P[N < γn]→ 1,

as n→∞, since N <∞ a.s.
Now,

(4.4) max
0≤j≤(1−γ)n

Sj · eθ ≤ max
{

max
0≤j≤N

Sj · eθ, max
N≤j≤(1−γ)n

Sj · eθ
}
.

For the final term on the right-hand side of (4.4), (4.3) implies that

max
N≤j≤(1−γ)n

Sj · eθ ≤ max
0≤j≤(1−γ)n

(µ sin θ + ε1)j ≤ (µ sin θ + ε1)(1− γ)n.

On the other hand, if n ≥ N , then (4.3) implies that Sn · eθ ≥ (µ sin θ− ε1)n. Here
µ sin θ − ε1 ≥ (µ sin θ + ε1)(1 − γ) if ε1 <

γµ sin θ
2−γ . Now we choose ε1 <

γµ sin δ
2 .

Then, for any θ ∈ [δ, π − δ], we have that, for n ≥ N ,

Sn · eθ > max
N≤j≤(1−γ)n

Sj · eθ.

Hence, by (4.4),

P
[
∩θ∈[δ,π−δ]{J̄n(θ) > (1− γ)n}

]
≥ P

[
∩θ∈[δ,π−δ]

{
Sn · eθ > max

0≤j≤(1−γ)n
Sj · eθ

}]
≥ P

[
N ≤ n, ∩θ∈[δ,π−δ]

{
Sn · eθ > max

0≤j≤N
Sj · eθ

}]
.

Also, for n ≥ N , Sn · eθ > (1− γ
2 )µn sin δ, so we obtain

P
[
∩θ∈[δ,π−δ]{J̄n(θ) > (1− γ)n}

]
≥ P

[
N ≤ n, max

0≤j≤N
‖Sj‖ ≤

(
1− γ

2

)
µn sin δ

]
,

using the fact that max0≤j≤N Sj · eθ ≤ max0≤j≤N ‖Sj‖ for all θ.
Now, as n→∞, P[N > n]→ 0, and

P
[

max
0≤j≤N

‖Sj‖ >
(

1− γ

2

)
µn sin δ

]
→ 0,
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since N <∞ a.s. So we conclude that

P
[
∩θ∈[δ,π−δ]{Jn(θ) < γn, J̄n(θ) > (1− γ)n}

]
→ 1,

as n → ∞, and the same result holds for J (i)
n (θ) and J̄

(i)
n (θ), uniformly in i ∈

{1, . . . , n}, since resampling Zi does not change the distribution of the trajectory.
�

5. Approximation lemma

The following result is a key component to our proof. Recall that Dn,i = E[Ln−
L

(i)
n | Fi].

Lemma 5.1. Suppose that E‖Z1‖ < ∞, γ ∈ (0, 1/2), and δ ∈ (0, π/2). For any
i ∈ In,γ ,∣∣∣∣Dn,i −

2(Zi − E[Z1]) · E[Z1]
‖E[Z1]‖

∣∣∣∣ ≤ 6δ‖Zi‖+ 6δE‖Z1‖+ 3π‖Zi‖P[Ec
n,i(δ, γ) | Fi]

+ 3πE[‖Z ′i‖1(Ec
n,i(δ, γ)) | Fi], a.s.(5.1)

Proof. Taking (conditional) expectations in (3.1), we obtain

(5.2) Dn,i =
∫ π

0

E[∆(i)
n (θ)1(En,i(δ, γ)) | Fi]dθ+

∫ π

0

E[∆(i)
n (θ)1(Ec

n,i(δ, γ)) | Fi]dθ.

For the second term on the right-hand side of (5.2), we have∣∣∣∣∫ π

0

E[∆(i)
n (θ)1(Ec

n,i(δ, γ)) | Fi]dθ
∣∣∣∣ ≤ ∫ π

0

E[|∆(i)
n (θ)|1(Ec

n,i(δ, γ)) | Fi]dθ.(5.3)

Applying the bound (3.2), we obtain∫ π

0

E[|∆(i)
n (θ)|1(Ec

n,i(δ, γ)) | Fi]dθ ≤ 2πE[(‖Zi‖+ ‖Z ′i‖)1(Ec
n,i(δ, γ)) | Fi]

= 2π‖Zi‖P[Ec
n,i(δ, γ) | Fi] + 2πE[‖Z ′i‖1(Ec

n,i(δ, γ)) | Fi],(5.4)

since Zi is Fi-measurable with E‖Zi‖ <∞.
We decompose the first integral on the right-hand side of (5.2) as I1 + I2 + I3,

where

I1 :=
∫ δ

0

E[∆(i)
n (θ)1(En,i(δ, γ)) | Fi]dθ,

I2 :=
∫ π−δ

δ

E[∆(i)
n (θ)1(En,i(δ, γ)) | Fi]dθ,

I3 :=
∫ π

π−δ
E[∆(i)

n (θ)1(En,i(δ, γ)) | Fi]dθ.

