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Collision cross sections for the thermalization of cold gases
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The collision cross section that controls thermalization of gas mixtures is the transport cross section σ (1)
η and

not the elastic cross section σel. The two are the same for pure s-wave scattering but not when higher partial
waves contribute. We investigate the differences between them for prototype atomic mixtures and show that the
distinction is important at energies above 100 μK for LiYb and 3 μK for RbYb and RbCs. For simple systems,
both σ (1)

η and σel follow universal energy dependence that depends only on the s-wave scattering length when
expressed in reduced length and energy units.

DOI: 10.1103/PhysRevA.89.052705 PACS number(s): 34.50.Cx

I. INTRODUCTION

The scattering length for interaction between a pair of
atoms or molecules is a key quantity in ultracold physics.
It determines the cross sections for ultracold collisions and
the energy of a Bose-Einstein condensate. Manipulating the
scattering length with applied magnetic, electric, or optical
fields provides the main way to control ultracold gases,
allowing the investigation of condensate collapse, solitons,
molecule formation, and many other phenomena.

Precise determinations of scattering lengths may be
achieved by fitting the energies of high-lying bound states or
the positions of zero-energy Feshbach resonances as a function
of applied field. However, in the early stages of investigating
a new ultracold mixture, approximate scattering lengths are
often obtained from experimental studies of interspecies
thermalization rates, which, in turn, depend on collision cross
sections.

It is often supposed that the rate of thermalization is
determined by the elastic cross section σel [1–3], which is
related to the differential cross section dσ/dω by

σel =
∫

dσ

dω
dω =

∫
dσ

dω
sin �d�, (1)

where � is the deflection angle in the center-of-mass frame.
However, collisions that cause only small deflections of the
collision partners contribute fully to the elastic cross section
but make very little contribution to kinetic-energy transfer and
thus to thermalization. The appropriate cross section that takes
this into account is the transport cross section σ (1)

η ,

σ (1)
η =

∫
dσ

dω
(1 − cos �) sin �d�, (2)

which has been used extensively in the context of transport
properties at higher temperatures [4,5]. It determines the binary
diffusion coefficient for a mixture and contributes to the shear
viscosity coefficient.

The relevance of σ (1)
η to thermalization of ultracold gases

has been pointed out by Anderlini and Guéry-Odelin [6] (who
call it σ̃ ), but no study of its behavior has been made for
the conditions relevant to thermalization of ultracold atoms
and molecules. The purpose of the present paper is to explore
the behavior of σ (1)

η and to compare it with σel for cold and
ultracold collisions. For this purpose, we will consider two

topical systems, LiYb and RbYb, for both of which there have
been recent studies of thermalization aimed at determining
scattering lengths [7–10]. σel and σ (1)

η are equivalent when
dσ/dω is isotropic, which is true both for classical hard-sphere
collisions and for quantum scattering at limitingly low energy
(in the s-wave regime). However, we will show that there
are significant differences between σel and σ (1)

η for realistic
potentials and that these should be taken into account when
using thermalization results to estimate scattering lengths,
particularly in the energy regime where s-wave and p-wave
collisions make comparable contributions. In addition, we will
show that, for systems of this type, the scattering properties of
low-L partial waves with L > 0 are almost universal functions
of the s-wave scattering length as and that the behavior of both
σel and σ (1)

η in the few-partial-wave regime can be predicted
from knowledge of as alone.

Expansion of the differential cross section allows an
alternative expression for σ (1)

η to be written in terms of
partial-wave phase shifts δL [6],

σ (1)
η = 2π

k2

∑
0�L�L′<∞

αL,L′ sin δL sin δL′ cos(δL − δL′), (3)

where E = �
2k2/2μ is the collision energy, μ is the reduced

mass, and

αL,L′=(2−δL,L′)(2L+1)(2L′ + 1)
∫ 1

−1
(1 − x)PL(x)PL′ (x),

which evaluates to αL,L = 4L + 2, αL,L+1 = −(4L + 4),
α = 0 otherwise. The equivalent expression for σel contains
only the terms with L = L′, so the difference between the two
cross sections takes the form of a set of interference terms
between partial waves with 	L = ±1, which may be either
positive or negative.

