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Online Appendix 1: The General Parametric Model

This appendix illustrates our approach for general forms of production. We provide conditions
under which unobserved materials inputs can be recovered from a parametric specification of the
production function.

1.1 Model Setup

Suppose at each period t, each firm j produces a single product using labor (Ljt), intermediate
material (Mjt), and capital (Kjt) via the production function,

Qjt = eωjtF (Ljt,Mjt,Kjt; θ),

where Qjt is the output quantity, ωjt is a Hicks-neutral productivity shock observed by the firm
(but not by researchers), and θ is the set of parameters in the production function. The inverse
demand function is,

Pjt = Pt(Qjt; η),

where Pjt is the output price and η is the set of parameters in the demand function. We allow the
demand function to be different over time. We first restate the assumptions from the main paper:

Assumption 1 (Exogenous Input Prices). Firms are price takers in input markets. Suppliers use
linear pricing, but input prices are allowed to be different across firms and over time. Prices have
strictly positive support.

Assumption 2 (Profit Maximization). After observing their productivity draw, ωjt, and firm-
specific input prices, firms optimally choose labor and material inputs to maximize the profit in
each period. The firm’s capital stock for period t is chosen prior to the revelation of ωjt.

∗Correspondence: Grieco: paul.grieco@psu.edu, Li: shengyu.li@durham.ac.uk, Zhang: hszhang@hku.hk.
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Assumption 3 (Data). The researcher observes revenue Rjt = PjtQjt, inputs expenditure EMjt =
PMjtMjt, wage rate PLjt, number of workers or number of working hours Ljt, and capital stock Kjt.
But she does not observe the prices and quantities of either outputs (i.e., Pjt and Qjt), materials
inputs (i.e., PMjt and Mjt), or productivity ωjt. All these variables are observed (or chosen) by the
firm.

We now add two additional assumptions that restrict the functional form of the production and
inverse demand functions.

Assumption 4 (Production Function). Production function F (·) is known up to a finite dimen-
sional parameter θ, strictly increasing in inputs, and continuously differentiable up to second order.
The limits as inputs go to infinity of the marginal product of labor and materials exist.

Assumption 5 (Inverse Demand Function). The inverse demand function is continuous, decreas-
ing, differentiable and satisfies limQ→∞ Pt(Q; η) = 0.

Assumptions 4 and 5 are standard, although sometimes implicit, in the literature. They ensure
that we can use first order conditions and that a solution to the firm’s maximization problem
exists. Assumption 1 is our primary departure from the earlier literature, it weakens the typical
assumption that input prices are homogeneous when they are not observed. The assumption that
firms are price takers does not preclude them being offered different prices on the basis of their size
(i.e., capital stock), productivity, or negotiating ability, but does assume that firms do not receive
“quantity discounts,” which would endogenously affect purchasing decisions.

1.2 Recovering Materials Quantities

Given our assumptions, a finite solution to the profit maximization problem exists,1 and we focus on
interior solutions where the first order conditions hold.2 Following the main paper, we manipulate
the ratio of the first order conditions with respect to labor and materials to arrive at the following
equality:

FLjtLjt

FMjtMjt
=
ELjt
EMjt

(1)

where ELjt = PLjtLjt and EMjt = PMjtMjt. In the main paper, we showed that for the CES
production function this equality yielded a closed form solution for materials inputs. The following
proposition provides general conditions under which (1) admits a unique solution.

Proposition 1. Define

z(Mjt;Ljt,Kjt, EMjt, ELjt, θ) ≡
FLjtLjt

FMjtMjt
−
ELjt
EMjt

.

1To see this, notice that under Assumption 4 and 5, the marginal return to materials (and labor) must eventually
be driven below the price of materials. If the production function asymptotes to a finite level of production, then the
marginal returns of inputs go to zero as Ljt and Mjt go to infinity. Alternatively, if Qjt goes to infinity as Ljt and
Mjt rise, then the left hand side of is weakly negative in the limit, so the marginal cost of inputs must outweigh the
marginal return.

2Corner solutions where Ljt = 0 or Mjt = 0 are readily observable in the data. We observe Ljt directly, and
know that Mjt = 0 whenever expenditure on materials is zero, since prices are assumed to be positive. Zero inputs
expenditure does not occur in our data, and we expect it to be rare in most datasets. Corner solutions can simply
be dropped when using our method, although observing zero expenditure for intermediate inputs may lead one to be
concerned about severe measurement error.

2



For a given point (Ljt,Kjt, EMjt, ELjt) generated from firm profit maximization and parameter
vector θ, suppose either (1) ∂z

∂M > 0 for all M ∈ (0,∞) such that z(M ;Ljt,Kjt, EMjt, ELjt, θ) = 0,

or (2) ∂z
∂M < 0 for all M ∈ (0,∞) such that z(M ;Ljt,Kjt, EMjt, ELjt, θ) = 0. Then there exists a

unique M∗ that satisfies,
z(M∗;Ljt,Kjt, EMjt, ELjt, θ) = 0.

Proof. Recall that we assume the first order conditions of profit maximization hold, which implies
the existence of a solution for z(·). We show the uniqueness of the solution by contradiction.
Suppose that there are multiple M in the setM = {M : z(M,Ljt,Kjt, EMjt, ELjt, θ) = 0}, and for
all of them ∂z

∂M > 0. Take any two consecutive solutions M ′,M ′′ ∈M such that M ′′ is the smallest
member ofM that is larger than M ′. Take a sequence converging to M ′ from above, we know there
exist some m′ such that z(m′, Ljt,Kjt, EMjt, ELjt, θ) > 0. Likewise, take a sequence converging
to M ′′ from below, we know there exist some m′′ such that z(m′, Ljt,Kjt, EMjt, ELjt, θ) < 0.
Because z(·) is continuous in M , which is guaranteed by Assumption 4, there must be some m∗ ∈
(m′,m′′) such that z(m∗, Ljt,Kjt, EMjt, ELjt, θ) = 0. However, this contradicts M ′ and M ′′ being
consecutive members of M.

The idea of the proof is that if z satisfies a single crossing property in Mjt, then we can always
uniquely recover the material quantity from observed data. Proposition 1 provides a sufficient
condition for single crossing to hold. The condition of the proof is sufficient, but not necessary,
as it does not account for the unique zero occurring at an inflection point. However, this is a
knife-edged case. Proposition 1 can also be applied to show that M∗ can be recovered for a specific
functional form, as we will see in the CES and translog examples below. Of course, for some
specifications of the production function, it is possible the condition will not hold and multiple
materials quantity-price combinations may satisfy (1). In this case, the model may be partially
identified. For the remainder of this paper, we will assume the conditions in Proposition 1 hold
so that M∗ can be uniquely recovered. Once we recover M∗jt = M∗(Ljt,Kjt, EMjt, ELjt; θ), we can
replace the unobserved intermediate inputs Mjt in the first order condition for labor to back out
the productivity shock as ω∗jt = ω∗(Ljt,Kjt, EMjt, ELjt; θ, η).3

The following example illustrates a case where the conditions of Proposition 1 are not satisfied
for the Cobb-Douglas specification. This is because, as is well-known, the Cobb-Douglas production
function assumes that expenditure shares are constant within the data, eliminating the source of
variation we need to separate input prices and quantities. The case of the CES production function
is covered in the main paper. Finally, we consider the case of the translog production function in
Online Appendix 2:

Example 1 (Cobb-Douglas Production Function)
For Cobb-Douglas production function

Qjt = eωjtF (Ljt,Mjt,Kjt; θ) = eωjtLαLjt M
αM
jt KαK

jt ,

3Note that we make use of the expenditure identities and the production function itself to solve the first order
conditions as a function of these variables.
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where θ = (αL, αM , αK), it is straightforward to show that,

z(Mjt;Ljt,Kjt, EMjt, ELjt, θ) =
FLjtLjt

FMjtMjt
−
ELjt
EMjt

=
αLL

αL−1
jt MαM

jt KαK
jt Ljt

αML
αL
jt M

αM−1
jt KαK

jt Mjt

−
ELjt
EMjt

=
αL
αM
−
ELjt
EMjt

.

