HOMOLOGY OF MODULI SPACES OF LINKAGES IN
HIGH-DIMENSIONAL EUCLIDEAN SPACE

DIRK SCHUTZ

ABSTRACT. We study the topology of moduli spaces of closed linkages in R¢
depending on a length vector £ € R™. In particular, we use equivariant Morse
theory to obtain information on the homology groups of these spaces, which
works best for odd d. In the case d = 5 we calculate the Poincaré polynomial
in terms of combinatorial information encoded in the length vector.

1. INTRODUCTION

In this paper, we consider polygons, or linkages, with fixed side lengths in Euclidean
space R%. The topology of the corresponding moduli spaces My(f), see Section 2
for precise definitions, has been studied extensively in the cases d = 2 and 3. In
particular, a lot of information on the homology and cohomology of these spaces
have been obtained, see for example [5, 8, 12, 15, 18]. Furthermore, cohomology can
be used to show that the topological type of M4(¢) for d = 2 and 3 is determined
by the length vector ¢ € R™, [3, 17].

A lot less is known for d > 3. Kamiyama [11] has obtained a formula for the Euler
characteristic of M4 () in the equilateral case, that is, when £ = (1,1,...,1) € R™.
Schoenberg [16] shows that My(£) is homeomorphic to a disc if d > n, which implies
that it is homeomorphic to a sphere for d =n — 1.

Another class of examples which has been extensively studied is given by ¢ =
(1,...,1,n — 2) € R", as in this case M (¢) coincides with the shape space 23:11,
which is thoroughly examined in [14]. In particular, the homology groups of these
spaces are completely known [14]. It follows from their calculations that for 4 <
d < n —1 the space 23:11 is not a manifold.

Our method to study Mgy(¢) is through equivariant Morse theory. We use the
fact that My(€) = C4(€)/SO(d — 1), where C4(¢) is the so-called chain space, and
construct a SO(d — 1)-invariant Morse-Bott function on C4(¢). By analyzing the
critical manifolds we obtain information on the homology of My(¢). Our method
works best for odd d and rational coefficients, as the spectral sequence arising from
the filtration given by the Morse-Bott function collapses. For even d we can still
obtain useful information on the topology of Mgy(£).

Theorem 1.1. Let £ € R™ be a generic length vector such that Mq(€) # 0 for
d>2.

(1) For d > 3 the space My(€) is ((d —1)(d — 2)/2 + d — 3)-connected.
(2) Forn >3, M,_1({) is homeomorphic to the sphere of dimension n(n—3)/2.
(3) For4 <d<n-—2, My({) is not homotopy equivalent to a closed manifold.
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Our Morse-theoretic methods imply homotopy equivalence in (2), but using the
result of Schoenberg [16] the homeomorphism can be obtained directly.

Part (3) is obtained by showing that M (¢) does not satisfy Poincaré duality. Note
that for d = 2,3 the space My4(¢) is a smooth closed manifold.

As we have mentioned before, our homology calculations work best for odd d. To

obtain simple formulas for the Poincaré polynomial, we stick to the case d = 5.
Define

B (tm+1 _ 1)2
Q2m(t) = B
m—+2 m+1 _
Qam+1(t) = ( (tl)(i)Q 2

for all m > 0.

Theorem 1.2. Let £ € R™ be a generic length vector. Let n > 5 and m = L%‘HJ
Then there exist non-negative integers c;(¢) depending only on £ such thatl the
Poincaré polynomial of My(£) is

m—2

Pi(t) = 1+t > (ai(0) (Quos—i(t") — Qia(t")).

=0

The exact form of ¢;(¢) can be seen in Theorem 9.4.

The case d = 5 also contains interesting geometry closely related to the case d = 3.
Indeed, M3(¢) carries extra symplectic and Kéahler structures, which have been
studied in detail in [8, 13, 15]. In particular, in [13] a complex analytic equivalence
between M3(f) and a weighted quotient of (S2)" by PSL(2,C) is established.
Foth and Lozano [6] obtain an analogous statement for M;(¢) and a weighted
quotient of (S*)" by PSL(2,H). They also generalize the Gel’fand-MacPherson
correspondence to the quaternion context and realize Mj5(¢) as a quotient of a
subspace in a quaternion Grassmannian.

It can be easily read off from Theorem 1.2 that the reduced rational homology of
M (£) starts in degree 9 and is limited to odd degrees. In particular the rational
cohomology ring structure is trivial. Given that the cohomology ring structure is
instrumental in distinguishing topological types for d = 2 and 3, one would hope
for more algebraic information also in the cases d > 4. A suitable setting for this
appears to be intersection homology, which we plan to examine in a future project.

The paper is organized as follows. Section 2 collects some basic properties of linkage
spaces and Section 3 introduces the equivariant Morse-Bott function. In Section 4
we recover some well known results from [15] and [8] on the homology of Mj3(¥).
A cell decomposition for Mg(€) based on the Morse-Bott function is obtained in
Sections 5 and 6, which is used to prove Theorem 1.1. Local homology calculations
are done in Sections 7 and 8, which culminate in the proof of Theorem 1.2 in Section
9. We also obtain some Euler characteristic results for even d in Section 10. There
are two appendices, one showing the equivalence of the shape space with a certain
linkage space, and one deals with basic properties of the polynomials @, (t).
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2. BASIC DEFINITIONS AND PROPERTIES OF LINKAGE SPACES

Let d,n be positive integers and ¢ = ({1,...,£,) satisfy 0 < ¢; for alli =1,...,n
We call £ a length vector. The moduli space of £ in R¢ consists of all closed linkages
with lengths ¢ up to rotations and translations. We can describe this space as

ZE 2 _0}/SO(d)

where SO(d) acts diagonally on (S?~1)". We also denote the space of chains of ¢
as

May(t) = {(zl,... e (8471

Cd(g) = {(2’1,...,Zn_1) Sd 1

Zézzz Ly, ,...,O)}

If we let SO(d —1) act on S9! by fixing the first coordinate, we get an SO(d — 1)-
action on Cq(¢) such that

Ma(t) = Ca()/SO(d —1).

It is clear that permuting the coordinates of £ does not change the homeomorphism
type of Mg(¢). However this is not true for Cyq(¢). In the cases d = 1,2,4,8
one can use the multiplication structure of S¢~! to construct a homeomorphism
Ca(l) = Cy(o¥) for any permutation o, but for other values of d these spaces are
usually not homeomorphic, compare [4, Rm.2.2].

Definition 2.1. Let £ be a length vector. A subset J C {1,...,n} is called £-short,

if
dtpo< > b

jeJ i¢J
It is called £-long, if the complement is £-short, and £-median, if it is neither /-short
nor ¢-long. The length vector is called generic, if there are no /-median subsets.

>t

JjeJ

We also write

For m € {1,...,n} the length vector is called m-dominated, if ¢,, > ¢; for all
1=1,...,n

If the length vector is generic, there do not exist collinear configurations, that is,
points [z1,...,2,] € Mg(£) for which all z; € {£x} for some z € S?~!. Notice that
generic is equivalent to My (£) = ).

In the case that ¢ is generic, it is easy to see that C4(¢) is a closed manifold of
dimension (n —2)(d — 1) — 1. In the case that d = 2 or d = 3, we then get that
SO(d — 1) acts freely on Cg(£), and Mg4(¢) is also a closed manifold of dimension
(d—1)(n—3). For d > 4, the action is no longer free, and we will see that generally
M (0) is not a manifold.

Definition 2.2. Let ¢ € R™ be an m-dominated generic length vector. For k €
{0,...,n — 3} we write

Sty = {Jc{1,...,n}me J|J|=k+1,Jis {-short}.
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and
ar(l) =[S (0)].

So the union S7*(¢) of S*(¢) over all k = 0,...,n — 3 contains all short subsets
J C {1,...,n} which include m. It is worth pointing out that SJ*(¢) is an abstract
simplicial complex with 0-simplices given by S*(¥).

Note that a length vector can be m-dominated by more than one m € {1,...,n}.
The numbers ag(¢) however do not depend on this. We have a¢(¢) < 1, and for
a generic length vector it is easy to see that My(¢) # 0 for d > 2 if and only if
ao(é) =1.

If J C {1,...,n}, we define the hyperplane

H; = (ml,...,xn)ER"\ij:ij

J€J Jj¢J
and let
H = R, - |J H,,
Jc{1,...,n}

where R2, = {(z1,...,2,) € R"|2; > 0}. Then H has finitely many components,
which we call chambers. It is clear that a length vector ¢ is generic if and only if
leH.

It is shown in [7] that if £ and ¢ are in the same chamber, then Cy4(¢) and C4(¢)
are O(d — 1)-equivariantly diffeomorphic. In particular, My(¢) and M4(¢') are
homeomorphic.

It is easy to see that two m-dominated generic length vectors ¢, ¢ are in the same
chamber if and only if S7*(¢) = S (¢').

Definition 2.3. Let z = (z1,...,2,-1) € Cq(f). The rank of z is the maximal
number of linearly independent vectors zi,...,2z,—1 € R% Note that the rank
remains the same under the SO(d — 1) action, and we can define the rank of z =
[#1,. .., 2n] € Mg(£) also as the maximal number of linearly independent vectors
21y .., 2 € RY.

The natural inclusion ¢ : C4—1(£) — Cq(¢) induces a natural map
©: Ma_1(£) = Ma(L).
This map need not be injective: in fact, if £ = (1,1,1), it is clear that My(¢) = S°
and M4(¢) = {*} for d > 3.
Lemma 2.4. Let ¢ € R™ be a length vector.
(1) Letn <d. Then ¢ : Mg_1(£) — Mq(€) is surjective.
(2) Let n < d—1. Then ¢ : Mg_1(£) = Mq4(£) is a homeomorphism.

