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Abstract 

The oxidative ratio (OR) is the amount of CO2 sequestered in the terrestrial biosphere for 

each mol of O2 produced. The OR governs the efficiency of a terrestrial biome’s O2 

production and it has been used to calculate the balance of terrestrial and oceanic carbon 

sinks across the globe. However, the value used in carbon cycle calculations comes from 

only one study of one environment. Here we perform a meta-analysis of studies of soil 

organic matter and vegetation composition to calculate the first global ecosystem OR value. 

We use data from 138 samples across 31 studies covering 9 USDA global soil orders, 7 

global biomes and 5 continents and combine this information as a weighted average based 

upon biome land area or organic carbon content of the soil order. Organic matter fractions 

could not be shown to be reliable proxies for whole soil or vegetation OR. The resulting 

analysis suggests that although the presently used value of 1.1 is within the range of natural 

occurrence, it is likely not the most accurate choice, representing between the 97th and 99th 

percentile value. Our study yields a global terrestrial  OR = 1.034 ± 0.032. This value of OR 

means that the sink of anthropogenic carbon fluxes to land has been underestimated (and 

the sink to the ocean overestimated) by up to 14%.  Recalculating with our OR value, the 

fossil fuel carbon flux to land is 1.48 ± 0.06 Gt C/yr and flux to oceans is 2.02 ± 0.05 Gt C/yr.  
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Introduction 

To estimate the relative global sinks of carbon it has become common practise to consider 

the relative changes of oxygen (O2) and carbon dioxide (CO2) concentrations in the 

atmosphere. This approach was first proposed by Keeling and Shertz (1992) and has 

subsequently been used to refine estimates of terrestrial and oceanic carbon sinks of fossil 

fuel emissions (Keeling et al., 1996). The approach of Battle et al. (2000) uses the following 

formula: 

 

     (i) 

 

  (ii) 

 

Where: fx= the annual flux of CO2 (Gt C/yr) with x= land, ocean, fuel or cement; (O2/N2) = the 

molar ratio of atmospheric O2 and N2.  We take the sign convention that negative is loss to 

the atmosphere, i.e. fland and focean should both be positive. The constants in equations (i) and 

(ii) above are in the form as stated by Battle et al. (2000) except we have expanded certain 

constants to show where they derived from and where the OR term appears. In equations (i) 

and (ii) 1.43 is the “combustion stoichiometry”; 1.1 is given the name "photosynthetic 

stoichiometry”; 0.471 the conversion factor for Gt C to ppm CO2; and 4.8 converts ppm to 

per meg. The photosynthetic stoichiometry is also known as the oxidative ratio (OR) and 

represents the ratio of moles of O2 produced per mole CO2 sequestered by the terrestrial 

biosphere – it is also known as B in the calculation of the atmospheric potential oxygen 

(APO – Stephens et al., (1998)).   

Within the approach represented by equations (i) and (ii), the rate of change of (O2/N2) 

is estimated from observations of global atmospheric concentrations (Battle et al., 2000). 
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The flux from fossil fuels can be estimated from and was initially considered to have the 

largest source of error (Battle et al., 2000); however, it is also possible that there is variation 

in the OR term. Variation in the OR term can cause substantial variation in sink size 

calculations, but the value used for OR has received little scrutiny to date. The source of the 

value of 1.1 dates to the origins of the methodology, where the value of 1.1 was based on a 

study of the Biosphere 2 experiment (Severinghaus, 1995). This work did list a range of OR 

values based on literature, although no whole soil values were used, and the final estimate 

of OR was based on their own measurements in Biosphere 2. A range of studies (e.g. 

Langenfelds et al., 1999) have used single OR values instead of considering the breadth of 

ecosystem possibilities, and the results of this approach have been applied to global records 

(e.g. Battle et al., 2000), including the IPCC fourth assessment report (IPCC, 2007).   

It is easy to demonstrate that changes in the value of OR can have consequences for 

the estimation of the terrestrial and oceanic carbon sinks: taking all values in equations (i) 

and (ii) to be as those stated by Battle et al (2000) and varying only OR shows that a 0.1 

decrease in OR leads to 0.14 Gt C/yr change in f land. When fland is estimated as 1.4 ± 0.8 Gt 

C/yr, then an approximate 10% variation in the estimate of the OR value leads to a 10% 

change in the value of fland (Figure 1). Similarly, a 0.1 decrease in OR leads to 8% change in 

the estimate of focean (Figure 2).   

