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[1] Axial volcanic ridges (AVRs) are found on most slow-spreading mid-ocean ridges and are thought to
be the main locus of volcanism there. In this study we present high-resolution mapping of a typical,
well-defined AVR on the Mid-Atlantic Ridge at 45�N. The AVR is characterized by “hummocky terrain,”
composed typically of hummocks with pillowed or elongate pillowed flanks with pillowed or lobate lava
flow summits, often with small haystacks sitting on their highest points. The AVR is surrounded by several
areas of “flat seafloor,” composed of lobate and sheet lava flows. The spatial and morphological differences
between these areas indicate different eruption processes operating on and off the AVR. Volcanic fissures
are found all around and on the AVR, although those with the greatest horizontal displacement are found on
the ridge crest and flat seafloor. Clusters of fissures may represent volcanic vents. Extremely detailed
comparisons of sediment coverage and examination of contact relations around the AVR suggest that many
of the areas of flat seafloor are of a similar age or younger than the hummocky terrain of the AVR.
Additionally, all the lavas surveyed have similar degrees of sediment cover, suggesting that the AVRwas either
built or resurfaced in the same 50 ka time frame as the flat seafloor.
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1. Introduction
[2] Axial volcanic ridges (AVRs) have been recog-
nized on most slow-spreading ridge segments
[Ballard and Van Andel, 1977; Bideau et al., 1998;
Briais et al., 2000; Brown and Karson, 1988; Bryan
et al., 1994; Gente et al., 1989; Gràcia et al., 1998;
Karson et al., 1987; Parson et al., 1993; Sempere
et al., 1990; Smith and Cann, 1992]. AVRs are
composite volcanic constructions, built entirely of
small basaltic eruptions. They are typically several

kilometers wide, tens of kilometers long, and up to a
kilometer high [Smith and Cann, 1992, 1993].

[3] Significant advances in the understanding of mid-
ocean ridge processes have been made using
combinations of low-resolution shipboard bathyme-
try, medium-resolution deep-towed side-scan sonar,
and high-resolution submersible or towed camera
observations. The lower-resolution studies distin-
guished “smooth terrains” composed of low-relief
lavas, from “hummocky morphology” composed
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of thousands of small, discrete volcanoes [Ballard and
Van Andel, 1977; Smith and Cann, 1990; Smith et al.,
1995a, while higher-resolution studies described the
morphology and spatial distribution of volcanic
activity, landforms, and morphologies [e.g., Ballard
and Moore, 1977]. However, few studies have
focused specifically on AVRs (excepting Parson
et al. [1993]) or comprehensively surveyed them, and
their formation and life cycle remain poorly understood.

[4] AVR volcanism may produce lavas with a variety
of morphologies, including pillow lavas, composed of
an accumulation of bulbs, tubes, and lobes of solidi-
fied basalt; sheet flows; fairly flat, continuous
flows; and lobate flows, characterized by a gentle,
hummocky surface [Ballard and Moore, 1977;
Kennish and Lutz, 1998]. Changing lava morphology
has been linked to effusion rate, lava rheology, and
underlying slope [Gregg and Fink, 1995]. Increasing
effusion rate or decreasing viscosity is expected to
favor the production of lobate and sheet flows [Bonatti
and Harrison, 1988; Griffiths and Fink, 1992; White
et al., ] and can also produce a more fluid pillow form
[Chadwick and Embley, 1994]. Increasing slope from
0� to 30� has a similar effect; however, at> 40�, flows
typically channelize and form lobes rather than
smooth flows [Gregg and Fink, 2000]. Steep slopes
can also disrupt flow fronts by pulling both molten
and solid lavas apart, favoring the production of
pillow or lobate lavas [Gregg and Smith, 2003].
Ponding of lava flows may also produce sheet
flow textures.

[5] The spreading segment at 45�300N is typical of the
Mid-Atlantic Ridge. The median valley varies in
width from 5km at its center (45�280N) to 8 km at
its southern end (45�230N) and 12km at its northern
end (45�370N) and is characterized by a mature
AVR (Figure 1). The hourglass-shaped axial valley
is terminated at both ends by small dextral offsets
(at 45�230N and 45�420N). The well-defined 22km
long AVR runs from 45�240N to 45�350N and reaches
> 600m above the surrounding seafloor. Sections,
such as the eastern side of the axis between 45�350N
and 45�400N may be characterized by detachment
faulting [Escartin et al., 2008]. Previous studies
[Aumento et al., 1971; Keeton and Searle, 1996;
Mello et al., 1999; Searle et al., 2010] identified a
number of different volcanic morphologies in the area
and noted that the nature of the AVR changes from
narrow, focused volcanism south of 45�330N to less
focused and more tectonized north of 45�330N [Searle
et al., 2010]. The AVR also displays good examples
of flat seafloor and volcanic hummocks. Hummocks,
described as 5–150m high, 30–350m diameter
domes or cones, built predominantly of pillow lavas

