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Abstract

We describe a new type of hair on supersymmetric black string and black ring solutions,
which produces the largest known violation of black hole uniqueness, parameterized by an
arbitrary function and hence an infinite number of continuous parameters. The new so-
lutions can have non-trivial density profiles for the electric fields along the horizon, and
yet have a geometry that is regular, although generically not infinitely differentiable, at
the horizon. Both neutral and charged probes can cross the horizon without experiencing
divergent forces. We also find restricted examples, parameterized by a few arbitrary con-
tinuous parameters, where the charge densities fluctuate but the metric does not and hence
is completely differentiable. Our new class of solutions owes its existence to a mechanism
reminiscent of the Q-ball: in the simplest examples the metric has more symmetry than
the matter that supports it.



1 Introduction

Five and six-dimensional supergravity theories have a surprisingly rich solution space. The
construction of smooth, horizonless microstate geometries in these theories has led to a new
perspective on the microstates of black holes. The simplest class of microstate geometries are
supertubes [1], in which two types of branes form a bound state that has a non-trivial dipole
profile of arbitrary shape. In the D1-D5 frame this dipole charge corresponds to a Kaluza-Klein
monopole, and the resulting smooth geometry is parameterized by several continuous functions
that depend on the embedding of the world-volume of this monopole in the spacetime [2, 3]. One
can imagine superposing several different types of supertubes to obtain a black ring [4, 5, 6],
but if one tries to do this with supertubes that have a non-trivial charge profile and obtain a
BPS black ring with varying charge densities [7] one finds that the horizon becomes singular [8].
Thus, it appears that the horizon of a black ring cannot support the kind of non-trivial charge
hair that supertubes can possess.

As a consequence of this, for almost ten years the prevailing lore has been that, while the
space of black objects in five-dimensional supergravity is much richer than in four dimensions,
the violations of black-hole uniqueness in five dimensions come only from the discrete choices
of the black-ring dipole charges and that, not only are there no infinite-dimensional moduli
spaces worth of hair (as one might have expected from supertubes), but there is not even a
finite-dimensional moduli space of solutions parameterized by a finite number of continuous
parameters. In this paper we show that this lore this is incorrect by explicitly constructing some
very hairy black-ring solution that can be coiffured so as to preserve a lot of the hair and yet
have well-behaved horizons. In particular, we find families of solutions that depend upon several
continuous parameters for which the metric is C∞ across the horizon. More generally, we argue
that the hair can be arranged so that the Riemann tensor remains at least continuous across the
horizon while the hair still depends upon an arbitrary continuous function.

The key idea behind this construction comes from our recent discovery of a new BPS object in
M-theory - the magnetube [9]. This object has M5 and momentum charges (which are magnetic
in five dimensions), as well as several electric M2 charge densities that can oscillate between
positive and negative values along the M5-P common direction. The M2 charge densities can
have non-trivial oscillating profiles along this direction but these density profiles can be arranged
so that the total energy-momentum tensor they source does not oscillate and yet the overall
density configuration has an arbitrary function’s-worth of freedom.

In this paper, we consider putting similar oscillating electric charges on supersymmetric
black strings and black rings. We will show that, unlike the simple single-species fluctuations
considered in [7, 8], the profiles of the oscillating species can be chosen such that the first few
terms in the near-horizon expansion of the metric are independent of the angle around the ring.
Furthermore, in the simplest example, the metric can be made completely independent of this
angle, even though the Maxwell fields fluctuate. Thus these solutions are rather reminiscent of
Q-Balls [10, 11] and hence we dub them “O-rings.”

The smoothness of the metric at the O-ring horizon is achieved by arranging that the energy-
momentum tensor of the fields is either independent of, or has much weaker dependence upon,
the direction in which the other fields fluctuate. The curvatures at the horizon then remain
finite, and an infalling observer can survive the passage across the horizon. The electric fields
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will oscillate infinitely many times along the trajectory of an infalling observer, but since the
fields remain finite, the force on a charged particle falling across the horizon is also finite, and
given the oscillating nature of the fields the integrated force is also finite. Thus by “coiffing” a
suitably rich variety of hair, in the form of charge densities, one can arrange for regularity of the
gravitational background.

Our very hairy black rings provide by far the largest known violation of black-hole uniqueness,
being regular black objects with an arbitrary continuous function’s worth of hair. While our
solutions are supersymmetric, we do not anticipate obstructions in adapting and generalizing our
results to non-supersymmetric black rings. It would be very interesting to investigate this in detail
and determine the possible fluctuation directions that can exploit the mechanism underpinning
O-rings.

In Section 2 we review the basic supergravity setting for our new class of solutions. Since
horizon regularity is a “near-ring” issue we start by examining the simplest possible solutions:
black strings in five dimensions. In Section 3 we review the non-oscillating strings (that have
a R3 × S1 base space) and describe, in some detail, the horizon regularity and the adapted
coordinates allowing continuation across the horizon. In Section 4 we find the simplest BPS
oscillating strings: O-rings in R3 × S1 and derive the constraints on the charge densities for
smoothness across the horizon. Section 5 contains the solutions for O-rings in R4: there are no
additional issues of smoothness compared to the O-rings in R3 × S1. In Section 6 we consider
more general classes of O-rings in R4 and perform the computations in the more traditional
separable black-ring coordinate system. The impatient reader who is familiar with the standard
description of black rings and does not care about their construction as BPS solutions with
a Gibbons-Hawking space, could skip directly to this section as it is relatively self-contained.
Section 7 contains some concluding comments.

2 The supergravity setting of the new BPS solutions

2.1 The supergravity action

As in [9], we use N = 2 supergravity in five dimensions coupled to vector multiplets, except that
here we consider more vector multiplets. We will thus follow the conventions of [12, 6]. The
action of N =2, five-dimensional supergravity coupled to N U(1) gauge fields is

S =
1

2κ5

∫ √
−g d5x

(
R− 1

2
QIJF

I
µνF

Jµν −QIJ∂µX
I∂µXJ − 1

24
CIJKF

I
µνF

J
ρσA

K
λ ε̄

µνρσλ
)
, (2.1)

with I, J = 0, . . . , N . The extra photon lies in the gravity multiplet and so there are only
N independent scalars. It is, however, convenient to parametrize them by N + 1 scalars XI ,
satisfying the constraint

1
6
CIJKX

I XJ XK = 1 . (2.2)

Following standard practice, introduce

XI ≡ 1
6
CIJKX

J XK . (2.3)

2



The scalar kinetic term can then be written as

QIJ = 9
2
XI XJ − 1

2
CIJKX

K . (2.4)