In this case, z(·) does not vary with Mjt (e.g., ∂z
∂Mjt

= 0), so unobserved materials cannot be

recovered from (1). The intuition is that, because the elasticity of substitution is fixed at one,
when the relative inputs price ( PLPM ) changes firms always choose labor and material such that the

percentage increase (or decrease) of the labor-material ratio ( LM ) equals the percentage decrease

(or increase) of the relative price ( PLPM ). As a result, the expenditure ratio
ELjt
EMjt

remains constant

( αLαM ). In this case, we cannot separate the price and quantity of materials from the information on

the expenditure ratio
ELjt
EMjt

. n

Example 2 (CES Production Function)
Consider CES production function,4

Qjt = eωjtF (Ljt,Mjt,Kjt; θ) = eωjt [αLL
γ
jt + αMM

γ
jt + αKK

γ
jt]

1
γ , (2)

where γ = σ−1
σ (σ is the elasticity of substitution), and θ = (αL, αM , αK , σ). We can show that,

z(Mjt;Ljt,Kjt, EMjt, ELjt, θ) =
FLjtLjt

FMjtMjt
−
ELjt
EMjt

=
eωjt [αLL

γ
jt + αMM

γ
jt + αKK

γ
jt]

1
γ
−1
αLL

γ−1
jt Ljt

eωjt [αLL
γ
jt + αMM

γ
jt + αKK

γ
jt]

1
γ
−1
αMM

γ−1
jt Mjt

−
ELjt
EMjt

=
αLL

γ
jt

αMM
γ
jt

−
ELjt
EMjt

Taking the derivative of z(·) with respect to Mjt we yields,

∂z

∂Mjt
= −γ

αLL
γ
jt

αMM
γ+1
jt

,

It is clear that the sign of ∂z
∂Mjt

is determined by γ only.5 Therefore, as long as γ 6= 0 (i.e., σ 6= 1),

Proposition 1 is satisfied and we can recover the unobserved material from (1). This yields the

4In the main paper we fully explore a normalized form of the CES production function, but we use an unnormalized
form here for expositional simplicity.

5When γ = 0, the CES function is equivalent to the Cobb-Douglas case (Example 3.1) and we cannot recover the
unobserved materials from (1). This case must be excluded from the parameter set Θ.
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closed form,

M∗(Ljt,Kjt, EMjt, ELjt; θ) =

(
αL
αM

EMjt

ELjt

) 1
γ

Ljt.

n

1.3 Estimation

We now turn to estimation of the parameters of the production function, θ, and the inverse demand
function, η. If our assumptions are satisfied, the intermediate input quantity can be uniquely
recovered as,

M∗jt = M∗(Ljt,Kjt, EMjt, ELjt; θ). (3)

Then we can plug M∗jt back into the first order conditions and recover the unobserved productivity,

ω∗jt = ω∗(Ljt,Kjt, EMjt, ELjt; θ, η). (4)

Different from Olley and Pakes (1996), here we recover the unobserved productivity paramet-
rically from the firm’s first order conditions.6 There are several advantages to this method. First,
the estimation does not require investment data. There is no need to rely on invertibility of the
investment policy function, which may be problematic when adjustment costs generate lumpiness
in the optimal investment policy. Moreover, our method of controlling for endogeneity does not
require the Markov assumption on the productivity evolution process.7 Finally, we fully exploit
the structural assumptions of the parametric production function and corresponding first order
conditions to recover unobserved productivity and material quantity—as in Doraszelski and Jau-
mandreu (2013)—so we do not have to rely on nonparametric methods to estimate these functions.
As a result, even when both labor and material expenditures may be functions of the same set
of variables in (5) we still have identification as long as labor and materials expenditures are not
perfectly correlated.8 Ackerberg et al. (2006) also discussed this possibility (page 16, version of
December 28, 2006).

Since output quantities are not directly observed, we follow Klette and Griliches (1996) and use
the revenue function as the estimation equation. The revenue function is,

Rjt = eujtPt (Qjt; η)Qjt.

Where Rjt is the observed revenue of the firm, Qjt = eω
∗
jtF (Ljt,M

∗
jt,Kjt; θ) is the predicted quantity

of physical output based on observed inputs and the model parameters (θ, η), and ujt is a mean-
zero revenue error term which incorporates measurement error as well as demand and productivity
shocks that are unanticipated by the firm. Taking the logarithm of the revenue function yields,

lnRjt = lnPt

(
eω

∗
jtF (Ljt,M

∗
jt,Kjt; θ); η

)
+ ln

[
eω

∗
jtF (Ljt,M

∗
jt,Kjt; θ)

]
+ ujt. (5)

6Zhang (2014) uses a similar approach to allow for biased technical change in the production function.
7Of course, assumptions on the productivity evolution process may still be needed in identifying the production

function, as we will discuss below.
8The data in our application shows that the labor-material expenditure ratio has large variation across firms (as

required by our empirical model), supporting the idea that these two expenditures are not perfectly correlated.
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In this equation, the unobserved productivity and material quantity, ω∗jt and M∗jt, are functions
of observed variables as in equations (3) and (4). The only remaining unobservable, ujt, is unknown
to the firm and is uncorrelated with the observed inputs.

To simplify notations, denote wjt ≡ (Ljt, EMjt , ELjt ,Kjt), rjt ≡ lnRjt, and β ≡ (θ, η) ∈ RD.
Define

f(wjt;β) = lnPt

(
eω

∗
jtF (Ljt,M

∗
jt,Kjt; θ); η

)
+ ln

[
eω

∗
jtF (Ljt,M

∗
jt,Kjt; θ)

]
.

Therefore, the true parameter β0 solves the following nonlinear least squares problem,

min
β
E
[
(rjt − f(wjt;β))2

]
. (6)

Of course, we have not yet shown that β0 is identified. Indeed, in both of our primary examples we
need additional restrictions to identify β0. In order to accommodate these additional restrictions,
we cast the non-linear least square problem in terms of the generalized method of moments (GMM)
via its first order conditions. To be specific, the first order conditions of the non-linear least squares
(6) are,

E

[
∇βf(wjt;β)

(
rjt − f(wjt;β)

)]
= 0,

where ∇βf(wjt;β) is the D × 1 vector of partial derivatives with respective to β.
The GMM framework allows us to easily add additional restrictions in a manner similar to

Wooldridge (2009). For the CES, these restrictions are related to aggregate measures and do not
involve any additional assumptions. For the translog, we rely on the additional assumption that
productivity moves according to a Markov process to provide moment restrictions with which to
identify all the parameters. This second approach is quite general and can provide identifying
restrictions for many functional forms (including the CES, if it were necessary). In both cases,
these restrictions can be imposed in terms of moment conditions:

E[h(xjt;β)] = 0,

where h(xjt;β) is a S × 1 dimension function regarding observable exogenous variables xjt (which
may include wjt) and the parameter vector β. Define Φ(β) as a D ×D matrix,

Φ(β) = E

[(
∇βf(wjt;β)

)(
∇βf(wjt;β)

)′]
,

and define Ψ(β) as a S ×D matrix,

Ψ(β) = E
[
∇βh(xjt;β)

]
.

Finally, define the (D + S) × D matrix V (β) = [Φ(β); Ψ(β)], we can now provide conditions for
identification of β0.

