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Motivated by recent experiments on biomimetic membranes exposed to several aqueous phases, we theoretically study the mor-
phology of a membrane in contact with a liquid droplet formed via aqueous phase separation. We concentrate on membranes with
negligible spontaneous curvature. At small droplet volume, bending energy dominates and the droplet is only partially wrapped
by the membrane. At large volume, this configuration can become unstable and undergo a discontinuous transition to a state,
in which the droplet is (almost) completely wrapped by the membrane. A morphology diagram, showing the parameter region
where such budding transition occurs, is constructed as a function of the membrane tension and the intrinsic contact angle of the
liquid with the membrane. The effects of spontaneous curvature are discussed qualitatively.

1 Introduction

Recently biomimetic membranes exposed to several aqueous
phases have been introduced experimentally1–4. They are
found to exhibit a number of interesting and surprising phe-
nomena, such as partial to complete wetting transitions1, bud-
ding2, and membrane tube formation3, which are not yet fully
understood. The origin of these diverse phenomena is the
competition between the bending rigidity of the membrane
and the interfacial tensions of the participating phases. Es-
sentially we are dealing with wetting phenomena on surfaces
which are flexible and can attain many different morphologies.

A particularly interesting process we shall focus on here
is droplet-induced budding which represents a morphologi-
cal transition from a state where the liquid droplet is partially
wrapped by the membrane to a state where the droplet is al-
most completely wrapped by the membrane. The resulting
bud is connected to the original membrane by a small neck, as
shown in Fig. 1.

Budding is an important and frequent cellular process. For
example, it represents an important step during endo- and ex-
ocytosis of all membranes. Endocytosis leads to the formation
of transport vesicles5, which allow communication and trans-
port of biomolecules between different organelles. Likewise,
budding also occurs during viral replication processes6. In
addition, there have been proposals for using synthetic mem-
branes for technological applications, e.g.7–9. In such a case,
it is often desirable to mimic real cellular processes, includ-
ing budding, as the modus operandi. This is a particularly
promising approach in the context of microfluidics, the minia-
turization of fluidic operations.
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Fig. 1 Droplet-induced budding transition: The membrane separates
the exterior aqueous phase γ from the two coexisting interior
aqueous phases α and β . The α droplet partially wets the
membrane.

Given the relevance of budding for biological and
biomimetic systems, it is important to understand its possi-
ble mechanisms. Budding can be induced by intramembrane
domains as first predicted theoretically10,11 and confirmed ex-
perimentally by optical microscopy12–16. The budding pro-
cess then depends on the elastic properties of the membrane
domains and on the line tension of the domain boundary. For
biological membranes, the domains may contain assemblies
of proteins,17,18 which are inserted into the membrane with a
prefered orientation and, thus, induce a spontaneous curvature
of the domain.

In this article, we consider a novel budding mechanism
where the driving force is the interfacial tension between the
aqueous phases, see Fig. 1. Droplet-induced budding is some-
what similar to the encapsulation of solid or rigid particles,
to which the membrane adheres19–21. However, in contrast
to such particles, the liquid droplets considered here change
their shape during the budding process. While such a bud-
ding phenomenon has been reported experimentally2, there is
no detailed theoretical analysis yet. It is our aim here to shed
light on this new budding mechanism. In particular, we ad-
dress the required recipes for budding to occur and whether
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Fig. 2 (a) Geometry of an axisymmetric α droplet. The coordinate
along the symmetry axis is denoted by z, the distance from this axis
by ρ , the arc length by s, and the local tilt angle by ψ . All these
variables depend on the contour parameter t. The contact line is
located at t = t1. The gray area corresponds to a spherical cap with
tangent angle θ . (b) Enlarged view close to the contact line:
Intrinsic contact angle θin between the two planes that are tangential
to the αβ interface and to the smoothly curved vesicle membrane,
respectively.

the transition is continuous or discontinuous. We shall focus
on the limiting, yet instructive, case, for which the bud size is
small compared to the original membrane area and the mem-
brane spontaneous curvature is negligible. Our calculations
show that for a sufficiently low membrane tension, there is
a critical droplet volume beyond which the partially wrapped
configuration is unstable and a bud is formed. How low the
membrane tension must be for a budding transition to occur
depends on the wetting properties of the liquid on the mem-
brane. This dependence can be summarized in a morphology
diagram. Finally, we discuss how the membrane spontaneous
curvature may modify the budding transition.