II. NUMERICAL RESULTS

Systems such as LiYb and RbYb, made up of an alkali-
metal atom (2S) and a closed-shell atom (1S), exhibit very
narrow Feshbach resonances due to coupling between the
alkali-metal hyperfine states due to the dependence of the
hyperfine coupling on the internuclear distance R [11–13].
However, these resonances have magnetic-field widths of
100 mG or less; collisions far from resonance can accurately
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FIG. 1. (Color online) LiYb cross sections. σel (solid lines) and σ (1)
η (dashed lines) for positive (black) and negative (red, gray) signs of the

scattering length for different values of the magnitude of the scattering length: (a) |as| = 8 Å, (b) |as| = ā = 19.3 Å, (c) |as| = 2ā = 38.6 Å,
and (d) |as| = 7.5ā = 145 Å.

be described by single-channel calculations that neglect both
electron and nuclear spins and are independent of the magnetic
field. In the present paper, we solve the single-channel
Schrödinger equation using the MOLSCAT package [14]. The
SBE postprocessor [15] is then used to calculate σ (1)

η from
S-matrix elements as described by Liu et al. [5]. We use
interaction potentials for LiYb [16] and RbYb [13] from
electronic structure calculations with a fixed long-range C6

coefficient and the short-range potential scaled by a factor λ

to adjust the s-wave scattering lengths as required.
For 6Li174Yb, recent thermalization experiments suggest

an s-wave scattering length of |as| ≈ 8 Å [7,8], but cannot
determine the sign in the low-temperature regime investi-
gated, where only s-wave scattering contributes. However, the
sign could be determined from thermalization measurements
at higher energies where higher partial waves contribute.
Figure 1(a) shows σel and σ (1)

η for as = ±8 Å: It may be
seen that the cross sections for positive and negative scattering
lengths deviate from one another substantially above 40 μK
and σel and σ (1)

η start to differ significantly in the same region.
Thus, measurements at temperatures high enough to determine
the sign of the scattering length should take into account the
difference between σel and σ (1)

η .
The remaining panels of Fig. 1 show analogous results for

other values of |as|, in order to illustrate the range of possible
behavior for other systems. These are chosen to be multiples
of the mean scattering length ā [17], which is 19.3 Å for
6Li174Yb. The corresponding energy scale is Ē = �

2/2μā2,
which is 11.2 mK here. It may be seen that, in most cases, σel

and σ (1)
η are reasonably similar at energies up to about 100 μK

(about 10−2Ē); this may be compared with the p-wave barrier

height of 2.8 mK. However, the difference between σel and
σ (1)

η begins at much lower energies (near 1 μK) for values of as

near +2ā. This occurs because angular-momentum-insensitive
quantum-defect theory (AQDT) predicts a p-wave shape
resonance close to zero collision energy when as = +2ā [18]
for a potential curve that behaves as −C6R

−6 at long range. The
resonance-enhanced p-wave scattering introduces interference
terms into Eq. (3) even at very low energy.

AQDT predicts that, in the absence of Feshbach resonances,
low-energy elastic scattering for all partial waves can be
described by a single parameter which is linked uniquely to
the ratio as/ā. Hence, any two systems which have the same
as/ā should have identical scattering properties in suitably
reduced units within a certain energy range around threshold.
Full details are given by Gao [19,20].