Proposition 2. Suppose there exists an open neighborhood of β0 ∈ Γ in which both Φ(β) and Ψ(β)
have a constant rank. Then β0 is locally identifiable if and only if V (β0) has rank D.9

9Local identification is defined in Rothenberg (1971).
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Proof. Let the true model is specified as, rjt = f(wjt;β0) + ujt, where,

f(wjt;β0) =
{

lnPt

(
eω

∗
jtF (Ljt,M

∗
jt,Kjt; θ0); η0

)
+ ln

[
eω

∗
jtF (Ljt,M

∗
jt,Kjt; θ0)

]}
as in (5).

Without loss of generality, assume ujt has normal distribution with mean zero and unit vari-
ance.10 The logarithmic density function of the sample {(rjt,wjt)}jt is −1

2

∑
t[rjt − f(xjt, β0)]

2.
Thus, for a given β, Φ(β) defined in Proposition 2 is the information matrix. The additional restric-
tions that are utilized for identification are E[h(xjt, β)] = 0, with Jacobean matrix Ψ(β). Thus,
our model fits the nonlinear regression framework of Rothenberg (1971) and we can apply Theorem
2 in Rothenberg (1971) to show local identification.

Komunjer (2012) provides conditions for global identification in the context of non-linear mo-
ment equalities models, of which our model is a special case. Identification clearly relies on the
structural information provided through firms’ first order conditions. In recent work, Gandhi et al.
(2013) have established nonparametric identification of production functions when input prices are
assumed to be homogeneous. Under heterogenous input prices, it is difficult to recover the unob-
served Mjt from (1) without a parametric form of the production function. Moreover, the issue of
multiple possible materials quantities satisfying (1) becomes more severe, leading to the possibility
of partial identification.

With identification conditions established, all parameters can be estimated via GMM:

β̂ = argminβ

[
1

n

∑
jt

m(wjt,xjt;β)

]′
W

[
1

n

∑
jt

m(wjt,xjt;β)

]
, (7)

where m(wjt,xjt;β) = [∇βf(wjt;β)(rjt − f(wjt;β));h(xjt;β)] and W is a positive semi-definite
weight matrix. When the problem is over-identified, we use two-step GMM to obtain the opti-
mal weight matrix. Appendix 1.4 discusses consistency and the asymptotic distribution of this
estimator.

1.4 Consistency and Asymptotic Distribution

Now we establish the consistency and asymptotic distribution of our estimator. Since our estimator
is an extremum estimator, we need (a) identification; (b) uniform convergence of the objective
function for consistency. Since (a) has been established, we focus on (b).

Define

Ω(β) = E
[
m(wjt,xjt;β)

]′
WE

[
m(wjt,xjt;β)

]
,

and

Ωn(β) =

[
1

n

∑
jt

m(wjt,xjt;β)

]′
W

[
1

n

∑
jt

m(wjt,xjt;β)

]
,

where n is the number of observations.

10This assumption is used only to fit the notation and terminology of Rothenberg (1971), if ut is not normally
distributed then − 1

2

∑
jt[rjt − f(wjt, β0)]2 is not a logarithmic density. However Φ(β) is still the information matrix

of a nonlinear least squares problem and the remainder of the proof is unchanged.
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Assume the true parameter β0 ∈ Γ, and m(wjt,xjt;β) is continuous in β ∈ Γ with probability

one. Also, assume E
[

supβ |m(wjt,xjt;β)|
]
<∞. Then, the Uniform Law of Large Number implies:

sup
β

∣∣∣ 1
n

∑
jt

m(wjt,xjt;β)− E
[
m(wjt,xjt;β)

]∣∣∣ = op(1).

This in turn implies the uniform convergence of the objective function:

sup
β

∣∣∣Ωn(β)− Ω(β)
∣∣∣ = op(1).

Therefore, the estimator defined for the general model (7) is consistent. For asymptotic distri-
bution of the estimator, define

A = E
[∂m(wjt,xjt;β)

∂β′

∣∣∣
β=β0

]
,

and
B = E

[
m(wjt,xjt;β0)m(wjt,xjt;β0)

′
]
.

These matrices can be estimated by their empirical analogues. If the weight matrix W is a consistent
estimator of B−1 the asymptotic distribution is,

√
n(β̂ − β0)→ N(0, [A′B−1A]−1).

Online Appendix 2: Translog Parametric Example

This appendix shows how to implement our method using the translog production function spec-
ification as a secondary example to the CES implementation presented in the main paper. The
translog production function is specified,

Qjt = eωjtF (Ljt,Mjt,Kjt; θ) (8)

= eωjt exp

{
αk lnKjt + αl lnLjt + αm lnMjt +

1

2
αkk (lnKjt)

2 +
1

2
αll (lnLjt)

2 +
1

2
αmm (lnMjt)

2

+ αkl (lnKjt) (lnLjt) + αkm (lnKjt) (lnMjt) + αlm (lnLjt) (lnMjt)

}
Where θ = (αk, αl, αm, αkk, αll, αmm, αkl, αkm, αlm) are the parameters to be estimated. The

translog is a more flexible generalization of the Cobb-Douglas production function which allows for
the elasticity of substitution to be a function of the inputs. We first show that Proposition 1 can
be applied so that materials quantities can be recovered. Under this specification,

z(Mjt;Ljt,Kjt, EMjt, ELjt, θ) =
FLjtLjt

FMjtMjt
−
ELjt
EMjt

=
αl + αll lnLjt + αkl lnKjt + αml lnMjt

αm + αmm lnMjt + αkm lnKjt + αml lnLjt
−
ELjt
EMjt

=
SLjt
SMjt

−
ELjt
EMjt
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Where SLjt and SMjt are the numerator and denominator of the first term, respectively. The
partial derivative of z with respect to Mjt is,

∂z

∂Mjt
=

1

MjtSMjt

(
αml − αmm

SLjt
SMjt

)
.

So the sign is determined by αml − αmm
SLjt
SMjt

.11 At any solution where z(·) = 0, we know

SLjt
SMjt

=
ELjt
EMjt

, so for any M such that z(M,Ljt,Kjt, EMjt, ELjt, θ) = 0,

sign

(
∂z

∂Mjt

)
= sign

(
αml − αmm

ELjt
EMjt

)
,

which does not vary with Mjt given (Ljt,Kjt, ELjt, EMjt; θ). Applying Proposition 1, we can recover

Mjt as long as αml − αmm
ELjt
EMjt

6= 0.12 In this case the closed form for M∗jt is,

M∗(Ljt,Kjt, EMjt, ELjt; θ) = (9)

exp

 ELjt
EMjt

(αm + αkm lnKjt + αml lnLjt)− (αl + αll lnLjt + αkl lnKjt)

(αml − αmm
ELjt
EMjt

)

 .

Note that for higher order translog specifications, a similar procedure may be available, but it
will necessitate finding the roots of a polynomial (rather than linear) equation in M , introducing
the possibility that z(·) = 0 may have multiple solutions.13

To recover the unobserved productivity, we substitute (9) into the labor first order conditions
and solve for ω∗jt,

ω∗jt =
1

1 + 1/η
[− ln(1 + 1/η) + lnPLjt − lnFLjt − 1/η lnFjt]. (10)

That is, productivity can be written as a known function of (Ljt,Kjt, ELjt, EMjt) up to parameters
(θ, η), since lnFLjt and lnFjt are functions of these variables. As with the CES implementation,
we assume demand follows a Dixit-Stiglitz specification. Substituting both (9) and (10) into the
log revenue function yields our estimating equation,

lnRjt = − ln(1 + 1/η) + lnPLjt − lnFLjt + lnFjt + ujt

= − ln
(

1 +
1

η

)
+ ln

(
EMjt −

αmm
αml

ELjt

)
− ln

[(
αm − αl

αmm
αml

)
+
(
αkm − αkl

αmm
αml

)
lnKjt

+
(
αlm − αll

αmm
αml

)
lnLjt

]
+ ujt,

11We know SMjt is positive because it is proportional to the product of the marginal product of materials and Mjt.
12A sufficient condition for αml −

ELjt

EMjt
αmm 6= 0 to always hold is αmmαml < 0.

