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Abstract

For the perimeter length and the area of the convex hull of the first n steps of a planar random walk, we
study n → ∞ mean and variance asymptotics and establish non-Gaussian distributional limits. Our results
apply to random walks with drift (for the area) and walks with no drift (for both area and perimeter length)
under mild moments assumptions on the increments. These results complement and contrast with previous
work which showed that the perimeter length in the case with drift satisfies a central limit theorem. We
deduce these results from weak convergence statements for the convex hulls of random walks to scaling
limits defined in terms of convex hulls of certain Brownian motions. We give bounds that confirm that the
limiting variances in our results are non-zero.
c⃝ 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Random walks are classical objects in probability theory. Recent attention has focused on
various geometrical aspects of random walk trajectories. Many of the questions of stochastic
geometry, traditionally concerned with functionals of independent random points, are also of
interest for point sets generated by random walks. Here we examine the asymptotic behaviour of
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Fig. 1. Simulated path of a zero-drift random walk and its convex hull.

the convex hull of the first n steps of a random walk in R2, a natural geometrical characteristic of
the process. Study of the convex hull of planar random walk goes back to Spitzer and Widom [21]
and the continuum analogue, convex hull of planar Brownian motion, to Lévy [15, §52.6,
pp. 254–256]; both have received renewed interest recently, in part motivated by applications
arising for example in modelling the ‘home range’ of animals. See [16] for a recent survey of
motivation and previous work. The method of the present paper in part relies on an analysis of
scaling limits, and thus links the discrete and continuum settings.

Let Z be a random vector in R2, and let Z1, Z2, . . . be independent copies of Z . Set S0 := 0
and Sn :=

n
k=1 Zk ; Sn is the planar random walk, started at the origin, with increments

distributed as Z . We will impose a moments condition of the following form:

(Mp) Suppose that E[∥Z∥
p
] < ∞.

Throughout the paper we assume (usually tacitly) that the p = 2 case of (Mp) holds. For several
of our results we impose a stronger condition and assume that (Mp) holds for some p > 2, in
which case we say so explicitly.

Given (Mp) holds for some p ≥ 2, both µ := EZ ∈ R2, the mean drift vector of the walk,
and Σ := E[(Z − µ)(Z − µ)⊤], the covariance matrix associated with Z , are well defined; Σ
is positive semidefinite and symmetric. We also write σ 2

:= tr Σ = E[∥Z − µ∥
2
]. Here and

elsewhere Z and µ are viewed as column vectors, and ∥ • ∥ is the Euclidean norm.
For a subset S of Rd , its convex hull, which we denote hull S , is the smallest convex set that

contains S . We are interested in hull {S0, S1, . . . , Sn}, which is a (random) convex polygon, and
in particular in its perimeter length Ln and area An . (See Fig. 1.)

The perimeter length Ln has received some attention in the literature, initiated by the
remarkable formula of Spitzer and Widom [21], which states that

ELn = 2
n

k=1

k−1E∥Sk∥, for all n ∈ N := {1, 2, . . .}. (1)
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Table 1

Each of the simulation estimates is based on 105 instances of a walk
of length n = 105. The final decimal digit in each of the numerical
upper (lower) bounds has been rounded up (down).

Lower bound Simulation estimate Upper bound

u0(I ) 2.65 × 10−3 1.08 9.87
v0 8.15 × 10−7 0.30 5.22
v+ 1.44 × 10−6 0.019 2.08

Much later, Snyder and Steele [20] obtained the law of large numbers limn→∞ n−1Ln = 2∥µ∥,
a.s.; this is stated for the case µ ≠ 0 in [20] but the proof works equally well in the case µ = 0.
To prove their law of large numbers, Snyder and Steele used the Spitzer–Widom formula (1) and
the variance bound [20, Theorem 2.3]

n−1Var Ln ≤
π2σ 2

2
, for all n ∈ N. (2)

The natural question of the second-order behaviour of Ln was left largely open; similar questions
may be posed about An .

In [23] a martingale-difference analysis was used to show that

if µ ≠ 0 : lim
n→∞

n−1Var Ln = 4σ 2
µ, (3)

where we introduce the decomposition σ 2
= σ 2

µ + σ 2
µ⊥

with

σ 2
µ := E


(Z − µ) · µ̂

2
= E[(Z · µ̂)2] − ∥µ∥

2
∈ R+.

Here and elsewhere, ‘·’ denotes the scalar product, µ̂ := ∥µ∥
−1µ for µ ≠ 0, and R+ := [0,∞).

In [23], a central limit theorem to accompany (3) was also obtained: provided σ 2
µ > 0,

n−1/2(Ln−ELn) converges in distribution to a normal random variable with mean 0 and variance
4σ 2
µ. If Σ is positive definite, then both σ 2

µ and σ 2
µ⊥

are strictly positive, but our results are still
of interest when one or other of them is zero (the case where both are zero being entirely trivial).

The aims of the present paper are to provide second-order information for Ln in the case
µ = 0, and to study the area An for both the cases µ = 0 and µ ≠ 0. For example, we will show
that

if µ ≠ 0 : lim
n→∞

n−3Var An = v+∥µ∥
2σ 2
µ⊥

;

if µ = 0 : lim
n→∞

n−1Var Ln = u0(Σ ), and lim
n→∞

n−2Var An = v0 det Σ . (4)

The quantities v0 and v+ in (4) are finite and positive, as is u0( • ) provided σ 2
∈ (0,∞), and

these quantities are in fact variances associated with convex hulls of Brownian scaling limits for
the walk. These scaling limits provide the basis of the analysis in this paper; the methods are
necessarily quite different from those in [23]. The result limn→∞ n−1Var Ln > 0 in the case
µ = 0 answers a question raised by Snyder and Steele [20, §5]. For the constants u0(I ) (I being
the identity matrix), v0, and v+, Table 1 gives numerical evaluations of rigorous bounds that
we prove in Proposition 3.7, plus estimates from simulations. See also Section 4 for an explicit
integral expression for u0(I ).
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Table 2

Results originate from: a [21]; b [20]; c [23]; d [1] (in part); the rest are new. The
limit laws exclude degenerate cases when associated variances vanish.

Limit exists for E Limit exists for Var Limit law

µ = 0
Ln n−1/2ELa

n n−1VarLn Non-Gaussian
An n−1EAd

n n−2VarAn Non-Gaussian

µ ≠ 0
Ln n−1ELa,b

n n−1VarLc
n Gaussianc

An n−3/2EAn n−3VarAn Non-Gaussian

Furthermore, we show below that distributional limits accompanying the three variance
asymptotics in (4) are non-Gaussian, excluding trivial cases, by contrast to the central limit
theorem accompanying (3) from [23]. Also notable is the comparison between the variance
asymptotics for µ ≠ 0 in (3) and (4): each of the components σ 2

µ and σ 2
µ⊥

of σ 2 contributes
to exactly one of the asymptotics for Var Ln and Var An . Other results that we present below
include asymptotics for expectations.

Examples. Here are some examples to illustrate a range of asymptotic behaviours exhibited by
some simple models. We summarize what now is known in general in Table 2.