The Chern-Simons structure constants are required to satisfy the constraint

CIJK CJ ′(LM CPQ)K′ δJJ
′
δKK

′
= 4

3
δI(LCMPQ) . (2.5)

It is also convenient to define

CIJK = δII
′
δJJ

′
δKK

′
CI′J ′K′ . (2.6)

Using the constraint (2.5), one can show that the inverse, QIJ , of QIJ is given by:

QIJ = 2XI XJ − 6CIJKXK , (2.7)

and one can show that
1
6
CIJKXI XJ XK =

1

27
. (2.8)

As in [13, 14, 9], we will focus on theories that can be obtained from eleven-dimensional super-
gravity reduced on a T 6. The Maxwell fields then descend from the tensor gauge field, C(3), via
harmonic 2-forms on T 6 and the structure constants CIJK are given by the intersection product
of the homology cycles and the XI are moduli of the T 6. The restriction to torus compactifi-
cations is made for simplicity and convenience and it will be evident that rather richer classes
of O-ring solutions can be obtained from Calabi-Yau compactifications with more complicated
cohomology and intersection forms.

2.2 The supersymmetry conditions

We start with the most general stationary five-dimensional metric:

ds2
5 = − Z−2 (dt+ k)2 + Z ds2

4 , (2.9)

where Z is simply a convenient warp factor. Supersymmetry implies that the metric ds2
4 on the

spatial base manifold, B, must be hyper-Kähler.
One now defines N + 1 independent functions, ZI , by

ZI = 3Z XI , (2.10)

and then (2.8) implies

Z =
(

1
6
CIJKZI ZJ ZK

) 1
3 . (2.11)

It is more convenient to think of the solution as parametrized by the N + 1 independent scalars,
ZI ; the warp factor is then determined by (2.11).

Supersymmetry requires that the Maxwell potentials all have the form

A(I) = − 1
2
Z−3CIJK ZJ ZK(dt+ k) + B(I) , (2.12)
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where B(I) are purely magnetic components on the spatial base manifold, B. One defines the
magnetic field strengths accordingly:

Θ(I) = dB(I) . (2.13)

Having made all these definitions, the BPS equations take their canonical linear form [4]:

Θ(I) = ?4 Θ(I) , (2.14)

∇2
(4)ZI = 1

2
CIJK ?4 Θ(J) ∧Θ(K) , (2.15)

dk + ?4 dk = ZI Θ(I) , (2.16)

where ?4 is the Hodge dual in the four-dimensional base metric ds2
4, and ∇2

(4) is the (four-

dimensional) Laplacian in this metric.
In Section 6 we will take B to be flat R4 written in the canonical black-ring coordinates.

However, it is very useful for our initial analysis to take the metric on B to be a Gibbons-
Hawking metric because this will enable us to move easily between the solutions on R3 × S1

and R4. It will also make subsequent generalizations of our analysis to black rings in Taub-NUT
[15, 16, 17] and to multi-centered solutions relatively straightforward.

In the next sections, the four-dimensional metric will therefore be of the form:

ds2
4 = V −1 (dψ +A)2 + V d~y · d~y = V −1(dψ +A)2 + V (dr2 + r2(dθ2 + sin2 θdφ2)) , (2.17)

with
~∇× ~A = ~∇V . (2.18)

The magnetic potentials that solve the supersymmetry conditions are:

BI =
KI

V
(dψ +A) + ~ξI · d~y + αI (2.19)

with ∇2
3K

I = 0, ~∇× ~ξI = −~∇KI , and dαI = 0. The closed form, αI , is usually set to zero, but
we will see later that we need to take it to be non-zero in order to have regular gauge potentials
at the horizon. The functions ZI are

ZI =
1

2V
CIJKK

JKK + LI (2.20)

with ∇2
4LI = 0. We will assume that KI and V are independent of ψ, and depend only on the

coordinates ~y on the base. In a suitable gauge, the last supersymmetry equation is satisfied by
taking k = µdψ + ω, with

µ =
1

6V 2
CIJKK

IKJKK +
1

2V
KILI +M (2.21)

and

~D × ~ω + V ∂ψ~ω = V ~DM −M ~DV +
1

2

N+1∑
I=1

(
KI ~DLI − LI ~DKI

)
. (2.22)

where
~D ≡ ~∇ − ~A ∂ψ , (2.23)

and
∇2

(4)M = 0 . (2.24)
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2.3 Adding species on the T 4

From the eleven-dimensional perspective, we are going to add extra Maxwell fields coming from
three-form potentials with two legs on the T 4 defined by (x5, x6, x7, x8) but leave the fields on
the other T 2, defined by (x9, x10) unchanged and supporting only one Maxwell field, which we
have labelled as A(0). Thus the only non-zero components of the intersection product CIJK are

C0JK = ĈJK = ĈKJ , (2.25)

and one has [9]:

ĈIJ =


0 1 0 0
1 0 0 0
0 0 −1 0
0 0 0 −1

 , (2.26)

which satisfies ĈIJĈKLδ
JK = δIL. Observe that (2.11) now implies that the space-time metric

warp factor, Z, is given by

Z3 = 1
2
Z0

(
ĈIJZI ZJ

)
= Z0

(
Z1 Z2 − 1

2
(Z2

3 + Z2
4)
)
. (2.27)

It is also convenient to define the quadratic combination

P ≡ ĈIJZI ZJ =
(
Z1 Z2 − 1

2
(Z2

3 + Z2
4)
)
. (2.28)

Since we are considering black objects, we will work entirely in the five-dimensional theory;
we do not need to uplift to the higher-dimensional description.

3 String with no oscillation

We will first discuss the simplest solutions: black strings with oscillating species, so that we
may examine horizon smoothness without the algebra becoming unnecessarily complicated. We
therefore take the base metric to be simply a flat metric on R3 × S1, which means we set
V ≡ 1 and A ≡ 0 in the metric (2.17). The string is then aligned along the ψ direction. A
useful starting point is to review the horizon smoothness of the non-oscillating electrically and
magnetically charged black string solution [18], which is independent of ψ and is given by the
harmonic functions:

KI =
p

r
, LI = 1 +

q

r
(3.1)

for I = 0, 1, 2, and KI = 0, LI = 0 for I = 3, 4. The functions in the metric are then

Z = 1 +
q

r
+
p2

r2
(3.2)

and

µ =
p3

r3
+

3pq

2r2
+

3p

r
, (3.3)
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choosing M = 3p
2r

so that we can simply solve (2.22) by taking ω = 0. The scalars are all
constants, XI = 1 for I = 0, 1, 2, XI = 0 for I = 3, 4.