[Smith and Cann, 1990; Yeo et al., 2012], are the most
common style of volcanic edifice on slow-spreading
mid-ocean ridges. These factors make the 45�300N
spreading segment ideal for studying various volcanic
morphologies and for examining the differences
between young and old-looking AVR terrains.

2. Data Acquisition and Methods

2.1. Data Acquisition
[6] Data were collected during RRS James Cook
cruise 24 in May and June 2008. Side-scan sonar data
were acquired using the Towed Ocean Bottom
Instrument (TOBI) operated by NOC, Southampton,
UK [Flewellen et al., 1993]. TOBI is fitted with
30 kHz side-scan sonar which measures 6 km wide
swaths with a pixel size of ~3m [LeBas, 2005].
Postprocessed data have an absolute navigational
precision of 100m. Twenty-two E-W, 2 km-spaced
tracks provided 100% N- and S-looking sonar
coverage (Appendix A in the auxiliary material).
Attenuation of TOBI backscatter can be used as a
proxy for sediment thickness and therefore age. Data
were interpreted by Searle et al. [2010].
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Figure 1. EM120 bathymetry for the ridge segment at
45�300N on the Mid-Atlantic Ridge. Video dive tracks
are shown in white, with their dive numbers.
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[7] Video data were captured by two cameras using
the ROV Isis (operated by NOC, Southampton,
UK; [German et al., 2003]). Video was recorded
at all times during 11 sampling dives (dives 79,
80, 81, 82, 83, 85, 88, 89, 90, 92, and 93). Three
dives (centered on 45�29.00N, 27�51.50W) were in
an area of Simrad SM2000 microbathymetry
collected by the ROV. It has postprocessed
horizontal and vertical resolution of ~1–2m [Searle
et al., 2010].

[8] Video and sampling dives were carried out in both
the robust southern AVR and the tectonized north, on
the axial valley floor (Figure 1) and up the axial valley
wall fault scarps (Figure 2). Sediment was recorded
from visual observations. The dive positions were
chosen based on the TOBI side-scan sonar and, where
it was available, high-resolution SM2000 bathymetry.

2.2. Mapping
[9] Lava morphology was split into seven categories,
including pillow lavas (Figures 3a and 3b), elongate
pillow lavas (Figure 3c), lobate lavas (Figure 3d),

and sheet flows (Figures 3e and 3f). Scarps
(Figure 3g), talus (Figure 3h), and total sediment cover
(Figure 3i) were also recorded. Frequently two lava
types would occur close together, and where both
were observed within a 10m2 area, we used the
additional categories pillow and elongate pillow lavas,
pillow and lobate lavas, and lobate and sheet flows.

[10] Sheeted lava flows were not divided further
(i.e., into ropey, lineated, etc.) as they are more easily
buried by sediment and exposures were typically not
large enough to be representative of the whole flow.
Scarps were defined as any broken vertical or near-
vertical face. Fissures were defined as any crack
cutting the seafloor and were subdivided into those
which were purely eruptive, i.e., those that were
narrow, sinuous, surrounded by pillow lavas, and
formed a local high and those which were linear,
purely tectonic cracks, or previously eruptive fissures
with large horizontal opening. We also mapped
haystacks, cone-shaped features< 5m high, composed
of pillows and elongate pillows, and collapse pits.