• Suppose that Z takes Cartesian vector values (1, 1), (−1,−1), (−1, 1) and (1,−1), each with
probability 1/4. Then Sn is symmetric simple random walk on Z2 withµ = (0, 0) and σ 2

= 2.
We show below that n−1/2ELn →

√
8π (see also [21]) and n−1Var Ln → u0(I ) ∈ (0,∞),

while n−1EAn →
π
2 (see also [1]) and n−2Var An → v0 ∈ (0,∞).

• Suppose Z takes values (1, 1) and (1,−1), each with probability 1/2. Then Sn can be viewed
as the space–time diagram of one-dimensional simple symmetric random walk. Here µ =

(1, 0), σ 2
µ = 0, and σ 2

µ⊥
= 1. It is known that n−1ELn → 2 [21,20] and Var Ln = o(n) [23];

we show below that n−3/2EAn →
1
3

√
2π and n−3Var An → v+ ∈ (0,∞).

• Suppose Z takes values (2, 0) and (0, 0), each with probability 1/2. Now µ = (1, 0), σ 2
µ = 1,

and σ 2
µ⊥

= 0. This time n−1ELn → 2 [21,20] and n−1Var Ln → 4 [23]; trivially An = 0 a.s.

The outline of the rest of the paper is as follows. In Section 2 we describe our scaling limit
approach, and carry it through after presenting the necessary preliminaries; the main results of
this section, Theorems 2.5 and 2.7, give weak convergence statements for convex hulls of random
walks in the case of zero and non-zero drift, respectively. Armed with these weak convergence
results, we present asymptotics for expectations and variances of the quantities Ln and An in
Section 3; the arguments in this section rely in part on the scaling limit apparatus, and in part
on direct random walk computations. This section concludes with upper and lower bounds for
the limiting variances. Section 4 collects some final remarks and open questions. Finally, the
Appendix collects some auxiliary results on random walks that we use.

2. Scaling limits for convex hulls

2.1. Overview

We describe the general idea of our approach. Recall that Sn =
n

k=1 Zk is the location of our
random walk in R2 after n steps. Write Sn := {S0, S1, . . . , Sn}. Our strategy to study properties of
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the random convex set hull Sn (such as Ln or An) is to seek a weak limit for a suitable scaling of
hull Sn , which we must hope to be the convex hull of some scaling limit representing the walk Sn .

In the case of zero drift (µ = 0) a candidate scaling limit for the walk is readily identified
in terms of planar Brownian motion. For the case µ ≠ 0, the ‘usual’ approach of centering and
then scaling the walk (to again obtain planar Brownian motion) is not useful in our context, as
this transformation does not act on the convex hull in any sensible way. A better idea is to scale
space differently in the direction of µ and in the orthogonal direction.

In other words, in either case we consider φn(Sn) for some affine continuous scaling function
φn : R2

→ R2. The convex hull is preserved under affine transformations, so

φn(hull Sn) = hullφn(Sn),

the convex hull of a random set which will have a weak limit. We will then be able to deduce
scaling limits for quantities Ln and An provided, first, that we work in suitable spaces on which
our functionals of interest enjoy continuity, so that we can appeal to the continuous mapping
theorem for weak limits, and, second, that φn acts on length and area by simple scaling. The
usual n−1/2 scaling when µ = 0 is fine; for µ ≠ 0 we scale space in one coordinate by n−1

and in the other by n−1/2, which acts nicely on area, but not length. Thus these methods work in
exactly the three cases corresponding to (4).

In view of the scaling limits that we expect, it is natural to work not with point sets like Sn , but
with continuous paths; instead of Sn we consider the interpolating path constructed as follows.
For each n ∈ N and all t ∈ [0, 1], define

Xn(t) := S⌊nt⌋ + (nt − ⌊nt⌋)

S⌊nt⌋+1 − S⌊nt⌋


= S⌊nt⌋ + (nt − ⌊nt⌋)Z⌊nt⌋+1.

Note that Xn(0) = S0 = 0 and Xn(1) = Sn . Given n, we are interested in the convex hull of the
image in R2 of the interval [0, 1] under the continuous function Xn . Our scaling limits will be of
the same form.

2.2. Paths, hulls, and hulls of paths

We introduce the setting in which we will describe our scaling limit results. At this point, it is
no extra difficulty to work in Rd for general d ≥ 2. Let ρ(x, y) = ∥x − y∥ denote the Euclidean
distance between x and y in Rd . For T > 0, let C([0, T ]; Rd) denote the class of continuous
functions from [0, T ] to Rd . Endow C([0, T ]; Rd) with the supremum metric

ρ∞( f, g) := sup
t∈[0,T ]

ρ( f (t), g(t)), for f, g ∈ C([0, T ]; Rd).

Let C 0([0, T ]; Rd) denote those functions in C([0, T ]; Rd) that map 0 to the origin in Rd .
Usually, we work with T = 1, in which case we write simply

Cd := C([0, 1]; Rd), and C 0
d := { f ∈ Cd : f (0) = 0}.

For example, Xn ∈ C 0
d for each n. For f ∈ C([0, T ]; Rd) and t ∈ [0, T ], define f [0, t] := { f (s) :

s ∈ [0, t]}, the image of [0, t] under f . Since [0, t] is compact and f is continuous, the interval
image f [0, t] is compact. We view elements f ∈ C([0, T ]; Rd) as paths indexed by time [0, T ],
so that f [0, t] is the section of the path up to time t ∈ [0, T ].

We need some notation and concepts from convex and integral geometry: we found [9,19,21]
to be very useful. For a set A ⊆ Rd , write ∂A for its boundary and int(A) := A\∂A for its interior.
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For A ⊆ Rd and a point x ∈ Rd , set ρ(x, A) := infy∈A ρ(x, y), with the usual convention that
inf ∅ = +∞. Write Sd−1 := {e ∈ Rd

: ∥e∥ = 1} for the unit sphere in Rd .
Let Kd denote the collection of convex compact sets in Rd , and K0

d := {A ∈ Kd : 0 ∈ A}

those that contain the origin. Given A ∈ Kd , for r ≥ 0 set

πr (A) := {x ∈ Rd
: ρ(x, A) ≤ r},

the parallel body of A at distance r . The support function of A ∈ K0
d is h A defined by

h A(x) := sup
y∈A

(x · y), x ∈ Rd .

Note that h A : Rd
→ R+ determines A via A = {x : x · e ≤ h A(e) for all e ∈ Sd−1}, and that,

for A, B ∈ K0
d , we have A ⊆ B if and only if h A(e) ≤ hB(e) for all e ∈ Sd−1; see [9, p. 56].

The Hausdorff metric on K0
d is defined for A, B ∈ K0

d by

ρH (A, B) := max


sup
x∈B

ρ(x, A), sup
y∈A

ρ(y, B)


.