The relationship between scattering in different partial
waves is conveniently demonstrated by considering the re-
lationship between the s-wave scattering length and the
equivalent quantities for higher partial waves [20] (which are
no longer lengths but volumes or hypervolumes). For example,
the p-wave scattering volume ap is predicted by AQDT to be

ap

āp
= −2

[
1 + 1

as/ā − 2

]
, (4)

where āp is the mean p-wave scattering volume [20].
Figure 2(a) shows as and ap for LiYb, from quantum scattering
calculations on the realistic potential curves described above,
as the potential scaling factor λ is adjusted between 0.8 and 1.2.
Figure 2(b) shows ap as a function of as over the same range
of λ. It may be seen that ap is indeed a nearly single-valued
function of as as predicted by Eq. (4).
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FIG. 2. (Color online) (a) s-wave (black, left scale) and p-wave
(red, gray, right scale) scattering lengths and volumes across a wide
range of the potential scaling factor λ; (b) ap as a function of as,
showing that the different segments of the line in (a) lie on top of one
another.

To test the extent of the universal relationship, we have
carried out calculations of σel and σ (1)

η for RbYb and LiYb for
potentials scaled to give identical values of as/ā. The results
in reduced units are compared for the case of as = 1.05ā in
Fig. 3. According to AQDT, values of as slightly greater than

ā produce a d-wave shape resonance at low energy, and this
appears as a prominent feature for both species in Fig. 3. It
may be seen that deviations between σel and σ (1)

η are again
significant at collision energies above about 10−2Ē. However,
apart from small differences in resonance positions due to
the effects of potential terms other than −C6R

−6, the results
in reduced units are remarkably similar for LiYb and RbYb
up to energies around 400Ē, which is about 4 K for LiYb
and 100 mK for RbYb. Similar agreement was obtained for
other values of the scattering length. The calculations on full
potential curves may also be compared with the results of pure
AQDT [19,21], shown in black in Fig. 3.

The universality shown in Fig. 3 allows us to discuss RbYb
in terms of the LiYb results shown in Fig. 1, with appro-
priate scaling of energies and cross sections. The scattering
lengths for RbYb vary substantially with Rb and Yb isotopes
[9,10,13,22–24]. For 87RbYb, they range from a very small
value for 87Rb170Yb to a very large value for 87Rb174Yb, but
there are no Yb isotopes that have as values near ā.

Figure 4 shows σ (1)
η for RbYb as a function of the fractional

part {vD} of the quantum number at dissociation vD and the
energy in reduced units. Different values of vD were obtained
by scaling the potential of Ref. [13] as described above for
LiYb but could equivalently have been achieved by scaling the
reduced mass. The s-wave scattering length is related to vD by

as = ā

[
1 − tan

(
vD + 1

2

)
π

]
. (5)

It thus has a pole whenever vD is integer and is large and
positive when {vD} is small. Figure 4 thus shows large peaks
when {vD} is 0 or 1 and a trough when {vD} = 3

4 so that as = 0.
In addition, there are strong features due to shape resonances,
which sharpen and eventually become invisible as the energy
decreases. The ridge that points towards {vD} = 1

4 , as = 2ā at
low energy is due to a p-wave resonance, whereas the ones
that point towards {vD} = 1

2 , as = ā and {vD} = 3
4 , as = 0 are

due to d-wave and f -wave resonances, respectively. A series
of ridges due to shape resonances with higher partial waves
may also be seen at higher energies and can be followed up to
at least L = 9. Their positions closely follow the prediction of
AQDT, which is that, at zero energy, resonances with L � 4
occur at the same location as those with L − 4. Figure 4 would
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FIG. 3. (Color online) Comparison of σel (solid lines) and σ (1)
η (dashed lines) in reduced units with a scattering length of as = 1.05ā for

LiYb (red, light gray) and RbYb (blue, dark gray) (mostly indistinguishable except near resonances), compared with analytic AQDT (black)
results. The length and energy scaling factors ā and Ē are 19.3 Å and 11.2 mK for LiYb and 39.6 Å and 270 μK for RbYb.
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FIG. 4. (Color online) The cross section σ (1)
η for RbYb as a

function of the fractional part {vD} of the quantum number at
dissociation and the energy in reduced units. The energy scaling
factor Ē is 270 μK for RbYb. The spikes visible at the left-hand end
of some narrow ridges are artifacts of the finite grid used for plotting.