2 Theoretical Description.

The starting point of our calculation is the theory described
in22 for membranes and vesicles in contact with two aque-
ous phases. Here, we consider the geometry shown in Fig. 2.
The total energy E of the latter system has several contribu-
tions. First, it contains a term that depends on the volume of
the liquid droplet Vα and its pressure difference Pγα ≡ Pγ −Pα

with the exterior phase γ . The aqueous phase β is taken to be
much larger than the droplet α , which implies Pγ −Pβ = 0,
and the β phase volume contribution can be ignored. Second,
the αβ interface with area Aαβ and interfacial tension Σαβ , as
well as the two membrane segments with areas Aαγ and Aβγ

and membrane tensions Σαγ and Σβγ contribute three surface
terms. The membrane tensions Σαγ and Σβγ are mechanical
tensions that can be related to the anisotropic pressure tensor
across the membrane. Thus, the tension Σβγ is well-defined
and remains, in general, nonzero in the limit in which the two
aqueous phases β and γ become identical, see23. In princi-
ple, the contact line provides an energetic contribution pro-

portional to its length Lαβγ and to its line tension λ ,22 but for
simplicity we have neglected this contribution. Finally, the
vesicle energy contains the bending energies Ebe,i of the two
membrane segments, with i = α,β . The bending rigidity, the
mean curvature, and the spontaneous curvature of the mem-
brane are denoted by κ , M and m respectively. We further
assume that the bending rigidities and sponteneous curvatures
are the same in both membrane segments. The Gaussian cur-
vature term is neglected since we will not consider any topo-
logical change. Thus, the total energy has the form

E = ∑
i=α,β

∫
dAiγ

[
2κ(M−m)2 +Σiγ

]
+Σαβ Aαβ +PγαVα . (1)

As shown in Ref.22, the force balance along the contact line
is characterized by the intrinsic contact angle θin of the liquids
at the membrane which satisfies

Σβγ −Σαγ

Σαβ

= cosθin, (2)

and represents a hidden material property of the system. The
definition of the intrinsic contact angle is shown schematically
in Fig. 2(b). It represents the contact angle at the nanome-
ter scale between the αβ interface and the membrane sur-
face. Substituting Eq. (2) into (1) and defining the rescaled
areas Āiγ ≡ Aiγ(Σαβ /κ) and Āαβ ≡ Aαβ (Σαβ /κ), volume
V̄α ≡Vα(Σαβ /κ)3/2, membrane curvature M̄≡M(κ/Σαβ )1/2,
spontaneous curvature m̄ ≡ m(κ/Σαβ )1/2, pressure P̄γα ≡
Pγα(κ/Σ3

αβ
)1/2, and membrane tension Σ̄iγ ≡Σiγ/Σαβ , we ob-

tain the rescaled energy

Ē ≡ E/κ = ∑
i=α,β

∫
dĀiγ 2(M̄− m̄)2 + cosθinĀαγ + Σ̄βγ Āme

+ Āαβ + P̄γαV̄α , (3)

where Āme = Āαγ + Āβγ is the rescaled total membrane area.
We consider axisymmetric shapes which we calculate using

the same procedure as in11,22. We choose the symmetry axis
to be the z-axis. The distance from this axis will be denoted
by ρ . The vesicle shape is then uniquely described by its one-
dimensional contour (z(t),ρ(t)), as shown in Fig. 2(a). The
parameter t is the contour parameter, which varies over two
fixed intervals: t0 = 0 ≤ t ≤ t1 and t1 ≤ t ≤ t2, corresponding
to the two membrane segments Āαγ and Āβγ . Here t1 is the
position of the contact line, and we will focus on the limit of
large t2, and thus large Āβγ . Two additional quantities that play
an important role in the theory are the arc length s(t) and the
tilt angle ψ(t). Using this parameterization, the total energy Ē
of the vesicle can be written as

Ē
2π

= ∑
i=α,β

∫
dtLi +

1
3

R̄2
αβ

(1− cos3
θ) (4)
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where the tangent angle θ corresponds to the angle between
the αβ interface and the horizontal plane, see Fig. 2(a), the
rescaled curvature radius R̄αβ is determined by the Laplace
equation P̄γα =−2/R̄αβ , and the Lagrange functions

Li ≡ 1
2

ρs′
(

ψ ′

s′
+

sinψ

ρ
−2m̄

)2

+ Σ̄iγ ρs′

+
1
2

P̄γi ρ
2s′ sinψ +ϒ(ρ ′− s′ cosψ). (5)

The Lagrange multiplier ϒ is used to ensure the geometrical
relation ρ ′ = s′ cosψ . The primes correspond to derivatives
with respect to contour parameter t.