Two equivalent descriptions of ρH (see e.g. Proposition 6.3 of [9]) are

ρH (A, B) = inf {r ≥ 0 : A ⊆ πr (B) and B ⊆ πr (A)} ; and (5)

ρH (A, B) = sup
e∈Sd−1

|h A(e)− hB(e)| . (6)

For the rest of this section we study some basic properties of the map from a continuous path
to its convex hull. Let f ∈ C([0, T ],Rd). For any t ∈ [0, T ], f [0, t] is compact, and hence
Carathéodory’s theorem for convex hulls (see Corollary 3.1 of [9, p. 44]) shows that hull f [0, t]
is also compact. So hull f [0, t] ∈ Kd is convex, bounded, and closed; in particular, it is a Borel
set.

It mostly suffices to work with paths parametrized over [0, 1]. For f ∈ Cd , define

H( f ) := hull f [0, 1].

The next result shows that the function H : (C 0
d , ρ∞) → (K0

d , ρH ) is continuous.

Lemma 2.1. For any f, g ∈ C 0
d , we have H( f ), H(g) ∈ K0

d and

ρH (H( f ), H(g)) ≤ ρ∞( f, g). (7)

Proof. Let f, g ∈ C 0
d . Then H( f ) and H(g) are non-empty, as they contain f (0) = g(0) = 0.

Consider x ∈ H( f ). Since the convex hull of a set is the set of all convex combinations of
points of the set (see Lemma 3.1 of [9, p. 42]), there exist n ∈ N, weights λ1, . . . , λn ≥ 0
with

n
i=1 λi = 1, and t1, . . . , tn ∈ [0, 1] for which x =

n
i=1 λi f (ti ). Then, taking

y =
n

i=1 λi g(ti ), we have that y ∈ H(g) and, by the triangle inequality,

ρ(x, y) ≤

n
i=1

λiρ( f (ti ), g(ti )) ≤ ρ∞( f, g).

Thus, writing r = ρ∞( f, g), every x ∈ H( f ) has x ∈ πr (H(g)), i.e., H( f ) ⊆ πr (H(g)). The
symmetric argument starting with x ∈ H(g) shows that H(g) ⊆ πr (H( f )) as well. Hence, by
(5), we obtain (7). �
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We end this section by showing that the map t → hull f [0, t] on [0, T ] is continuous if f is
continuous on [0, T ], so that the continuous trajectory t → f (t) is accompanied by a continuous
‘trajectory’ of convex hulls. This observation was made by El Bachir [4, pp. 16–17]; we take a
different route based on the path-space result Lemma 2.1. First we need a lemma.

Lemma 2.2. Let T > 0 and f ∈ C([0, T ]; Rd). Then the map defined for t ∈ [0, T ] by t → gt ,
where gt : [0, 1] → Rd is given by gt (s) = f (ts), s ∈ [0, 1], is a continuous function from
([0, T ], ρ) to (Cd , ρ∞).

Proof. First we fix t ∈ [0, T ] and show that s → gt (s) is continuous, so that gt ∈ Cd as claimed.
Since f is continuous on the compact interval [0, T ], it is uniformly continuous, and admits a
monotone modulus of continuity µ f : R+ → R+ such that ρ( f (s1), f (s2)) ≤ µ f (ρ(s1, s2)) for
all s1, s2 ∈ [0, T ], and µ f (r) ↓ 0 as r ↓ 0 (see e.g. [12, p. 57]). Hence

ρ(gt (s1), gt (s2)) = ρ( f (ts1), f (ts2)) ≤ µ f (ρ(ts1, ts2)) = µ f (tρ(s1, s2)),

which tends to 0 as ρ(s1, s2) → 0. Hence gt ∈ Cd .
It remains to show that t → gt is continuous. But on Cd ,

ρ∞(gt1 , gt2) = sup
s∈[0,1]

ρ( f (t1s), f (t2s))

≤ sup
s∈[0,1]

µ f (ρ(t1s, t2s))

= µ f (ρ(t1, t2)),

which tends to 0 as ρ(t1, t2) → 0, again using the uniform continuity of f . �

Here is the path continuity result for convex hulls of continuous paths; cf [4, pp. 16–17].

Proposition 2.3. Let T > 0 and f ∈ C 0([0, T ]; Rd). Then the map defined for t ∈ [0, T ] by
t → hull f [0, t] is a continuous function from ([0, T ], ρ) to (K0

d , ρH ).

Proof. By Lemma 2.2, t → gt is continuous, where gt (s) = f (ts), s ∈ [0, 1]. Note that, since
f (0) = 0, gt ∈ C 0

d . But the sets f [0, t] and gt [0, 1] coincide, so hull f [0, t] = H(gt ) ∈ K0
d ,

and, by Lemma 2.1, gt → H(gt ) is continuous. Thus t → H(gt ) is the composition of two
continuous functions, hence itself a continuous function. �

2.3. Functionals of planar convex hulls

Now, and for the rest of the paper, we return to d = 2 to address our main questions of interest;
parts of what follows carry over to general d ≥ 2, but we do not pursue that generality here. We
consider functionals A : K2 → R+ and L : K2 → R+ given by the area and the perimeter
length of convex compact sets in the plane. Formally, we define A as Lebesgue measure on R2,
and then

L(A) := lim
r↓0


A(πr (A))− A(A)

r


, for A ∈ K2. (8)

The limit in (8) exists by the Steiner formula of integral geometry (see e.g. [21]), which expresses
A(πr (A)) as a quadratic polynomial in r whose coefficients are given in terms of the intrinsic
volumes of A:

A(πr (A)) = A(A)+ r L(A)+ πr21{A ≠ ∅}. (9)
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In particular, with Hd denoting d-dimensional Hausdorff measure,

L(A) =


H1(∂A) if int(A) ≠ ∅,

2H1(∂A) if int(A) = ∅.

For A ∈ K0
2, Cauchy’s formula states

L(A) =


S1

h A(e)de.

It follows from Cauchy’s formula that L is increasing in the sense that if A, B ∈ K0
2 satisfy

A ⊆ B, then L(A) ≤ L(B); clearly the functional A is also increasing. The next result shows
that the functions L and A are both continuous from (K0

2, ρH ) to (R+, ρ).

Lemma 2.4. Suppose that A, B ∈ K0
2. Then

ρ(L(A),L(B)) ≤ 2πρH (A, B); (10)

ρ(A(A),A(B)) ≤ πρH (A, B)2 + (L(A) ∨ L(B))ρH (A, B). (11)

Proof. First consider L. By Cauchy’s formula and the triangle inequality,

|L(A)− L(B)| =


S1

(h A(e)− hB(e)) de

 ≤ 2π sup
e∈S1

|h A(e)− hB(e)| ,

which with (6) gives (10).
Now consider A. Set r = ρH (A, B). Then, by (5), A ⊆ πr (B). Hence

A(A) ≤ A(πr (B)) ≤ A(B)+ r L(B)+ πr2,

by (9). With the symmetric argument starting from B ⊆ πr (A), we get (11). �

2.4. Brownian convex hulls as scaling limits

The two different scalings outlined in Section 2.1, for the cases µ = 0 and µ ≠ 0, lead to
different scaling limits for the random walk. Both are associated with Brownian motion.