[11] The first-order along-track mapping was done
using the Adelie-Otus ArcGIS extension developed by
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Figure 2. Scarp morphology logs of the three sections of axial valley wall scarp observed on dives 79, 83, and 92.
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Figure 3. Typical lava morphologies and features observed on the sampling dives. (a) Pillow lavas (dive 82), (b) pillow
lavas (dive 90), (c) elongate pillow lavas (dive 88), (d) lobate lava flows (dive 82), (e) broken sheet flow (dive 83), (f)
textured sheet flow surface (dive 82), (g) broken lavas in a fault scarp wall (dive 81), (h) talus deposit at the base of a fault
scarp (dive 80), (i) 100% sediment cover (dive 82), (j) eruptive fissure (dive 81), (k) non-eruptive crack on the seafloor
(dive 81), (l) trapdoor (dive 89), (m) collapse pit (dive 81), (n) lava tube (dive 89), (o) sheet flow lavas (seen in fissure)
with associated pillow lavas visible through the thin sediment layer covering their surface (dive 81), (p) haystack (dashed
lines show the length of a single pillow) (dive 92).
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L’Institut Français de Recherche pour l’Exploitation
de la Mer (IFREMER), Brest, mounted on
an ArcGIS 9.1 platform. Further maps were
produced using ArcGIS and Adobe Illustrator
CS3. Seafloor Morphology was recorded at 1min
intervals during dives, which, with a typical ROV
speed of ~1 km/h, equates to one observation every
~17m. This is the smallest scale at which meaning-
ful lithological changes can be observed and is sim-
ilar to the resolution of the TOBI survey. Strikes
were recorded for structural features observed.
These have variable accuracy as some were mea-
sured with the ROV while others are estimated rel-
ative to the vehicle heading. This second type has
an estimated accuracy of +20�. Dive maps and
descriptions can be found in Appendices B and C
in the auxiliary material.

2.3. Sediment Cover
[12] In order to compare the sedimentation along and
between dives [Goldberg and Sun, 1997;Macdonald,
1982; Smallwood and White, 1998], we devised a
sedimentation scale. Sediment cover (SC) categories
were assigned with divisions at 1 (< 10% sediment
cover—light dusting of sediment), 2 (10–50% sediment
cover—sediment on surfaces but no joined sedi-
ment pockets between lavas), 3 (50–90% sediment
cover—heavy sediment cover with interconnected
sediment pockets), and 4 (> 90% sediment cover).
These categories do not represent regular divisions of
sediment thickness, but are the clearest divisions
observable from the video footage, as cross sections
of sediment thickness are not usually visible. As with
the morphology mapping, observations of sediment
cover were made every minute along the video dives,
except on vertical or near-vertical slopes where
sediment is unable to settle. There is no way to
remove errors associated with currents or differing
deposition rates, so broad comparisons of lavas tens
of kilometers apart are difficult; however, compari-
sons between lavas close to each other should be
fairly reliable.

[13] This method differs to that used by Cann and
Smith [2005] to examine sediment cover at 25�N
because direct observations of the sediment thickness
in cross section were not available at the resolution
at which observations were made; however, the
percentage cover could be recorded every minute,
giving a higher resolution of sampling. These obser-
vations could be used as a proxy for sediment
thickness and relative age when comparing similar
terrains within a few hundreds of meters. In order to
compare different types of flow, sediment thickness

was used only where it was observed in cross section
(i.e., at fissures/scarps).

3. Observations

[14] A detailed description of each dive is included
in Appendix C in the auxiliary material. The
general observations are summarized below.

3.1. Large-Scale Volcanic Morphology
[15] Volcanic hummocks with diameters 30–350m
were observed all over the AVR and on parts of the
surrounding lower-lying terrain. Slopes on the flanks
of hummocks were typically 20� to 40�, and their
summits ranged from almost flat to up to 25�. Many
were characterized by summit haystacks (Figure 3p).

[16] Flat seafloor, composed mainly of sheet and
lobate lava flows, was observed around the AVR,
particularly in the north. In some places pillow lavas
can be observed forming on the top surfaces of sheet
and lobate flows (Figure 3o). Pillow lavas were also
observed in small discrete areas within the sheet
flows, which appear to correlate to small hummocks
observed in the side-scan sonar.

[17] Nineteen flat-topped seamounts are imaged in the
EM120 data as mapped by Searle et al. [2010]. Flat-
topped seamounts are predominantly observed around
the AVR rather than on it (seven of the seamounts lie
outside the AVR but still lie within the axial valley
floor, only two lie on the AVR) and are distributed
fairly evenly from north to south. Three flat-topped
seamounts were dived on, two near 45�25.850N,
27�54.450W (dive 88) and one at 45�42.580N,
27�46.520W (dive 81). All of these were characterized
by sloping (15–40�) pillowed or elongate pillowed
lava flows on their flanks and sheet flow or lobate
flows on their flat (< 10�) tops.