(3) Let z = (21,...,2n-1) € Cq4(f) satisfy rankz > d — 1. Then z is only fized
by the identity element of SO(d — 1).

Proof. Let n < d and z = [z1,...,2,] € Mg(£). Since Y £;z; = 0, the rank of z is
at most n — 1 < d. Thus there exists a A € SO(d) with Az; € R4~ x {0} C RY for
alli=1,...,n. But clearly [Az,..., Az,] is in the image of ¢.
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If n <d-—1and ¢(z) = ¢(2'), we get rankz = rankz’ < d — 2. After using
rotations in R4~1 we can therefore assume that all z;, 2/ € R™k= C R4-2 C R4,
By assumption there is A € SO(d) with Az; = 2} for alli = 1,...,n, which therefore
fixes R™1k* ¢ R4~2, We can now extend A|R™%* ¢ O(rank z) to B € SO(d — 1)
with Bz; = 2} for all ¢ = 1,...,n. But this means z = 2’ € My_1({), and ¢ is
bijective, hence a homeomorphism by compactness.

Finally, if z has rank at least d — 1 and Az = z with A € SO(d), choose a basis of
R? where the first d — 1 elements are taken from the coordinates of z. Then A fixes
at least d — 1 elements of a basis of R? and is therefore the identity. O

We remark that if z € C4(¢) satisfies rank z > d — 1, then n > d. One checks that
for n > d we can also find z € C4(¢) which have rankz > d — 1. If we denote the
dimension of My(¢) by df, we thus get for n > d that

dm = (n—3)(d—1)—(d_2)#.

3. A MORSE-BOTT FUNCTION ON THE SPACE OF CHAINS

In this section we will assume that £ € R™ is n-dominated.
Define the map F : C4(¢) — R by

F(Zlv'-'vzn—l) == gn—lpl(zn—1)+£n

where p; : R? — R is projection to the first coordinate. Notice that F' is SO(d—1)-
invariant and

n—2
F(z1,...,2n1) = —p;1 <Z fﬂi) .
i=1

We have obvious maxima and minima for points with z,_; = *e;. This leads to
embeddings of Cy(¢*) and C4(¢™) into C4(¥), where

= (617--~7£n—2>€n+€n—1)

= (£17'-~7£n727£n_€n71)~
Note that for generic ¢ we can assume that ¢, > £,_1, but £~ need not be n — 1-
dominated.
Let J C {1,...,n—2} be such that JU{n} is {-short, and JU {n —1,n} is {-long.
Then with J ={1,...,n — 2} — J we get

by — b1 < Zj—éj < lp+Llyq

and there exists a unique z € S* = {(zy,72,0,...,0) € 971} with x; > 0, zo <0

such that (z1,...,2n-1) € Cq(¢) with z; = x for all j € J and z; = —z for j € J,
compare Figure 1.

The orbit under the SO(d—1)-action is a sphere of dimension d—2 which we denote
by

SJ C Cd(é)

Lemma 3.1. The critical points of F are given by Cq({*), and Sy for all J C
{1,...,n — 2} for which JU {n} is €-short and J U {n —1,n} is {-long.
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FIGURE 1.

Proof. We use Lagrange multipliers. Let f : (R%)"~! x R"~1 x R? — R be given by

d
f(Zh ceey Zn—1, )\,M) = fnflznfl’l + 4, + )\1(2 Z%,j — 1) 4+ .. 4
j=1
n—1
/\n—l(z Z?L—l,j - 1) + Ml(z éizi,l + En) +
j=1 i=1

n—1

n—1
p2(D  lizig) + -+ pa(Y ] lizia)
i=1 i=1

Taking partial derivatives with respect to z; ; and setting them equal to zero leads
to equations

2Nk 2k 7 .
pi o= = for (k) # (Ln—1)
_ én—l + 2)\71,—1277,—1,1
Hr = - o .

Fori=1,...,n—1, let v; = \;/¢;. We have

zZiVi = ZzZ1l1
for all i = 1,...,n — 2. Since the z; € S? ! we either get that v; = 0 for all
i=1,...,n—2or that z,...,2, 2 € {£x} for some x € S9~1,
The case v; = 0 for ¢ = 1,...,n — 2 implies p; = £1 and pur = 0 for £ > 2, so
Z,_1 = %ej, which means that (zy,...,2,_1) € Cq(f*). These points are clearly
critical points of F' as they are the maxima and minima.
If the v; are such that zq,...,2, o € {Zz} for some x € S¢71, the condition that
(21,...,2n—1) € Cq(£) ensures that (z1,...,2,-1) € Sy for some J C {1,...,n—2}.

Conversely, let (z1,...,2,—1) € Ss. It is straightforward to check that p; and A;
can be chosen so that all partial derivatives of f vanish. ([

We want to show that F' is Morse-Bott. To do this consider the projection P :
Ca(€) — S%71 given by P(z) = 2,_1.
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Lemma 3.2. The critical points of P : Cq(f) — S~ are those points for which
the first n — 2 points are collinear.

Proof. Let G : (S71)"=2 — R9 be given by

n—2
1
G(z1,.. . 2n—2) = 7 <5n61 + Z&%)
n—1 .

The critical points of G are clearly the collinear points. We have Cy4(¢) = G~1(5471),
and since / is generic, we get that G intersects S?~! transversally. Furthermore, P
is just the restriction of G to C4(¢), so if z € C4({) is a regular point for G, then z
is a regular point for P. Also, if z € C4(¥) is collinear, the rank of G, is d — 1, and
since the intersection with S¢~! is transversal, the rank of P, at z is d — 2. O

Lemma 3.3. For generic £, the critical submanifolds C4(¢{*) are Morse-Bott with
respect to F'. Furthermore, the normal bundle is trivial.

Proof. let D! ¢ S971 be a small disc around 4e;. By Lemma 3.2, we have
P~YDI1) = Dd=1 x Cy(¢%). The map F : Cq(¢)|P~H(D!) is just a scaling
and translation of the standard projection p; : S4~! — R to the first coordinate,
restricted to D?~!. Since this map is a Morse function with critical points e, the
lemma follows. (|

We remark that ¢ in the following proposition need not be generic, as the Sy stay
away from non-manifold points of C4(¥).

Proposition 3.4. Let ¢ be a length vector and J C {1,...,n—2} such that JU{n}
is £-short and JU{n—1,n} is L-long. Then Sj is a Morse-Bott critical submanifold
of F with index (n — 3 — |J|)(d — 1).

Proof. Let
Ka(0) = {(21,-..,20-1) € Ca(l) | 2n—1 € ST x {0} € S

This has codimension d — 2 in Cyq(¢), and S; N K4(¢) = SY consists of two points.
We claim that f|/C4(¢) has Morse singularities near Sy N/KCq(£), and the proposition
follows easily from that.

Let x € S x {0} € S9! so that 25 = (£x,...,+3,2,_1) € K4(f) N Sy, where
we assume that the sign of £z is positive of the coordinate is in J, and negative
otherwise. Write z = (cos¢,sing) and assume ¢ € (—m/2,0), so that Figure 1
applies.

Note that we can write F|IC4(¢) as a composition K4(¢) L, 8 2L R with F
the projection to S* x {0}. If we replace p; : S — R by p : S — R given by
p(z) = z - x, that is, scalar product with x, it is clear that near F'(z;) we can write

p1 = hop where h is an orientation preserving diffeomorphism of open intervals of
R.

So to calculate the index of F' at z; we can look at the map F : K4(¢) — R given
by

F(z1,...,2n-1) = 2zp—1-x

and calculate its index at the singularity z;.
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Note that we have an inclusion Kgq(¢) C (S?~1)"~2 as those points for which
Z?:_IQ 0;z; sits inside R? x {0} C R with distance ¢,,_; from (—£,,,0,...,0). Using
the Implicit Function Theorem, we can parametrize IC4(¢) near z; as
(Sdfl)nfi% . (Sdfl)n72
(Ui, s un—3) = (U1, Un—3, (UL, Un—3))
where near z; the u; are close to +x.

In this parametrization, the map Fis given by

-3

- -1 n
F(uy,...,up_3) = Y. (@nel + Z liu; + &129(“)) - X,

n—1 Ny

i=1

Use standard polar coordinates for the u;, that is, we write
u; = (sinfg_q1;---sinfy;cosby;,sinfy_q1;---sinby;sinb;,
Sinfy_q1,--sinfs;cosbyy,...,sinby_1;c0804_2;,co804_1;)

fori=1,...,n—3, and 01; near ¢ or ¢ + 7, depending on whether 7 € J, and §;;
near 7/2 for j = 2,...,d—1. The (n—2)-nd coordinate can also be written in angles
g; which depend smoothly on the 6;; forall¢=1,...,n -3 and j =1,...,d— 1.
Let us ignore the factor (—1)/¢,—1 and the translation through e; - x for now, so
that we consider the function

n—3
F = Z&(sin@d_li~~~sin92,-00801icosgp+sin0d_1i~~-sin02¢sin01isin<p)
=1
+lp_o(singg—_1 - - - sin g cos g1 €os ¢ + sin gg—1 - - - sin go sin g7 sin )
n—3
= Z&- Sinf@g_1,--sinfsy,;(cos(61, — ) +
i=1

+ln—28ingq 1 ---sin ga(cos(g1 — ¥))

Writing 0, =01, — @+ 7/2and §1 = g1 — ¢ + 7/2 (and rewriting as 61 ; and g1),
we get that

OF
= Ei sin&d_u . "COSGji . ~-sin92,»sint91i
30ji
d—1 9
+ Z lp_os8ingg_q---COS gy - - - Sin go sin gq Ik
k=1 09;i

Note that the point z; now corresponds to all angles being 7/2 or 37/2, so that
the cosine terms always vanish. At the point z;, we therefore get

8213, . d—1 . 8gk 2
m = —&stU—;Zn_gsmgl <89jz)

and for (j,i) # (I,m) we get

PF o] dgr Ogk
- - _ 0o si
90,00, m ; 23950, 00,
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where sinf;; =1 fori € J, —1for i ¢ J and sing; = 1 for n — 2 € J and —1 for
n—2¢ J. If we write 6; = +1 fori € Jand §; = —1fori ¢ J (i <n—2), it follows
from Lemma 3.5 below that

O*F 2
a— = —libi— 02—
00,00, ; s
O*F
A for i
a0, 100, 0 forj#l
82}3‘ . _6717251‘6777, g:fj; j =1
00500 m —0p gt G >

The matrix ( ) isa (n—3)(d—1) x (n—3)(d—1) matrix, which we consider

o?F
8000,
as a (d—1) x (d — 1) matrix with entries (n — 3) x (n — 3) matrices (893_8_278121)

i m /) im
for fixed j,I. The off-diagonal entries are then 0, while the diagonal entries are

matrices (%)i . for j =1,...,d — 1. These matrices are of the form
OPF On—2
—_ = A1, ln_360_3) — = (:l;i0mlim),
(891i891m>_ ( 191, s tn—30Un 3) €n72(11 mm)l)m
ﬂ = —A(l6 0 a6 ),@(@g )
8€ji89jm ) o 198y« 5 tn—3n—3 lys M) i m
for j=2,...,d — 1. Here A is a diagonal matrix with the given entries.