In the case µ = 0, the scaling limit is the usual planar Brownian motion, at least when Σ = I ,
the identity matrix. Let b := (b(s))s∈[0,1] denote standard Brownian motion in R2, started at
b(0) = 0. For convenience we may assume b ∈ C 0

2 (we can work on a probability space for which
continuity holds for all sample points, rather than merely almost all). For t ∈ [0, 1], let ht :=

hull b[0, t] ∈ K0
2 denote the convex hull of the Brownian path up to time t . By Proposition 2.3,

t → ht is continuous. Much is known about the properties of ht : see e.g. [2,4,6,13].
We also set

ℓt := L(ht ), and at := A(ht ),

the perimeter length and area of the standard Brownian convex hull. By Lemma 2.4, the processes
t → ℓt and t → at have continuous and non-decreasing sample paths.

We also need to work with the case of general covariances Σ ; to do so we introduce more
notation and recall some facts about multivariate Gaussian random vectors. For definiteness, we
view vectors as Cartesian column vectors when required. Since Σ is positive semidefinite and
symmetric, there is a (unique) positive semidefinite symmetric matrix square-root Σ 1/2 for which
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Σ = (Σ 1/2)2. The map x → Σ 1/2x associated with Σ 1/2 is a linear transformation on R2 with
Jacobian det Σ 1/2

=
√

det Σ ; hence A(Σ 1/2 A) = A(A)
√

det Σ for any measurable A ⊆ R2.
If W ∼ N (0, I ), then Σ 1/2W ∼ N (0,Σ ), a bivariate normal distribution with mean 0 and

covariance Σ ; the notation permits Σ = 0, in which case N (0, 0) stands for the degenerate
normal distribution with point mass at 0. Similarly, given b a standard Brownian motion on R2,
the diffusion Σ 1/2b is correlated planar Brownian motion with covariance matrix Σ . We write
‘⇒’ to indicate weak convergence.

Theorem 2.5. Suppose that µ = 0. Then, as n → ∞,

n−1/2 hull{S0, S1, . . . , Sn} ⇒ Σ 1/2h1,

in the sense of weak convergence on (K0
2, ρH ).

Proof. Donsker’s theorem implies that n−1/2 Xn ⇒ Σ 1/2b on (C 0
2 , ρ∞). Now, the point set

Xn[0, 1] is the union of the line segments {Sk+θ(Sk+1−Sk) : θ ∈ [0, 1]} over k = 0, 1, . . . , n−1.
Since the convex hull is preserved under affine transformations,

H(n−1/2 Xn) = n−1/2 H(Xn) = n−1/2 hull{S0, S1, . . . , Sn}.

By Lemma 2.1, H is continuous, and so the continuous mapping theorem (see e.g. [12, p. 76])
implies that n−1/2 hull{S0, S1, . . . , Sn} ⇒ H(Σ 1/2b) on (K0

2, ρH ). Finally, invariance of the
convex hull under affine transformations shows H(Σ 1/2b) = Σ 1/2 H(b) = Σ 1/2h1. �

Theorem 2.5 together with the continuous mapping theorem and Lemma 2.4 implies the

following distributional limit results in the case µ = 0. Here and subsequently ‘
d

−→’ denotes
convergence in distribution for R-valued random variables.

Corollary 2.6. Suppose that µ = 0. Then, as n → ∞,

n−1/2Ln
d

−→ L(Σ 1/2h1), and n−1 An
d

−→ A(Σ 1/2h1) = a1
√

det Σ .

Remark. If a real-valued random variable X is Gaussian and non-degenerate (i.e., Var X > 0),
then ess inf X = −∞ and ess sup X = +∞. The distributional limits for n−1/2Ln and n−1 An in
Corollary 2.6 are supported on R+ and, as we will show in Proposition 3.7, are non-degenerate
if Σ is positive definite; hence they are non-Gaussian excluding trivial cases.

In the case µ ≠ 0, the scaling limit can be viewed as a space–time trajectory of one-
dimensional Brownian motion. Let w := (w(s))s∈[0,1] denote standard Brownian motion in R,
started at w(0) = 0; similarly to above, we may take w ∈ C 0

1 . Define b̃ ∈ C 0
2 in Cartesian

coordinates via

b̃(s) = (s, w(s)), for s ∈ [0, 1];

thus b̃[0, 1] is the space–time diagram of one-dimensional Brownian motion run for unit time.
For t ∈ [0, 1], let h̃t := hull b̃[0, t] ∈ K0

2, and define ãt := A(h̃t ). (Closely related to h̃t is the
greatest convex minorant of w over [0, t], which is of interest in its own right, see e.g. [17] and
references therein.)

Suppose µ ≠ 0 and σ 2
µ⊥

∈ (0,∞). Given µ ∈ R2
\{0}, let µ̂⊥ be the unit vector perpendicular

toµ obtained by rotating µ̂ by π/2 anticlockwise. For n ∈ N, defineψµn : R2
→ R2 by the image
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of x ∈ R2 in Cartesian components:

ψµn (x) =

 x · µ̂

n∥µ∥
,

x · µ̂⊥
nσ 2

µ⊥

 .
In words, ψµn rotates R2, mapping µ̂ to the unit vector in the horizontal direction, and then scales

space with a horizontal shrinking factor ∥µ∥n and a vertical factor


nσ 2
µ⊥

; see Fig. 2 for an

illustration.

Theorem 2.7. Suppose that µ ≠ 0, and σ 2
µ⊥
> 0. Then, as n → ∞,

ψµn (hull{S0, S1, . . . , Sn}) ⇒ h̃1,

in the sense of weak convergence on (K0
2, ρH ).

Proof. Observe that µ̂·Sn is a random walk on R with one-step mean drift µ̂·µ = ∥µ∥ ∈ (0,∞),
while µ̂⊥ · Sn is a walk with mean drift µ̂⊥ · µ = 0 and increment variance

E

(µ̂⊥ · Z)2


= E


(µ̂⊥ · (Z − µ))2


= E[∥Z − µ∥

2
] − E[(µ̂ · (Z − µ))2]

= σ 2
− σ 2

µ = σ 2
µ⊥
.

According to the strong law of large numbers, for any ε > 0 there exists Nε ∈ N a.s. such that
|m−1µ̂ · Sm − ∥µ∥| < ε for all m ≥ Nε. Now we have that

sup
Nε/n≤t≤1

 µ̂ · S⌊nt⌋

n
− t∥µ∥

 ≤ sup
Nε/n≤t≤1


⌊nt⌋

n

  µ̂ · S⌊nt⌋

⌊nt⌋
− ∥µ∥


+ ∥µ∥ sup

0≤t≤1

⌊nt⌋

n
− t


≤ sup

Nε/n≤t≤1

 µ̂ · S⌊nt⌋

⌊nt⌋
− ∥µ∥

+ ∥µ∥

n
≤ ε +

∥µ∥

n
.