13It would be ideal to be able to recover M∗ for a nonparametric production function. Unfortunately, our method
requires a parametric approach to recovering M∗, as is illustrated by these examples. Nonetheless, we can in principle
accommodate an arbitrarily flexible parametric specification with appropriate restrictions to guarantee uniqueness.
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which can be rewritten, in the notation of the general model (7), as

rjt = f(wjt;β) + ujt, (11)

where β is the vector of parameters, including η and all α’s.
As with the CES case in the main paper, not all parameters of the production function are

identified by the revenue equation alone. In particular, it is clear that only nonlinear combinations
of production and demand parameters are identified from the revenue equation. Moreover, αk, αmk,
and αkk, are canceled when computing lnFjt − lnFLjt. Therefore, we need additional restrictions
to help identify all production and demand parameters separately, these can be derived from either
cross-sectional or time-series assumptions. With the translog specification, cross sectional restric-
tions like those used in the CES case of the main paper are not easy to find. Instead we follow
Olley and Pakes (1996) and Doraszelski and Jaumandreu (2013) in using time series restrictions on
productivity to help identify remaining parameters.14 In particular, we assume that productivity
follows a first order Markov process,

ωjt = g(ωjt−1) + εjt, (12)

where εjt, the productivity innovation, is independent of capital as well as variable labor and
material input at time t− 1. Given β, we can calculate ω∗jt from (10) and estimate ĝ from (12).15

Then, we can define,
εjt(wjt;β) = ω∗jt − ĝ(ω∗jt−1).

By the assumption on the productivity innovation process, εjt(wjt;β0) must be uncorrelated with
the firms’ information set at time t−1. This provides additional restrictions that, together with the
revenue equation (11), allow us to identify all the parameters. Let xjt be a vector of instruments
which are in the firms information set at time t− 1, and define h(xjt;β) = εjt(wjt;β)xjt. Thus we
can construct a set of moment conditions, E[h(xjt;β)] = 0. If the dimension of xjt is large enough
such that V (β) has full column rank, all parameters are identified.16

Following the general model (7), define the full set of moment conditions as, E[m(wjt,xjt;β)] =
0, where m(wjt,xjt;β) = [∇βf(wjt;β)(rjt− f(wjt;β)); εjt(wjt;β)xjt]. We estimate all parameters
via the following GMM sample analogue,

β̂ = argminβ

[
1

n

∑
jt

m(wjt,xjt;β)

]′
W

[
1

n

∑
jt

m(wjt,xjt;β)

]
.

To show identification, a similar exercise can be carried out for the translog case as we describe
for the CES case in the main paper. Denote

β = (η, αk, αl, αm, αkk, αll, αmm, αkl, αkm, αlm),

14From (10), we know that αk, αmk, and αkk are not cancelled in ω∗
jt.

15In principle this can be a parametric or non-parametric regression, depending on the assumptions on g. If it
is parametric, then we could easily incorporate this estimation into our GMM approach and estimate β and the
parameters of g in a single step.

16A valid set of instruments could be

xjt+1 =

(
ln
(Xjt
X

)
,

(
ln
(Xjt
X

))2
)

where X = Ljt,Kjt, EMjt.
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so there are ten parameters to identify. The rank of Φ(β) is four. With additional six moment
restrictions as specified in the paper, Ψ(β0) has column rank six (assuming the instruments are not
perfectly collinear). Thus, V (β0) has rank ten, and all parameters are locally identified.

Online Appendix 3: Multiple Materials Inputs

In the main paper, we have followed the literature in assuming that firms purchase a single ho-
mogeneous intermediate input. Indeed, the ability to treat the recovered firm-specific price and
quantity choices as quality-adjusted scalars representing a single homogenous input is critical since
our demand specification assumes that outputs are horizontally differentiated.17 In reality, inter-
mediate input expenditures are an aggregate of a wide variety of different input goods. Ideally,
an analyst would be able to account for each of these goods separately in the production function.
Unfortunately, datasets typically contain only the total material expenditure, not information on
the various types used, much less prices and quantities for each. With such limited data, it is clearly
not possible to learn the impact of individual inputs. In this Appendix, we establish conditions
under which production function parameters can be recovered even if the full vector of intermediate
input expenditures is not directly observed. The key assumption of this appendix is that the effect
of inputs on production can be summarized through a homogeneous materials index function. In
the following section, we show how our results extend the case with multiple unobserved materials.
We then present the results of a monte carlo study based on this extension.

3.1 Multiple Materials Extension

We first reprise the required assumptions to extend the main results to the case of a vector of
multiple unobserved materials, which are briefly discussed in the main paper. Suppose the firm
may use up to DM different types of materials. Denote the vector of material quantities used in
production as Mjt = (M1jt,M2jt, . . . ,MDM jt). These input types may be entirely different input
goods (thread versus fabric) or the same input good of different quality (cotton versus polyester
fabric). However, only the total expenditure on all components EMjt =

∑DM
d=1 PMdjt

Mdjt, rather
than each specific component Mdjt, is known to the researcher. Assume inputs enter into the
production function as,

Qjt = eωjtF (Ljt, µ(Mjt),Kjt; θ), (13)

where µ : RDM+ → R+ is a homogeneous index function which summarizes the contribution of all
materials inputs to production.18 As part of the production function, we assume that µ is known to
the firm. While this structure allows materials to substitute for each other in an unknown manner, it
does restrict the substitution patterns between materials and other production inputs, namely labor
and capital. As a result, we can allow for vertically or horizontally differentiated materials and treat
them as different elements of the materials vector in Mjt. The corresponding idiosyncratic material
prices for each component is summarized in price vector PMjt = (PM1jt, PM2jt, . . . , PMDM jt), which
is observed by firms but not by researchers.

17We thank an anonymous referee for making this point.
18We assume that firms optimally purchase a positive amount of all goods so (15) holds. To accommodate the

possibility that some firms do not use some inputs, we can allow for a discrete choice between homogeneous production
technologies, e.g., µ(Mjt) = max(µ1(M1

jt), µ
2(M2

jt)) where Mjt = (M1
jt,M

2
jt) and µ1(·) and µ2(·) are homogeneous

functions of the same degree. Then, only the first order conditions with respect to the profit maximizing technology
are relevant. We will use this more general setup in the Monte Carlo experiment in Section 3.2.
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The firm’s static optimization problem is now to choose Ljt and the vector Mjt to maximize
the profit given productivity and capital stock:

max
Ljt,Mjt

Pt(Qjt; η)Qjt − PLjtLjt − PMjtMjt

s.t. Qjt = exp(ωjt)F (Ljt, µ(Mjt),Kjt; θ).

The first order conditions for Ljt and all components of the vector Mjt are:

eωjtFLjt

[
Pt(Qjt; η) +Qjt

∂Pt(Qjt; η)

∂Qjt

]
= PLjt , (14)

eωjtFµjt

[
Pt(Qjt; η) +Qjt

∂Pt(Qjt; η)

∂Qjt

]
µd(Mjt) = PMdjt , ∀d = 1, 2, . . . , DM (15)

where µd(Mjt) =
∂µ(Mjt)
∂Mdjt

.