The question arises whether a value of 1.1 for the global OR is appropriate.  When OR 

is measured for individual ecosystems, values are rarely 1.1 and are not time-constant (e.g. 

Stephens et al., 2007; Gallagher et al., in review; Hockaday et al., in review).  However, it is 

not possible to extract a globally-meaningful value from any one ecosystem study.  To 

address this, we examine the global literature for terrestrial organic matter to determine the 

OR of the terrestrial biosphere’s organic carbon and conduct a weighted analysis to 

determine the likelihood that 1.1 is the correct global value.  

 

Approach & Methodology 
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Masiello et al. (2008) have shown that an OR value can be calculated from the elemental 

composition of terrestrial organic matter. In this study we combine new field data of the 

elemental composition of soils with literature values of elemental composition from soils and 

vegetation across the globe to provide the first global assessment of OR. 

A value of OR can be calculated from a carbon oxidation state (Cox), which  can be 

determined  from the elemental composition of organic matter as follows (Masiello et al. 

(2008): 

 

  (iii) 

 

Where: [X] = molar concentration of C, H, N or O. The OR value is the calculated as: 

 

   (iv) 

 

Equation (iii) assumes that there is no contribution to the Cox from S or P, and it has been 

shown that the error in the OR of making such an assumption would be only ± 0.0002 , 

which is negligible compared to instrumental error (Hockaday et al., 2009). This error was 

added to the final calculation made in this study. Equation (iv) assumes that the ultimate 

source of N to each ecosystem is N2: we considered this to be the most appropriate 

approach, because in addition to accurately representing the OR of ecosystems not 

receiving external fixed N, it also produces OR values very close to those calculated for 

ecosystems receiving the majority of their N in the form of NH4NO3 (e.g. agriculture) 

(Masiello et al., 2008). In the majority of cases the OR error of the N2 assumption would be 

not more than 0.008 (Hockaday et al., 2009) – again we take this maximum error into 

account. 
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We reviewed the literature from 1975 to 2010, considering data if, and only if, they met 

the following criteria: 

i) They were for whole soils or vegetation – humic or fulvic extracts were considered 

separately and compared to results for whole soils in case they could be used to 

boost samples sizes.  

ii) Only soils from the topmost horizon or within 30 cm of the surface were considered – 

we assumed that deeper soils would be of less importance in considering recent 

exchanges of carbon with the atmosphere. 

iii) Authors measured C, H, N and O concentrations – for reasons discussed below and 

for reasons of developing a suitable size of dataset we considered this the minimum 

data while if we had considered CHNOS data then the dataset would have been 

unacceptably small. 

iv) The soils or vegetation could be clearly associated with a location and one of the soil 

or vegetation types listed below. 

v) All data was derived from elemental analysis – we did not recalculate data from NMR 

analyses or from bomb calorimetry although we did accept values of Cox from such 

methods wherever they had already been calculated as OR. 

All the literature reviewed not cited directly in this text is listed in the Supplementary Material. 

The data from literature was supplemented with data of the CHNO analysis of peat soils at 

Moor House in northern England. The Moor House catchment is covered with 

ombogotrophic peat with a median depth of 2m (Clay et al., 2010). Within this catchment we 

took 6 cores from 6 different management types and sampled the peat at 2 cm increments to 

30 cm depth. These peat soil samples were dried to 105°C and the CHNO concentration 

measured in a Costech ECS 4010 elemental analyser. These cores were taken not only to 

enhance the amount and breadth of data available to this study but also to assess the error 
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structure of OR data, i.e. assess the relative size of the sampling and measurement variance 

in a large dataset.  

An examination of the literature showed that whilst there were relatively few studies that 

considered whole soil measurement, there were a larger number of studies that analysed 

some component of terrestrial organic matter, e.g. humic acid. Because of the relative 

availability of data for humic acids, fulvic acids, and dissolved organic carbon, these 

components were considered in comparison to the whole soil data in order to test whether 

this type of data could be used to extend the available information. 