Since |J| < n — 3, we can assume (possibly after rearranging the order of the links)
that n — 2 ¢ J, that is, §,_2 = —1. It follows that these matrices are congruent to

1 ly—261 lp_20p_3
M= b2 <A( 4 Y ln—3 ) E)
where E has every entry equal to 1. Recall that we ignored a factor (—1)/¢,_1)
in F above, so we need to calculate the index of A(%, e %) —FE. A
calculation as in [2, Lemma 1.4] shows that the index is n — 3 — |J|. Since we have
d — 1 such matrices, the result follows. O

Lemma 3.5. With notation as in Proposition 8.4, we have

g

20, = 0 fork#j
dgr 51’45; k=1

Proof. Define G : (§4-1)n=2 — Rd-1
n—2 2
‘Zi:l Eiui + énel‘
D3 (Z;:f fiui)

G(ul,...7un,2) =

Pd (Zi—f fiuz')
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Then K4(¢) = G71(¢,,1,0,...,0). In polar coordinates a calculation shows that
n—2 n—2
G1 = ﬂi—l—ZE?—|—QEnZ&sinﬁd,“w--sin92i(30891i
i=1 i=1
+2 Z &Ej (sin 0(1_11' -+ -8in 921‘ sind_lj ... 8in 92]‘(COS(017; — 91]')
i<j
+sinfg_1;---sinfz;cosfy;sinfy_q;---sinfs;cosbs;

+---4cosbg_1,c0804-1;).

Similarly, for k£ > 2 we have
n—2
G, = Z £;sinfg_q1;---sinfpyq;cosl;.
i=1

Using the fact that z; has 0;; = 7/2 for j > 1, it is easy to see that
oG 20,¢; sin ieJ
1 (z)) = { ¥

001 ; —20,0;sing i¢J
0Gy, B .
a‘gﬂ(zJ) = 0 forj#k
0G},

S >
GGM(ZJ) ¢, fork>2

99,
by the Implicit Function Theorem we get for i <n — 3

So for fixed i < n—2, each (aG_’? (z;)) is an invertible diagonal matrix. In particular,

gk

= 0 fork#j
9, ; ork 77
dgr 0; efig k=1
00r; Zfi k>2
since the gy are obtained by applying the Implicit Function Theorem to G. g

4. HOMOLOGY FOR THE 3-DIMENSIONAL CASE

In this section we show how the Betti numbers for M3(¢) can be obtained from
the Morse-Bott function above. We will only sketch the argument, as these results
have already been obtained in [15]. Information on the cohomology is contained in
8]

For d = 3 and generic ¢, the action of SO(2) is free on C3(¢), and M3(¥) is a closed
manifold. Furthermore, the SO(2)-invariant function F' induces a Morse-Bott func-
tion f: Mj3(¢) — R, which has M3(¢~) as minimum, M3(¢") as maximum (with
index 2), and for each J C {1,...,n—2} with JU{n} short and JU{n—1,n} long
a critical point py of index 2(n — 3 — |J|).

A simple induction argument using the Morse-Bott spectral sequence shows that
the homology of M3(¥) is free abelian and concentrated in even degrees. If we write
P, (t) for the Poincaré polynomial of M3(¢), we get the following recursive formula.
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Proposition 4.1. Let ¢ € R" be a generic length vector. Then the Poincaré
polynomial of Ms({) satisfies

Pt) = Pr-(t)+Pu(t)+ Y 2
JCT(£)
where T (0) = {J C {1,...,n—2}| JU{n} short, JU{n —1,n} long}.
Remark 4.2. A similar recursive formula is obtained in [15, Cor.2.2.2] by using
different methods. In fact, we can get that formula by looking at — f instead of f.

Klyachko goes on to give the following explicit formula for the Poincaré polynomial,
see [15, Thm.2.2.4].

pt) = — [a+e)yt = £217]

where S(¢) = {J c {1,...,n}|J short }.
Hausmann and Knutson [8, Cor.4.3] derive another formula, given by

1
P(t) = — Z (tQIJI _ t2(n*2*|J|))7
JeST(£)
where we assume that ¢ is n-dominated.

Corollary 4.3. Let £ € R" be a generic length vector. Then there exists a perfect
Morse function f3: M3(¢) — R, all of whose critical points are of even index.

Proof. The proof is by induction on n, using standard techniques for replacing the
Morse-Bott manifolds M3(¢~) and M3(¢") by (perfect) Morse functions. This
gives a Morse function with all indices of critical points even. ]

Let us give a formula for the number of critical points of a given index. For this let
1x () be the number of critical points of of f5 having index 2k.

Proposition 4.4. Let { € R™ be a generic length vector, and let m € Z be such
that n =2m — 1 orn =2m. Then

forallk=0,...,m—2, and

pe(l) = pn-z-k(C)
forallk=m—1,...,n—3.

Proof. The second equation just follows from Poincar’e duality, and the first equa-
tion is a straightforward application of the formula of [8]. (]

In particular, we have

[ V)

m

(1) Pot) = ) (ai(t) — an_o—i())(* +£20F) .o 4420370
=0

7=
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5. AN EQUIVARIANT CELL DECOMPOSITION FOR Cg4({)

We want to derive an equivariant cell decomposition for C4(¢) using the Morse-Bott
function F in order to get a cell decomposition for M4(¢) for d > 3.

To do this we first want to understand the equivariant handle structure near a
critical manifold S in the sense of [19]. If J C {1,...,n — 2} has the property that
Sy is a critical sphere, let z € S x {0} be such that p; = (£z,...,+2,2, 1) €
Sy and the minus signs correspond to coordinates from J. We may assume that
n—2¢€J. Let D1 ¢ 8§91 be a small disc with center at —z, and define

P (Ddfl)n737|J| N ]Cd(g)
(UtyeyUpg—yg) = (V1,00 Un—3,9(UL, oo Un—3_ 1))

where v; = x if i ¢ J, v; = uy, for i € J = {k1,...,kn_3_7}. That is, we use
the parametrization of IC4(¢) from the proof of Proposition 3.4, but we keep the
coordinates away from J fixed.

By the same argument as in the proof of Proposition 3.4, F'o P has a nondegenerate
maximal point at (—z,..., —), which is the center of (D¢ 1)»=3=I7I,

For simplicity, let us center D% ! at 0, and we think of P as an inclusion i :
(DA=1)yn=3=1I1 — C4(0). If we let SO(d — 2) act diagonally on (D*1)"=3=171 with
SO(d —2) acting in a standard way on D91 C R4~ by fixing the first coordinate,
we get that ¢ is SO(d — 2)-equivariant.

The image of i is in K4(¢), and by using the action of SO(d — 1) on the image,
we get the negative normal bundle of S; in the sense of equivariant Morse theory,
compare [19]. We thus write

N(Sy) = {4i(x) € cat)| A€ SO(=1),x € (D) I

The map N~ (Sy) — SO(d —1)/SO(d — 2) =2 Sy given by Ai(zx) — A-SO(d — 2)
is then a disc bundle map with fibre (D?=1)"=3=1J1,

We want to have an equivariant Morse-Bott function F' : C4(¢) — R such that all
critical manifolds are spheres SO(d — 1)/SO(d — 2) with negative normal bundle
as the N7(Sy). The idea is to use the argument in the proof of Corollary 4.3,
but equivariantly. This can be done, as there are neighborhoods of C4(¢*) in C4(¥)
which are equivariantly diffeomorphic to C4(¢) x D4~!, compare Lemma 3.3. We
use the fact that for £ and ¢’ in the same chamber the chain spaces are equivariantly
diffeomorphic [7]. Notice that the critical manifolds do not depend on d. We thus
get the following result:

Proposition 5.1. Let ¢/ € R™ be a generic length vector. For all d > 3 there is
an SO(d — 1) invariant Morse-Bott function F : Cq(f) — R such that all critical
manifolds are of the form SO(d —1)/SO(d — 2), and their indices are of the form
k(d — 1) for some k = 0,...,n — 3. The negative normal bundle N~(S) to each
critical manifold S is of the form (D4 1) — N=(S) — SO(d — 1)/SO(d — 2),
where SO(d — 2) acts on (D=1 diagonally, fizing the first coordinate of D41,

Furthermore, the critical manifolds S of index k(d—1) are in one-to-one correspon-
dence to the critical points of index 2k of the perfect Morse function f3 : M3(€) — R
from Corollary 4.3. g
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Denote by N~ (.5) the sphere bundle corresponding to N~(S). In order to under-
stand the homotopy type of My(¢) we want to understand a relative SO(d — 1)-
equivariant cell structure on (N~ (S5),0N~(S)). Since N~ (S5) is the SO(d — 1)
orbit of the image of (D9~1)*  we have to find a relative SO(d — 2)-equivariant cell
structure of ((D?~1)k 9(DI~1)F).