3.2. Fissures
[18] In order to distinguish between the types of
fissure observed, we classify them as either “narrow”
or “open.” Narrow fissures consist of narrow, sinuous
fissures with less than a meter of separation and
pillows and lobate flows spilling out of them
(Figure 3j). The open fissures (Figure 3k) are
straighter and much wider (up to 15m) and deeper
(> 30m), with vertical walls composed of broken
pillow lava or broken sheet flow faces. This classifica-
tion is purely given as a way to distinguish two
separate morphologies of fissure, and some open
fissures may have previously erupted—many had a
mix of talus and pillows in their bases and pillows
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on their edges. In some cases these larger fissures have
small vertical offsets between the walls of the fissure.
Of the fissures observed, almost all are parallel or
close to the strike of the ridge (Figure 4), with 70%
of measured strikes lying within +25� of the AVR
strike; the distribution of orientations of the narrow
and open fissures is very similar.

[19] Skylights (places where the unsupported solidified
crust over a drained lava flow collapses) (Figure 3l)
and heavily sedimented collapse pits (Figure 3m)
(which were of the same size and may be the
sedimented skylights) were also observed associated
with the sheet and lobate lava morphologies.

3.3. Fault Scarps
[20] Faults were observed on the axial valley walls,
consisting of stepped vertical or near-vertical sections,
from 5m to several hundred meters in height. These
terraces were composed of broken lavas, separated
by small 2–5m flat benches that were usually fairly
heavily sedimented. These wall scarps produced

quite extensive talus deposits extending away from
their bases for up to 300m. Smaller scarps, usually
< 100m in height, are also observed on the AVR
as both faults and gravitational collapse scars on
hummocks [Yeo et al., 2012].

3.4. Sediment Distribution
[21] While flatter-lying lava flows often appeared
more sedimented (typically between SC 3 and 4)
(Figure 5), where broken surfaces were exposed, this
sediment cover was shown to be usually < 10 cm,
which would be comparable to SC 2 (10–50% cover)
for the AVR pillow lavas. The lavas that appeared to
have the thinnest sediment cover were observed on
dive 88 on the southern and southwestern sections of
the AVR and surrounding seafloor, with sediment
cover of 10–60% (SC as young as 1 and 2) being
observed. Lavas with no sediment cover were not
observed anywhere.
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4. Discussion

4.1. Eruption Products
[22] The building blocks of the AVR at the Mid-
Atlantic Ridge (MAR) 45�N are pillow, lobate,
and very rarely sheet lava flows (Table 1), as
found elsewhere on the MAR [Ballard and Moore,
1977; Ballard and Van Andel, 1977; Briais et al.,
2000; Brown and Karson, 1988; Sinton and
Detrick, 1992; Smith and Cann, 1990, 1993].

[23] Pillow lavas form the main building blocks of
hummocks (Table 2) and were additionally observed
on the flanks of flat-topped seamounts and in areas
of flat seafloor, suggesting that multiple lava morphol-
ogies can be produced by the same flow. Elongate
pillow lavas are observed only on slopes over 15�
and predominantly on those > 20�, consistent with
observations elsewhere [Kennish and Lutz, 1998;
Wells et al., 1979].

[24] Sheet lava flows were observed only around
the edges of the AVR [Searle et al., 2010] or on
the summits of flat-topped seamounts, where the
seafloor is flat or very gently sloping (< 10�),
suggesting that they are only produced on areas of
low-gradient seafloor or that they produce such

seafloor. Some areas of the flat seafloor appeared
slightly hummocky, suggesting that they did have
some (normally less than 10m) relief. This may
be due to the burial of hummocky terrain beneath
these flows or be due to inflation (as evidenced by
the observation of numerous tumuli) or deflation
of the flow surface during the eruption.

[25] A clear relationship between textures observed
in the TOBI side-scan sonar and the morphology
observed on the ground can be seen in Table 1
and in the maps in Appendix B in the auxiliary
material. The observation of a clear change in lava
morphology with change in side-scan texture is in
contrast to some of the observations from a similar
study at 25�N [Cann and Smith, 2005]. Like we
did, they find hummocky terrain to be composed
of pillow lavas, but also observe only pillows on
smooth side-scan terrains. This differs from our ob-
servations of single or small groups of pillows,
which were commonly observed on the top surfaces
of sheet flows at 45�N, but at a lower density than in
the hummocky terrain. The flat, pillowed terrains
described by Cann and Smith (2005) may overly
sheet flows, possibly produced by burial of a sheet
flow during the later stages of the same eruption or
by separate eruptions that postdate the flow.
Alternatively, the slightly thicker sedimentation at