The metric and gauge fields are clearly finite for r 6= 0. The solution has a coordinate
singularity at r = 0, and we want to see how this corresponds to an event horizon. As r → 0,
the metric is asymptotic to

ds2 ≈ −r
4

p4
dt2 − 2r

p
dtdψ +

3

4p2
(q2 − 4p2)dψ2 +

p2

r2
dr2 + p2(dθ2 + sin2 θdφ2) , (3.4)

which is singular in the dr direction and degenerate in the dt direction. To see that this is
simply a coordinate singularity one can use a simple generalization of the Eddington-Finkelstein
coordinate system:

t = v +
a

r
+ b log(r/p), ψ = ψ̂ + c log(r/p). (3.5)

Expand the metric into power series in r:

gtψ = r(g
(0)
tψ + rg

(1)
tψ + r2g

(2)
tψ ) , (3.6)

gψψ = g
(0)
ψψ + rg

(1)
ψψ + r2g

(2)
ψψ ,

grr =
1

r2
(g(0)
rr + rg(1)

rr + r2g(2)
rr ) .

To the first few orders in r, the components of interest in the new coordinate system are

g′
rψ̂

= −2

(
a

r2
− b

r

)
gtψ + 2

c

r
gψψ (3.7)

=
1

r
(2cg

(0)
ψψ − 2ag

(0)
tψ ) + (2cg

(1)
ψψ − 2ag

(1)
tψ + 2bg

(0)
tψ ) + . . .

and

g′rr =

(
a

r2
− b

r

)2

gtt − 2

(
a

r2
− b

r

)
c

r
gtψ +

c2

r2
gψψ + grr (3.8)

=
1

r2
(−2acg

(0)
tψ + c2g

(0)
ψψ + g(0)

rr ) +
1

r
(−2acg

(1)
tψ + 2bcg

(0)
tψ + c2g

(1)
ψψ + g(1)

rr )

+(−a2p−4 − 2acg
(2)
tψ + 2bcg

(1)
tψ + c2g

(2)
ψψ + g(2)

rr ) + . . . .

There is a potential singularity in g′
rψ̂

at order r−1 and cancelling this fixes a in terms of c:

a =
g

(0)
ψψ

g
(0)
tψ

c = − 3 c

4p
(q2 − 4p2). (3.9)

Then there are potential singularities in g′rr at both order r−2 and r−1, which fix the other two
parameters c, b,

c =
2p2

√
3
√
q2 − 4p2

, b =
(q3 − 3p2q)
√

3p
√
q2 − 4p2

. (3.10)
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With these choices, the metric near r = 0 reduces to

ds2 ≈ −2c

p
dvdr + fdψ̂2 + 2hdrdψ̂ + jdr2 + p2(dθ2 + sin2 θdφ2), (3.11)

where

f = g
(0)
ψψ, h = 2cg

(1)
ψψ − 2ag

(1)
tψ + 2bg

(0)
tψ , j = −a2p−4 − 2acg

(2)
tψ + 2bcg

(1)
tψ + c2g

(2)
ψψ + g(2)

rr . (3.12)

The determinant of the metric is g ≈ −fc2p2 sin2 θ. The metric is thus completely regular and
non-degenerate near r = 0.

We should also consider the regularity of the matter fields. For the vector fields, A3 = A4 = 0
while

A0 = A1 = A2 = A = Z−1(dt+ µdψ)− p

r
dψ + p cos θdφ+ α . (3.13)

(Note that the vector field, A here should not be confused with A in (2.17).) All the components
are finite at r = 0 in the original coordinates, but we need to consider the behaviour in the
regular coordinates:

A = Z−1

(
dv − a

r2
dr − b

r
dr

)
+
(
µZ−1 − p

r

)(
dψ̂ +

c

r
dr
)

+ p cos θdφ+ α. (3.14)

Now Z ∼ r−2, so the first part is finite, but a constant term in Aψ could produce a divergence in
Ar in the new coordinates. Indeed µZ−1− p

r
≈ q

2p
. But this can be cancelled by taking advantage

of the freedom to introduce a closed form, setting α = − q
2p
dψ.1 Then one has:

A = Z−1

(
dv − a

r2
dr − b

r
dr

)
+

(
µZ−1 − p

r
− q

2p

)(
dψ̂ +

c

r
dr
)

+ p cos θdφ , (3.15)

which is finite at the horizon, r = 0, in the new coordinates. Thus, this solution describes a
regular supersymmetric black string with electric and magnetic charges.

4 Oscillating black string

We now add oscillations to the black string solution, promoting the LI , which control the electric
charges, to functions of ψ. We will not change the magnetic charge functions, so

K0 = K1 = K2 =
p

r
, K3 = K4 = 0 , (4.1)

but we now take

L0 = 1 +
q

r
, LI = 1 +

q

r
+
FI(ψ, r)

r
(4.2)

1Note this is not a gauge transformation, as ψ is a periodic coordinate, so this addition is changing the
holonomy around the circle. Thus the solutions that is regular at the horizon has some non-trivial holonomy at
infinity.
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for I = 1, 2, 3, 4. The LI are required to be solutions of ∇2
4LI = (q + ρI(ψ))δ3(~x).

Since we are working on a flat base, it is easy to write an explicit integral form for the
solutions:

FI(ψ, r) = r

∫ ∆ψ

0

ρI(ψ
′)dψ′

π(r2 + (ψ − ψ′)2)
. (4.3)

It is useful to note that if ρI(ψ) = Re[ρI(z)], where ρI(z) has no poles in the upper-half plane,
then the result of doing this integral can be written as FI(r, ψ) = Re[ρI(ψ + ir)] [8]. We will
subsequently assume that the charge distributions are purely oscillating, so the integral of ρI
over the circle vanishes; this part carries no net charge. This implies

∫
dψFI = 0 as well.

Our goal is to suppress as much of the ψ-dependence from the metric as possible and to that
end we will choose the densities such that the fluctuations cancel in the source term of (2.16) and
thus the angular momentum vector is ψ-independent. This is achieved by choosing the opposite
oscillating densities:

ρ2(ψ) = − ρ1(ψ) , (4.4)

which implies that F2 = −F1, exactly as in the magnetube solutions in [9].
The functions ZI are

Z0 = 1 +
q

r
+
p2

r2
, Z1,2 = 1 +

q

r
± F1

r
+
p2

r2
, Z3,4 =

F3,4

r
, (4.5)

and

Z3 = Z0(Z1Z2 − 1
2
(Z2

3 + Z2
4)) =

(
1 +

q

r
+
p2

r2

)((
1 +

q

r
+
p2

r2

)2

−
(F 2

1 + 1
2
(F 2

3 + F 2
4 ))

r2

)
. (4.6)

We can again take

µ =
p3

r3
+

3pq

2r2
+

3p

r
, (4.7)

choosing M = 3p
2r

. The choice (4.4) implies that there are no ψ-dependent sources in the equation
(2.22) for ω, so with this choice for M this equation is again satisfied by taking ω = 0. Note that
ψ-dependence in the metric only enters through Z.