Let us begin with some elementary observations. If k = 1, the set D! x {0} ¢ D41
is the fixed set of the SO(d — 2)-action. It therefore defines a 1-cell with SO(d —2)
as the stabilizer group. If 2 € D41 — D! x {0}, we can find an A € SO(d — 2)
such that Az = (a,b,0,...,0) € D! with b # 0. If d > 3, we can furthermore
assume that b > 0. In particular, every other element of D41 will be in the orbit
of an element of D3 = {(a,b,0,...,0) € D1 |b>0,a* +b? < 1}.

In particular, we only need two cells. If we denote X = D?1/SO(d — 2) and
0X = 0D%1/SO(d — 2), we get a relative CW-structure of (X,0X) with X being
obtained from X by an elementary expansion in the sense of [1, §4]. If d = 3, note
that SO(d — 2) is the trivial group. We either have to use two 2-cells (one for b > 0
and one for b < 0), or we do not use the 1-cell, and just use the 2-cell D2

We can ignore the case d = 3, in which we only need one cell for ((D?)*, 9(D?)*) of
dimension 2k. So assume d > 4 now. Let (z1,...,z%) € (D% 1)k, After applying
an element of SO(d — 2) we can assume x1 € D%. If we actually have 1 € D', we
apply another element of SO(d — 2) to get 2 € D7. We repeat this until we get
an element z; € D_%_ — D', If we do not get such an element, the original element
(z1,..., ) is in (D')*. So assume x; € D2 — D' and x; € D' for j < i. Applying
an element of SO(d — 3) does not affect the first ¢ elements, and can move x;14
into D3, in fact Di if d > 4. We can continue this so we may assume that up to
elements of SO(d — 2), the element (z1,...,2x) is in a product of an increasing
sequence of discs.

To make this more precise, write

D' = {(x1,...,240,...,0) e D22 4. 22 <1}
fori=1,...,d— 2, and also write
DY = {(x1,...,24,0,...,0) € D 2 + .. 2 < 1,2, >0}

fori=2,...,d—2.
Up to an element of SO(d — 2), any (1, ...,z;) € (DI~1)¥ sits in

(Dl)kl X (DQ)kg N (Dd*Q)kd72 X (Ddfl)kd,l

where all k; > 0 and add up to k. Furthermore, if k; = 0 for ¢ > 2, then all
k;j = 0 with j >4, and if k; # 0 for i € {2,...,d — 2}, we can replace (D")*i by
D% x (Di)ki—1,

In order to organise the cells we introduce symbolic matrices. For n,m > 1 let
S(m,n) be the set of upper semi-diagonal n x m matrices whose entries are from
the set {0, 4+, *}, which have a + sign for the first non-zero entry in each of the first
n — 1, with all entries to the right of the 4+ as %, and the last row contains only 0
and *, with no 0 to the right of any .
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Typical examples are

00
(2) 00
00

o o+
o 4 ox
O ¥ ¥
o o+
o O

*
+
0

S ¥ ¥

Each matrix stands for a product of discs, with columns refering to each disc. Here
the zero column stands for D!, a column containing a + stands for Di and a
column with only * and 0 stands for D*, where k — 1 is the number of non-zero
entries in the column.

Remark 5.2. Such symbolic matrices were already used in [14] to get a cell decom-
position of the shape spaces 7', and our homology calculations below are indeed
quite similar to the calculations in [14].

So if A € S(d — 2,k), we denote by D4 C (D?!)* the corresponding product
of discs. Also, let SO(A) C SO(d — 2) be the stabilizer group of D4. Then
SO(A) = SO(d—2—1), where 7 is the maximal number of non-zero elements in the
columns of A, and SO(d — 2 — i) acts on D! by fixing the first i + 1 coordinates.
In particular SO(0) is the trivial group. We denote the image of D4 under the
SO(d — 2)-action by o4, and call this the cell corresponding to A.

Lemma 5.3. Every interior point x € (D4"1)* is contained in the interior of a
cell corresponding to a symbolic matric A € S(d — 2, k). If the stabilizer of x is
non-trivial, this cell is unique.

Proof. The proof is by induction on k. If k = 1, there is only the zero matrix and a
matrix with one non-zero entry. It is easy to see that the result holds in this case.
Now let © = (21,...,2%) € (D 1)* with k > 1. If 2, € D', we can use induction
on &' = (xg,...,2x) to get a matrix A’ € S(d — 2,k — 1) so that 2’ € ¢9,. A’ is
unique if the stabilizer of z’ is non-trivial. Then = € o4, where A is the matrix
obtained from A’ by adding a zero column to the left of A’. Note that the stabilizer
of x is the stabilizer of 2’, and the uniqueness applies if it is non-trivial.

If 21 ¢ D', we can find an A € SO(d — 2) such that Az; € D?. Now let p :
D=1 — D=2 be projection to the last d — 2 coordinates and consider the point
2’ = (p(Axa),...,p(Ax)). By induction, we can find a symbolic matrix A’ €
S(d — 3,k — 1) with 2’ € o4/, and the matrix is unique if the stabilizer of 2’ is
non-trivial (which implies that the stabilizer of x is non-trivial). Then z is in the

cell o4, where
_ o
v- ()

and the cell is unique if the stabilizer of x is non-trivial. O

Lemma 5.4. Let © € (DY) be an interior point with trivial stabilizer. Then x
is contained in a cell o4 where the last two rows of A are of the form

®) (6o iiy)

Furthermore, no two such matrices have interior points in common.
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Proof. We know from the previous lemma that z is contained in some matrix, and
since the stabilizer of x is trivial, the second but last row has to be non-zero. In
particular, there has to be a + in that row. Since % symbolizes any possible entry,
including 0, = will be in a cell corresponding to such a matrix.

To see that no two such matrices have interior points in common, note that in the
column which has a + in second but last row, interior points y € Di_2 satisfy
Ya—2 > 0, and this is the first column, for which this occurs. |

Notice that the matrices in (2) are not in the form of Lemma 5.4.
Define

Sc(d—2,k) = {AeS(d—2,k)|The last two rows are of the form (3) or 0}

An equivariant relative cell decomposition of ((D?~1)¥ 9(D?~1)¥) is therefore given
by the cells o4, where A € S.(d — 2, k).

6. THE BOUNDARY OPERATOR FOR THE CELL DECOMPOSITION

The equivariant cell decomposition described in the previous section gives a rel-
ative CW-structure on (X%, 0X%), where X% = (D4 1)*/SO(d — 2) and X} =
A(DY=1*/SO(d — 2). The cells are simply of the form D4 for A € S.(d — 2,k),
where each D, is a product of discs or halfdiscs.

Notice that the boundary of each factor D’ is attached to 0X fj , and each factor
Di is attached to 0.X C’j and to the same cell with the factor replaced by D*~!. So
the boundary of a cell D4 is contained in 0X 5 together with cells D4/, where the
A’ are obtained from A by replacing a + by a 0.

This needs to be made slightly more precise. If a matrix A contains a submatrix

( —5 _T_ >, replacing the + in the upper left corner by 0 leads to a matrix with

submatrix which is not an element of S.. However, up to elements of

0 =x

0 1)
SO(d —2) we get that the corresponding boundary points are in the cell containing
0 +
0 0
cell —2. In particular, it will not occur in the boundary operator.

the submatrix > . The dimension of this cell is the dimension of the original

If the matrix A contains a submatrix < —(|)— ; >7 replacing the + in the upper left

0 +
0 0
+ in the right upper corner means that the attaching is done twice, so the coefficient
in the boundary operator is 0 or 2, depending on orientation considerations.

corner by 0 leads to the matrix with submatrix , but the change from * to

Finally, if the last non-zero row of the matrix A is of the form ( 0 --- 0 + ),
replacing this row by the zero row gives a matrix A’ € S., and the corresponding
coefficient in the boundary operator is +1.

Fori=1,...,d—3, define S)(d—2, k) to consist of those matrices A € S.(d—2,k)
for which the i-throwis (0 -+ 0 )or (0 --- 0 + ).

Let (X é% 20X %) be the relative CW-complex consisting of the cells corresponding
to SO (d —2,k).
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Lemma 6.1. The relative CW-complex (X(kim,@Xff) collapses to (0X%,0X%) for
ali=1,...,d—3.

Proof. The proof is by induction on 7. For i = 1, we only have two cells, corre-
sponding to the zero matrix and the matrix whose only non-zero entry is a +. By
the discussion above, the two cells form an elementary collapse in the sense of [1,
§4], and the result follows.

For i > 1 we show that (X(’g),d,an;) collapses to (X(ki_l)d,aXl’j). Note that if
1 > k, then X(kim = X(ki—l),d and there is nothing to show. So assume i < k
and let A € S (d —2,k) — SC~1(d — 2,k). Then the (i — 1)-th row of A is non-
zero, and different from ( 0 --- 0 + ). The i-th row is either (0 --- 0)
or (0 --- 0 + ), and the two possibilities form an elementary collapse. By
collapsing these pairs in the order of decreasing dimension, we see that (X (ki)7 5 0X5)
collapses to (X (ki_l)) 2 0X%). The result follows. O

Corollary 6.2. For k < d — 2, the pair (X%,0X%) is m-connected for all m > 0.

Proof. The cells of the relative CW-complex are in one-to-one correspondence with
S.(d—2,k), but since k < d — 2, we get S.(d —2,k) = S4=3)(d — 2, k). The result
thus follows from Lemma 6.1. |

In the next result the condition ag(¢) = 1 is needed to avoid the case Mgy(€) = ().