Table 1. Measured Dive Length of Each Observed Lava Morphology as a Percentage of the Total Cumulative Dive
Length for all the Dives Together, and for the Individual Divesa

Elongate Pillow
Lavas

Pillow and Elongate
Pillow Lavas

Pillow
Lavas

Pillow and Lobate
Flows

Lobate
Flows

Lobate and Sheet
Flows

Sheet
Flows

All dives 4 27 20 26 13 4 6
Dive 79 1 37 51 9 2 0 0
Dive 80 4 48 23 15 10 0 0
Dive 81 0 6 10 34 13 14 23
Dive 82 2 24 23 21 19 6 5
Dive 83 0 3 32 42 6 8 9
Dive 85 6 24 33 20 17 0 0
Dive 88 2 38 20 23 14 2 1
Dive 89 5 14 6 33 30 10 2
Dive 90 13 64 10 10 3 0 0
Dive 92 3 37 15 32 9 2 2
Dive 93 7 58 15 10 9 0 1

aAreas of scarp, talus, or sediment cover, and sections of the dives where the seafloor was not observed, were omitted from the measurements.

Table 2. Lava Morphology as a Percentage of Total Observed Morphology on Hummocky vs. Flat Seafloora

Elongate Pillow
Lavas

Pillow and Elongate
Pillow Lavas

Pillow
Lavas

Pillow and Lobate
Flows

Lobate
Flows

Lobate and Sheet
Flows

Sheet
Flows

Hummocky seafloor 5 36 24 23 12 0.3 0.5
Flat seafloor 0 4 12 33 15 16 20

aAreas of scarp, talus, or sediment cover, and sections of the dive where the seafloor was not observed, were omitted from the measurements.
Normalized to 100%.
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25�N (10–15 cm on the smooth terrains) may have
buried any sign of an underlying sheet flow
(although this would have required the section of
flow covered by the camera to have a much higher
pillow density associated with it than observed on
sheet and lobate flows at 45�N).

[26] High-resolution studies that ground truth side-
scan sonar may in the future open up the possibility
of reinterpreting other side-scan data sets from the
Mid-Atlantic Ridge. However, the resolution of
30 kHz side-scan sonar is not high enough for there
to be any way of distinguishing between a low-relief
pillow flow and a lobate or sheet flow.

4.2. Relative Proportions of Morphologies
[27] Relative abundances of each observed lava mor-
phology were estimated and then normalized to sum
to 100% (Table 1). Since the dives were not randomly
allocated but chosen to cover specific features, this is
not a completely unbiased estimate of different lava
abundances, but does provide an indication of the
percentage of seafloor covered by each flow type.
Purely pillow lava flows (pillows+ elongate pillows)
cover 51% of the surveyed seafloor but are observed
either alone or with other lava morphologies on over
77% of the survey area. They are the most common
lava morphology and are probably also the most
common current eruptive product on the AVR. Sheet
flows were observed on only 6–10% of the surveyed
seafloor (> 30% in areas of flat seafloor), but are
probably underrepresented in the observations as they
are easily buried by sediment. Lobate flows are
also observed less frequently than pillows, covering
13–43% of the observed seafloor.

[28] Similarities between proportions of different
morphologies can be observed between some dives,
and this correlates with where the dives were carried
out, with marked increases in the proportions of lobate
and sheet flows where dives covered areas of flat
seafloor. Sheet flows and lobate flows together are
observed on> 80% of areas of flat seafloor (Table 2).
As we see them only on low-gradient seafloor and
they form recognizable flat-looking, uniformly
medium-level backscatter seafloor on the 45�N side-
scan sonar maps, it is unlikely that the AVR itself
has any sheet flows at all on its surface (excluding
flat-topped seamounts), while lobate flows occur only
on the flatter summits of hummocks.

4.3. Relative Ages
[29] Where pillow and sheet flows can be observed in
cross section, the sheet flows appear to have a similar
thickness of sediment (usually< 10 cm) lying on their

surfaces (e.g., Figure 3o). It is therefore likely that
both types of volcanism are occurring in a similar time
frame (although not necessarily at the same time). The
low exposure of the flat-lying lava flowsmakes exam-
ining the contact relationships between them and the
edge of the AVR flank very difficult. Where such
contacts are covered by dives, the flat seafloor appears
to grade into pillows, appearing first sparsely as single
pillows on the surface of the flat lava flow and becom-
ing more common as you get closer to the steep AVR
flank. However, there is no evidence of a pillowed
flow flowing over the sheet flow, which would cause
a sudden change in morphology and gradient, and
therefore, it seems likely that the flat-lying flows here
on-lap the pillowed flows.