The first variation of the energy Ē along the membrane sur-
face leads to the following Euler-Lagrange or shape equations

ψ̈ = cosψ sinψ

ρ2 − ψ̇

ρ
cosψ + P̄γi

2 ρ cosψ + ϒ

ρ
sinψ,

ϒ̇ = 1
2 (ψ̇ −2m̄)2− sin2 ψ

2ρ2 + Σ̄iγ + P̄γiρ sinψ, (6)

ρ̇ = cosψ,

while its first variation along the contact line leads to the
boundary conditions

ψ̇(s1)β = ψ̇(s1)α , ψ̈(s1)β − ψ̈(s1)α = sinθin, (7)

with the intrinsic contact angle θin as given by Eq. (2). The
overdots now denote derivatives with respect to the arc length
s, rather than the contour parameter t. Furthermore, we impose
the condition that the membrane is essentially flat for large t2.
In practice, this is done by imposing |ψ| = |ψ̇| = |ψ̈| < ε at
finite, but very large t2. We typically choose ε to be of order
10−2 and t2 to be of order one million of the discretization
steps. These differential equations are then solved using the
standard fourth order Runge-Kutta method24.

3 The budding transition.

In this paper, we concentrate mainly on membranes with neg-
ligible sponatenous curvature, m̄ = 0. In this case, the mor-
phology of the system is determined by three independent di-
mensionless parameters: the intrinsic contact angle θin, the
membrane tension Σ̄βγ and the droplet volume V̄α . We note
that generally the membrane tensions Σ̄αγ 6= Σ̄βγ . They are re-
lated by the equation for the intrinsic contact angle, Eq. (2).
The effects of non-zero spontaneous curvature will be briefly
discussed in section 6.

Fig. 3(a) shows the typical energy curve as a function of
volume for a given intrinsic contact angle and (low) membrane
tension. As a representative example, we have taken θin = 45◦.
In the calculations, we have also used a flat membrane with
no liquid droplet as the reference surface. As mentioned, we

consider the limit in which the area of this reference surface
becomes large. Thus the energies shown in Fig. 3 are the de-
viations from the energy of this flat reference surface. Initially
when the liquid volume is small, bending energies dominate
and the membrane bends very weakly, see Fig. 3(e). The
system thus behaves in a similar fashion to the usual wetting
geometry. With increasing liquid volume, the interfacial en-
ergies become more important and compete with the bending
terms. A rather useful naive concept to have in mind is that
the interfacial energy terms scale as the square of the length
scale, while the bending term has no explicit length scale de-
pendence. At higher volume, as shown in Fig. 3(f), while
the membrane is highly deformed, the system is still in the
partially wrapped configuration. This remains the case until
a certain critical volume V̄ ∗

1 above which it becomes unsta-
ble and assumes the completely wrapped configuration (Fig.
3(g)). From here on, increasing the liquid volume further in-
creases the size of the spherical bud and at the same time re-
duces the size of the neck (Fig. 3(h)).

It is important to realize that the partially and completely
wrapped configurations may coexist over a range of volumes.
As a result, the budding transition described above exhibits
a hysteretic behaviour. The threshold volume at which the
morphological instability occurs depends on whether we are
increasing (V̄ ∗

1 ) or decreasing (V̄ ∗
2 ) the liquid volume. Be-

tween V̄ ∗
1 and V̄ ∗

2 , there is an energy barrier for a morpho-
logical transition between partially and completely wrapped
configurations. In this volume range, the shape equations (6)
and (7) have three solutions. The two lower energy configura-
tions correspond to partially and completely wrapped config-
urations, while the third provides the energy barrier. The latter
is plotted as dotted lines in Fig. 3.

Increasing the membrane tension, Fig. 3(b), we find that it
becomes harder to bend the membrane. Thus, the budding
transition occurs at a higher droplet volume. Furthermore,
the volume range, for which both the partially and completely
wrapped configurations coexist, increases with increasing ten-
sion. In fact, if we increase the membrane tension even further,
Figs. 3(c-d), we find that the two configurations effectively
always coexist. In Fig. 3(c), the completely wrapped configu-
ration eventually becomes the global minimum configuration
for large volumes. In contrast, the partially wrapped configu-
ration represents the state of lowest energy for all volumes in
Fig. 3(d).