On the other hand,

sup
0≤t≤Nε/n

 µ̂ · S⌊nt⌋

n
− t∥µ∥

 ≤
1
n

max{µ̂ · S0, . . . , µ̂ · SNε } +
Nε∥µ∥

n
→ 0, a.s.,

since Nε < ∞ a.s. Combining these last two displays and using the fact that ε > 0 was arbitrary,
we see that sup0≤t≤1

n−1µ̂ · S⌊nt⌋ − t∥µ∥
 → 0, a.s. (the functional version of the strong

law). Similarly, sup0≤t≤1

n−1µ̂ · S⌊nt⌋+1 − t∥µ∥
 → 0, a.s. as well. Since Xn(t) interpolates

S⌊nt⌋ and S⌊nt⌋+1, it follows that sup0≤t≤1

n−1µ̂ · Xn(t)− t∥µ∥
 → 0, a.s. In other words,

(n∥µ∥)−1 Xn · µ̂ converges a.s. to the identity function t → t on [0, 1].
For the other component, Donsker’s theorem gives (nσ 2

µ⊥
)−1/2 Xn · µ̂⊥ ⇒ w on (C 0

1 , ρ∞). It

follows that, as n → ∞, ψµn (Xn) ⇒ b̃, on (C 0
2 , ρ∞). Hence by Lemma 2.1 and since ψµn acts as

an affine transformation on R2,

ψµn (H(Xn)) = H(ψµn (Xn)) ⇒ H(b̃),

on (K0
2, ρH ), and the result follows. �
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Fig. 2. Simulated path of n = 1000 steps a random walk with drift µ = ( 1
2 ,

1
4 ) and its convex hull (top left) and (not to

the same scale) the image under ψµn (bottom right).

Theorem 2.7 with the continuous mapping theorem, Lemma 2.4, and the fact that A(ψµn (A))
= n−3/2

∥µ∥
−1(σ 2

µ⊥
)−1/2 A(A) for measurable A ⊆ R2, implies the following distributional limit

for An in the case µ ≠ 0.

Corollary 2.8. Suppose that µ ≠ 0, and σ 2
µ⊥
> 0. Then

n−3/2 An
d

−→ ∥µ∥(σ 2
µ⊥
)1/2ã1, as n → ∞.

Remarks. (i) Only the σ 2
µ⊥
> 0 case is non-trivial, since σ 2

µ⊥
= 0 if and only if Z is parallel to

±µ a.s., in which case all the points S0, . . . , Sn are collinear and An = 0 a.s. for all n.

(ii) The limit in Corollary 2.8 is non-negative and non-degenerate (see Proposition 3.7) and hence
non-Gaussian.

3. Expectation and variance asymptotics

3.1. Expectation asymptotics

We start with asymptotics for ELn and EAn in the case µ = 0. These results, Propositions 3.1
and 3.3, are in part already contained in [21] and [1] respectively; we give concise proofs here
since several of the computations involved will be useful later. The first result, essentially given
in [21, p. 508], is for Ln .

Proposition 3.1. Suppose that µ = 0. Then, for Y ∼ N (0,Σ ),

lim
n→∞

n−1/2ELn = EL(Σ 1/2h1) = 4E∥Y∥.

Cauchy’s formula applied to the line segment from 0 to Y with Fubini’s theorem implies
2E∥Y∥ =


S1

E[(Y · e)+]de. Here Y · e = e⊤Y is univariate normal with mean 0 and variance
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e⊤Σe = ∥Σ 1/2e∥2, so that E[(Y · e)+] is ∥Σ 1/2e∥ times one half of the mean of the square-
root of a χ2

1 random variable. Hence E∥Y∥ = (8π)−1/2


S1
∥Σ 1/2e∥de, which in general may

be expressed via a complete elliptic integral of the second kind in terms of the ratio of the
eigenvalues of Σ . In the particular case Σ = I , E∥Y∥ =

√
π/2 so then Proposition 3.1 implies

that

lim
n→∞

n−1/2ELn =
√

8π,

matching the formula Eℓ1 =
√

8π of Letac and Takács [14,22]. We also note the bounds

π−1/2
√

tr Σ ≤ E∥Y∥ ≤
√

tr Σ ; (12)

the upper bound here is from Jensen’s inequality and the fact that E[∥Y∥
2
] = tr Σ . The lower

bound in (12) follows from the inequality

E∥Y∥ ≥ sup
e∈S1

E|Y · e| =


2/π sup
e∈S1

(Var [Y · e])1/2

together with the fact that

sup
e∈S1

Var [Y · e] = sup
e∈S1

∥Σ 1/2e∥2
= ∥Σ 1/2

∥
2
op = ∥Σ∥op = λΣ ≥

1
2

tr Σ ,

where ∥ • ∥op is the matrix operator norm and λΣ is the largest eigenvalue of Σ ; in statistical
terminology, λΣ is the variance of the first principal component associated with Y .

In what follows, we make repeated use of the following fact (see e.g. [12, Lemma 4.11]):
if random variables ζ, ζ1, ζ2, . . . are such that ζn → ζ in distribution and the ζn are uniformly
integrable, then Eζn → Eζ .

Proof of Proposition 3.1. The finite point-set case of Cauchy’s formula gives

Ln =


S1

max
0≤k≤n

(Sk · e)de ≤ 2π max
0≤k≤n

∥Sk∥. (13)

Then by Lemma A.1(ii) we have supn E[(n−1/2Ln)
2
] < ∞. Hence n−1/2Ln is uniformly

integrable, so that Corollary 2.6 yields limn→∞ n−1/2ELn = EL(Σ 1/2h1).
It remains to show that limn→∞ n−1/2ELn = 4E∥Y∥. One can use Cauchy’s formula to com-

pute EL(Σ 1/2h1); instead we give a direct random walk argument, following [21]. The central
limit theorem for Sn implies that n−1/2

∥Sn∥ → ∥Y∥ in distribution. Under the given conditions,
E[∥Sn+1∥

2
] = E[∥Sn∥

2
] + E[∥Z∥

2
], so that E[∥Sn∥

2
] = O(n). It follows that n−1/2

∥Sn∥ is uni-
formly integrable, and hence limn→∞ n−1/2E∥Sn∥ = E∥Y∥. The result now follows from some
standard analysis based on (1) and the fact that limn→∞ n−1/2n

k=1 k−1/2
= 2.

Now we move on to the area An . First we state some useful moments bounds.

Lemma 3.2. Let p ≥ 1. Suppose that E[∥Z∥
2p

] < ∞.

(i) We have E[Ap
n ] = O(n3p/2).

(ii) Moreover, if µ = 0 we have E[Ap
n ] = O(n p).

Proof. First we prove (ii). Since hull{S0, . . . , Sn} is contained in the disk of radius max0≤m≤n
∥Sm∥ and centre 0, we have Ap

n ≤ π p max0≤m≤n ∥Sm∥
2p. Lemma A.1(ii) then yields part (ii).
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For part (i), it suffices to suppose µ ≠ 0. Then, bounding the convex hull by a rectangle,

An ≤


max

0≤m≤n
Sm · µ̂− min

0≤m≤n
Sm · µ̂


max

0≤m≤n
Sm · µ̂⊥ − min

0≤m≤n
Sm · µ̂⊥


≤ 4


max

0≤m≤n
|Sm · µ̂|


max

0≤m≤n
|Sm · µ̂⊥|


.