Denote the optimal choice of the firm as L∗jt and the vector M∗jt. Thus the total expenditure on

materials, which is observed by the researcher, is E∗Mjt
=
∑DM

d=1 PMdjtM
∗
djt. Define the material price

index as Pµjt =
E∗
Mjt

ψ(M∗
jt)

, where ψ(M∗jt) =
∑DM

d=1M
∗
djtµd(M

∗
jt). Using this price index, the information

in (15) can be summarized into a single equation by multiplying (15) by M∗djt, summing across d,
and dividing it by ψ(M∗jt),

eωjtFµjt

[
Pt(Qjt; η) +Qjt

∂Pt(Qjt; η)

∂Qjt

]
= Pµjt . (16)

This equation together with (14) can be viewed as the first order conditions of the firm’s
optimization problem if it faced labor price PLjt and a material price Pµjt for single material µ.
The following proposition shows how our method can be adapted to a production function where
the structure of µ(·) is unknown by the researcher.

Proposition 3. Suppose the index function µjt = µ(Mjt) : RDM+ → R+ is homogeneous of degree
κ > 0. Then given parameter θ, the firm’s optimal choices of input quantities and expenditure
satisfy the following equation:

z(µjt;Ljt,Kjt, EMjt, ELjt, θ, κ) ≡
FLjtLjt

Fµjtµjt
−

ELjt
1
κEMjt

= 0. (17)

In addition, this equation admits a unique solution µ∗(Ljt,Kjt, EMjt, ELjt; θ, κ) when the conditions
of Proposition 1 hold for z(·) as defined in (17).

Proof. Note that the firm’s optimal choices of input quantities and expenditure satisfy the first
order conditions (14) and (16) developed in the main body of the paper. Taking the ratio of the
two equations,

FLjt
Fµjt

=
PLjt
Pµjt

,

which implies,
FLjtLjt

Fµjtµjt
=

ELjt
Pµjtµjt

. (18)
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Recall Pµjt is the material price index which is defined as,

Pµjt =
EMjt∑DM

d=1Mdjtµd(Mjt)
.

Euler’s Theorem for homogeneous functions implies that
∑DM

d=1Mdjtµd(Mjt) = κµ(Mjt) given

µ(·) is homogenous of degree κ. Therefore, Pµjt =
EMjt
κµ(Mjt)

. Substituting Pµjt into (18) yields (17).

Recovering the value of µ uniquely is a direct application of Proposition 1. Note that in the
single input case, µ, is just the identity function, which is homogeneous of degree 1. Thus in this
special case we know κ = 1.

Finally, note that extending this proof to the case of a discrete choice between production
technologies, as in footnote 18 is straightforward. In this case the index function is µ(M) =
maxc∈C{µc(M c)}, where c indexes the discrete choice across technologies, all of which are homo-
geneous of degree κ, and M c is a sub-vector of M . We need only to replace µ(·) with the optimally
chosen technology, µc(·) in the definition of Pµjt and apply the same proof using the first order
conditions with respect to the sub-vector M c. Consequently, a firm’s materials price-index will be
determined by its optimally chosen technology, ignoring those materials types which it does not
use as inputs.

We can now substitute µ∗ into the revenue function as with M∗, albeit with κ as an additional
scale parameter. In some specifications (e.g., translog), κ may not be separately identified from
the production function parameters. In this case κ can be normalized to ones without loss of
generality, since it is absorbed in the primary parameters of the production function. In other
cases (e.g., CES), κ can be identified through the revenue function, where it represents returns to
scale of the materials aggregator index µ.19 In this case, the estimation procedure still follows our
method, except that now we substitute the material expenditure with 1

κEMjt and estimate κ as
an additional parameter of the production function. For example, in the CES specification of the
main paper, we can employ the following revenue equation:20

lnRjt = ln
η

1 + η
+ ln

[
1

κ
EMjt + ELjt

(
1 +

αK
αL

(
Kjt/K

Ljt/L

)γ)]
+ ujt.

To summarize, our method still works if the effect of material inputs on production can be
summarized by a homogeneous materials index function.21 As we would expect, the functional

19Whether or not κ is identified depends on whether or not the production function already accounts for scale
effects on materials independent of other inputs. That is, suppose the production function is F (L,M,K; θ) and
consider the alternative F̃ (L,M,K;κ, θ) = F (L,Mκ,K; θ). In F̃ (·), κ may or may not be identified depending on
the form of F . If κ is not identified, normalizing κ = 1 simply returns the researcher to the original specification. For
theoretical reasons, some researchers may still want to impose that κ = 1 even when it is formally identified. This
would be essentially equivalent to assuming constant returns to scale in the materials aggregator µ.

20Of course, additional restrictions may still be needed to identify all parameters. We conducted a Monte Carlo
experiment to verify this result with µ(Mjt) = Mκ

jt, and our method works very well in recovering the primary
parameter θ as well as κ. Results are available upon request.

21If µ(·) is not homogenous, then the “total material expenditure” implied by (16) together with (14) will be

µ(M∗
jt)Pµjt =

µ(M∗
jt)

ψ(M∗
jt)
EM∗

jt
which is not observable (since generally

µ(M∗
jt)

ψ(M∗
jt)

is not a constant). In this case, information

on expenditure alone is insufficient to control for variation in materials inputs even if prices are homogenous across
firms.
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form of µ(·) is not identified without more information, but its functional form (indeed, even its
dimension) is not needed to recover the other production parameters, θ.

Although we assume that µ(·) is homogeneous, this still allows a vast set of flexible functional
forms that may incorporate both vertically and horizontally differentiated materials inputs.

3.2 Monte Carlo

We now verify the validity of our approach to multiple materials inputs through a monte carlo study.
For consistency with the monte carlo in the main paper, we again use the basic CES formulation
with the same parameterization, and only emphasize the introduction of multiple materials here.
Specifically, in addition to labor and capital stock, firms may choose to use any combination of three
components (M1, M2, M3) of materials in production. They enter into the production function
through the index function µ,22

µ(Mjt) = max

([
(δM1jt)

γ1 +Mγ1
3jt

]1/γ1
,
[
Mγ2

2jt +Mγ2
3jt

]1/γ2)
, (19)

where γ1 = σ1−1
σ1

and γ2 = σ2−1
σ2

. The functional form of µ is observable to the firms but not to

the researcher. The experiment’s basic structure is inspired by the following scenario:23 M1 and
M2 are vertically differentiated versions of the same type of input (e.g., two versions of the same
part). The third component is a homogenous material M3, with idiosyncratic price PM3jt . M1 and
M2 differ in their quality such that the efficiency for M1 in the production process is δ < 1, while
the efficiency for M2 is normalized to be one. They also differ in regard to their substitutability
with M3 (σ1 and σ2 may not be equal). They are produced within competitive industries and their
prices, PM1 and PM2 , are offered to all firms.24 The functional form of µ(Mjt) implies that the firm
will optimally use either M1 or M2 since using both can provide no benefit over only purchasing
one. The production function is,

Qjt = eωjtQ

[
αL

(
Ljt

L

)γ
+ αM

(
µ(Mjt)

µ

)γ
+ αK

(
Kjt

K

)γ] 1
γ

, (20)

where γ = σ−1
σ . The firm observes the price vector, (PLjt , PM1 , PM2 , PM3jt), and optimally chooses

its vector of inputs, (Ljt,M1jt,M2jt,M3jt). However, only total materials expenditure EM =∑3
d=1 PMdjt

Mdjt is observed by the researcher,25 who is attempting to recover the production func-
tion parameters (αL, αM , αK , σ), as well as the distribution of µ(Mjt), its price index Pµjt, and
productivity ωjt.

