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Bernstein estimator for unbounded copula densities
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Summary: Copulas are widely used for modeling the dependence structure of multivariate data. Many methods for
estimating the copula density functions are investigated. In this paper, we study the asymptotic properties of the Bern-
stein estimator for unbounded copula density functions. We show that the estimator converges to infinity at the corner
and we establish its relative convergence when the copula density is unbounded. Also, we provide the uniform strong
consistency of the estimator on every compact in the interior region. We investigate the finite sample performance of the
estimator via an extensive simulation study and we compare the Bernstein copula density estimator with other nonpara-
metric methods. Finally, we consider an empirical application where the asymmetric dependence between international
equity markets (US, Canada, UK, and France) is examined.

1 Introduction
The copula function has the advantage to model completely the dependence among variables. In fact,
any continuous joint distribution function can be controlled by the marginal distributions, which give the
information on each component, and a unique copula that captures the dependence between components.
This gives rise to a flexible two step modelling approach where in the first step one models the marginal
distributions and in the second one characterizes the dependence using a copula function; see Nelsen (2006)
for textbook details. In finance, for example, copulas are a powerful tool for modelling dependence between
risky assets, and are applicable in multi-asset pricing, credit portfolio modelling, risk management, etc.
The aim of the present paper is to investigate the properties of the nonparametric Bernstein estimator of
the copula density. Although many common families of copula densities are unbounded (e.g. Clayton,
Gumbel, Gaussian and Student), the properties of the Bernstein copula density estimator have been studied
only under the boundedness condition of the copula density at the corners. Hence, in this paper we examine
the asymptotic properties of the Bernstein estimator for unbounded density copula functions.

Several approaches have been proposed to estimate the copula functions. The first method is a para-
metric approach that imposes a specific model for the density copula that is known up to some parameters.
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These parameters can be estimated using the maximum likelihood or inference function for margins meth-
ods. Theses approaches are widely used in practice because of heir simplicity; see Joe (1997) and Joe (2005)
for more details. The second possibility is a semiparametric approach that assumes a parametric model for
the density copula and a nonparametric model for the marginal distributions; for more details, see Genest
and Rivest (1995) and Shih and Louis (1995). Liebscher (2005) proposes to estimate the density function
based on parametric copulas and on the standard kernel estimator for the marginal densities, which solves
the curse of dimensionality problem but not the boundary problem. Bouezmarni and Rombouts (2008) es-
timate the multivariate density function using parametric copula and asymmetric kernels for the marginal
densities, which allows them to address the boundary and the curse of dimensionality problems simulta-
neously. In a recent paper, Kim, Silvapulle, and Silvapulle (2007) compare semiparametric and parametric
methods for estimating copulas. The third way of estimating copulas is based on a nonparametric approach.
The advantage of this approach is its flexibility to adapt to any kind of dependence structure. An impor-
tant contribution is Deheuvels (1979) who suggests the multivariate empirical distribution to estimate the
copula function. (Gijbels and Mielniczuk 1990) estimate a bivariate copula density using smoothing kernel
methods. They also suggest the reflection method in order to solve the well known boundary bias problem
of the kernel methods. (Chen and Huang 2007) propose a bivariate copula estimator based on the local
linear estimator, which is consistent everywhere in the support of the copula function, and Rödel (1987)
uses the orthogonal series method.

Motivated by Weierstrass theorem, Bernstein polynomials are considered by Lorentz (1953) who proves
that any continuous function on the interval [0,1] can be approximated by Bernstein polynomials. For den-
sity functions, estimation using the Bernstein polynomials is suggested by Vitale (1975) and, with a slight
modification, by Grawronski and Stadtmüller (1981). Tenbusch (1994) investigates the Bernstein estimator
for bivariate density functions and Bouezmarni and Rolin (2007) prove the consistency of the Bernstein
estimator for unbounded probability density functions. Kakizawa (2004) and (Kakizawa 2006) consider
the Bernstein polynomial to estimate density and spectral density functions, respectively. Tenbusch (1997)
and (Brown and Chen 1999) propose estimators of the regression functions based on the Bernstein poly-
nomial. In the Bayesian context, Bernstein polynomials are explored by Petrone (1999a), Petrone (1999b),
Petrone and Wasserman (2002), and Ghosal (2001). The Bernstein estimator for bounded copula densities
was first studied by Sancetta and Satchell (2004) for independent and identically distributed (i.i.d.) data
and by Bouezmarni, Rombouts, and Taamouti (2010) for time series data.