Hence, by the Cauchy–Schwarz inequality, we have

E[Ap
n ] ≤ 4p


E


max
0≤m≤n

|Sm · µ̂|
2p
1/2 

E


max
0≤m≤n

|Sm · µ̂⊥|
2p
1/2

.

Now an application of Lemma A.1(i) and (iii) gives part (i). �

The asymptotics for EAn in the case µ = 0 are given in the following result, which is in part
contained in [1, p. 325].

Proposition 3.3. Suppose that µ = 0. Then,

lim
n→∞

n−1EAn =
π

2

√
det Σ .

Given Corollary 2.6, one may also deduce the limit result in Proposition 3.3 from the formula
Ea1 =

π
2 of El Bachir [4, p. 66] with a uniform integrability argument; however, the naı̈ve

approach seems to require a slightly stronger moments assumption, such as (Mp) for some
p > 2 (cf Lemma 3.2). The proof of Proposition 3.3 is based on an analogue for EAn of
the Spitzer–Widom formula, due to Barndorff-Nielsen and Baxter [1]. To state the formula, let
T (u, v) (u, v ∈ R2) be the area of a triangle with sides of u, v and u + v. Note that for α, β > 0,
T (αu, βv) = αβT (u, v). The formula of [1] states

EAn =

n
k=2

k−1
m=1

ET (Sm, Sk − Sm)

m(k − m)
. (14)

Proof of Proposition 3.3. First we show that, under the given conditions,

lim
m→∞, k−m→∞

ET (Sm, Sk − Sm)
√

m(k − m)
= ET (Y1, Y2), (15)

where Y1 and Y2 are independent N (0,Σ ) random vectors. Indeed, it follows from the central
limit theorem in R2 and the continuity of T that

T (Sm, Sk − Sm)
√

m(k − m)
= T


Sm
√

m
,

Sk − Sm
√

k − m


d

−→ T (Y1, Y2),

as m → ∞ and k − m → ∞. Moreover, T (u, v) ≤ ∥u∥∥v∥ so

E


T (Sm, Sk − Sm)

√
m(k − m)

2


≤
E[∥Sm∥

2
∥Sk − Sm∥

2
]

m(k − m)

≤
E[∥Sm∥

2
]

m
·

E[∥Sk − Sm∥
2
]

k − m
,
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which is uniformly bounded for k ≥ m + 1 ≥ 0, by Lemma A.1. It follows that m−1/2(k −

m)−1/2T (Sm, Sk − Sm) is uniformly integrable over (m, k) with m ≥ 1, k ≥ m + 1, and the
claim (15) follows.

With Σ = (Σ 1/2)2, we have that (Y1, Y2) is equal in distribution to (Σ 1/2W1,Σ 1/2W2) where
W1 and W2 are independent N (0, I ) random vectors. Since Σ 1/2 acts as a linear transformation
on R2 with Jacobian

√
det Σ ,

ET (Y1, Y2) = ET (Σ 1/2W1,Σ 1/2W2) =
√

det ΣET (W1,W2).

Here ET (W1,W2) =
1
2E[∥W1∥∥W2∥ sin Θ], where the minimum angle Θ between W1 and

W2 is uniform on [0, π], and (∥W1∥, ∥W2∥,Θ) are independent. Hence ET (W1,W2) =
1
2 (E∥W1∥)

2(E sin Θ) =
1
2 , using the fact that E sin Θ = 2/π and ∥W1∥ is the square-root of

a χ2
2 random variable, so E∥W1∥ =

√
π/2.

Thus from (14), (15), and the computation ET (Y1, Y2) =
1
2

√
det Σ , we have

EAn =
1
2

√
det Σ

n
k=2

k−1
m=1

m−1/2(k − m)−1/2 1 + εk,m

, (16)

where, for any ε > 0, there exists m0 ∈ N such that |εk,m | ≤ ε for all m ≥ m0 and k − m ≥ m0.
Moreover,

lim
k→∞

k−1
m=1

m−1/2(k − m)−1/2
=

 1

0
y−1/2(1 − y)−1/2dy = π, (17)

so that the corresponding Cesàro limit also satisfies

lim
n→∞

1
n

n
k=2

k−1
m=1

m−1/2(k − m)−1/2
= π.

With (16) it follows that, for any ε > 0,

n−1EAn ≤
π

2
(1 + ε)

√
det Σ + O(n−1/2),

which gives lim supn→∞ n−1EAn ≤
π
2

√
det Σ , and a similar argument gives the corresponding

lim inf result.

Next we move on to the case µ ≠ 0. The following result on the asymptotics of EAn in this
case is, as far as we are aware, new.

Proposition 3.4. Suppose that (Mp) holds for some p > 2, µ ≠ 0, and σ 2
µ⊥
> 0. Then

lim
n→∞

n−3/2EAn = ∥µ∥(σ 2
µ⊥
)1/2Eã1 =

1
3
∥µ∥


2πσ 2

µ⊥
.

In particular, Eã1 =
1
3

√
2π .

Proof. Given E[∥Z1∥
p
] < ∞ for some p > 2, Lemma 3.2(i) shows that E[Ap/2

n ] = O(n3p/4),
so that E[(n−3/2 An)

p/2
] is uniformly bounded. Hence n−3/2 An is uniformly integrable, so

Corollary 2.8 implies that

lim
n→∞

n−3/2EAn = ∥µ∥(σ 2
µ⊥
)1/2Eã1. (18)
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In light of (18), it remains to identify Eã1 =
1
3

√
2π . It does not seem straightforward to work

directly with the Brownian limit; it turns out again to be simpler to work with a suitable random
walk. We choose a walk that is particularly convenient for computations.

Let ξ ∼ N (0, 1) be a standard normal random variable, and take Z to be distributed as
Z = (1, ξ) in Cartesian coordinates. Then Sn = (n,

n
k=1 ξk) is the space–time diagram of the

symmetric random walk on R generated by i.i.d. copies ξ1, ξ2, . . . of ξ .
For Z = (1, ξ), µ = (1, 0) and σ 2

= σ 2
µ⊥

= E[ξ2
] = 1. Thus by (18), to complete the

proof of Proposition 3.4 it suffices to show that for this walk limn→∞ n−3/2EAn =
1
3

√
2π .

If u, v ∈ R2 have Cartesian components u = (u1, u2) and v = (v1, v2), then we may write
T (u, v) =

1
2 |u1v2 − v1u2|. Hence

T (Sm, Sk − Sm) =
1
2

(k − m)
m

j=1

ξ j − m
k

j=m+1

ξ j

 .
By properties of the normal distribution, the right-hand side of the last display has the same
distribution as 1

2 |ξ
√

km(k − m)|. Hence

ET (Sm, Sk − Sm)
√

m(k − m)
=

1
2

E|ξ
√

k| =
1
2


2k/π,

using the fact that |ξ | is distributed as the square-root of a χ2
1 random variable, so E|ξ | =

√
2/π .