To estimate a global value of OR, we combined the available data for soils and 

vegetation using a stochastic weighted average. This stochastic weighted approach allowed 

us to consider multiple sources of error and variation in both the measured and calculated 

OR values as well as the errors in the estimates of weighting factors. We classified soils data 

into the USDA soil taxonomy orders (e.g. Inceptisols) except that we assumed that Gellisols 

were equivalent to Histosols, i.e. we considered 10 soil orders, not all 11 in the USDA 

taxonomy. We calculated the median and the reported range of the OR of each soil order 

wherever possible. Where that was not possible, we used the value for the median of all soil 

OR values and the maximum reported range of the measured OR. This conservative 

approach assumes nothing about the underlying distributions, given the size of the datasets 

when divided into soil orders. Instead of using the area of each soil order, we used the 

estimated organic carbon content of the soil orders (Eswaran et al., 1993), as this better 

reflects the larger terrestrial carbon stores in soils such as Histosols. The estimates of the 

organic carbon stored in each soil order are stated with an error range, and this range is 

used as the spread of the weightings within the weighted average. We then calculated the 

global soil OR as a stochastic combination of 100 randomly sampled OR values and biome 

areas from within the observed and defined ranges, assuming a uniform distribution within 

that range. 
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In a similar manner we considered the vegetation data as a stochastic weighted average 

where we classified data into one of 16 global biomes (Olden et al., 2001) and calculated 

their median and range. The organic carbon content of the 16 global biomes was not 

available, and so the weightings were taken as the estimate and error in the estimate of the 

areal extent of each biome (Loveland and Belward, 1997). We then calculated the global 

vegetation OR as a stochastic combination of 100 randomly sampled OR values and biome 

areas, as for the global soil OR estimate. 

An estimate of the global OR of the terrestrial biosphere was then calculated using two 

approaches. In our first, the simplest approach, we made no attempt to correct for carbon 

pool residence time:  we simply calculated a pool-weighted global OR average.  In our 

second approach we attempted a basic weighting for carbon pool residence time. 

 First, the estimates of the global soil OR was taken as: 

 

 (v) 

 

Where:  = the oxidative ratio of the global terrestrial biosphere;  = the 

oxidative ratio of the global soils;  = the oxidative ratio of the global 

vegetation;  = the proportion of the terrestrial biosphere C reservoir that is found in 

soils; and  = the proportion of the terrestrial biosphere C reservoir that is found in 

vegetation. The value of  was the then calculated, as above, as a stochastic 

combination of the values themselves calculated stochastically as the median of 100 random 

selections from the ranges of OR and P values where:  = 0.28 and  =0.72 

(Eswaran et al., 1993; Olson et al., 2001). 



8 

 

In our second approach, we allowed for the fact that C turnover in the vegetation 

reservoir is faster than in the soil reservoir, and therefore the  would be expected 

to be of greater importance than the size of the reservoir would suggest. 

Therefore,   is: 

 

 (vi) 

 

Where:  = the proportion of the terrestrial biosphere C annual flux that is due to soils; 

and  = the proportion of the terrestrial biosphere C annual flux that is due to 

vegetation. We estimated the annual flux from the soils or vegetation as the size of reservoir 

divided by the average residence time. The average carbon residence time for soils is taken 

as between 20 and 40 years and 2 – 5 years for vegetation (e.g. Gaudinski et al, 2000).  We 

recognize that the OR of soil fluxes and soil pools may not be identical (just as the carbon 

isotopic values of the bulk soil carbon pool rarely match the carbon isotopic values of the soil 

CO2 flux).  However, we must start with the assumption of equivalence between soil OR flux 

values and OR pool values because no data yet exist comparing soil pool and flux OR 

values.  The value of  was then calculated, as above, as a stochastic combination of 

the values themselves calculated stochastically as the median of 100 random selections 

from the ranges of OR and f values: on this basis    = 0.27 and  = 0.73. The 

implications of the new estimate of the   are calculated through equations (i) and (ii). 

 

Results 

The cores at Moor House gave a range of OR values between 0.92 and 1.08 (n=60, Fig 3). 

The ANOVA of the OR values shows that there was no significant change with depth, but 
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there was a significant change between sampled cores: the standard deviation in OR across 

the whole dataset was 0.034. 

A total of 39 studies gave rise to a dataset of 99 OR values, that covered 10 of the 11 

soil orders (Ultisols were not represented and Gellisols were counted as Histosols) and 

covered the following continents: Asia, North America, South America, Europe and Australia 

but not Africa or Antarctica (Table 1, Fig 3). 

This distribution of data suggests that 1.1 is an overestimate for  . Further, given 

this distribution of the data, a value of 1.1 would represent the 83th percentile. Given the 

stochastic weighted average after 100 random selections the median value is   = 

1.055 ± 0.023, where the error is given as the inter-quartile range - given this data 

distribution, the value of 1.1 would represent the 99th percentile. We have assumed that the 

outcome is not biased by the larger number of data for Histosols in comparison to other soils 

orders by using a weighted average of the data as divided into the USDA soil orders. 