In fact, it is possible to find particular solutions with non-trivial ψ-dependence in the fields
but in which there is no ψ-dependence at all in the metric. For example, if one takes

ρ1(ψ) = −ρ2(ψ) = Q cos(kψ), ρ3 = ρ4 = Q sin(kψ), (4.8)

then

F1 = Q cos kψ e−kr, F3 = F4 = Q sin kψ e−kr ⇒ F 2
1 +

1

2
(F 2

3 + F 2
4 ) = Q2e−2kr, (4.9)

and Z and hence the metric will be completely independent of ψ. The non-trivial ψ-dependence
would appear just in the gauge field and scalars. Thus ∂

∂ψ
is a Killing vector but is not a symmetry

of the complete solution. It is in this sense that our solutions are analogous to Q-balls [10, 11].
More generally, if the source functions are some arbitrary periodic harmonic functions, then

the F I will decay exponentially at large r and will be non-singular near r = 0, where F I(r, ψ) =
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Re[ρI(ψ + ir)] ≈ ρI(ψ) +O(r). We can therefore write the combination appearing in Z in some
power series expansion about r = 0,

F 2
1 + 1

2
(F 2

3 + F 2
4 ) = F (0)(ψ) + F (1)(ψ) r + F (2)(ψ) r2 + . . . (4.10)

where F (0)(ψ) = ρ2
1 + 1

2
(ρ2

3 + ρ2
4).

4.1 Regularity

4.1.1 The scalars

The scalars are given by:

X0 =
(Z1Z2 − 1

2
(Z2

3 + Z2
4))1/3

Z
2/3
0

, X1 =
Z0Z2

Z2
, X2 =

Z0Z1

Z2
, X3 =

Z0Z3

Z2
, X4 =

Z0Z4

Z2
.

(4.11)
Since Z0 is unchanged, X0 clearly remains finite everywhere and, assuming F 2

1 + 1
2
(F 2

3 + F 2
4 )

is exponentially decaying, we can choose q big enough so that Z is finite everywhere so all the
scalars are regular for r 6= 0. As we approach r = 0, XI → 1 for I = 0, 1, 2 and XI → 0 for
I = 3, 4.

4.1.2 The metric

As before, the metric has an apparent singularity and degeneracy at r = 0. As r → 0, we have:

ds2 ≈ −r
4

p4
dt2 − 2r

p
dtdψ +

1

4p2
(3q2 − 12p2 − 4F (0))dψ2 +

p2

r2
dr2 + p2(dθ2 + sin2 θdφ2). (4.12)

One wants to make the same coordinate transformation (3.5) to attempt to make the metric
regular at r = 0. It was shown in [8] that in the previous attempt to build hairy black rings [4, 7]
this coordinate transformation was obstructed, as the leading term in gψψ was ψ dependent,

so we can’t set a = cg
(0)
ψψ/g

(0)
tψ as in (3.9) for constant a, c. Similarly here there is generically

ψ dependence in gψψ; but we can choose charge densities such that the sum of the squares
F (0)(ψ) = ρ2

1 + 1
2
(ρ2

3 + ρ2
4) is a constant. This condition of constant amplitude for the fluctuating

densities is familiar from our study of magnetubes [9].
Imposing this constraint, we can eliminate the potential singularity in g′rψ in (3.7) by setting

a =
g

(0)
ψψ

g
(0)
tψ

c = − 1

4p
(3q2 − 12p2 − 4F (0)) c . (4.13)

The leading singularity in g′rr in (3.8) can also be eliminated by setting

c =
2p2√

3q2 − 12p2 − 4F (0)
. (4.14)
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But there is a further obstruction in eliminating the sub-leading singularity. We want to set

b =
q3 − 3p2q − F (0)q − F (1)p2

p
√

3q2 − 12p2 − 4F (0)
, (4.15)

but again F (1) is generically a function of ψ, so we couldn’t satisfy this for constant b. Thus,
we need to choose the ρI(ψ) such that both F (0) and F (1) are constants to have a coordinate
transformation which will eliminate the singularities in the metric at r → 0. We have three
free functions ρ1, ρ3, ρ4, so there should be an arbitrary function’s worth of freedom even after
satisfying this constraint. We have also seen explicitly above that there are non-trivial solutions
with constant F (0) and F (1).

When we restrict to charge densities such that F (0) and F (1) are constants, the metric near
r = 0 in the new coordinates takes the same general form,

ds2 ≈ −2c

p
dvdr + fdψ̂2 + 2hdrdψ̂ + j(ψ)dr2 + p2(dθ2 + sin2 θdφ2), (4.16)

where f, h and j(ψ) are still given by the same general expressions (3.12), but now the grr
component j is a function of ψ, as g

(2)
ψψ involves F (2)(ψ). In the near-horizon region, ψ =

ψ̂+c log(r/p), so j is some periodic function which oscillates infinitely many times as we approach
the horizon. Thus, while the components of the metric are all finite at the horizon in this new
coordinate system, they are not smooth functions of the coordinates there.

Remarkably, an explicit calculation of the components of the Riemann tensor reveals that
all components are finite as r → 0. If we took the approximate metric (4.16) to be the exact
solution, the only non-zero components of the Riemann tensor are

Rrψ̂rψ̂ = −1

2
∂2
ψ̂
j, Rθφθφ = p2 sin2 θ, (4.17)

which remain finite as r → 0. Keeping sub-leading terms in the expansion in r, radial derivatives
of j will appear, but they are multiplied by positive powers of r, so that we don’t get any
divergences. Geodesics remain at finite values of the coordinates as r → 0 in (4.16), so the
finiteness of the Riemann tensor components implies that the geodesics can be extended beyond
r = 0, so that this is a regular horizon for the oscillating black string solutions.

Thus, the solution will have a metric which is regular at r = 0 if we choose the sources such
that F (0) and F (1) are constants. There should be a free function’s worth of solutions which
satisfy these constraints, so we find black string solutions with a function’s worth of hair.