Proposition 6.3. Let £ € R™ be a generic length vector with ag(f) = 1, and
d>n>3. Then My(0) is contractible.

Proof. Let F : Cq(f) — R be the SO(d—1)-invariant Morse-Bott function of Propo-
sition 5.1, F : M4(¢) — R the induced function and let

P=M'c M C---C M™ = Myl

be a filtration such that M™ = F~1((—o0, a,,]) for some sequence of regular values
of F such that M™ — M™~! contains exactly one critical point.

By Morse-Bott theory, M™ is homotopy equivalent to M™~1 U Xk where X% is
attached to M™~! along X%, and k is such that k(d—1) is the index of the critical
point in M™ — M™~1 Since k <n — 3, we get k < d — 2, and M™ has the same
homotopy type as M™~! provided k > 1. As there is a unique minimum for F by
the perfectness of the map F3 in Proposition 5.1, we get that M?! has the homotopy
type of a point, and all other critical points have index bigger than 0. ([

Of course, by [16] these spaces are homeomorphic to a disc.

If k> d— 2, then SU=3)(d — 2, k) # S.(d —2,k). A matrix A € S.(d — 2,k) —
S(@=3)(d — 2, k) has to have at least one * in its last row, and therefore it has
(d —1)(d — 2)/2 non-zero entries. It follows that D4 has at least dimension (d —
1(d=2)/2+ .

Lemma 6.4. Let k > d—2 > 2, then (XX, 0X%) is (d —1)(d —2)/2 + k — 1)-
connected, but not ((d —1)(d — 2)/2 + k)-connected.
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Proof. We look at the connectedness of the pair (X[, X, ) ), which is obtained

by attaching cells corresponding to A € S.(d — 2,k) — S4=3)(d — 2,k). There is
only one cell D4 which has dimension at most (d —1)(d —2)/2 + k, namely the one
corresponding to

+  x*
0 =

and if k& > d — 2, there is only one cell with dimension (d — 1)(d — 2)/2 + k + 1,
namely the one corresponding to

+ x*
0 =

With the discussion on boundaries given above, we get H,, (X7, X(kd_g) o L/27) =
Z/2Z for m = (d — 1)(d — 2)/2 + k. Using Corollary 6.1, the result follows. O

Theorem 6.5. Let £ € R™ be a generic length vector with ag(¢) = 1, and d > 3.
Then Mqg(£) is ((d — 1)(d — 2)/2 + d — 3)-connected. Furthermore M,_1({) is
homotopy equivalent to the sphere of dimension n(n — 3)/2.

Proof. The proof begins in the same way as the proof of Proposition 6.3, with the
filtration

p=M>C M C--- C M™ = My(l).

As long as the index of the critical point is k(d—1) with & < d—2, no new homology
occurs, but if £ > d — 2, new cells may arise. However, by Lemma 6.4 the new
ML s still ((d —1)(d — 2)/2 + d — 3)-connected.

If d = n—1, the case kK > d—2 = n—3 only appears once, with the absolute maximum
of the function. In that case only one cell of dimension (d — 1)(d —2)/2 +d — 2
is attached to a contractible space. Hence, up to homotopy, we get a sphere of
dimension (n —2)(n —3)/24+n—-3=n(n—3)/2. O

As mentioned in the introduction, the last result can be improved to a homeo-
morphism between M, _;(¢) and the sphere. To see this, note that the closure
of the space Q,_;1 of [16] can be identified with M,,(¢) for £ € R™ by sending a
linkage configuration to the distances between the points. By [16, Thm.1], this
space is homeomorphic to a disc of dimension n(n — 3)/2, and the boundary points
correspond to those points & € M,,(£) whose rank is at most n — 2.

The space M,,_1(£) is now obtained by doubling M,,(¢) along the boundary, com-
pare Lemma 2.4 and also the proof of [10, Thm.C].
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7. BASIC HOMOLOGICAL PROPERTIES OF (X%, 0X%)

Let us denote the cellular chain complex for the pair (X%, 0X%) by C., freely
generated by the matrices of S.(d — 2,k). This contains the subcomplex for the
pair (X (kdfg)) 20X %), which we denote by C?, and which is freely generated by the

matrices of $(*=3)(d — 2, k). By Lemma 6.1 H,(C?) = 0, and hence
H.(X5,0X}) = H.(D.),

where D, = C,/C? is freely generated by matrices whose last two rows are of the
form (3), and where the last row is non-zero.
Let us assume that & > d — 2, so that D, # 0.

Notice that we can write D, as a direct sum of chain complexes
k .

where D¥(j) is generated by those matrices which have (k — d + 4) — j column
containing just *. In particular, D¥(1) has only one generator, corresponding to
the matrix

+ * * *
A =170

. +  x -ee %

0 0 =% -+

while D¥(k — d + 3) has the most generators. The dimension of the cell Dy is
therefore
(d—2)(d—3) (d—2)(d—3)

ket (k—d+3)(d=2)+ "= = k(d—-1)-—"—.

The top-dimensional cell in D¥(j) corresponds to a matrix of the form

0
o --- 0 0 --- 0 =+
o --- o 0

while the minimal-dimensional cell corresponds to a matrix of the form

: : : + % ek

So all the cells in D¥(j) have dimension between

(d—2)(d—3)

; (G —1)(d—2) and k(d—1) - .

k(d—1) —
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If we consider the complexes D¥(j) with coefficients in Z/27Z, we get that every
boundary is zero. This follows from the discussion at the beginning of Section 6,
as there always is a column containing only .

Even with coefficients in Z we can obtain some basic results on the homology of

Ma().

Proposition 7.1. Let ¢ € R™ be a generic length vector with ag(f) =1, let d > 4
and letn>d+1. Then

]:Id;L (Md(g);Z) = 7Z and Hdgfl(Md(g);Z) =0
Recall that dlj denotes the dimension of Mg(L).

Proof. Let F : C4(f) — R be the SO(d — 1)-invariant Morse function of Proposition
5.1, F : M4(£) — R the induced function and let

=M Cc M C-  C M™ = My0)

be a filtration such that M™ = F~1((—o0, a,,]) for some sequence of regular values
of F such that M™ — M™1 contains exactly one critical point.

Notice that F' has only one critical manifold of index (n — 3)(d — 1), which is the
absolute maximum. Since M™~! has the homotopy type of a CW-complex with
lower dimensional cells, we get Hy,(M™ 1 Z) = 0 for ¢ > d" — 1. Now M,4(¢) is, up
to homotopy, obtained from M™~! by attaching the cells from ((X;L*S, 6Xg*3).
Only one cell has dimension > dj — 1, and this cell has dimension d};. The result
follows. 0

Theorem 7.2. Let £ € R™ be a generic length vector with ag(¢) =1, let d > 4 and
let n > d+ 2. Then My(f) does not satisfy Poincaré duality with coefficients in
Z/27. In particular, My(€) is not a topological manifold, with or without boundary.

Proof. First notice that M4(¢) cannot be a manifold with non-empty boundary, as
by Proposition 7.1 Han (Ma(€)) # 0.

Let us use the same filtration as in the previous proof.
We will distinguish the cases d = 4 and d > 5. Let us first assume that d > 5.
Then M™~! has the homotopy type of a CW-complex with cells of dimension at
most (n — 4)(d — 1) — 14=21d=5)
Asn > d+2, we get that HdZ_Q(D"*?’(Q); 7./27) = 7, /27, which corresponds to the
maximal cell for D"~3(2). Asd > 5, we get d7} —2— ((n—4)(d—1)— =204=8)) > o
SO

Hdg_g(./\/ld(g); Z/QZ) = Z/2Z
But Hy(My(¢);Z/2Z) = 0 by Theorem 6.5, so Poincaré duality cannot hold.
Now consider the case d =4. Since dj —2 —((n—4)(d—1) — W) = 1 now,
it is not clear whether Han_2(Ma(¢);Z/2Z) # 0.

But let ¢ be the number of critical manifolds of index 3(n — 4). By Proposition
4.4, we get ¢ = 1 + a1(f) — ap—3. Now ap_3(¢) < 1, and if a,_3(¢) = 1, then
a1(f) =n—3. Asn > 6, we get ¢ > 2, unless a1 (¢) = 0 in which case ¢ = 1.
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Let us first consider the case ¢ > 2. In that case the top-dimensional non-zero
homology group of M™~! is in degree 3(n — 4) — 1, and the rank of this homol-
ogy group is c¢. Attaching one cell of dimension 3(n — 4) cannot kill this homol-
ogy group, therefore Hg(,_4)—1(Muy(£);Z/2Z) # 0. But by Theorem 6.5 we have
H3(My(0);Z/2Z) = 0, so Poincaré duality cannot hold.

It remains to consider the case ¢ = 1. In that case S*(¢) = () (where m is chosen
so that ¢ is m-dominated), which uniquely determines the chamber of ¢. In fact,
we can assume that

¢ = (1,...,1,n—2).

By Proposition A.1 we get that M4(¢) ~ $5~*, the shape space defined in the
appendix. But this space is known to not satisfy Poincaré duality, see [14, §4,85].
In fact, the homology calculations in [14] give the same contradiction as above. O

8. Homorocy oF (X%,0Xk)

In this section we want to improve on the homology calculations of H,.(X%,0X%).
Let us begin with the case d = 4. In that case
Di(j) = (Z3k—1-2(j 1)),
where we use the notation (G, n) for the graded group whose only non-zero degree
is m € Z, in which case the entry is the abelian group G.
It follows that for & > 1 we get
k-1
H.(X},0X)) = EP(Z,3k—1-2(j—1)).