Equally, most data are still focused near values of 1.05, with or without weighting (Fig. 3). 

The median of all vegetation data was 1.02 and a value of 1.1 would be the 98 th 

percentile in this distribution. By weighted average this comes to  = 1.03 interquartile 

range of 0.02.  

The ranges of OR for humic acids, fulvic acids and dissolved organic matter are given in 

Table 3. By using ANOVA it was possible to test between the distribution of OR values for 

soils, vegetation, humic acids, fulvic acids and dissolved organic matter and then use post 

hoc testing to assess whether significant differences exist between types of organic matter. 

The post hoc comparisons show that soils OR values were significantly different at p > 0.99 

from all other organic matter types that could be considered (Table 4). Only two comparisons 

suggested a significant similarity and that was between vegetation and humic acid OR 

values and between fulvic acids and dissolved organic matter. However, the nature of the 

data and studies available to us meant that we could not make more direct comparisons as 
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there were no studies where vegetation, soil, soil organic matter fractions and dissolved 

organic matter were all analysed from the same location. This ANOVA provides no evidence 

that other types of terrestrial organic matter could be a reliable proxy for whole soil OR 

values. 

The first approach for calculating   (Equation (v)) gives a value of 1.046 with an 

inter-quartile range (IQR) of 0.012, given assumptions regarding the N cycle and the S and P 

content of organic matter, this gives a value of 1.046 ± 0.029. Given equations (i) and (ii) and 

leaving all other terms as given in Battle et al. (2000) then fland = 1.47 ± 0.04 Gt C/yr and 

focean = 2.03 ± 0.04 Gt C/yr, i.e. values of the OR presently being used are underestimating 

these fluxes by between 14 and 5% respectively. For the second approach to calculating 

  (Equation (vi)) gives an OR value of 1.028 with an IQR of 0.015, given assumptions 

regarding the N cycle and the S and P content of organic matter, this gives a value of 1.034 

± 0.032. As above, applying this new value to equations (i) and (ii) and leaving all other 

terms as given then fland = 1.48 ± 0.06 Gt C/yr and focean = 2.02 ± 0.05 Gt C/yr, i.e. values of 

the OR presently being used are generating values for these fluxes that are in error by 6% 

respectively.  

 

Discussion 

The value calculated here is clearly not a perfect representation of  global OR; however, 

it is the first to attempt to calculate a truly global OR value to replace the single-environment 

value that has been previously used (e.g. Langenfelds et al., 1999). This study covers a 

range of biomes and soil types, and shows that the presently used value of OR is unlikely to 

represent global conditions (indeed the original study (Severinghaus, 1995) never intended 

its measured value to be applied globally). Our work highlights where at a global scale we 

know very little about OR and so highlights targets for future sampling. Table 1 shows that 

we found no studies of Ultisols from which we could calculate an OR value and only 1 each 
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for Aridisols, Entisols and Oxisols. For global biomes (Table 2) there were four vegetative 

biomes where we found no information (closed and open shrublands, savannas and 

permanent wetlands), while we noted that information was available for 5 continents but 

none for Africa or Antarctica. Furthermore, we have used land area of biome or the organic 

carbon content of a soil order to weight the measured values of OR. Such an approach as 

used by this study implies that the difference between biomes or between soil orders is a 

dominant control upon OR – there is currently no evidence to either prove or disprove such 

an approach. Alternatively, the OR of a soil order maybe controlled by its management, 

climate, vegetation or both. None of these factors are entirely independent of soil order but, 

for example, in the UK there are peat soils (Histosols) that are presently being used for row-

crop agriculture, forestry and sheep production.  Further, the UK has peat soils that in a 

natural condition are forming under both sphagnum mosses and sedges. This wide diversity 

of use and formation maybe the dominant control upon ecosystem OR. If we understand 

what controls the OR of the terrestrial biosphere then we can assess better the   by 

recourse to the correct databases.  

Furthermore, better constraints on the OR and Cox of a range of ecosystems is likely to 

provide useful information for C cycle management. Initial observations suggest that Cox is 

linked to the decomposability of organic matter, with more oxidized organic carbon 

decomposing more rapidly (Kleber, 2010). This is plausible, because Cox reflects the 

demand for O2 in organic matter oxidation, with more reduced compounds demanding more 

O2.  Although the atmosphere is not oxygen-limited, soils and marine sediments can be, and 

oxygen exposure time has been linked to organic carbon preservation in marine sediments  

(Hartnett et al., 1998).  For terrestrial organic matter, litter bag experiments have shown that 

the fraction of terrestrial organic matter remaining after decomposition is more reduced than 

the initial biomass (Baldock et al., 2004). 