4.1.3 The vector fields

For the vector fields, we have

AI = Z−1XI

(
dv − a

r2
dr − b

r
dr

)
+
(
Z−1XIµ−KI

) (
dψ̂ +

c

r
dr
)

+ p cos θdφ+ αI , (4.18)

with dαI = 0. Again, these components are all finite in the original coordinate system, but we
need to check carefully that they are finite in the regular coordinate system as r → 0. For I = 0,

Z−1X0µ−K0 ≈ q

2p
, (4.19)
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so we take α0 = − q
2p
dψ as before. For I = 1, 2,

Z−1XIµ−KI ≈ q

2p
∓ ρ1(ψ)

p
. (4.20)

Taking αI = − q
2p
dψ will eliminate the first term as before. Since we take the charge distributions

to be purely oscillating, the new term is actually pure gauge, so it can be removed by taking
αI = − q

2p
dψ + dβI(ψ) for some suitably chosen periodic functions, βI(ψ). Similarly for I = 3, 4,

Z−1XIµ ≈ −ρI(ψ)

p
, (4.21)

which can also be eliminated by a gauge transformation. All the vector potentials are then finite
as r → 0.

There is a subtlety here similar to the one we saw above in the metric. The Av and Aψ̂
components vanish at the horizon after we do this gauge transformation, so the surviving com-
ponents at the horizon are Aφ = p cos θ and Ar. The finite contribution to Ar from the first term
in (4.18) is independent of ψ, but the contribution from the second term is

Ar ∼ c

(
∂rFI(ψ, r)|r=0

p
− qρI(ψ)

2p3

)
. (4.22)

This is bounded, but as ψ = ψ̂ + c log(r/p), it will oscillate infinitely many times along infalling
geodesics which approach the horizon at finite ψ̂. Since it is only the radial component of the
gauge field that exhibits this behaviour, it does not lead to a divergent field strength; the non-zero
components of the field strength at the horizon are

Fψ̂r = ∂ψ̂Ar, Fθφ = p sin θ. (4.23)

Thus, the electric field is bounded but oscillates infinitely many times along infalling geodesics
approaching r = 0. Thus, the response of a charged test particle remains bounded, and the
horizon at r = 0 remains regular2.

5 Oscillating black rings

We now extend the discussion to the most interesting example, an oscillating black ring. As we
remarked earlier, since the smooth continuation of a solution across the horizon is a local issue
we expect to encounter only the same issues and constraints as we did for the black string, albeit
with a slightly higher level of complexity.

2We can see that derivatives of the field strength will diverge at the horizon, so the field is not smooth there,
but it is sufficiently differentiable to admit a physically meaningful extension through the horizon.
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5.1 The O-ring solution

To bend our black string solution into a black ring, we want to take the four-dimensional base
space (2.17) to be flat R4. This is achieved by introducing a single GH centre at r1 = 0 and
setting V = 1/r1. Note that it is rather straightforward to extend our construction to oscillating
rings in Taub-NUT or more complicated multi-center solutions, although we will not do it here
for the sake of simplicity. We will choose coordinates so that the black ring’s event horizon is
still at r = 0, and take the centre r1 = 0 to be at r = R, θ = 0. That means

r2
1 = r2 +R2 − 2rR cos θ. (5.1)

We have

V =
1

r1

=
1√

r2 +R2 − 2rR cos θ
, A =

r1 + r cos θ −R
r1

dφ. (5.2)

We take the harmonic functions KI , LI to have the same structure as in the black string
solution, given in (4.1), (4.2). The LI satisfy ∇2

4LI = (q + ρI(ψ))δ3(~x), which now implies

FI(r, θ, ψ) = r

∫ 4π

0

G(r, θ, ψ, ψ′)ρI(ψ
′)dψ′ (5.3)

where G is the Page Green function for the GH base [19, 20]. For the single-centred base, this
Green function is simply

G =
1

16π2r

sinhU

coshU − cos(ψ−ψ
′

2
)
, (5.4)

where 2U = ln r1+R+r
r1+R−r . Note that the θ dependence in r1 implies that FI is a function of θ. As for

the black string, we can do the integral in (5.3) for appropriate sources by contour integration,
to get

FI(r, θ, ψ) = Re[ρI(ψ + iU)] ≈ ρI(ψ) +
r

2R
Re[i∂zρI(z)|z=ψ] +O(r2) (5.5)

The functions ZI are now given by:

Z0 = 1 +
q

r
+

p2

r2V
, Z1,2 = 1 +

q

r
± F1

r
+

p2

r2V
, Z3,4 =

F3,4

r
, (5.6)

and so the warp factor appearing in the metric is:

Z3 = Z0(Z1Z2 − 1
2
(Z2

3 + Z2
4)) =

(
1 +

q

r
+

p2

r2V

)((
1 +

q

r
+

p2

r2V

)2

−
(F 2

1 + 1
2
(F 2

3 + F 2
4 ))

r2

)
.

(5.7)
We also have

µ =
p3

r3V 2
+

3pq

2r2V
+

3p

2rV
+M. (5.8)

As before, this part of the solution does not involve the oscillation. We therefore choose M to
have the same value as for the non-oscillating black ring,

M =
3p

2

R− r
r

(5.9)
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The one-form is then also the same as for the non-oscillating ring,

ωφ = −3pR

2

(r −R cos θ + r1 cos θ)

Rr1

+
3p

2
Aφ. (5.10)

Again, dependence on the oscillation enters in the metric only through Z.
As before, we can find a simple solution in which the metric is completely independent of ψ,

by choosing
ρ1(ψ) = −ρ2(ψ) = Q cos(kψ), ρ3 = ρ4 = Q sin(kψ), (5.11)

so that (5.5) gives

F1 = Q cos kψ e−kU , F3 = F4 = Q sin kψ e−kU ⇒ F 2
1 + 1

2
(F 2

3 + F 2
4 ) = Q2e−2kU , (5.12)

Thus ∂
∂ψ

is a Killing vector. Note that the warp factor is still a function of θ, unlike the black-
string solution. The form of U implies that the oscillation now has power-law decay at large r,
as expected for multipole moments in an asymptotically-flat space.

More generally, if the source functions were arbitrary, the F I would have power-law decay at
large r, and one could use eq. (5.5) to see that the expansion around r = 0 becomes

F 2
1 +

1

2
(F 2

3 + F 2
4 ) = F (0)(ψ) + F (1)(ψ) r + F (2)(θ, ψ) r2 + . . . (5.13)

A key point is that the θ dependence enters only at quadratic order; near r = 0, U ≈ r/2R, so
the linear term in the expansion of FI is still θ-independent, as indicated in (5.5).