1

<

In the case d > 5 we have to analyze the boundary operator more carefully. This is
done by following the methods of [14, §4]. Let us take a closer look at d = 5. The
matrices appearing for the generators of D¥(j) are of the form

o --- 0 + R
0 -~ 0 0 -+ - 0 + =%
0 . 0 0 =
A typical boundary is of the form
+ k% % 0 + x =% 0 — x =%
o 0 0 + = = 0 0 + x|+ 0 0 4+ =
0 0 0 = 0 0 O 0 0 0 =

The second matrix on the right-hand side comes from the fact that we write D? =
D%r U D?, but our symbolic matrices require a + and not a —. Let A be the
diagonal matrix which has —1 in the second and fourth entry, and 1 in the first
and third entry. Then A(D2) = D%. This means we get the same matrix on the
right side twice. To work out the exact coeflicients, we need to take a closer look
at orientations.

Recall that the matrices stand for products of discs D’ or Dﬂr7 and every non-
zero entry corresponds to one dimension. To choose an orientation, we choose the
standard orientation of the discs D?. We can actually think of every non-zero entry
in the matrix coming with a basis vector into that dimension, and by picking an
order of the entries in the matrix we get the orientation.
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Let us go back to the example above. The matrix A € SO(3) used to turn D?
into Di changes the orientation of Di. It also changes the orientation of the next
factor, which is a Di. But for the final factor D*, two basis elements are changed,
so there is no impact on the orientation. Since we had two changes of orientations,
we see that

Q
o o+
o O ¥
o 4 ox

I

HR

()

Notice that adding extra factors of D? to the right has no impact on the signs.
Adding extra factors of D? however does change the signs. So to work out the
homology of D¥(j), we can ignore the last two rows of the matrix.

The remaining d — 2 rows all have to start with a +. Let us describe the remaining
matrices using sequences of decreasing numbers, compare [14, §4]. We can encode
the matrix by a sequence of numbers (k1, ..., k) with

ki > ko > -+ > kp>1
where each number k; stands for the number of non-zero entries in the i-th row.

Let E,(m, j) be the chain complex freely generated by such sequences (k1, ..., kpm)
where k1 < m + j — 1, and we say that the sequence (ki,...,ky,) has degree
k1 + -+ kyn —m(m +1)/2. The boundary is given by

m
Ok - k) = S (CIPF (L (LR (ks kg — L)
j=1
where a sequence (k1, ..., k;,) is interpreted as 0 if kj = ki, forsomedi € 1,...,m—
1orif k, =0.

Remark 8.1. The sign (—1)¥*+ki-1 comes from the following: Each non-zero
entry in the symbolic matrix spans a dimension, but only the entries with a + have
a non-zero boundary. If we order the basis for the orientation by starting with the
first row on the left, the + is at the O-th position. Similarly, the + in the second
row is in the ki-th position, and so on.

It follows that, possibly up to a sign which has no impact on the homology,

(5) Di(j) = Beuld—47),

where u = (d— 1)k — (d—2)(d—3)/2 - (d—2)(5 — 1).

Let us take a look at the case d = 5. Then E,(1,7) is generated by (k), where

w
k < j, the boundary maps are alternating between 2 and 0, and 9(2) = 2(1). We
thus get

Lemma 8.2. Let j > 1. Then

Y/ jodd, g=j7—1
Hy(E.(Lj) = { 0 qoddorg>;
7/27 q even

To understand the homology of E.(m,j) for m > 2, notice that we can think of
this complex as the total complex of a double complex F, ., where the horizontal
grading measures the first row, and the vertical grading the remaining rows. We can
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therefore think of E,(m, j) as the total complex of the sequence of chain complexes
with chain maps

(—)m—1t 14(—1)m 2 o 1+(i£*j+1

6) E.(m—1,1)"" B m—12 "L E.(m—1,7).

Notice that every second map is 0, so that the total complex is just a direct sum
of sequences

B m—1,i) < E.(m-1,i+1).

Using this and the particular form of the boundary in E,(m,j) one can show that
the homology of E.(m,j) only contains direct summands of Z and Z/2Z. One
should compare this with the results in [14, §4,85], where closed formulas for the
number of such summands in the homology of similar chain complexes are given.
As these closed formulas are not that enlightening, and since we need to enter the
homology of (XX, X% _,) into another spectral sequence coming from the filtration
(M*)1>0, we will abandon torsion and look instead at homology with coefficients
in Q.

Lemma 8.2 then reduces to

. _ 0 J even

To describe the rational homology of F.(m,j) for m > 2 we want to give concrete

generators, and then show that they span the homology. Let us begin with m even,
that is, m = 2n for some n > 1.

Let j+m—12>Fky >--- >k, > 2 be a sequence of even numbers. Then
(k1,k1 — L koyko — 1,.. . kpy ki — 1)

is easily seen to be a cycle in E(2n,j). Furthermore, no non-zero integer multiple
can be a boundary, as only sequences which have a term (k; + 1,k; — 1) in them
could have this sequence in their boundary. But since k; 4+ 1 is odd, the boundary
formula has a factor 14 (—1)**! = 0. In particular, such cycles span a factor of Z
in H.(E«(2n,j)). It is also easy to see that the degree of this cycle is a multiple of
4.

For m = 2n + 1 we can look at the sequence
(k()aklakl - lak27k‘2 - 177kn7kn_1)

where the k; are as before for ¢ > 1, and j +m — 1 > kg > ky. For this to be
a cycle, we need kg to be odd. But if kg +1 < j+m — 1, we get this to be a
(rational) boundary. To obtain a Z factor in H,(F.(2n + 1,7)), we therefore need
ko =j+m —1. As m is odd, this is only possible if j is odd. In this case, notice
that the degree of this cycle is j — 1 + 44 for some 7 > 0.

Proposition 8.3. Letn > 1 and j > 1. Then H.(FE.(2n,5); Q) has a basis given
by elements

(k1,k1 — L koyko — 1, sk, by — 1)
where k; = 2(n+1—14) 4+ j; fori = 1,...,n, where j1 > jo > -+ > j, > 0 is
a sequence of even numbers with j1 + 2n < j + 2n — 1. The degree of (ki,k1 —
Likoko — 1,0 Kk — 1) s 2051 + -+ 4 jn).-
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Furthermore, H,(E«(2n +1,5); Q) = 0 for j even, and H,(E.(2n+ 1,5); Q) for j
odd has a basis given by elements

(koyk1,k1 — Lkayko — 1, ..k, by — 1)
with the k; as above, and kg = j + 2n. The degree of (ko,k1,k1 — 1, ko, ko —
oo knykn—=1) s (G—1) 4+ 2(j1+ -+ jn)-

Proof. The proof is by induction. Let us first show that the statement for 2n — 1
implies the statement for 2n. We get that the chain complex E,(2n,j) is the
total complex of the sequence (6). Now all the chain complexes E,(2n —1,4) with ¢
even have 0 as their homology, so the homology of E,(2n, j) is the direct sum of the
homologies of E.(2m—1,4) with ¢ odd. The basis elements for H.(F.(2m—1,1); Q)
are then of the form

(i+2n—2,k1,k1—1,...,kn_1,kzn_1—1)

with ¢ < j odd by the induction assumption. The way we think of E.(2n,j) as a
double complex means these generators correspond to

(i+2n—1,i+2n—2 ki ki—1,... kn_1,kn_1—1).

But this gives exactly the statement for the rational homology of E.(2n,j). Notice
that this also works for n = 1.

It remains to show that the statement for 2n implies the statement for 2n + 1.

Again we use the sequence (6). The condition that k; < i+2n—1, implies that for ¢
odd the homologies of E,(2n, i) and E,(2n,i+1) have the same basis. Furthermore,
in (6) we get for ¢ odd terms of the form

E.(2n,i) < E.(2n,i+1)

which induce isomorphisms on rational homology. In particular, for j even all
homology vanishes. For j odd we are left with

and because of the way the double complex structure of E.(2n+1,7) is formed, we
see that the basis is represented by elements

(G+2n,ki, k1 — Lkoyko — 1, ..k, Ky — 1).
The statement about the degrees of these basis elements is easy to see. O
Definition 8.4. Let m > 1. Then define
Vo = A1, 50m) €Z™ | j1 2 j2 = -+ 2 jm > 0}.
Also, if (j1,...,Jm) € Vi, we define
Gsovdm)l = Gt d2t At m
and

1@ dm)ll = 21+ 1.
Also, for m = 0 we let Vo = {()}, where we think of () as a point with |()| = 0 and

101 = 1.
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We write elements of V,,, as j = (j1,.-.,Jm). Notice that every j € V,,, produces a
generator in the homology of E(2m, j), provided that j > ||j||, whose degree is 4[j|,
and a generator in the homology of E(2m + 1,2i + 1), provided that 2i + 1 > ||j||,
whose degree is 27 + 4.

For j > 1 and m > 0 let

V(i) = {i€Vallill <ij}
We denote the Poincaré polynomial of the pair (X%, 0X%) by P¥(t), so:
Pi(t) = bo(Xg,0Xq) +bi(XF,0X5)t+ - bu(Xf,0X7) 1"

where n is the dimension of X* and b;(X*, 0X%) is the Z-rank of H;(X%, 0X%) for
all j=0...,n.

Theorem 8.5. Let m >0 and k > 1. Then

gt
P§m+4(t) —  pkH(mt1)(2m+3) }: 4131
JEVm (k—2m—1)

(2m+2)(k—2m—|[jl) _ 1

t2m+2 —1

and
L Alma) A2l
k _ (k,m) 4|3
P2m+5<t) = t* Z Y t4(m+1) -1
JEVm (k—2m—2)
where
k—2m—3
u(k,m) = (2m+4)k— 2m+3)(m+1) —4(m + 1)Lfmj.

Here |x] = max{n € Z|n < z}.