Hence, by (14), this random walk enjoys the exact formula

EAn =
1

√
2π

n
k=2

k−1
m=1

√
k

√
m(k − m)

.

Then from (17) we obtain EAn ∼
√
π/2

n
k=2 k1/2, which gives the result. �

3.2. Variance asymptotics

We are now able to give formally the results quoted in (4), and to explain the constants that
appear in the limits. Indeed, these are defined to be

u0(Σ ) := Var L(Σ 1/2h1), v0 := Var a1, v+ := Var ã1. (19)

Proposition 3.5. Suppose that (Mp) holds for some p > 2, and µ = 0. Then

lim
n→∞

n−1Var Ln = u0(Σ ).

If, in addition, (Mp) holds for some p > 4, then

lim
n→∞

n−2Var An = v0 det Σ .

Proof. From (13) and Lemma A.1(ii), for p > 2 we have supn E[(n−1L2
n)

p/2
] < ∞. Hence

n−1L2
n is uniformly integrable, and we deduce convergence of n−1Var Ln in Corollary 2.6.

Similarly, given E[∥Z1∥
p
] < ∞ for p > 4, Lemma 3.2(ii) shows that E[A2(p/4)

n ] = O(n p/2), so
that E[(n−2 A2

n)
p/4

] is uniformly bounded. Hence n−2 A2
n is uniformly integrable, and we deduce

convergence of n−2Var An in Corollary 2.6. �
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For the case with drift, we have the following variance result.

Proposition 3.6. Suppose that (Mp) holds for some p > 4 and µ ≠ 0. Then

lim
n→∞

n−3Var An = v+∥µ∥
2σ 2
µ⊥
.

Proof. Given E[∥Z1∥
p
] < ∞ for some p > 4, Lemma 3.2(i) shows that E[A2(p/4)

n ] =

O(n3p/4), so that E[(n−3 A2
n)

p/4
] is uniformly bounded. Hence n−3 A2

n is uniformly integrable,
so Corollary 2.8 yields the result. �

3.3. Variance bounds

The next result gives bounds on the quantities defined in (19).

Proposition 3.7. We have u0(Σ ) = 0 if and only if tr Σ = 0. The following inequalities for the
quantities defined at (19) hold.

263
1080

π−3/2e−144/25 tr Σ ≤ u0(Σ ) ≤
π2

2
tr Σ ; (20)

0 <
4

49


e−7π2/12

−
1
3

e−21π2/4
2

≤ v0 ≤ 16(log 2)2 −
π2

4
; (21)

0 <
2

225


e−25π/9

−
1
3

e−25π


≤ v+ ≤ 4 log 2 −
2π
9
. (22)

Finally, if Σ = I we have the following sharper form of the lower bound in (20):

Var ℓ1 = u0(I ) ≥
2
5


1 −

8
25π


e−25π/16 > 0.

For the proof of this result, we rely on a few facts about one-dimensional Brownian motion,
including the bound (see e.g. equation (2.1) of [11]), valid for all r > 0,

P


sup

0≤s≤1
|w(s)| ≤ r


≥

4
π


e−π2/(8r2)

−
1
3

e−9π2/(8r2)


. (23)

We let Φ denote the distribution function of a standard normal random variable; we will also
need the standard Gaussian tail bound (see e.g. [3, p. 12])

1 − Φ(x) =
1

√
2π


∞

x
e−y2/2dy ≥

1

x
√

2π


1 −

1

x2


e−x2/2, for x > 0. (24)

We also note that for e ∈ S1 the diffusion e · (Σ 1/2b) is one-dimensional Brownian motion with
variance parameter e⊤Σe.

The idea behind the variance lower bounds is elementary. For a random variable X with mean
EX , we have, for any θ ≥ 0, Var X = E[(X − EX)2] ≥ θ2P[|X − EX | ≥ θ ]. If EX ≥ 0, taking
θ = αEX for α > 0, we obtain

Var X ≥ α2(EX)2

P[X ≤ (1 − α)EX ] + P[X ≥ (1 + α)EX ]


, (25)

and our lower bounds use whichever of the latter two probabilities is most convenient.
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Proof of Proposition 3.7. We start with the upper bounds. Snyder and Steele’s bound (2) with
the statement for Var Ln in Proposition 3.5 gives the upper bound in (20).

Bounding ã1 by the area of a rectangle, we have

ã1 ≤ r1 ≤ 2 sup
0≤s≤1

|w(s)|, a.s., (26)

where r1 := sup0≤s≤1w(s) − inf0≤s≤1w(s). A result of Feller [7] states that E[r2
1 ] = 4 log 2.

So by the first inequality in (26), we have E[ã2
1] ≤ 4 log 2, and by Proposition 3.4 we have

Eã1 =
1
3

√
2π ; the upper bound in (22) follows.

Similarly, for any orthonormal basis {e1, e2} of R2, we bound a1 by a rectangle

a1 ≤


sup

0≤s≤1
e1 · b(s)− inf

0≤s≤1
e1 · b(s)


sup

0≤s≤1
e2 · b(s)− inf

0≤s≤1
e2 · b(s)


,

and the two (orthogonal) components are independent, so E[a2
1] ≤ (E[r2

1 ])2 = 16(log 2)2, which
with the fact that Ea1 =

π
2 [4] gives the upper bound in (21).

We now move on to the lower bounds. Let eΣ ∈ S1 denote an eigenvector of Σ corresponding
to the principal eigenvalue λΣ . Then since Σ 1/2h1 contains the line segment from 0 to any (other)
point in Σ 1/2h1, we have from monotonicity of L that

L(Σ 1/2h1) ≥ 2 sup
0≤s≤1

∥Σ 1/2b(s)∥ ≥ 2 sup
0≤s≤1


eΣ · (Σ 1/2b(s))


.

Here eΣ · (Σ 1/2b) has the same distribution as λ1/2
Σ w. Hence, for α > 0,

P


L(Σ 1/2h1) ≥ (1 + α)EL(Σ 1/2h1)


≥ P


sup

0≤s≤1
w(s) ≥

1 + α

2
λ

−1/2
Σ EL(Σ 1/2h1)



≥ P


sup

0≤s≤1
w(s) ≥ 2(1 + α)

√
2


,

using the fact that λΣ ≥
1
2 tr Σ and the upper bound in (12). Applying (25) to X = L(Σ 1/2h1) ≥

0 gives, for α > 0,

Var L(Σ 1/2h1) ≥ α2(EL(Σ 1/2h1))
2P


sup

0≤s≤1
w(s) ≥ 2(1 + α)

√
2



≥
32
π
α2 (tr Σ )


1 − Φ(2(1 + α)

√
2)

,

using the lower bound in (12) and the fact that P[sup0≤s≤1w(s) ≥ r ] = 2P[w(1) ≥ r ] =

2(1 − Φ(r)) for r > 0, which is a consequence of the reflection principle. Numerical curve
sketching suggests that α = 1/5 is close to optimal; this choice of α gives, using (24),

Var L(Σ 1/2h1) ≥
32

25π
(tr Σ )


1 − Φ(12

√
2/5)


≥

263
1080

π−3/2 (tr Σ ) exp

−

144
25


,
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which is the lower bound in (20). We get a sharper result when Σ = I and L(h1) = ℓ1, since we
know Eℓ1 =

√
8π explicitly. Then, similarly to above, we get

Var ℓ1 ≥ 8πα2P


sup

0≤s≤1
w(s) ≥ (1 + α)

√
2π


, for α > 0,

which at α = 1/4 yields the stated lower bound.