Importantly, due to the difference in their elasticities of substitution with M3, the price of M3

will affect the optimal decision to employ M1 or M2 in production (see Figure A.1). Each firm
has a cutoff point P̃M3jt , and the choice of M1 or M2 depends on whether it faces a price for M3

above or below this cutoff. To generate our data, we solve the optimization problem for each firm

22Note that this function a discrete choice between two materials technologies that are homogenous of degree one.
As discussed in footnote 18, our method can accommodate this case even though either M1jt or M2jt will be optimally
set to zero.

23We thank a referee for suggesting a version of this Monte Carlo design.
24We have also experimented with allowing these prices to be heterogeneous and have also been able to successfully

recover the production function parameters.
25She also observes (ELjt , Ljt,Kjt, Rjt).
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j and period t, and obtain the input demand (L∗jt,M
∗
1jt,M

∗
2jt,M

∗
3jt)

26, which is then substituted
into the demand function and the production function to calculate the other endogenous variables.
Therefore, we have generated the entire data set of firm-level variables for each firm j and period
t: {ωjt,Kjt, Ijt, Ljt,Mjt, ELjt , EMjt , Qjt, Rjt, Qt, Pt}, where Mjt = (M∗1jt,M

∗
2jt,M

∗
3jt). Then we

estimate the model with our method only using data set on {Kjt, Ljt, ELjt , EMjt , Rjt, Qt, Pt}.
Table A.1 presents the result for N = 1000 replications. As discussed earlier, the form of µ(M)

is not identified, but we find that our method recovers the primary parameters (i.e., all α’s, σ and
η) very well. Also, the material quantity index and price index can be recovered. In Figure A.2,
we compare the recovered material quantity index µ̂(M) and price index P̂µ with the true indexes
µ(M) and Pµ.

Online Appendix 4: CES Normalization

This appendix illustrates how why the CES function is normalized in the literature, describes our
normalization when materials quantities are not directly observed.

4.1 Motivation of Normalization

It has been commonly recognized that the CES production function needs to be normalized to
give meaningful identification of its parameters. There is a branch of literature analyzing the
importance and the method of normalization, which includes de La Grandville (1989), Klump and
de La Grandville (2000), Klump and Preissler (2000), de La Grandville and Solow (2006), and
Leon-Ledesma, McAdam and Willman (2010).

The current literature has illustrated the key motivation of the normalization in details for
two-factor-input production function (see Brown and de Cani (1963), Klump and Preissler (2000)
and Leon-Ledesma, McAdam and Willman (2010)). However, we will work with three-factor-input
production function, Q = F (L,M,K). It is defined as a linear homogeneous function in which the
elasticity of substitution between any two factors is a constant. The idea and motivation of the
standard normalization procedure can be easily extended to our case. To see this, let us follow the
literature by stating the definition of elasticity of substitution σ:

∂ ln(M/L)

∂ ln(FL/FM )
= σ

∂ ln(K/L)

∂ ln(FL/FK)
= σ

This definition provides us with a second-order partial differential equation system. Given the
assumption of the linear homogenous function, the general solution of the equation system is given
by,

Q = F (L,M,K) = λ1[L
γ + λ2M

γ + λ3K
γ ]

1
γ ,

where γ = σ−1
σ , and λs are three arbitrary constants of integration emerging in the process of

solving the differential equation system. One particular functional form used in the literature is

26Either M∗
1jt or M∗

2jt should be zero because of the substitution between the two.
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obtained by taking α̃L = 1
1+λ2+λ3

, α̃M = λ2
1+λ2+λ3

, α̃K = 1− α̃L − α̃M and C = λ1(1 + λ2 + λ3)
1
γ ,

thus
Q = F (L,M,K) = C[α̃LL

γ + α̃MM
γ + α̃KK

γ ]
1
γ .

Here α̃L, α̃M and α̃K are referred as distribution parameters.27 However, one can obtain different
function forms by taking different specifications for λs. Each of these forms is called a family of CES
functions. Examples of different families include ones used in Pitchford (1960), Arrow et al. (1961),
and David and van de Klundert (1965). Therefore, as shown in the literature, a common baseline
point is needed to compare different families of CES functions whose members are distinguished
only by different elasticities of substitution. To this end, one needs to fix baseline point for the level
of production (Q0), factor inputs (L0,M0,K0), and the marginal rates of substitution (µML0, µKL0),
which are equal to the price ratios (PM0/PL0 , PK0/PL0) because of the cost minimization.28 For
detailed motivation of normalization, refer to La Grandville (1989) and Leon-Ledesma et al. (2010).

4.2 Standard Normalization Procedure

We follow de La Grandville (1989) and Leon-Ledesma et al. (2010) to illustrate the normalization
of the three-factor-input CES function. Given the elasticity of substitution σ, for any baseline
point Z0 = (L0,M0,K0, Q0, µML0, µKL0), there are four equations about four parameters that
characterize one particular family of CES functions:

α̃L + α̃M + α̃K = 1, (21)(
FM
FL

)
0

=
α̃M
α̃L

(
L0

M0

)1−γ
= µML0 ≡

PM0

PL0

, (22)(
FK
FL

)
0

=
α̃K
α̃L

(
L0

K0

)1−γ
= µKL0 ≡

PK0

PL0

, (23)

Q0 = C[α̃LL
γ
0 + α̃MM

γ
0 + α̃KK

γ
0 ]

1
γ . (24)

The equations (22) and (23) are implied by cost minimization. Note that (23) implicitly assumes
the optimal choice of capital stock in the short run. The last equation holds since Q0 is the physical
output produced by its corresponding factor inputs. De La Grandville (1989) provides a graphical
representation of the normalization. He shows that, after normalization all CES functions in the
same family share the common baseline point of tangency, although their elasticities of substitution
are different. Therefore, the purpose of normalization is to compare different CES functions in a
meaningful way: on the one hand, different families of CES functions can be characterized by
different baseline points, on the other hand, the members of each family sharing common baseline
point are distinguished only by different elasticities of substitution.

These four equations imply a solution for four parameters:

α̃L(σ, Z0) =
PL0L

1
σ
0

PM0M
1
σ
0 + PL0L

1
σ
0 + PK0K

1
σ
0

,

27We use α̃’s to denote the un-normalized (or “original”) distribution parameters, while α’s are reserved for the
normalized distribution parameters, unless otherwise noticed.

28Note that PK0 is the user price of capital, which usually is not accurately measured. To this end, we will extend
the normalization to cases where PK0 is not available.
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α̃M (σ, Z0) =
PM0M

1
σ
0

PM0M
1
σ
0 + PL0L

1
σ
0 + PK0K

1
σ
0

,

α̃K(σ, Z0) =
PK0K

1
σ
0

PM0M
1
σ
0 + PL0L

1
σ
0 + PK0K

1
σ
0

,

C(σ, Z0) = Q0

PL0L 1
σ
0 + PM0M

1
σ
0 + PK0K

1
σ
0

PL0L0 + PM0M0 + PK0K0

 σ
σ−1

.

Note that given the elasticity of substitution, the value of parameters depend on the choice of
baseline point Z0. Hence, comparing any two CES functions is not informative unless they are
specified with the same baseline point.

Substituting the value of these parameters into the original function, we obtain:

Q = C(σ, Z0)[α̃L(σ, Z0)L
γ + α̃M (σ, Z0)M

γ + α̃K(σ, Z0)K
γ ]

1
γ .