In this paper, we focus our attention on the behavior of the Bernstein copula estimator at the boundary
regions. In finance, for example, having a good estimator of the copula density at the boundary region is
essential for obtaining a valid risk evaluation (risk management). To show the performance of the Bernstein
estimator for a copula density that is not necessarily bounded at the corners, we study the consistency of the
estimator at the boundary and the interior region. Without assuming any unnecessary assumption like the
existence of the first derivative, we are able to prove that the Bernstein copula density estimator converges to
infinity at the corner when the copula density is unbounded and we establish the relative strong convergence
at the boundary region. Also, we provide its uniform strong consistency on each compact in the interior
region. To show the last results, the boundedness of the copula density at the corners is not required.

Further, we ran a simulation study to investigate the finite sample properties of the Bernstein estimator
for the copula density. The results show that this estimator has a good performance compared to many other
well known estimators like Local linear estimator, Mirror-reflection estimator, Beta kernel estimator and
the Transformation estimator using multiplicative Epanechnikov kernel and Gaussian transformation. Since
the Bernstein copula density estimator depends on a ”smoothing” parameter, we also investigate the least
square cross validation method to select the optimal smoothing parameter. Finally, we consider an empirical



Bernstein estimator for unbounded copula densities 345

application where the asymmetric dependence between international equity markets (US, Canada, UK, and
France) is re-examined. We find that the Bernstein copula density estimator is a good estimator at the
extremes. The results show that this estimator is able to capture the well known asymmetric dependence
phenomena that is observed in the international equity markets.

This paper is organized as follows. The Bernstein copula density estimator is introduced in Section 2.
Section 3 provides the asymptotic properties of the Bernstein copula density estimator at the corners and
the interior region. In Section 4, we provide simulation results that show the performance of the Bernstein
estimator compared to other existing nonparametric estimators of the copula density. In Section 5, we
investigate the least square cross validation method to select the optimal smoothing parameter. Section 6
presents an empirical illustration using financial data and Section 7 concludes.

2 Bernstein copula estimator
LetX ≡ (X1, . . . , Xd)

> be a random vector in Rd with distribution functionF and density function f from
which an i.i.d sample of length n, say

{
Xi ≡ (Xi1, . . . , Xid)

>
, i = 1, . . . , n

}
, is observed. According to

Sklar (1959), the distribution function of X can be expressed via a copula:

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)), (2.1)

where Fj , for j = 1, . . . , d, is the marginal distribution function of the random variable Xj , and C is a
copula function that captures the dependence structure in the vectorX . If we differentiate (2.1) with respect
to (x1, . . . , xd), we obtain the density function of X that can be expressed as follows:

f(x1, . . . , xd) =

 d∏
j=1

fj(xj)

× c (F1(x1), . . . , Fd(xd)) ,

where fj , for j = 1, . . . , d, is the marginal density of the random variable Xj and c is the copula density.
Hence, the estimation of the joint density function can be done by estimating the univariate marginal
densities, the univariate marginal distributions and the copula density function.

Sancetta and Satchell (2004) proposed the Bernstein copula function which is defined as follows:

C̃(u) =

k∑
υ1=0

· · ·
k∑

υd=0

C
(v1
k
, . . . ,

vd
k

) d∏
j=1

pυj ,k(uj), for u = (u1, . . . , ud) ∈ [0, 1]
d
, (2.2)

where k is an integer that plays the role of a smoothing parameter and pυj ,k(uj), for j = 1, . . . , d, is the
binomial distribution function:

pυj ,k(uj) =

(
k
υj

)
u
υj
j (1− uj)k−υj .

Sancetta and Satchell (2004) showed that the Bernstein approximation, C̃, is itself a copula function. In
practice the Bernstein copula can not be used because it depends on C which is unknown. To answer
that, (Sancetta and Satchell 2004) proposed the Bernstein estimator of copula function which is defined as
follows:

Ĉ(u) =

k∑
υ1=0

· · ·
k∑

υd=0

Cn

(v1
k
, . . . ,

vd
k

) d∏
j=1

pυj ,k(uj), for u = (u1, . . . , ud) ∈ [0, 1]
d
, (2.3)
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where k ≡ kn is an integer that depends on the sample size n and Cn is the empirical copula function of
the vector X = (X1, . . . , Xd) given by :

Cn(u) = Fn
(
F−1n1 (u1), . . . , F

−1
nd (ud)

)
with Fn (resp. Fn1,. . . ., Fnd) the empirical distribution function ofX (resp. ofX1,. . . ,Xd). In a very recent
paper, Janssen, Swanepoel, and Ververbeke (2012) investigated the asymptotic properties of the Bernstein
estimator of copula. They established the almost sure consistency, the asymptotic normality of the estimator
and they provided the asymptotic bias and variance of Ĉ.