Proof. The proof is now merely an organisation of our previous results, using d =
2m +4 or 2m + 5. By (4) the homology of (X%, 9Xk) splits into summands, which
by (5) come from E,(2m,j) or E.(2m + 1, 7) shifted by
v(d,k,j) = (d=1)k—(d=2)(d=3)/2—(d—-2)(j - 1),
and where j =1,...,k—d+ 3.
Let d = 2m + 4. Using Proposition 8.3 we see that each j € V,,,(k —2m — 1)
produces a homology generator, and in fact for each j = 1,...,k — 2m — 1 with
J > |ljll- The degree of such a generator is 4|j| + v(2m +4, k, j), so the degrees vary
from
451+ 2m+3)k — (m+1)(2m + 1) — 2(m + 1)(|j|| — 1)
down to
45l +v2m+ 4,k k—2m—1) = A4|j|+k+ (m+1)(2m+3)
in steps of 2(m + 1). Using

2m—+2)(k—2m—||j
14 2m+2 p L g@me) (e—2m—1— 1) t@mABG-2m-lil) _ 1

$2m+2 _q ’
we get the result.

The case d = 2m+5 is very similar, each j € V,,,(k —2m — 1) produces a homology
generator, but only for each odd j = 1,...,k — 2m — 2 with j > [j||, and with
degree (j —1)+4|j| +v(2m+5,k, 7). A similar argument to the even case gives the

stated result. Note that 2{";” + 1 is the largest odd number not bigger than n,
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and the degree increase for each j is 4(m+1) because we only consider odd numbers
between ||j|| and k& — 2m — 2. O

For small values of m the sets V,, have a very simple form, so we collect the
Poincaré polynomials in these special cases in the next corollary.

Corollary 8.6. For k > 2 we have

k—2
Pf(t) _ tk+3 Zt%'
i=0
For k > 3 we have
L552)
Pé“(t) _ t4k—4L%J—3 Z 14
1=0
For k > 4 we have
PEt) = tFT0Qu_4(th).
For k > 5 we have
P7k(t) — (6k—=8[%5"]-10 (Qng(tS)-i‘#QL?J_l(tS))-

Proof. The cases with m = 0 are easy to see, as V( only consists of one element.
To determine PF(t) and PF(t), note that
-1
v = {wfosist"Fh}.
Therefore

ﬂj .
2 t4(k73721) -1

Péc(t) _ tchrlO Z t4i o
1=0

tk+10 Qk—4 (t4)

by Lemma B.3. Similarly,

L) s g

P (t _ tu(k,l) t4i
_g| k=5
= s 10(QL%J(1€8) +t4QL%J71(t8))
by Lemma B.4. O

9. POINCARE POLYNOMIALS FOR LINKAGE SPACES IN ODD DIMENSIONAL
EUCLIDEAN SPACES

In order to calculate the Poincaré polynomial of M4(¢) for d > 4, we want to take
the filtration

P=M'c M ' C---Cc M™ = My0)
which arises from the SO(d — 1)-invariant Morse-Bott function of Proposition 5.1,
so that

+1 k
MS — MS UBX(); Xd
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for all s =0,...,m—1 and appropriate k depending on s. The long exact sequence
of the pair (M**1 M?) takes on the form

- — Hyp1 (X}, 0X)) — Hiy(M®) — Hy(M*T) — H/(Xj,0X}) — -

If we look at u(k, m) in Theorem 8.5, we see that for fixed m this number is always
odd (for m even) or even (for m odd) for all k£ > 2m + 3. It follows that

(7) H (M*™Q) = H.(M%Q)e H.(X},0X};Q)

for odd d > 5.
This is not true for d > 4 even, as the following example shows.

Example 9.1. Let ¢ = (1,1,1,1,1,4). Then ao(¢°) = 1 and a;(¢%) = 0 for all
i > 1. Therefore the Morse numbers p;(£) of the Morse function f3 : M3(¢%) — R
of Corollary 4.3 are all 1. As T = (1,1,1,1,5) has empty moduli space, we can
construct the Morse function so that the indices in the filtration are increasing. We
thus have 4 critical points of index 0, 2, 4 and 6, respectively, so the respective
values for k are 0, 1, 2 and 3.

If we look at the analogous function for d = 4, the filtration satisfies
M s, MP2 S MB = M (%) > MPUebued

which means that up to homotopy M, (%) is obtained from S°® by adding a 6-cell
and an 8-cell. By Proposition A.1, we have M4(¢®) = 23, and the Z-homology of
this space has been calculated in [14, Table 5.3] as

Z * =8
H.(%5) = 7./27, *1: 5
0 else

This shows that there is a non-trivial interaction between the critical points of index
2 and 3, which persists when looking at £" = (1,...,1,n — 2) € R", as [14, Table
5.3] shows.

One would expect similar interactions when looking at more general £, but we leave
that for a future project.

Definition 9.2. Let £ € R" be a generic length vector, and d > 2. We denote the
Poincaré polynomial of My(f) with Z coefficients by P4(t).

The next proposition follows by a simple induction on (7), using Proposition 4.4.
Proposition 9.3. Let £ € R" be a generic length vector, and d = 2m + 5 with
m > 0. Then

n—3

Py(t) = ao(t)+ Z i (£) P (1),
k=2m+3

where p(€) are as in Proposition 4.4.

We can express the yy in terms of ay, and the P¥(t) are given by Theorem 8.5.
Using Corollary 8.6, we can make the dependence on the aj more explicit.
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Theorem 9.4. Let ¢ € R™ be a generic length vector with ag(¢) = 1. Let m > 3 be
such that n =2m — 1 orn =2m. Then

m—2

Pit) = 1+ Z (@i — an—2-:) (Qn-s—i(t") — Qi—a(t")),

=0

where a; = a;({) fori=1,...,n—3, and an—2 =0=Q; for j <O0.

Proof. We know from Proposition 4.4 that ag(¢) contributes to each puy(¢) for k =
0,...,n—3. Similarly, a1 (¢) —a,_3(¢) contributes to p1(¢), ..., n—a(f), and am_o—
Qn—m contributes to p,—2 and py—m—1.

Notice that p1 and pg have no impact on the homology of Mj(¥).

According to Corollary 8.6 the contribution of ag(¢) = 1 to the Poincaré polynomial
is therefore

n—3 n—3 L%J
143 PR = 14 ) (el ST g
k=3 k=3 i=0

n—=6 4242
=l —1
= 14+¢. AL

= 1+ tg Qn—6(t4)7
where we use Lemma B.3 in the last line.

Similarly, the contribution of a;(£) — a,_3(f) is t? Q,_7(t*), and so on. But notice
that for j > 4 we get for the contribution of a;(¢) — an—2—;(¢) the formula

n b k41 t4L%J —1
£ 3 M T = 0 (@no () — Q).
k=j—3

Since we set Q. (t) = 0 for negative k, this also holds for all j > 0. Adding all terms
together gives the result. [

Remark 9.5. If we write

Ri(t) = 1+4t+--- 1t~
and Ry (t) = 0 for k < 0, we can describe the Poincaré polynomials of M3(¢) as
m—2
Pi(t) = 1+t Z (a; — an—2-;) (Rn—a—i(t*) — Ri—a2(t?)),
i=0

as follows easily from (1). Furthermore, we have Qo (t) = Ry (t)Rn(t) and
Q2m+1(t) = Ry (t)Rim41(t). Tt is therefore natural to ask what the correct for-
mula for P§,  ;(t) is and whether it fits into a similar pattern. However, by looking
at Corollary 8.6 in the case d = 7, we see that the Poincaré polynomial of M7 (¥)
will have non-zero coefficients in even degrees between 26 and d7 for n > 9.

Example 9.6. There exist 135 chambers for n = 7 up to permutations [9], and
the Poincaré polynomial for £ € R7 is

Pit) = ao(O)(1 +1 +1'3) + (a1(£) — as(£))t°.
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Also, a4(¢) =0, unless £ = (1,1,1,1,5,5,5), in which case a1(£) — aq(f) = 3. If we
also assume that ¢ is different from (1,1,1,1,1,1,7), the Poincaré polynomial is
PEt) = 1+ (ar(0) +1)t7 +¢13.

Since a1 (¢) € {0,...,6} there are not a lot of variations among the Poincaré poly-
nomials. Also notice that Mj5(¢) up to homotopy is obtained from a wedge of
(a1(€) + 1) 9-spheres by attaching a cell of dimension 10, 11 and 13. As these three
cells correspond to ag(¢) it seems unlikely to expect too many different homotopy
types between the chambers for n = 7.

10. THE EULER CHARACTERISTIC FOR EVEN DIMENSIONAL LINKAGE SPACES

Let us begin with x (X% . ,,0X% ). This is obtained by evaluating P§, ,(—1)
in Theorem 8.5. Reorganising this term gives the following proposition.

Proposition 10.1. Let m >0 and k > m+ 1. Then

k—m—1 k—m—1 k—m—1
X(X3E 0, 0X3% ) = (=™ > > Y 2k —2m -2 — 1),
Jm=0 jm—1=jm J1=j2
and
k—m—1 k—m-—1 k—m—1
XXl 0X50E) = (=)™ > e Y (2k = 2m - 2jy).
Jm=0 Jm-1=Jm J1=J2

The simplest cases m = 0 and m = 1 are easily seen to give the following.

Corollary 10.2. Let m >0 and k > m+ 1. Then

X(XZp 4y 0X 3 10) + (X300 0X5050) = (F1)™|Vim(2k — 2m — 1))
Furthermore, for k > 0 we get
X(X5,0X5) = (=D)F(k-1)
and
X(XgF0xg5) = (k—1)?
XX OXEMY) = —k(k - 1)

It is worth pointing out that Xg is a point with empty boundary, so the Euler
characteristic is just 1.