After re-parameterizations, one particular family of CES production function with correspond-
ing normalized parameters is given by

Q = Q0

[
αL0

(
L

L0

)γ
+ αM0

(
M

M0

)γ
+ αK0

(
K

K0

)γ] 1
γ

,

where: 
αL0 =

EL0

EL0 + EM0 + EK0

αM0 =
EM0

EL0 + EM0 + EK0

αK0 = 1− αL0 − αM0

and EL0 = PL0L0, EM0 = PM0M0 and EK0 = PK0K0 are expenditures of labor, material and
capital respectively.29 Hence a normalized CES function is characterized by the baseline point Z0

and elasticity of substitution σ: while each baseline point specifies a family of CES production
functions, the members of each family sharing a common baseline values are distinguished only
by different elasticities of substitution. The normalized distribution parameters now solely depend
on the baseline point. Thus they can be prefixed before the estimation if normalization equations
(22)-(23) hold.

4.3 Our CES Normalization

In the standard normalization literature, capital is assumed to be a static input which is chosen
optimally in each period. However, in practice, capital may be chosen dynamically. For this
reason, we extend the standard normalization approach to allow that capital is not running at the
cost-minimizing level in the short run.

29Note that the expenditure on capital EK0 is different from the capital stock K0. But they are related by
EK0 = PK0K0, where PK0 is the user price of capital stock.
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Specifically, although capital could be optimally chosen in the long run, the user price of capital
(PK , if available) may not reflect the marginal cost of capital in the short run. To this end, we
assume the choice of capital can deviate from the short-run optimal value by certain magnitude of τ
which is treated as a parameter to be estimated. This extension also allows for additional flexibility
to deal with situations when the user cost of capital service (EK = PKK) is not available.

We start from the original production function

Q = eω̃F (L,M,K) = eω̃[α̃LL
γ + α̃MM

γ + α̃KK
γ ]

1
γ , (25)

where ω̃ is the firm-level productivity.
As suggested by Leon-Ledesma et al. (2010), the baseline point is chosen as the geometric

sample mean:
Z = (L,M,K,Q, µML),

where µML is the average marginal rate of substitution between material and labor (i.e., PM/PL).
Note that the choice of the baseline value specifies a family of CES functions. Given the baseline

value, the equations that characterize this family are:

α̃L + α̃M + α̃K = 1, (26)(
FM
FL

)
Z

=
α̃M
α̃L

(
L

M

)1−γ

= µML, (27)(
FK
FL

)
Z

=
α̃K
α̃L

(
L

K

)1−γ

=

(
τ
EL

EK

)
µKL = τ

L

K
, (28)

Q = eω[α̃LL
γ

+ α̃MM
γ

+ α̃KK
γ
]
1
γ , (29)

where ω is the “average” productivity associated with producing Q by (L,M,K).
Here τ in (28) is introduced as an inefficiency parameter to measure the mean deviation of capital

stock from its optimal level. This extension is important for multiple reasons compared with the
standard normalization procedure. First, by introducing such an additional flexible parameter, we
allow for the case when the capital stock is not optimally chosen in the short run (although it could

be optimal in the long run). Specifically, when τ = EK
EL

, the marginal rate of substitution of labor

and capital at the baseline point is equal to the price ratio, which implies the capital stock is indeed

optimally chosen; when τ 6= EK
EL

, the actual capital deviates from the optimal amount. We will

not specify the value of τ but leave it to be revealed by data as a parameter to estimate. Second,
in our empirical application, such a flexible parameter enables us to deal with situations where
the average “price” (or the user cost) of capital stock PK (or EK) is not available or accurately
measured. In other words, instead of assuming that PK or EK is known, we let it be absorbed in
the parameter τ which can be estimated from data.

Given γ and τ , the distribution parameters implied by the equations (26), (27) and (28) are
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given by:

α̃L(γ, τ) =

EL
L
γ

EL
L
γ + EM

M
γ + τ EL

K
γ

α̃M (γ, τ) =

EM
M
γ

EL
L
γ + EM

M
γ + τ EL

K
γ

α̃K(γ, τ) = 1− α̃L(γ, τ)− α̃M (γ, τ)

(30)

As in the standard normalization procedure, we plug the distribution parameters into the orig-
inal CES function to obtain the normalized CES function after re-parametrization:

Q = eωQ

[
αL

(
L

L

)γ
+ αM

(
M

M

)γ
+ αK

(
K

K

)γ] 1
γ

,

where

αL =
EL

EL + EM + τEL

αM =
EM

EL + EM + τEL
αK = 1− αL − αM

, (31)

and
ω = ω̃ − ω.

Note that these equations in (31) place restrictions on the value of α’s via (31) which is used
to help identify all α’s as shown in the paper.

Online Appendix 5: Additional Application Results

5.1 Comparison to other estimation methods

While we use the OP-KG estimation method as our primary basis of comparison in the main body
of the paper, there are many other approaches to estimating production functions. In this appendix,
we compare our method to three additional approaches. First, we implement a simple nonlinear
least squares estimator for the production function which proxies for materials with expenditure
and also ignores the presence of heterogeneity. Second we use an approach that uses the first order
conditions to control for productivity, but continues to use a materials expenditure to proxy for
materials quantities. Finally, we compare our estimator to a panel data estimator a la Arellano
and Bond (1991), where the productivity term includes a fixed effect and an AR(1) process.

First, we estimate the model with naive nonlinear least square estimation, in which the material
expenditure is used as a proxy of quantity and the productivity is lumped into the additive error
term. Specifically, the following model is estimated:30

ln
(Rjt
R

)
= ln

(Pt
P t

)
− 1

η
ln
(Qt
Qt

)
+

1

γ

1 + η

η
ln

[
αL

(
Ljt

L

)γ
+ αM

(
EMjt

EM

)γ
+ αK

(
Kjt

K

)γ]
+ ujt,

(32)

30To make results comparable, we estimate this normalized revenue equation instead of production function.
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where γ = σ−1
σ and σ is the elasticity of substitution. Pt and Qt are industry-level output price

and quantity. Note that ujt contains both the productivity and measurement error.
The result is shown in the second column of Table A.2 under the title ‘NLLS’. For comparison

purposes, the first column reproduces our estimates from Table 3 of the main paper, while the final
column reproduces the OP-KG estimates. We can immediately see that controlling for productivity
is essential to producing reasonable estimates of the demand parameter η, which has the wrong
sign and an extremely high magnitude under the NLLS specification.

Secondly, we estimate the model with nonlinear least square estimation, with the proxy of
material quantity (i.e., material expenditure) and the productivity recovered from the first order
condition of labor input. To be specific, with the productivity imputed from the first order condition
of labor input, the revenue equation can be derived:

lnRjt = ln
η

1 + η
+ ln

[
ELjt

αM
αL

(
Mjt/M

Ljt/L

)γ
+ ELjt

(
1 +

αK
αL

(
Kjt/K

Ljt/L

)γ)]
+ ujt.

Since Mjt is not observed, we use its proxy EMjt . Thus, the following empirical equation is
estimated:

lnRjt = ln
η

1 + η
+ ln

[
ELjt

αM
αL

(
EMjt/EM

Ljt/L

)γ
+ ELjt

(
1 +

αK
αL

(
Kjt/K

Ljt/L

)γ)]
+ ujt,

with normalization restriction (31).
The result from this table is presented in Column 3 of Table A.2 under the title ‘Prod.’.

Controlling for productivity generates a reasonable demand parameter, as opposed to the ear-
lier approach. The elasticity of substitution parameter is substantially larger than in all other
methods. This is intuitive. Note that the first order conditions for labor and material implies

that ELjt
αM
αL

(
Mjt/M

Ljt/L

)γ
= EMjt . The difference between this estimation and our method is that

we utilize this relationship rather than using a proxy of material quantity. As shown in the ta-
ble, the elasticity of substitution is significantly larger than our estimates, because the variance of

ELjt
αM
αL

(
EMjt/EM

Ljt/L

)γ
is larger (1.2 ∼ 3 times) than the variance of EMjt .