First we deal with I1 and I3. We have

|I1| ≤
∫ δ

0

E[|∆(i)
n (θ)| | Fi]dθ ≤ 2δE[‖Zi‖+ ‖Z ′i‖ | Fi], a.s.,

by another application of (3.2). Here E[‖Zi‖ | Fi] = ‖Zi‖, since Zi is Fi-measurable,
and, since Z ′i is independent of Fi, E[‖Z ′i‖ | Fi] = E‖Z ′i‖ = E‖Z1‖. A similar
argument applies to I3, so that

(5.5) |I1 + I3| ≤ 4δ‖Zi‖+ 4δE‖Z1‖, a.s.
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We now consider I2. From (4.2), since i ∈ In,γ , we have

I2 =
∫ π−δ

δ

E[(Zi − Z ′i) · eθ1(En,i(δ, γ)) | Fi]dθ

=
∫ π−δ

δ

E[(Zi − Z ′i) · eθ | Fi]dθ −
∫ π−δ

δ

E[(Zi − Z ′i) · eθ1(Ec
n,i(δ, γ)) | Fi]dθ.

Here, by the triangle inequality,∣∣∣∣∣
∫ π−δ

δ

E[(Zi − Z ′i) · eθ1(Ec
n,i(δ, γ)) | Fi]dθ

∣∣∣∣∣
≤
∫ π

0

E[(‖Zi‖+ ‖Z ′i‖)1(Ec
n,i(δ, γ)) | Fi]dθ

= π‖Zi‖P[Ec
n,i(δ, γ) | Fi] + πE[‖Z ′i‖1(Ec

n,i(δ, γ)) | Fi],(5.6)

similarly to (5.4). Finally, similarly to (5.5),∣∣∣∣∣
∫ π−δ

δ

E[(Zi − Z ′i) · eθ | Fi]dθ −
∫ π

0

E[(Zi − Z ′i) · eθ | Fi]dθ

∣∣∣∣∣
≤ 2δE[‖Zi‖+ ‖Z ′i‖ | Fi] = 2δ (‖Zi‖+ E‖Z1‖) .(5.7)

We combine (5.2) with (5.3) and the bounds in (5.4)–(5.7) to give∣∣∣∣Dn,i −
∫ π

0

E[(Zi − Z ′i) · eθ | Fi]dθ
∣∣∣∣ ≤ 6δ‖Zi‖+ 6δE‖Z1‖+ 3π‖Zi‖P[Ec

n,i(δ, γ) | Fi]

+ 3πE[‖Z ′i‖1(Ec
n,i(δ, γ)) | Fi], a.s.(5.8)

To complete the proof of the lemma, we compute the integral on the left-hand
side of (5.8). First note that E[(Zi − Z ′i) · eθ | Fi] = (Zi − E[Z ′i]) · eθ, since Zi is
Fi-measurable and Z ′i is independent of Fi, so that∫ π

0

E[(Zi − Z ′i) · eθ | Fi]dθ =
∫ π

0

(Zi − E[Zi]) · eθdθ.

To evaluate the last integral, it is convenient to introduce the notation Zi−E[Zi] =
RieΘi where Ri = ‖Zi − E[Zi]‖ ≥ 0 and Θi ∈ [0, 2π). Then∫ π

0

(Zi − E[Zi]) · eθdθ =
∫ π

0

RieΘi · eθdθ = Ri

∫ π

0

cos(θ −Θi)dθ

= 2Ri sin Θi = 2RieΘi · eπ/2.

Now (5.1) follows from (5.8), and the proof is complete. �

6. Completing the proofs of the theorems

For ease of notation, we write Yi := 2‖E[Z1]‖−1(Zi − E[Z1]) · E[Z1], and define

Wn,i := Dn,i − Yi.

The upper bound for |Wn,i| in Lemma 5.1 together with Lemma 4.1(ii) will enable
us to prove the following result, which will be the basis of our proof of Theorem
1.3.
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Lemma 6.1. Suppose that E[‖Z1‖2] <∞ and ‖E[Z1]‖ 6= 0. Then

lim
n→∞

n−1
n∑
i=1

E[W 2
n,i] = 0.