5.2 Regularity

The regularity analysis near r = 0 now proceeds in much the same manner as it did for the black
string.

5.2.1 The metric and scalars

The scalars take the same form (4.11), and as we approach r = 0, XI → 1 for I = 0, 1, 2 and
XI → 0 for I = 3, 4. For the metric, we note that as r → 0,

V ≈ 1

R
, A ≈ r2

2R2
sin2 θdφ, ω ≈ −3p

2
r sin2 θdφ, (5.14)

so the cross terms involving φ become negligible near r = 0. The metric near r = 0 is then

ds2 ≈ − r4

p4R2
dt2− 2r

p
dtdψ+

1

4p2
(3q2− 12p2R− 4F (0))dψ2 +

p2

r2
dr2 + p2(dθ2 + sin2 θdφ2). (5.15)

If we choose charge densities such that the sum of the squares F (0)(ψ) = ρ2
1 + 1

2
(ρ2

3 + ρ2
4) is a

constant, we can eliminate the potential singularity in g′rψ in (3.7) by setting

a =
g

(0)
ψψ

g
(0)
tψ

c = − c

4p
(3q2 − 12p2R− 4F (0)), (5.16)
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and the leading singularity in g′rr in (3.8) can also be eliminated choosing c appropriately. We
also need to choose sources such that F (1)(ψ) is also a constant, so that we can eliminate the
sub-leading singularity in g′rr by choosing b appropriately.

When we restrict to charge densities such that F (0) and F (1) are constants, the metric near
r = 0 in the new coordinates takes the same general form,

ds2 ≈ −2c

p
dvdr + fdψ̂2 + 2hdrdψ̂ + j(θ, ψ)dr2 + p2(dθ2 + sin2 θdφ2), (5.17)

where again f, h and j(θ, ψ) are given as in (3.12), but now j is a function of both θ and ψ, as

g
(2)
ψψ contains F (2)(θ, ψ). As before, in the near-horizon region, ψ = ψ̂ + c log(r/p), so j is some

periodic function that oscillates infinitely many times as we approach the horizon. Thus, while
the components of the metric are all finite at the horizon in this new coordinate system, they
are not smooth functions of the coordinates there.

Remarkably, it is still true that the components of the Riemann tensor in the approximate
metric (4.16) are finite as r → 0 even after including the θ dependence. The leading metric now
has the Riemann tensor

Rrψ̂rψ̂ = −1

2
∂2
ψ̂
j, Rrψ̂rθ = −1

2
∂θ∂ψ̂j, Rrθrθ = −1

2
∂2
θj, Rrφrφ = −1

2
∂θj sin θ cos θ, (5.18)

Rθφθφ = p2 sin2 θ,

which is finite as r → 0. Including sub-leading terms in the metric, radial derivatives of j again
appear multiplied by positive powers of r, so we don’t get any divergences in the Riemann tensor.
Geodesics remain at finite values of the coordinates as r → 0 in (4.16), so the finiteness of the
Riemann tensor components implies that the geodesics can be extended beyond r = 0, so that
this is a regular horizon for the oscillating black ring solutions.

Thus, the solution will have a metric that is regular at r = 0 if we choose the sources such
that F (0) and F (1) are constants. Since these are in general functions only of ψ, this imposes
two restrictions on our three free source functions, so there should be a free function’s worth
of solutions that satisfy these constraints. Thus we find black ring solutions with a function’s
worth of hair. It is essential that the regularity only requires constancy of F (0) and F (1); requiring
constancy of F (2), or even higher order terms, which are functions of both θ and ψ in general,
would overconstrain the sources.

5.2.2 The vector fields

The analysis for the vector fields is essentially identical to that for black strings. The fields are:

AI = Z−1XI

(
dv − a

r2
dr − b

r
dr

)
+

(
Z−1XIµ− KI

V

)(
dψ̂ +

c

r
dr
)

+ p cos θdφ+ αI . (5.19)

The components in the new coordinates are made finite by a suitable choice of exact part. For
I = 0, as r → 0

Z−1X0µ− K0

V
≈ q

2p
, (5.20)
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so we take α0 = − q
2p
dψ as before. For I = 1, 2,

Z−1XIµ− KI

V
≈ q

2p
∓ ρ1(ψ)

p
, (5.21)

and the divergence of the vector field can be cancelled by a gauge transformation and taking
αI = − q

2p
dψ + dβI for a suitable choice of βI(ψ). Similarly for I = 3, 4,

Z−1XIµ ≈ −ρI(ψ)

p
, (5.22)

which can be eliminated by a gauge transformation involving the choice of βI(ψ). All the vector
components are then finite as r → 0. As for black strings, there is a finite Ar component that
is a function of ψ = ψ̂ + c log(r/p),3 which gives an electric field that is bounded but oscillates
infinitely many times along infalling geodesics. Thus, the response of a charged test particle
remains bounded, and the horizon at r = 0 remains regular.

6 The solution in canonical ring coordinates

We can easily recast the solutions above in the, perhaps more familiar, black-ring bipolar coor-
dinates. This will facilitate the comparison with the singular black ring solution that only has
two oscillating charge densities [7], and to this end we also modestly generalize the result above
by using distinct magnetic dipole moments.

6.1 The oscillating solutions

One can write the R4 spatial base metric of (2.9) in the usual spherical bipolar coordinates:

ds2
R4 =

R2

(x− y)2

(
dy2

y2 − 1
+ (y2 − 1) dψ2 +

dx2

1− x2
+ (1− x2) dφ2

)
. (6.1)

with −1 ≤ x ≤ 1, −∞ < y ≤ −1. The ring is located at y = −∞ while spatial infinity
corresponds to y = −1.

In these coordinates the magnetic flux sources are very simple:

Θ(j) = 2 qj (dx ∧ dφ − dy ∧ dψ) , j = 0, 1, 2 (6.2)

and the electrostatic potentials that solve 2.15 have the form [7]:

Zi = 1 +
Qi

R
(x− y) − 4qj qk

R2
(x2 − y2) +

π

R
(x− y) Λi(y, ψ) , {i, j, k} = {0, 1, 2} , (6.3)

Zi =

√
2π

R
(x− y) Λi(y, ψ) , i = 3, 4 , (6.4)

3This comes from the linear term in FI , so it is a function just of ψ, and not of θ.
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where, for later convenience, we have introduced factors of
√

2 into Λ3 and Λ4. The Λi are
harmonic, which means that they satisfy:

(y2 − 1) ∂y
(
(y2 − 1) ∂y Λi

)
+ ∂2

ψ Λi = 0 , (6.5)

The Fourier analysis is elementary and the smooth solutions that fall off at infinity have expan-
sion:

Λi(y, ψ) ≡
∞∑
n=1

(y + 1

y − 1

)n/2 (
ain cos(nψ) + bin sin(nψ)

)
. (6.6)

Indeed, if one takes y = − coth ξ then this may be written as the real part of an analytic function
of z where z ≡ e−ξ+iψ.