In this paper, our interest lies in the estimation of the unbounded copula density function using Bern-
stein polynomials. Indeed, if we differentiate (2.3) with respect to u we obtain the following Bernstein
copula density estimator :

ĉ(u) =
1

n

n∑
i=1

Kk,Si(u), (2.4)

where Si = (Fn1(Xi1), . . . , Fnd(Xid)), i = 1, . . . , n, are the pseudo-observations,

Kk,Si(u) = kd
k−1∑
υ1=0

· · ·
k−1∑
υd=0

ASi,υ1,...,υd

d∏
j=1

pυj ,k−1(uj),

and

ASi,υ1,...,υd = 1{Si∈Bυ1,...,υd}, with Bυ1,...,υd =

]
υ1
k
,
υ1 + 1

k

]
× · · · ×

]
υd
k
,
υd + 1

k

]
.

Hereafter, we will denote pυj ,k−1(uj) by pυj (uj), ASi,υ1,...,υd by ASi,υ , Bυ1,...,υd by Bυ and the sums
k−1∑
υ1=0

· · ·
k−1∑
υd=0

by
∑
υ .

3 Main results
In this section, we study the asymptotic properties of the Bernstein estimator for unbounded copula den-
sities. Recall that for i.i.d data and when the copula density has a finite first derivative everywhere on
its support, Sancetta and Satchell (2004) derived upper bounds for the bias and variance of the Bernstein
copula density estimator and showed the pointwise convergence of this estimator. Moreover, (Bouezmarni,
Rombouts, and Taamouti 2010) provided asymptotic properties of the Bernstein copula density estimator in
the presence of time series data. They derived the asymptotic bias, asymptotic variance and showed the uni-
form strong convergence of the estimator when the underlying density is continuous on its support. Also,
they established the asymptotic normality of the Bernstein copula density estimator. However, although
many common copula density families are unbounded at the corners (e.g. Clayton, Gumbel, Gaussian and
Student copulas), the derivation of the previous results required the boundedness of the copula density.

In this section, we show that the Bernstein estimator is still a consistent estimator for unbounded
copula densities. For the univariate random variables, Bouezmarni and Rolin (2007) studied the proper-
ties of the Bernstein estimator for unbounded probability density function but they investigated the case
where the random variables are observed and defined on [0, 1]. But here the marginal distributions are
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replaced by their empirical version, hence the Bernstein estimator is based on the pseudo-observations
Si = (Fn1(Xi1), . . . , Fnd(Xid)). Also, we study the properties of the Bernstein estimator for unbounded
copula densities which are more common in practice.

The following proposition establishes the uniform strong consistency of the Bernstein copula density
estimator on any compact set I in the interior region, without imposing boundedness condition of the
copula density at the corners.

Proposition 3.1 Let c (.) be a continuous copula density function on (0, 1)d. Let I be a compact set in
(0, 1)d, and ĉ (.) the Bernstein copula density estimator of c. If

k →∞ and kdn−1/2(log log(n))1/2 → 0,

then
sup
u∈I
|ĉ(u)− c(u)| a.s−→ 0, as n→∞.

Proof: For simplicity of exposition we consider the case where d = 2. The Bernstein density copula
estimator can be rewritten as follows:

ĉ(u1, u2) = k2
∑
υ

Cn(Bv)pv1(u1)pv2(u2)

with

Cn(Bv) = Cn

(
v1 + 1

k
,
v2 + 1

k

)
− Cn

(
v1
k
,
v2 + 1

k

)
− Cn

(
v1 + 1

k
,
v2
k

)
+ Cn

(v1
k
,
v2
k

)
.

Now, observe that:

sup
(u1,u2)∈I

|ĉ(u1, u2)− c(u1, u2)| ≤ sup
(u1,u2)∈I

|ĉ(u1, u2)− c̃(u1, u2)|+ sup
(u1,u2)∈I

|c̃(u1, u2)− c(u1, u2)|

= Ik,n + Ik,

where
c̃(u1, u2) = k2

∑
υ

C(Bv)pv1(u1)pv2(u2)

with

C(Bv) = C

(
v1 + 1

k
,
v2 + 1

k

)
− C

(
v1
k
,
v2 + 1

k

)
− C

(
v1 + 1

k
,
v2
k

)
+ C

(v1
k
,
v2
k

)
.