Furthermore, if OR can be shown to differ significantly between types of environment 

then it becomes possible to target environments that would be more efficient at impacting 
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upon global atmospheres than others, i.e. those having a significantly lower OR. Two 

environments may have similar CO2 sequestration but differ in their OR, and therefore differ 

in the impact of that sequestration upon the atmosphere, i.e. how much they affect the mole 

fraction of CO2 in the atmosphere. 

This study is entirely about the value of OR for the organic matter of the terrestrial 

biosphere at equilibrium and we have assumed that all samples represent their specific soil 

or biome at equilibrium. It has been shown that a cumulative decrease in the OR of net 

primary production (NPP) by 0.01 over a period of 100 years would create an O2 

disequilibrium of 0.0017 and require an increased land carbon sink of 0.1 Gt C/yr to balance 

global atmospheric O2 and CO2 budgets (Randerson et al., 2006). Disequilibria could be 

caused by a range of processes in the terrestrial biosphere (e.g. land use change, increased 

atmospheric CO2, hydrologic cycle variations). At present, a disequilibrium in OR has yet to 

be demonstrated in the field, but it would be surprising if it did not exist given that we know 

that many land use changes, for example, cause large shifts in the total organic carbon 

content (e.g. deforestation – Achard et al., 2000). 

The value of   found by this study suggests that the global terrestrial carbon 

sinks are larger than previously expected. This may mean that other estimates of the 

terrestrial carbon sink size needs to be examined, e.g. that from C isotopes (e.g. Battle et al., 

2000).  However, it should be noticed that if this study is performing the first ever global 

assessment of OR in equation (i) then it might also be timely to consider changes in the 

value of the 1.43 constant (the combustion stoichiometry) not because the composition of 

any fossil fuel has changed but because the global mix of fossil fuels has changed with 

continued economic development – a decline in the value of 1.43 to only 1.36 would cancel 

the change in   from 1.1 to 1.05 proposed by this study. Of course, a priori there is no 

reason why that the value of combustion stoichiometry would not be greater than 1.43 and 

therefore exacerbate the changes proposed in OR proposed here. It may prove possible to 
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develop national scale OR and combustion stoichiometry to better assess the efficiency of 

sequestration of greenhouse gas emissions. 

Therefore, we would propose that although we have estimated the terrestrial biosphere 

OR for the first time we have also highlighted the shortcomings in our knowledge of this 

important property, and measurements specifically for OR can now be targeted to have the 

most impact upon our understanding. We need to understand what controls differences in 

OR between and within environments – is it climate, land-use, vegetation and/or 

combinations of factors? Do we need to know OR at a regional or national scale? What 

causes OR of an environment to change? 

 

Conclusions 

The study has compiled values of oxidative ratio (OR) of organic matter in the terrestrial 

biosphere in order to provide the first estimate of the global OR and thus re-estimate the flux 

of carbon to land and oceans. The study has shown: 

i) The weighted average global soil OR is 1.055 ± 0.023 and the weighted average 

global vegetation value is 1.03 ± 0.02. 

ii) The residence time-weighted global average OR of terrestrial organic matter was 

found to be 1.03 ± 0.03 which means that the present value used by the IPCC 

represents the 97Th percentile of observed values. 

iii) The re-calculated global terrestrial OR means that the global flux of carbon to the 

terrestrial biosphere is 1.48 ± 0.06 Gt C/yr and to oceans is 2.02 ± 0.05 Gt C/yr. 

It is clear from this study how important the oxidation state of the organic matter of the 

terrestrial biosphere is but how little is known about what controls it. 
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Table 1. The range and median values of OR for each of the USDA global soil orders, 

except Gellisols. Values in italics are assumed from the median and range of the rest of the 

dataset. Where: 1 = Hockaday et al. (2009); 2 = Neves-Fernandes et al. (2010); 3 = 

Skrzypek et al., (2010); 4 = Celi et al., (1997); 6 = Mao et al., (2000); 7 = Akranov (1981) ; 8 

= Grishina & Morgun (1985); and  9 = Bagautdinov (1984). 