Note that we focus on solutions where the additional potentials, Z3 and Z4, only have a
fluctuating piece. Moreover, the source in the third BPS equation (2.16) only involves the sum

Λ ≡
2∑
i=0

qi Λi . (6.7)

The solution to the third BPS equation (2.16) with generic fluctuations was given in [7] however,
our purpose here is to minimize, or at least suppress, the ψ-dependence of the metric. We will
therefore consider charge densities that fluctuate while keeping Λ ≡ 0. We also want to try to
remove the ψ-dependence from Z, which is given by (2.27) and therefore consider a solution
where the charge corresponding to Λ0 does not fluctuate and thus Λ0 ≡ 0 as well4. Thus we have

Λ0 ≡ 0 , q1Λ1 + q2Λ2 ≡ 0 . (6.8)

With these choices, the angular momentum vector, k, is precisely what it was for the non-
oscillating black ring:

k = k1 dψ + k2 dφ , (6.9)

where

k1 = (y2 − 1)
(

1
3
C (x+ y) + 1

2
B
)
− A (y + 1) , (6.10)

k2 = (x2 − 1)
(

1
3
C (x+ y) + 1

2
B
)
, (6.11)

and

A ≡ 2(q0 + q1 + q2) , B ≡ 2

R
(Q0 q0 +Q1 q1 +Q2 q2) , C ≡ − 24q0 q1 q2

R2
. (6.12)

Thus the ψ-dependence has almost been eliminated from the five-dimensional metric. Indeed,
the only such dependence comes from the warp factors (2.27) via (2.28):

P =
(
Z1 Z2 − 1

2
(Z2

3 + Z2
4)
)
. (6.13)

4There may be more general solutions but our purpose here is to exhibit some simple families and leave the
classification issue for later work.
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The fluctuating part, P̂ , of P is given by:

P̂ =
π

R
(x− y)

(
Λ1 + Λ2

)
+

π

R2
(x− y)2

(
Q2 Λ1 +Q1 Λ2

)
(6.14)

+
π2

R2
(x− y)2

(
Λ1 Λ2 − (Λ2

3 + Λ2
4)
)
, (6.15)

where we have used (6.8).

6.2 An elementary example

Take q1 = q2 and Q1 = Q2 then Λ2 = −Λ1 and

P̂ = − π2

R2
(x− y)2

(
Λ2

1 + Λ2
3 + Λ2

4

)
, (6.16)

We can take the fluctuations to be a single Fourier mode:

Λi(y, ψ) =
(y + 1

y − 1

)n/2 (
ain cos(nψ) + bin sin(nψ)

)
, (6.17)

and then one has

P̂ = − π2

2R2
(x−y)2

(y + 1

y − 1

)n ∑
i∈{1,3,4}

[ (
(ain)2+(bin)2

)
+
(
(ain)2−(bin)2

)
cos(2nψ) + 2 ain b

i
n sin(2nψ)

]
.

(6.18)

Consider the ain and bin to be vectors, ~a,~b ∈ R3, then the fluctuations in the metric are completely
absent if

|~a|2 = |~b|2 , ~a ·~b = 0 . (6.19)

That is, the coefficients are orthogonal vectors of the same length in R3 and then:

P̂ = − π2 |~a|2

R2
(x− y)2

(y + 1

y − 1

)n
. (6.20)

This is simply a modest extension of the example given in (5.12). Here we have a four-

parameter family of solutions: ~a can be freely chosen and then ~b is vector of the same length in
the plane orthogonal to ~a. Thus there is really a three parameter family of hair because only |~a|
appears in the metric.

There is a simple way to parametrize the solutions of (6.19) by setting

~a+ i~b = (i(ζ2
1 + ζ2

2 ) , ζ2
1 − ζ2

2 , 2 ζ1 ζ2) . (6.21)

for any (ζ1, ζ2) ∈ C2. This automatically satisfies (6.19) and |~a|2 + |~b|2 = 2(|ζ1|2 + |ζ2|2). We

therefore see that the solution space for fixed P̂ is S3/Z2 = SO(3) where the Z2 action is simply
(ζ1, ζ2)→ −(ζ1, ζ2).

In this example, ∂
∂ψ

is a Killing vector of the metric but not a symmetry of the solution. These
solutions resemble therefore Q-balls, in that the oscillations cancel out of the energy-momentum
tensor and the metric, but the charges rotate around the ring.
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6.3 Horizon regularity in general

We can check horizon regularity exactly as we did earlier. One first makes a change of variable
u = −1/y and then tries to continue smoothly through u = 0. We will need the expansion, to
first order, of the electric field terms, Λi, in the neighborhood of the horizon (y = −∞):

Λi(y, ψ) = Λ
(0)
i (ψ) + Λ

(1)
i (ψ) y−1 + . . . . (6.22)

To remove the singularities one must also allow u-dependent shifts in the angular and time
coordinates:

t = v +
a

u
+ b log u , ψ = ϕ1 + c1 log u , φ = ϕ2 + c2 log u , (6.23)

where a, b,c1 and c2 are constants to be determined.
It is convenient to define two quantities:

∆1 ≡ 4π2 q1

(
q1(Λ

(0)
1 )2 + q2((Λ

(0)
3 )2 + (Λ

(0)
4 )2)

)
+ 4π q1(q1Q1 − q2Q2)Λ

(0)
1 , (6.24)

∆2 ≡ 4π2 q1

(
q1 Λ

(0)
1 Λ

(1)
1 + q2

(
Λ

(0)
3 Λ

(1)
3 + Λ

(0)
4 Λ

(1)
4

))
(6.25)

+ 2π q1 (q1Q1 − q2Q2) Λ
(1)
1 − 2π R q1 (q1 − q2) Λ

(0)
1 . (6.26)

These quantities are in principle ψ-dependent, but as we will see, smoothness across the horizon
requires that these quantities are in fact independent of ψ.