For areas, tractable upper bounds for a1 and ã1 are easier to come by than lower bounds,
and thus we obtain a lower bound on the variance by showing the appropriate area has positive
probability of being smaller than the corresponding mean.

Consider a1; recall Ea1 =
π
2 [4]. Since, for any orthonormal basis {e1, e2} of R2,

a1 ≤ π sup
0≤s≤1

∥b(s)∥2
≤ π sup

0≤s≤1
|e1 · b(s)|2 + π sup

0≤s≤1
|e2 · b(s)|2,

using the fact that e1 · b and e2 · b are independent one-dimensional Brownian motions,

P[a1 ≤ r ] ≥ P


sup

0≤s≤1
|w(s)|2 ≤

r

2π

2

, for r > 0.

We apply (25) with X = a1 and α ∈ (0, 1), and set r = (1 − α)π2 to obtain

Var a1 ≥ α2π
2

4
P


sup

0≤s≤1
|w(s)| ≤

√
1 − α

2

2

≥ 4α2


exp

−

π2

2(1 − α)


−

1
3

exp

−

9π2

2(1 − α)

2

,

by (23). Taking α = 1/7 is close to optimal, and gives the lower bound in (21).

For ã1, we apply (25) with X = ã1 and α ∈ (0, 1). Using the fact that Eã1 =
1
3

√
2π (from

Proposition 3.4) and the weaker of the two bounds in (26), we obtain

Var ã1 ≥ α2 2π
9

P


sup

0≤s≤1
|w(s)| ≤

(1 − α)
√

2π
6



≥
8
9
α2


exp

−

9π

4(1 − α)2


−

1
3

exp

−

81π

4(1 − α)2


,

by (23). Taking α = 1/10 is close to optimal, and gives the lower bound in (22). �

Remark. The main interest of the lower bounds in Proposition 3.7 is that they are positive; they
are certainly not sharp. The bounds can surely be improved, although the authors have been
unable to improve any of them sufficiently to warrant reporting the details here. We note just the
following idea. A lower bound for ã1 can be obtained by conditioning on θ := sup{s ∈ [0, 1] :

w(s) = 0} and using the fact that the maximum of w up to time θ is distributed as the maximum
of a scaled Brownian bridge; combining this with the previous argument improves the lower
bound on v+ to 2.09 × 10−6.
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4. Concluding remarks

4.1. Exact evaluation of limiting variances

It would, of course, be of interest to evaluate any of u0, v0, or v+ exactly. In general this
looks hard. Since the first version of this paper was written, the paper [18] came to the authors’
attention; this provides a key component to a possible approach to evaluating u0. By Cauchy’s
formula and Fubini’s theorem,

E[ℓ2
1] =


S1


S1

E


sup

0≤s≤1
(e1 · b(s))


sup

0≤t≤1
(e2 · b(t))


de1de2.

Here, the two standard one-dimensional Brownian motions e1 · b and e2 · b have correlation
determined by the cosine of the angle φ between e1 and e2, i.e.,

E [(e1 · b(s))(e2 · b(t))] = (s ∧ t) e1 · e2 = (s ∧ t) cosφ.

The result of Rogers and Shepp [18] then shows that

E


sup

0≤s≤1
(e1 · b(s))


sup

0≤t≤1
(e2 · b(t))


= c(cosφ),

where the function c is given explicitly in [18]. Using this result, we obtain

E[ℓ2
1] = 4π

 π/2

−π/2
c(sin θ)dθ = 4π

 π/2

−π/2
dθ


∞

0
du cos θ

cosh(uθ)
sinh(uπ/2)

tanh

(2θ + π)u

4


.

We have not been able to deal with this integral analytically, but numerical integration gives
E[ℓ2

1] ≈ 26.1677, which with the fact that Eℓ1 =
√

8π gives u0(I ) = Var ℓ1 ≈ 1.0350, in
reasonable agreement with the simulation estimate in Table 1.

Another possible approach to evaluating u0 is suggested by a remarkable computation of
Goldman [8] for the analogue of u0(I ) = Var ℓ1 for the planar Brownian bridge. Specifically,
if b′

t is the standard Brownian bridge in R2 with b′

0 = b′

1 = 0, and ℓ′1 = L(hull b′
[0, 1]) the

perimeter length of its convex hull, [8, Théorème 7] states that

Var ℓ′1 =
π2

6


2π
 π

0

sin θ
θ

dθ − 2 − 3π


≈ 0.34755.

4.2. Final comments

The framework of Section 2 shows that whenever a discrete-time process in Rd converges
weakly to a limit on the space of continuous paths, the corresponding convex hulls converge.
It would be of interest to extend the framework to admit discontinuous limit processes, such as
Lévy processes with jumps [13] that arise as scaling limits of random walks whose increments
have infinite variance.

The idea used in the proof of Proposition 3.4, first establishing the existence of a limit for a
class of models and then choosing a particular model for which the limit can be conveniently
evaluated, goes back at least to Kac; see [5, p. 293].
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Appendix. Random walk norms

Lemma A.1. Let p > 1. Suppose that E[∥Z1∥
p
] < ∞.

(i) For any e ∈ S1 such that e · µ = 0, E[max0≤m≤n |Sm · e|p
] = O(n1∨(p/2)).

(ii) Moreover, if µ = 0, then E[max0≤m≤n ∥Sm∥
p
] = O(n1∨(p/2)).

(iii) On the other hand, if µ ≠ 0, then E[max0≤m≤n |Sm · µ̂|
p
] = O(n p).

Proof. Given that µ · e = 0, Sn · e is a martingale, and hence, by convexity, |Sn · e| is a
non-negative submartingale. Then, for p > 1,

E


max
0≤m≤n

|Sm · e|p


≤


p

p − 1

p

E

|Sn · e|p

= O(n1∨(p/2)),

where the first inequality is Doob’s L p inequality [10, p. 505] and the second is the
Marcinkiewicz–Zygmund inequality [10, p. 151]. This gives part (i).

Part (ii) follows from part (i): take {e1, e2} an orthonormal basis of R2 and apply (i) with each
basis vector; (ii) then follows from the triangle inequality max0≤m≤n ∥Sm∥ ≤ max0≤m≤n |Sm ·

e1| + max0≤m≤n |Sm · e2| together with Minkowski’s inequality.
Part (iii) follows from the fact that max0≤m≤n |Sm · µ̂| ≤

n
k=1 |Zk · µ̂| ≤

n
k=1 ∥Zk∥ and an

application of Rosenthal’s inequality [10, p. 151] to the latter sum. �
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