Third, we estimate a CES version of persistent panel data method (Arellano and Bond, 1991;
Blundell and Bond, 2000). In particular, consider the empirical equation (32), but now the error
term is composed of three parts,

ujt = βj + νjt + εjt,

where βj is a product fixed effect, εjt is an i.i.d. measurement error and vjt is an i.i.d. innovation
term which is assumed to follow an AR(1) process,

νjt = ρνjt−1 + vjt.

Following Arellano and Bond (1991) and Blundell and Bond (2000), we take the quasi-difference

Dt(η, σ, α, ρ) = ujt − ρujt−1,

Dt−1(η, σ, α, ρ) = ujt−1 − ρujt−2,
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where α = (αL, αM , αK), and ujt is given by31

ujt = ln
(Rjt
R

)
−

{
ln
(Pt
P t

)
−1

η
ln
(Qt
Qt

)
+

1

γ

1 + η

η
ln

[
αL

(
Ljt

L

)γ
+ αM

(
EMjt

EM

)γ
+ αK

(
Kjt

K

)γ]}
.

Then we construct the following moment condition for GMM estimation:

E
[
Dt(η, σ, α, ρ)−Dt−1(η, σ, α, ρ)|ELjt−2 , EMjt−2 ,Kjt−2,K

2
jt−2

]
= 0.

The result is reported in the fourth column of A.2 under the title ‘AB’. Like the OP-KG
estimator, we would expect this the elasticity of substitution to be biased downward using this
approach, due to the way the expenditure proxy for materials is employed. In fact, we do see that
this estimator, like OP-KG estimates a smaller σ̂ relative to our method across all four industries.

5.2 Comparing Productivity Measures

As with other structural approaches to production function estimation, there are two potential
approaches to defining “productivity” in our model. In the body of the paper, we follow the
most common approach, and report the distribution of ̂ωit + uit which is the residual from the
production function itself. This represents the sum of productivity anticipated by the firm as well
as unanticipated productivity and potential measurement error in revenues. Alternatively, we could
employ (4) to recover ω̂it alone from the system of first order conditions. This approach includes
only an estimate of productivity anticipated by the firm when it makes its labor and materials
decision. A similar approach could be recover ω̂it alone using the OP-KG procedure. However
in this case, the anticipated productivity relaters to the firm’s expectation of productivity when
making the investment decision which occurs later than the hiring decision according to the timing
assumptions.

It is interesting to see whether these different definitions of the productivity distribution yield
substantially different results. We investigate this in Figure A.3, which plots the two distributions
for the two different methods for the Clothing industry. (Results for other industries are similar
and are available by request). We see that while there is a substantial difference across methods (as
is also visible in Figure 3 of the main paper), the difference across definitions for a given method
is relatively small. It is particularly small when using our method. This implies that the bulk
of the variance in the distribution of productivity is due to anticipated productivity differences,
which further supports the importance of controlling for productivity differences when estimating
production functions.

Finally, Figure A.4 presents the two distributions for our method only across all four industries.
It shows that the result that the two distributions are quite similar is robust across the four
industries we consider in the main body of the paper.

31Note that all α’s are parameterized as in (31), as a function of τ .
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Figure A.1: Profit difference in choosing different quality levels
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Solid line is the profit difference between choosing M2 and M1. The cutoff
point is demonstrated by the dotted vertical line.

Table A.1: Multiple Materials Monte Carlo: Parameter
Estimates1

Parameter η̂ σ̂ α̂L α̂M α̂K
True -4.000 1.500 0.400 0.400 0.200

Estimation -3.997 1.497 0.400 0.400 0.200
SE (0.001) (0.026) (0.004) (0.005) (0.008)

RMSE [0.052] [0.027] [0.003] [0.001] [0.003]

1 The table reports the medians of N = 1000 replications of each

case. The standard errors are included in the parentheses and root

mean squared errors are in the square brackets.
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Figure A.2: Multiple Materials Monte Carlo: True and recovered material and material price index
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Figure A.3: Comparison: densities of ω̂ and ω̂ + û – large demonstration
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Table A.2: Estimated results by various methods for Colombian industries

Clothing Bakery Products

Us NLLS Prod. AB OP-KG Us NLLS Prod. AB OP-KG
η̂ -5.768 109.423 -5.020 -2.416 -8.465 -5.231 24.564 -4.650 -2.546 -5.253

(0.121) (39.317) (0.105) (0.373) (1.544) (0.188) (1.927) (0.156) (0.484) (0.417)
σ̂ 1.948 1.880 6.826 0.569 0.361 1.443 1.411 4.369 0.363 0.401

(0.234) (0.077) (0.292) (0.229) (0.018) (0.117) (0.104) (0.233) (0.298) (0.011)
α̂L 0.361 0.372 0.370 0.358 0.371 0.244 0.253 0.254 0.244 0.251

(0.002) (0.001) (0.001) (0.037) (0.001) (0.002) (0.001) (0.001) (0.025) (0.000)
α̂M 0.601 0.620 0.617 0.597 0.618 0.705 0.731 0.734 0.704 0.725

(0.003) (0.002) (0.002) (0.062) (0.001) (0.006) (0.002) (0.004) (0.072) ( 0.001)
α̂K 0.038 0.008 0.013 0.045 0.011 0.050 0.016 0.012 0.053 0.025

(0.004 ) (0.004) (0.003) (0.100) (0.002) (0.007) (0.003) (0.005) (0.097) (0.002)
ĝ0 0.008 0.048 0.101 0.039 0.029 0.148

(0.010) (0.010) (0.011) (0.015) (0.015) (0.011)
ĝ1 0.695 0.771 0.972 0.822 0.873 0.955

(0.014) (0.018) (0.010) (0.012) (0.022) (0.005)
ρ̂ 0.547 0.264

(0.071) (0.191)

#Obs 5763 2269

Printing & Publishing Metal Furniture

Us NLLS Prod. AB OP-KG Us NLLS Prod. AB OP-KG
η̂ -4.659 14.142 -3.857 -2.189 -12.161 -5.518 10.514 -4.186 -6.280 -6.947

(0.236) (0.986) (0.135) (1.739) (5.434) (0.433) (0.918) (0.210) (6.713) (2.686)
σ̂ 2.555 2.218 3.326 0.313 0.593 1.772 1.395 5.600 0.429 0.393

(0.405) (0.186) (0.145) (0.405) (0.054) (0.379) (0.090) (0.598) (0.212) (0.045)
α̂L 0.372 0.379 0.389 0.298 0.381 0.300 0.295 0.319 0.233 0.304

(0.005) (0.003) (0.004) (0.070) (0.004) (0.005) (0.002) (0.003) (0.057 (0.005
α̂M 0.537 0.546 0.560 0.429 0.549 0.637 0.627 0.677 0.494 0.647

(0.007) (0.004) (0.005) (0.101) (0.005) (0.010) (0.005) (0.005) (0.121) (0.011)
α̂K 0.091 0.075 0.051 0.273 0.070 0.064 0.078 0.004 0.273 0.049

(0.013) (0.006) (0.009) (0.171) (0.009) (0.015) (0.008) (0.008) (0.178) (0.016)
ĝ0 -0.025 -0.018 0.211 -0.033 -0.003 0.219

(0.015) (0.015) (0.039) (0.024) (0.024) (0.072)
ĝ1 0.906 0.933 0.950 0.824 0.863 0.877

(0.019) (0.017) (0.014) (0.026) (0.033) (0.026)
ρ̂ 0.358 -0.303

(0.380) (0.462)

#Obs 2377 903
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Figure A.4: Comparison: densities of ω̂ and ω̂ + û from our method – small figures
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