One then expands the metric about u = 0. To remove the u−1 terms proportional to du dϕ2

one must set c2 = −c1. The u−1 terms proportional to du dϕ1 can be removed by setting

a =
8 q0q1q2

R2
Ω2 c1 , (6.27)

where

Ω ≡ R

8 q0q1q2

[
2 (q0q1Q0Q1 + q0q2Q0Q2 + q1q2Q1Q2) (6.28)

− 16 q0q1q2(q0 + q1 + q2)− (q2
0Q

2
0 + q2

1Q
2
1 + q2

2Q
2
2)−∆1

]1/2

. (6.29)

To remove the u−2du2 terms one must set

c1 =
1

Ω
. (6.30)

The u−1du2 terms have pieces that are linear in x but these cancel as a consequence of (6.27)
and (6.30). This is the equivalent in the (x, y) coordinates of the θ-independence of F (0) and
F (1) in (5.13). The remaining terms involving u−1du2 can be removed by setting:

b = − 1

Ω

[
1

16 q0q1q2

(
32q0q1q2(q0 + q1 + q2)− 4R (q2

0Q0 + q2
1Q1 + q2

2Q2) +RQ0Q1Q2

)
(6.31)

− Rq0Q0 ∆1

16 q2
0q

2
1q

2
2

+
1

8 q0q1q2

∆2

]
. (6.32)
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With this change of variables, the metric continues smoothly across u = 0. (If the ∆i depended
on ψ then the change of variables (6.23) would have introduced new singular dψ terms coming
the derivatives of ∆i.) We have not verified that the other fields and the Riemann tensor are
finite across the horizon in these coordinates, but this is guaranteed by the analysis in Section 5.

Note that if we choose q1 = q2 and Q1 = Q2 then we should recover the same solution as in
Section 5. Indeed, requiring that ∆1 and ∆2 be constant reduces to requiring the ψ-independence
of ∑

i∈{1,3,4}

(Λ
(0)
i (ψ))2 and

∑
i∈{1,3,4}

Λ
(0)
i (ψ) Λ

(1)
i (ψ) . (6.33)

This is equivalent to requiring that the following are ψ-independent:∑
i∈{1,3,4}

(Λi(y, ψ))2
∣∣∣
y=−∞

and lim
y→−∞

[
y2 ∂

∂y

∑
i∈{1,3,4}

(Λi(y, ψ))2
]
. (6.34)

This is precisely the same condition as requiring F (0) and F (1) in (5.13) be independent of ψ.
Given these two functional constraints, we can ask how big will be the family of hair that our

solutions can accommodate. We started with four charge density functions constrained by (6.8),
and thus are three unconstrained functions parameterized by the arbitrary Fourier coefficients
ain and bin, i ∈ {1, 3, 4} in (6.17). Imposing the two extra functional constraints we found should
then leave, in principle, one function’s-worth of hair on the surface of the black ring. Although
we did not find a simple way to prove that this will always happen, it seems very plausible
particularly because we can find a simple explicit example (see Section 6.2) and thus show that
the set solutions is certainly non-empty. We therefore believe our analysis provides good evidence
that there is a lot of new oscillatory hair intrinsic to black O-rings and thus to black rings in
M-theory.

7 Conclusions

We have found some very simple BPS black-ring solutions that exhibit whole new varieties of
hair through charge oscillations. The existence of these O-ring solutions requires that we go
beyond the usual three-charge, or “STU,” supergravity and couple more vector multiplets. It
is only in this way that we can sufficiently expand the phase space of solutions to have enough
freedom to coiffure the hair so as to arrange smoothness across the horizon.

We have not attempted to provide a complete classification of these new BPS O-ring solutions.
There are obviously more general possibilities, even within the supergravity models that we have
considered here. The first step was to make sure that all the fluctuations cancel in the source
term of (2.16) so that the angular momentum vector remained ψ-independent and thus the
only ψ-dependence in the metric then comes through the warp factor, Z. With more non-zero
independent magnetic dipoles there are manifestly many ways to arrange this in the source
of (2.16). For simplicity, we also suppressed fluctuations in Z0. Moreover, generic Calabi-Yau
manifolds give rise to many more vector fields and more complicated intersection matrices. There
is therefore a very large phase space that could be explored by O-rings in string theory.
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In terms of counting solutions we have argued that, even within the limited class considered
here, there appears to be a whole function’s worth of hair, essentially because we have three
charge density functions and two functional constraints coming from requiring smoothness at
the horizon. While this is not a formal proof and some subtlety might yet appear in a more
careful analysis, our construction strongly suggests that such large families of very hairy solutions
exist. They would give by far the largest known violation of black hole uniqueness: an arbitrary
function of one variable is parameterized by an infinite number of arbitrary Fourier modes, and
hence our solution would depend on an infinite number of continuous parameters.

Even if somehow these functional constrains are too strong and do not give a coiffure pa-
rameterized by an infinite number of continuous parameters, we have explicitly exhibited a
three-parameter family of hair on BPS O-rings. This in itself provides a substantial enlargement
of the hairiness of black objects.

One rather surprising aspect of our work is that the curvatures and gauge fields are continuous
across the horizon. The functional constraints on the charge densities manifestly arrange that
the metric is continuous and non-degenerate across the horizon. However in the coordinates
that continue across the horizon, the warp factor, Z, depends upon oscillations whose frequency
diverges as one approaches the horizon. Of course, as a function of the original coordinates, the
behavior of Z is completely well-behaved and it is only through transforming to the infalling
coordinates that one sees such infinite frequencies. This is presumably because such an infalling
observer rotates around the ring infinitely often before crossing the horizon and so sees the
charge oscillations with diverging frequency. The surprise is that in spite of this behavior, the
curvature and field strengths are not divergent in crossing the horizon and test particles do not
encounter infinite fields. The higher level of smoothness is evidently related to the fact that
the oscillations of the metric are limited entirely to the five-dimensional warp factor and that its
leading two orders of oscillation have been eliminated by the charge density constraints. However,
the finiteness of the curvatures and gauge fields is still surprising and we hope to investigate this
further.

It seems very plausible that the ideas employed here could be extended to extremal non-BPS5

and even non-extremal black rings [24]. Indeed, one of the inspirations for this work was the
idea that one might hope to find non-BPS microstate geometries that oscillate in the manner
described here and would ultimately be electrically neutral [21]. One of the other inspirations
for this work were the Q-ball solutions [10, 11] which are time-dependent and thus certainly
not BPS. One might hope to find time-dependent O-rings and even time-dependent microstate
geometries that oscillate in the same manner. The problem with such time-dependent solutions
within string theory is that such charge densities will generically couple to the Maxwell fields
are thus emit electromagnetic radiation. It is, or course, possible that one might find a way
to do this sufficiently coherently so as to suppress the radiation within a suitably complicated
supergravity phase space.
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