look very similar for any other single-channel system with a
potential of the form −C6R

−6 at long range.
The situation is somewhat more complicated for pairs

of alkali-metal atoms and other systems with extensive
Feshbach resonances. The overall magnitude of the differences
between σel and σ (1)

η is likely to be similar in such systems.
AQDT still applies usefully to the background scattering

(away from Feshbach resonances), and in such regions the
universal behavior of σel and σ (1)

η will still apply, at least at
relatively low energies. However, understanding the detailed
behavior, including resonant effects, requires coupled-channel
calculations using accurate potential curves.

Figure 5 compares calculations on RbCs at various mag-
netic fields B, using the interaction potential of Ref. [25]. In
a magnetic field, σ (1)

η is no longer given by Eq. (3), but it can
still be calculated simply from S-matrix elements [26]. At B =
500 G, the system is in a nonresonant region, and the scattering
length is close to its background value, as = abg ≈ 350 Å ≈
7.5ā; B = 313.82 G is in a region with numerous overlapping
resonances but where the scattering length is coincidentally
close to the background scattering length; and B = 355 G is
near a resonance but at a point where the scattering length is
small, as = 12 Å. Full coupled-channel calculations on pairs
of alkali-metal atoms in a magnetic field become prohibitively
expensive for large basis sets, so the coupled-channel results
are truncated at Lmax = 5. AQDT results for a single channel
with the background scattering length are also shown in Fig. 5.
In the nonresonant case, AQDT again gives excellent results
for both σel and σ (1)

η , similar to that seen for the single-channel
case with as = 7.5ā in Fig. 1(d). In the resonant case with the
same scattering length, the results are again similar, except for
a resonant feature that, in this case, occurs near 2Ē; here σ (1)

η

shows a characteristic peak and trough because the interference
terms in Eq. (3) pass through both positive and negative values
as one of the phases changes rapidly by π . Even when the
scattering length is resonantly shifted from its background
value, so that the limitingly low-energy scattering is different,
the cross sections rapidly approach the universal form from
the background channel once a few partial waves contribute.

III. SUMMARY AND CONCLUSIONS

The cross section that controls thermalization of gas
mixtures is the transport cross section σ (1)

η and not the elastic
cross section σel. We have investigated the behavior of both
these cross sections for the prototype systems LiYb and RbYb,
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FIG. 5. (Color online) Coupled-channel calculations of σel (solid lines) and σ (1)
η (dashed lines) for RbCs at various magnetic fields: 500 G

(nonresonant, red, light gray); 313.82 G (resonant but as = abg, blue, dark gray); 355 G (resonant, with as �= abg, green, lower gray lines),
compared with single-channel AQDT (black). The coupled-channel calculations are truncated at Lmax = 5. Fully converged AQDT results for
σel are shown as a black dotted line and are indistinguishable from the Lmax = 5 results except at the highest energies. The length and energy
scaling factors ā and Ē are 46 Å and 218 μK for RbCs.
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which are of current experimental interest. The two cross
sections are identical in the pure s-wave regime but differ
at higher energies when additional partial waves contribute
to the scattering. Measurements at such energies are often
desirable to determine the sign of the scattering length as well
as its magnitude. At energies high enough for the sign to
make a difference, σ (1)

η and σel are significantly different. The
differences can appear at very low energies when the s-wave
scattering length is close to +2ā, since then there is a p-wave
shape resonance close to threshold.

For more complex cases, such as pairs of alkali-metal
atoms, resonances may have a large effect on s-wave scatter-

ing, but the cross sections nevertheless approach the universal
form based on the background scattering length once several
partial waves contribute to the scattering. In this regime, the
distinction between σel and σ (1)

η is again significant.
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