4 Morphology diagram.

The behaviour described in the previous section is, in fact,
typical for all values of the intrinsic contact angle. Thus, we
may construct a morphology diagram as a function of intrin-
sic contact angle and membrane tension. As shown in Fig.
4, there are two regimes: (I) a low tension regime, in which
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Fig. 3 Total energy of the system as a function of the droplet
volume for various membrane tensions. At low tensions (a-b), the
partially wrapped droplet (full lines) become unstable when the
droplet volume V̄ exceeds the threshold volume V̄ ∗

1 , whereas the
completely wrapped droplet (dashed lines) becomes unstable for
V̄ ≤ V̄ ∗

2 . The dotted lines correspond to energy barriers. In (c), the
completely wrapped configuration is only slightly more preferable
to the partially wrapped. Thus, both configurations can coexist over
a wide range of droplet volume. At large membrane tensions (d), the
partially wrapped configuration always has a lower energy.
Nonetheless, the completely wrapped configuration is still
metastable. (e-g) Typical morphologies with increasing droplet
volume.

the completely and partially wrapped configurations represent
the state of lowest energy for large and small volumes, respec-
tively; and (II) a high tension regime, in which the partially
wrapped configuration is the state of lowest energy for all vol-
umes. The wetting properties of the liquids on the membrane
play an important role. For smaller contact angles θin, the
liquid droplet wants to increase its contact area with the mem-
brane, which favors the budded state. Therefore for smaller
θin, the budding transition occurs over a larger range of mem-
brane tension.

We also note that, close to the boundary between regimes
(I) and (II), it can be rather difficult to decide numerically if
a budding transition is present. A typical example is provided
by Fig. 3(d). Both the partially and completely wrapped con-

Fig. 4 Morphology diagram as a function of membrane tension Σ̄βγ

and intrinsic contact angle θin with two distinct regimes: high and
low tension regimes. The data points correspond to the full
numerical solutions: circles indicate the occurance of budding
transitions and crosses the absence of budding transitions. We also
compare the numerical results with the simple prediction (10),
which is based on the spherical cap approximation.

figurations are metastable over a wide range of droplet vol-
umes, with the former having a lower energy than the latter
within the computed volume range. It is, however, conceiv-
able that if the completely wrapped configuration will become
the state of lowest energy at an even larger droplet volume. In
such a case, we compute the energy gradient dĒ/dV̄ for the
two morphologies. If this gradient is larger for the completely
wrapped configuration in the limit of large droplet volumes,
then we conclude that the system will not exhibit a budding
transition.

5 Spherical cap approximation.

We shall now argue that a simple, spherical cap approxima-
tion as in Ref.10 may be used to estimate the boundary be-
tween the two tension regimes shown in Fig. 4. Such an es-
timate is rather useful since the full numerical solutions are
time consuming to calculate. The spherical cap approxima-
tion is based on the assumption that the contributions from the
interfacial terms dominate the bending terms when the vol-
ume of the droplet is large. This reflects the fact that the two
energetic contributions scale differently with size. When this
approximation is valid, the global shape of the system can be
simply determined by considering the force balance of the in-
terfacial tension with the membrane tensions. This is anal-
ogous to Neumann’s triangle for the force balance between
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Fig. 5 Comparison of shapes as obtained from the full numerical
solutions and from the spherical cap approximations for θin = 45◦.
The latter approximation breaks down at low membrane tension, but
is accurate for high tension. The definitions of the tensions and
effective angles are also shown.

capillary surfaces25. The resulting effective angles θα , θβ and
θγ , defined in Fig. 5, are given by

cosθi =
Σ2

jk −Σ2
i j −Σ2

ik

2Σi jΣik
(8)

with i, j,k = α,β ,γ and i 6= j 6= k, compare also to Ref.3,22.
The sum of the effective angles is equal to 2π . In contrast to
capillary surfaces, for which Neumann’s triangle applies, the
membrane tensions, as well as the effective contact angles, do
not represent material parameters; in contrast to the intrinsic
contact angle as we have shown in22. However, the three ten-
sions are related via the relation for the intrinsic contact angle,
Eq. (2).

In Fig. 5, we compare some shapes as obtained from the
spherical cap approximations with the full numerical solu-
tions. At high membrane tensions, the spherical cap model
predicts the partially wrapped configuration well, see Fig.
5(a). At lower membrane tensions, close to the boundary in
the morphology diagram, the spherical cap approximation be-
comes less accurate, compare Fig. 5(b), and it may give a so-
lution corresponding to a partially wrapped configuration even
when such a solution no longer exists for the original differ-
ential equations described in section 2, see Fig. 5(c). Finally,
at very low tensions, the spherical cap approximation does not
have a solution anymore, as in Fig. 5(d). Using the force bal-
ance at the contact line, the solution is lost when

Σαγ +Σβγ < Σαβ (9)

which implies

Σβγ

Σαβ

= Σ̄βγ <
1+ cosθin

2
. (10)

Fig. 6 Evolution of membrane shape with increasing droplet volume
for spontaneous curvature m = 5

√
Σαβ /κ , vanishing membrane

tension Σ̄βγ , and intrinsic contact angle θin = 45◦. The spontaneous
curvature leads to nonspherical, tube-like membrane shapes.