[30] Estimates of regional sedimentation rate in the
northern Atlantic vary from ~5 to ~1 cm/kyr [Emery
and Uchupi, 1984; Keen and Manchester, 1970; Site
410 Shipboard Scientific Party, 1978; Stow and
Holbrook, 1984]. These estimates are achieved using
different methods (seismic data versus dating of
sediment cores), and therefore, the following dates
based on sediment thicknesses are given as ranges.

[31] The observed sediment cover on the eastern side
of the AVR and in the dive 83 area, which we observe
in cross section, suggests that these sheet flows were
erupted between 2000 and 10,000 years ago. The
other flat-lying lava flow, covered by dive 88, was
not observed in cross section so may be older, as
mapped by Searle et al. [2010]. Since parts of the
AVR appear to be as old as 12 kyr [Searle et al.,
2010], these young, flat-lying lavas were erupted
either during AVR construction or, if the AVR is no
longer being built, very shortly afterward. There is
no evidence for them being the earliest eruptive
products, preceding AVR construction, as suggested
elsewhere [e.g., Parson et al., 1993]. These observa-
tions are similar to those at 25�N on the Mid-Atlantic
Ridge [Cann and Smith, 2005] which suggest hum-
mocky terrain and sheet flows being erupted within
5000 years of each other, although unlike at 25�N
we get no indication that flows are aging linearly with
distance from the ridge crest.

[32] The average differences between SC categories
are probably equivalent to between 25 and 50 cm of
sediment thickness, which equates to between 5 and
50ka of sediment deposition. It therefore seems likely
that all the lavas were erupted within the last 50 ka and
the lavas with the thinnest sediment cover on the
southern tip of the AVR may have erupted as late as
2000 ka. These sediment thicknesses and timings are
similar to those observed by Cann and Smith [2005],
despite the different methods used to observe and
record sediment coverage.
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[33] While using sediment thickness as a dating proxy
is an imperfect method, the findings from the sediment
dating in this study are consistent with dates presented
in Searle et al. [2010] from crustal magnetization
(< 750ka for the valley and probably < 10ka for
the AVR) and paleointensity measurements (< 12ka
for the AVR and > 12ka for the valley floor). Searle
et al. [2010] also stated that many of the sheet flows
on the valley floor are covered with upward of a meter
of sediment; however, this is not the case everywhere,
and many of the sheet flows simply appear heavily
sedimented because they have much lower relief than
pillow lavas. Thin sediment cover on sheet flows is
observed in cross section in a number of locations
and is very unlikely to be the result of a local effect.
This is an important observation as it contradicts the
conclusion drawn by Searle et al. [2010] that all
the sheet flows around the AVR are older than the
hummocky terrain that builds it. It is however not
incompatible with the presented paleointensity
data, as none of the samples analyzed in this way
were taken from flat areas of seafloor within the
inner valley.

5. Conclusions

[34] The main building blocks of AVRs are small
hummocks composed almost entirely of pillows.
Similar degrees of sediment cover and no obvious
overlapping contact relationships suggest that more
than one hummock is formed at a time. Pillow lavas
are the most common form of volcanism in the
45�N axial valley and are observed almost every-
where, alone or in association with other lava
morphologies. Sheet flows are confined to the
summits of the large flat-topped seamounts and to
areas of flat seafloor surrounding the AVR.

[35] The flat seafloor and the hummocky terrain iden-
tified in the side-scan sonar surveys reflect different
lava morphologies. Hummocky terrain is mostly
composed of pillow and elongate pillow lavas with
small amounts of lobate lava flows, while flat seafloor
is characterized by higher percentages of sheet and
lobate lava flows. This suggests that lavas on and off
the AVR were either erupted differently or had differ-
ent rheology, chemistry, or eruption dynamics.

[36] Both the pillow lava flows on the AVR and the
sheet flows around the AVR have similar degrees of
sediment cover, suggesting that they were erupted at
approximately the same time. There is little variation
in the inferred ages of flows on the AVR surface and
no obviously contrasting contact relations between
different flows, although observations are consistent

with the flat seafloor onlapping the AVR flanks. This
suggests that most of the lavas observed were erupted
in a single period lasting < 50,000 years and that at
least some of the flat seafloor is younger than the
hummocky AVR.
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