Soil order Study Soils Range of OR Median Total OC (Pg)i 

Alfisols 4 1 1.07 – 1.11 1.10 127 ± 79 
Andisols 4 1 0.95 – 1.12 1.03 78 ± 55 
Aridisols 7 1 1.02 1.02 119 ± 71 
Entisols 4, 6 2 1.04 1.04 148 ± 50 
Histosols 1,2,3,4, 6, 

8, this study 
15 0.92 – 1.11 1.03 357 ± 107 

Inceptisols 4 2 1.03 – 1.10 1.07 352 ± 246 
Mollisols 4, 9 3 0.93 – 1.30 1.14 72 ± 33 
Oxisols 1 1 1.06 1.06 119 ± 50 

Spodosols 8 6 0.90 – 1.22 1.08 71 ± 30 
Ultisols - -   103 ± 72 
Vertisols 1 1 0.96 0.96 19 ± 13 
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Table 2. The range and median values of OR for each of 16 global biomes. Assumed values 

are given in italics either as zero where no biomass would be present or the median value 

and range of the rest of the dataset. Where: 1 = Hockaday et al., 2 = Masiello et al., (2008); 

3 = Kuz’menio et al. (1981); and 4 = Baldock et al. (2004). 

Global biome Study No. of studies Range of OR Median Area (km2) 

Evergreen forest 1,2 2 1.06 – 1.07 1.07 18711540 
Deciduous forest 1,2 2 1.03 – 1.13 1.08 5689975 
Croplands 1,2 4 0.98 – 1.05 1.02 13786674 
Woody savanna 2 1 1.03 1.03 7564185 
Grasslands 2,3 12 0.78 – 1.02 0.97 11228552 
Mixed forest 4 6 1.02 – 1.08 1.07 7256033 
Cropland/Natural mosaic 4 5 1.02 – 1.07 1.05 14615809 
Closed shrublands  0  1.02 23145948 
Open shrublands  0  1.02 19485107 
Savannas  0  1.02 9168489 
Permanent wetlands  0  1.02 1331178 
Urban  0  1.02 268986 
Snow/ice  0 0 0 16573114 
Barren  0 0 0 17731848 
Unclassified  0  1.02 78742 
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Table 3. The range and median values of OR for humic, fluvic acids and dissolved organic 

matter. Values in italics are assumed from the median and range of the rest of the dataset. 

Where: 1 = Neves-Fernandes et al. (2010); 2 = Celi et al. (1997); 3 = Martin et al. (2006); 4 = 

Hayes et al. (2008); 5 = Mao et al. (2000); 6 = Schnitzer & Preston (1986); 7 = Russell et al. 

(1989); 8 = Shurygina et al. (1971); 9 = Davis et al. (1999); 10 = Patti et al. (1992); 11 = 

Akramov (1981); 12 = Grishina & Morgun (1985); 13 = Allard (2006); 14 = Maie et al. (2004); 

15 = Ussiri & Johnson (2003); and 16 = Tonoco et al. (2006).  

Soil order Study Soils Range of OR Median 
Humic acids 1,2,3-5,6-

10,11,12,13,15,16 
74 0.88 – 1.12 1.03 

Fulvic acids 1,3,14,15 27 0.82 – 1.26 0.91 
Dissolved organic 

matter 
3, 9 1 (3 rivers, 1 

lake) 
0.87 – 0.95 0.91 
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Table 4. Post hoc comparisons between OR values for soils, vegetation, humic acids, fulvic 

acids and dissolved organic matter. Values are reported as the probability of the difference 

between compared pairs being zero. Numbers underlined are those where the difference 

was significant at least at a probability of being zero. 

 Vegetation Humic acid Fulvic 
acid 

Dissolved organic 
matter 

Soils 0.00 0.00 0.00 0.00 

Vegetation  0.99 0.00 0.01 

Humic acids   0.00 0.01 

Fulvic acids    0.99 
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Figure 1. The predicted flux of carbon to the terrestrial biosphere (fland) from equation (i) 

varying oxidative ratio (OR) while holding all other variables and parameters as given by 

Battle et al. (2000).  

 

Figure 2. The predicted flux of carbon to the oceans (focean) from equation (ii) varying 

oxidative ratio (OR) while holding all other variables and parameters as given by Battle et al. 

(2000). 

 

Figure 3. Histogram of all results from field and literature studies for whole soils and 

vegetation. 
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Fig. 2. 
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Fig. 3. 
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i
 Basen on  Eswaran et al. (1993) 