This restriction does not exist in the full numerical solutions
because the bending terms can compensate the force imbal-
ance between the interfacial and membrane tensions. This
importance of bending terms in the limit of infinite droplet
volume implies a small contact line radius, which is consis-
tent with a droplet in the completely wrapped configuration.
Therefore, the inequality (10) represents a criterion for the
possible existence of a completely wrapped state, and thus of a
budding transition. The limiting case of relation (10) as given
by Σ̄βγ = (1+cosθin)/2 corresponds to the dashed line in the
morphology diagram, Fig. 4. Inspection of Fig. 4 shows that
this line as obtained from the spherical cap approximation pro-
vides a rather good estimate for the boundary between the low
and high tension regimes as determined by the full numerical
solution. Compared to the full numerical solutions, the spher-
ical cap approximation always predicts that the budding tran-
sition is lost at a lower membrane tension for a given intrinsic
contact angle.

In this study, we have ignored thermally excited undula-
tions, which can be justified as follows. For a membrane ten-
sion of the order of Σαβ , the longest wavelength of these un-
dulations is about (κ/Σαβ )1/2. Using the typical experimen-
tal values22, Σαβ ∼ 10−19 J/m2 and κ ∼ 10−5 J, one obtains
(κ/Σαβ )1/2 ' 100nm, which is well below optical resolution.
Furthermore, the area stored in these undulations is of the or-
der of kBT

8πκ
ln

[
κ/Σαβ

l2
me

]
times the membrane area,10 where lme

is the small wavelength cut-off of the order of the membrane
thickness. For κ ' 10−20 kBT at room temperature, the area
fraction stored in thermally excited undulations is less than
1-2 percents.

6 Spontaneous curvature.

So far, we have only considered the case where the membrane
spontaneous curvature has a negligible effect. In this section,
we shall briefly discuss the influence of the sponteneous cur-
vature on the budding transition shown in Fig. 1. For small
membrane tensions, this transition increases the bending en-
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ergy of the membrane by about 8πκ , and decreases the interfa-
cial energy by about ΣαβV 2/3

α . The budding transition occurs
when these two energies are comparable, i.e. for droplet size
V 1/3

α ∼ (κ/Σαβ )1/2 ' 100 nm. The spontaneous curvature m
should affect the budding transition when 1/m . (κ/Σαβ )1/2.

This expectation is confirmed by our preliminary calcu-
lations, see Fig. 6. Indeed, for m > (Σαβ /κ)1/2, the re-
sulting bud no longer has a spherical shape, but a tube-like
structure. In fact, we find a variety of solutions to the dif-
ferential equations presented in section 2. Detailed analysis
on the global minimum configuration for a given liquid vol-
ume is outside the scope of this paper and will be presented
elsewhere. Nonetheless, it is interesting to note that we find
tube-like membrane structures even in the absence of exter-
nal pulling forces, as in Ref.3. The tubes are initiated by the
minimization of the interfacial area Aαβ of the aqueous phases
and their narrow structures are maintained by the spontaneous
curvature of the membrane.

7 Conclusions.

In summary, partial wetting of membranes by liquid droplets
leads to a new budding mechanism which is governed by the
competition between bending and surface energies. Budding
can be induced by increasing the volume of the liquid droplet,
decreasing the membrane tension, and/or lowering the intrin-
sic contact angle of the droplet at the membrane. Upon per-
forming one of these changes, the membrane becomes more
strongly bent until it undergoes a discontinuous transition to a
completely wrapped configuration.

Our theoretical results are accessible to experimental stud-
ies. One example is provided by micropipette experiments, in
which the budding transition may be induced by varying the
membrane tension. Alternatively, by deflating the vesicles, a
number of relevant parameters such as droplets volume, mem-
brane tension and intrinsic contact angle can be altered at the
same time to induce budding.

In the experiments performed so far on these systems,
the sizes of the two liquid compartments were comparable,
whereas in our calculations, one phase is much larger than the
other. It will be of great interest to extend our study and in-
clude finite size effects arising from the finite volume of the β

phase. We expect that global constraints act to suppress bud-
ding and only small buds will be possible. In this sense, the
droplet-induced budding mechanism considered in this paper
represents an important limiting behaviour. Other future ar-
eas of interest include a detailed analysis of the effects arising
from sponatenous curvature, and the influence of the wetting
properties on the neck structure of the buds.
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