Proof. Fix ε > 0. We take γ ∈ (0, 1/2) and δ ∈ (0, π/2), to be specified later. We
divide the sum of interest into two parts, namely i ∈ In,γ and i /∈ In,γ . Now from
(3.1) with (3.2) we have |L(i)

n − Ln| ≤ 2π(‖Zi‖+ ‖Z ′i‖), a.s., so that

|Dn,i| ≤ 2πE[‖Zi‖+ ‖Z ′i‖ | Fi] = 2π(‖Zi‖+ E‖Zi‖).

It then follows from the triangle inequality that

|Wn,i| ≤ |Dn,i|+ 2‖Zi − E[Zi]‖ ≤ (2π + 2)(‖Zi‖+ E‖Zi‖).

So provided E[‖Z1‖2] < ∞, we have E[W 2
n,i] ≤ C0 for all n and all i, for some

constant C0 <∞, depending only on the distribution of Z1. Hence
1
n

∑
i/∈In,γ

E[W 2
n,i] ≤

1
n

2γnC0 = 2γC0,

using the fact that there are at most 2γn terms in the sum. From now on, choose
γ > 0 small enough so that 2γC0 < ε.

Now consider i ∈ In,γ . For such i, (5.1) shows that, for some constant C1 <∞,

|Wn,i| ≤ C1(1 + ‖Zi‖)δ + C1‖Zi‖P[Ec
n,i(δ, γ) | Fi]

+ C1E[‖Z ′i‖1(Ec
n,i(δ, γ)) | Fi], a.s.(6.1)

Here, for any B1 ∈ (0,∞), a.s.,

E[‖Z ′i‖1(Ec
n,i(δ, γ)) | Fi] ≤ E[‖Z ′i‖1{‖Z ′i‖ > B1} | Fi] +B1P[Ec

n,i(δ, γ) | Fi]
= E[‖Z ′i‖1{‖Z ′i‖ > B1}] +B1P[Ec

n,i(δ, γ) | Fi],

since Z ′i is independent of Fi. Here, since E‖Z ′i‖ = E‖Z1‖ < ∞, the dominated
convergence theorem implies that E[‖Z ′i‖1{‖Z ′i‖ > B1}] → 0 as B1 → ∞. So we
can choose B1 = B1(δ) large enough so that

E[‖Z ′i‖1(Ec
n,i(δ, γ)) | Fi] ≤ δ +B1P[Ec

n,i(δ, γ) | Fi], a.s.

Combining this with (6.1) we see that there is a constant C2 <∞ for which

|Wn,i| ≤ C2(1 + ‖Zi‖)
(
δ +B1P[Ec

n,i(δ, γ) | Fi]
)
, a.s.

Hence

W 2
n,i ≤ C2

2 (1 + ‖Zi‖)2
(
δ2 + 2B1δP[Ec

n,i(δ, γ) | Fi] +B2
1P[Ec

n,i(δ, γ) | Fi]2
)

≤ C2
3 (1 + ‖Zi‖)2

(
δ +B2

1P[Ec
n,i(δ, γ) | Fi]

)
,

for some constant C3 < ∞, using the facts that δ < π/2 < 2 and P[Ec
n,i(δ, γ) |

Fi] ≤ 1. Taking expectations we get

E[W 2
n,i] ≤ C2

3δE[(1 + ‖Zi‖)2] + C2
3B

2
1E
[
(1 + ‖Zi‖)2P[Ec

n,i(δ, γ) | Fi]
]
.

Provided E[‖Z1‖2] <∞, there is a constant C4 <∞ such that the first term on the
right-hand side of the last display is bounded by C4δ. Now fix δ > 0 small enough
so that C4δ < ε; this choice also fixes B1. Then

(6.2) E[W 2
n,i] ≤ ε+ C2

3B
2
1E
[
(1 + ‖Zi‖)2P[Ec

n,i(δ, γ) | Fi]
]
.
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For the final term in (6.2), observe that, for any B2 ∈ (0,∞), a.s.,

(1 + ‖Zi‖)2P[Ec
n,i(δ, γ) | Fi] ≤ (1 +B2)2P[Ec

n,i(δ, γ) | Fi]
+ (1 + ‖Zi‖)21{‖Zi‖ > B2}.(6.3)

Here E[(1 + ‖Zi‖)21{‖Zi‖ > B2}]→ 0 as B2 →∞, provided E[‖Z1‖2] <∞, by the
dominated convergence theorem. Hence, since δ and B1 are fixed, we can choose
B2 = B2(ε) ∈ (0,∞) such that C2

3B
2
1E[(1+‖Zi‖)21{‖Zi‖ > B2}] < ε. Then taking

expectations in (6.3) we obtain from (6.2) that

E[W 2
n,i] ≤ 2ε+ C2

3B
2
1(1 +B2)2P[Ec

n,i(δ, γ)].