Corollary 10.3. Let k > 3 and ¢ € R™ be a generic length vector, and n = 2k or
n =2k — 1. Then for n = 2k we get

k—2
XMa() = Y (=)' (ai(t) — ask—a—s(0)) (k=1 —1)
i=0
and for n =2k — 1 we get
k—2 ‘
X(Ma(€)) = —(k=3) p_(=1)"(ai(f) — aze—3-:(£)).

s
I
=)
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Proof. Assume that n = 2k — 1. Write x; = x (X}, 0X}) = (—1)""1(i — 1). Then
ag(¢) contributes xo + x1 + - .. + X2r—4 to the Euler characteristic of My(¢). Since
X2i + X2i+1 = 1, this gives a contribution of

E
w

(x2i + x2i+1) + X2k—1 = (k—2)—(2k—5)

s
I
=)

— —(k—3).

Similarly, the contribution of (a;(¢) — ask—3—;(¢) is (—1)"*'(k — 3), where for odd
j one should note that x; + xj+1 = 7 — 1. Summing the contributions with the
appropriate factor gives the result.

The result for n = 2k uses a similar argument. [

Example 10.4. Let ¢ = (1,...,1) € R***L A subset J C {1,...,2m + 1}

is f-short if and only if has at most m elements. It follows that a; = (2;”) for
i1=0,...,m—1and a; =0 for ¢ > m. Hence
m—1 /9m,
i) = -2 3 -1 (*)
i=0

|
T
—_
N—
3
—
3
I
K
R
)
3
I
—_
~_

where we used (—1)™~1(*" 1) = ZZEI(—l) (*'™) which follows from the binomial

formula. This formula has been obtained by Kamiyama in [11, Thm.A].

Corollary 10.5. Let k > 4 and £ € R™ be a generic length vector, and n = 2k or
n =2k — 1. Then for n = 2k we get

XM B %i )he _B_L%J)( _2_L%J>_(L153JL%J))
and for n =2k — 1 we get

k—2
XMo(0) = 3 (D el =3 [N =2 551]) + (152 - L5)))

=0

where ¢; = a;(£) — ap—a—i(f).

Proof. The proof is along the same lines as the proof of Corollary 10.3. If n = 2k—1,
the contribution of ay; is

2k—4—2j k—3—j
Z Xi = Z (X2i + X2i+1) + X2k—4—2j
i=2j i=j
k—4—j
= - i+ (k—3—j)*
i=j—1

= S(k=3-3)(k—2-)+ G -2 ~)

and ag;_1 contributes this term with a negative sign. The case n = 2k is similar. [J
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Example 10.6. Let / = (1,...,1,7) € R®, so that /\/ld(g) =~ 37 | by Proposition

A.1. In particular, ag(¢) = 1 and a;(¢) = 0 for i > 1. Then

Xx(Ma(0)) = 3 and X(Mg(£)) = 0
as can be readily seen from Corollaries 10.3 and 10.5.

If welet ¢ =(1,1,1,1,1,3,3,6), we see that ag({) = 1, a1(¢) = 5, az(¢) = 10 and
a;(¢) = 0 for ¢ > 3. This implies

X(Ma(0)) = x(Ma(0)),

while

XMg(0)) = 5 # x(Me(0)).
We can still show that M (¢) does not have the same homotopy type as My(f).
To see this, note that in the filtration (M) the relative complex (Xj,0X}) is
attached 6 = ag(f) + a1(£) times, so that before attaching the final (X?,0X3), we
have Hyp(M™ 1 Q) = Q5. Since ng(X4578X45;Q~) >~ Q, we get that the 11-th

Betti number of My(¢) is at least 5. As Hyi(My(f)) = Z/27Z by [14, Table 5.3],
these spaces have different homology.

This last argument can be generalized to obtain Morse-type inequalities; we only
give a few special cases.

Proposition 10.7. Let £ € R™ be a generic length vector. For n > 6 we have
b3(n—1)—10(Ma(l)) = b3(n_1)-9(Ma(€)) = a1(f) —an—3(£) —ao(f),
and for n > 7 we have
c2(€) +c1(€) +2co(€) > ban-2)-10(Ma(l)) = c2(f) —c1(f),
where ¢;(£) = a;(€) — an—2—;(¢) fori=0,1,2.
Also, for n > 9 we have

bs(n—1)—21(Me(£)) = bs(n—1)—20(M(£)) = a1(€) — an—3(f) — 2ao(¥),
and for n > 10 we have

62(6) + C1 (6) + CO(E) Z b5(n—2)—21 (Mﬁ(g)) Z CQ(E) — C1 (f) — Co(é).

Proof. The dimension of X;~* is 3(n — 1) — 10, and in the filtration arising from
the standard Morse-Bott function we get ¢; + cp-many of those. Therefore the
(3n — 1) — 10-th Betti number is at most ¢; + ¢o. Furthermore, only one X7~ can
occur in the filtration, and only at the very end, so the 3(n—1) —9-th Betti number
can be at most ag(¢). When obtaining the homology of My (¢) from the filtration,
this generator in degree (3(n — 1) — 9 may or may not cancel with a generator
in degree 3(n — 1) — 10. In either case, the difference of the Betti numbers is as
claimed.

To determine bg(,,—2)—10(M4(£)), note that only X~%s and the final X7 can con-
tribute to this number, and each XJ~* may cancel a generator. As (XJ % X7 %)
has homology in degrees 3(n — 2) — 11 and 3(n — 2) — 9, we could get two cancel-
lations. As there are (cz 4 ¢ + 2¢)-many X7 > and X3 and (¢; + ¢g)-many of
X7~ in the filtration, the result follows.
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The result for d = 6 is analogous, but we use a different Poincaré polynomial for
(Xg_4,8Xg_4), see Corollary 8.6. Note that the conditions n > 9 and n > 10
ensure that Q2(t*) is used, which means that the coefficient of t* is 2. If Q; (%) is
used, the formulas slightly improve. [

APPENDIX A. SHAPE SPACES

In this appendix, we define the shape spaces occuring in statistical shape theory.
Roughly speaking, a shape is a collection of points in some R? up to rotations and
translations and scalings. More information can be found for example in the book
[14].

We begin by defining the pre-shape space. Let

S; = {(ml,...,xn) € (RH" in =0, Z|331|2 = 1} .
i=1 i=1

This is the space of n points in R?, whose centroid is 0 and who are scaled to sit on
the unit sphere. Notice that S} is the intersection of the sphere of dimension nd—1
with a sub-vector space of codimension d. It is therefore a sphere of dimension
(n—1)d - 1.

The group SO(d) acts diagonally on S}, and the resulting quotient is called the
shape space

i = Sq/50(d).

Similarly, one can define the size and shape space SX7 which is obtained in the
same way, but by dropping the condition that the points sit on the (nd — 1)-sphere,
see [14, §11.2].

As is pointed out in [9], if we define T': SE7 — R™ by
T(x1,...,zn) = (lz1—xal,. ., €01 — znl,|zn — 21|)

we get that M4(¢) = T~1({¢}). Furthermore, looking at inverse images of chambers
and further stratas in R? leads to a decomposition of the size and shape space by
configuration spaces of linkages studied in [9].

An even more direct relation between linkage spaces and shape spaces is given by
the next proposition.

Proposition A.1. Let ¢ = (1,...,1,n—2) € R™. Then there exists an SO(d —1)-
equivariant homeomorphism

®:Cy(0) — S|
In particular, the shape space 23:11 is homeomorphic to Mg(¥).

Proof. Let (z1,...,2,_1) € Cq(f). If p; : RY — R is projection to the first coordi-
nate, notice that p;(z;) < 0 by elementary geometry. Now let p : R? — R9~1 be
projection to the last d — 1 coordinates. Let

n—1

c = S lnal
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Then ¢ > 0, for otherwise each z; = —e; € R¢, and
1+ +2Tp1=(—n+1,0,...,0) # (—n+2,0,...,0).
So we can define
D(z1,.. o xn-1) = (p(z1)/Ve, . p(En-1)/Ve).
This is injective: If ®(z1,...,2n—1) = ®(y1,...,Yn—1), then p(z;) = ep(y;) for some

e>0andalli=1,...,n—1. If e > 1, then py(z;) < p1(y;) foralli=1,...,n—1,
but then

Zpl(fi) # Zpl(yi),

contradicting that both are in C4(¢). The case e < 1 leads to a similar contradiction,
and e = 1 implies (z1,...,Zn-1) = (Y1, -+, Yn—1)-

As C4(¢) is a closed manifold of the same dimension, ® is also surjective. Equivari-
ance is clear from the construction, so the statement follows. [l

APPENDIX B. POLYNOMIAL RELATIONS

We want to collect a few properties of the sequence of polynomials Q. (t) given by

B (thrl _ 1)2
Qam(t) = NS
m—+2 m+1
Q2m+1(t) < (tl)(i)z 2

for all m > 0. For convenience, we also add the equations @, (t) = 0 for n < 0.

The next lemma follows directly from the fact that

gmtl _q
-1 = 1+t+---4+t™
Lemma B.1. Let m > 1, then
Qom1(t) = Qom_olt) +t™ 4 121
Qom(t) = Qom_1(t) +t™ 4 - 4™

Using an induction on Lemma B.1, we get a nice description for the coefficients of
Qn ().
Lemma B.2. For m > 0 we have
Qom(t) = 14+2t+-+ (m+ D" +mt™ T 4. g 22m=l g 2m
Qomi1(t) = 14+2t+ -+ (m+ D"+ (m+ D™ 4o 422 g2t
The next lemmata also follow by induction using Lemma B.1.
Lemma B.3. For m > 0 we have
5] iy
i tm+1 2% 1
Qm(t) = ; U

m i+2J_1

gl
N o i
AT T

=0
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Lemma B.4. For m > 0 we have

(1]
(2]

(3]
(4]

(5]
6

(7]
(8]
(9]

[10]
(11]

(12]
(13]
(14]
(15]
[16]
[17]

(18]
(19]

Mmoo 2(n+l—i) _
2 2 _ )
Qm () +tQm—1(t*) = Zt 21

=0
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