Now choose n0 such that C2
3B

2
1(1 + B2)2P[Ec

n,i(δ, γ)] < ε for all n ≥ n0, which
we may do by Lemma 4.1(ii). So for the given ε > 0 and γ ∈ (0, 1/2), we can choose
n0 such that for all i ∈ In,γ and all n ≥ n0, E[W 2

n,i] ≤ 3ε. Hence

1
n

∑
i∈In,γ

E[W 2
n,i] ≤ 3ε,

for all n ≥ n0.
Combining the estimates for i ∈ In,γ and i /∈ In,γ , we see that

1
n

n∑
i=1

E[W 2
n,i] ≤ 2γC0 + 3ε ≤ 4ε,

for all n ≥ n0. Since ε > 0 was arbitrary, the result follows. �

Now we can complete the proofs of our main theorems.

Proof of Theorem 1.3. First note that

E[Wn,i | Fi−1] = E[Dn,i | Fi−1]− E[Yi | Fi−1] = 0− E[Yi],

since Dn,i is a martingale difference sequence and Yi is independent of Fi−1. Here,
by definition, E[Yi] = 0, and so Wn,i is also a martingale difference sequence.
Therefore, by orthogonality, n−1E[(

∑n
i=1Wn,i)2] = n−1

∑n
i=1 E[W 2

n,i] → 0 as n →
∞, by Lemma 6.1. In other words, n−1/2

∑n
i=1Wn,i → 0 in L2, which, with Lemma

2.1(i), implies the statement in the theorem. �

Proof of Theorem 1.1. Write

(6.4) ξn =
Ln − E[Ln]√

n
; and ζn =

1√
n

n∑
i=1

Yi, where Yi =
2(Zi − E[Z1]) · E[Z1]

‖E[Z1]‖
.

Then Theorem 1.3 shows that |ξn − ζn| → 0 in L2 as n → ∞. Also, with σ2 as
given by (1.2), E[ζ2

n] = σ2. Then a computation shows that

n−1Var[Ln] = E[ξ2
n] = E[(ξn − ζn)2] + E[ζ2

n] + 2E[(ξn − ζn)ζn].

Here, by the L2 convergence, E[(ξn − ζn)2] → 0 and, by the Cauchy–Schwarz
inequality, |E[(ξn − ζn)ζn]| ≤

(
E[(ξn − ζn)2]E[ζ2

n]
)1/2 → 0 as well. So E[ξ2

n] → σ2

as n→∞. �
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In the proof of Theorem 1.2 we will use two facts about convergence in distribu-
tion that we now recall (see e.g. [2, p. 73]). First, if sequences of random variables
ξn and ζn are such that ζn → ζ in distribution for some random variable ζ and
|ξn− ζn| → 0 in probability, then ξn → ζ in distribution (this is Slutsky’s theorem).
Second, if ζn → ζ in distribution and αn → α in probability, then αnζn → αζ in
distribution.

Proof of Theorem 1.2. Suppose σ2 as given by (1.2) satisfies σ2 > 0. Again use the
notation for ξn and ζn as given by (6.4). Then, by Theorem 1.3, |ξn − ζn| → 0 in
L2, and hence in probability.

In the sum ζn, the Yi are i.i.d. random variables with mean 0 and variance
E[Y 2

i ] = σ2. Hence the classical central limit theorem (see e.g. [2, p. 93]) shows
that ζn converges in distribution to a normal random variable with mean 0 and
variance σ2. Slutsky’s theorem then implies that ξn has the same distributional
limit. Hence, for any x ∈ R,

lim
n→∞

P
[
ξn√
σ2
≤ x

]
= lim
n→∞

P
[
Ln − E[Ln]√

σ2n
≤ x

]
= Φ(x),

where Φ is the standard normal distribution function. Moreover,

P

[
Ln − E[Ln]√

Var[Ln]
≤ x

]
= P

[
ξnαn√
σ2
≤ x

]
,

where αn =
√

σ2n
Var[Ln] → 1 by Theorem 1.1. Thus we verify the limit statements in

(1.3). �
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