We can show that Ik converges to zero if the smoothing parameter k tends to infinity.
For (u1, u2) ∈ I , we have

|c̃(u1, u2)− c(u1, u2)| =

∣∣∣∣∣k2∑
υ

∫ v1+1
k

v1
k

∫ v2+1
k

v2
k

{c(t1, t2)− c(u1, u2)} dt1dt2pv1(u1)pv2(u2)

∣∣∣∣∣
=

∣∣∣∣∣k2E(ξ1,ξ2)

(∫ ξ1+1
k

ξ1
k

∫ ξ2+1
k

ξ2
k

{c(t1, t2)− c(u1, u2)}dt1dt2

)∣∣∣∣∣
≤ k2E(ξ1,ξ2)

(∫ ξ1+1
k

ξ1
k

∫ ξ2+1
k

ξ2
k

|c(t1, t2)− c(u1, u2)| dt1dt2

)
,
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where ξ1 and ξ2 are two independent Binomial random variables with corresponding parameters (k−1, u1)
and (k − 1, u2), respectively.
Let δ be a positive real number such that δ < min(u1, 1− u1, u2, 1− u2). Then we have

|c̃(u1, u2)− c(u1, u2)| ≤ k2E(ξ1,ξ2)

(∫ ξ1+1
k

ξ1
k

∫ ξ2+1
k

ξ2
k

|c(t1, t2)− c(u1, u2)|1Aδ dt1dt2

)

+ k2E(ξ1,ξ2)

(∫ ξ1+1
k

ξ1
k

∫ ξ2+1
k

ξ2
k

|c(t1, t2)− c(u1, u2)|1Acδ dt1dt2

)
= I∗k,1 + I∗k,2,

where Aδ ≡
{
| ξ1k − u1| ≤ δ and | ξ2k − u2| ≤ δ

}
and Acδ is the complementary event of Aδ . Observe

that Acδ contains 4 events, that is ACδ = A1 ∪ A2 ∪ A3 ∪ A4 where A1 =
{
ξ1
k − u1 > δ

}
, A2 ={

ξ1
k − u1 < −δ

}
, A3 =

{∣∣∣ ξ1k − u1∣∣∣ ≤ δ and ξ2
k − u2 > δ

}
andA4 =

{∣∣∣ ξ1k − u1∣∣∣ ≤ δ and ξ2
k − u2 < −δ

}
.

Thus, using Lemma 2.1 of Bouezmarni and Rolin (2007), we obtain

I∗k,2 ≤ 4

(
k2 + sup

(u1,u2)∈I
|c(u1, u2)|

)
exp(−2(k − 1)δ2).

Also, because of the uniform continuity of the copula density on I , it is straightforward to show that
I∗k,1 = o(1). Hence, Ik → 0, when k →∞.

Next, we show that supI |ĉ(u1, u2)−c̃(u1, u2)| converges to zero. Using Lemma 1 in Janssen, Swanepoel,
and Ververbeke (2012), we have

Ik,n = sup
(u1,u2)∈I

∣∣∣∣∣k2∑
υ

{Cn(Bv)− C(Bv)} pv1(u1)pv2(u2)

∣∣∣∣∣
≤ 4k2 sup

(t1,t2)∈[0,1]2
|Cn(t1, t2)− C(t1, t2)|

= O
(
k2n−1/2(log log(n))1/2

)
a.s., n→∞.

Hence, we conclude the proof of Proposition 3.1. 2

The next proposition shows that the Bernstein copula density estimator converges to infinity when the
density is unbounded at the corners. It also provides the relative convergence of the estimator at the corners.
Without loss of generality, the following results are derived when the density is unbounded at (0, 0).

Proposition 3.2 Let c (.) be a copula density function that is unbounded at (0, 0). Let ĉ (.) be the Bernstein
copula density estimator of c. Then, under the conditions of Proposition 3.1, we have

ĉ(0, 0)
a.s−→∞, as n→∞.

Further, we have

|ĉ(u1, u2)− c(u1, u2)|
c(u1, u2)

a.s.−→ 0, as n→∞, and (u1, u2)→ (0, 0).
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Proof: We can first show that ĉ(0, 0) converges to infinity. From the proof of Proposition 3.1, we have
|ĉ(0, 0) − c̃(0, 0)| a.s.−→ 0. Thus, it remains to show that c̃(0, 0) converges to infinity when the smoothing
parameter k tends to infinity. The copula density, c, is unbounded at (0, 0), then for L > 0, there exist
δ1 > 0 and δ2 > 0 such that c(u1, u2) > L, for u1 < δ1 and u2 < δ2. For n sufficiently large and for kn
tending to infinity, we have min(δ1, δ2) >

1
k . Hence,

c̃(0, 0) = k2
∫ 1

k

0

∫ 1
k

0

c(u1, u2) du1du2 > L, for n sufficiently large.

We can show the relative convergence of the Bernstein copula estimator in the boundary region of un-
bounded copula density functions by using similar arguments to those in the proof of Proposition 3.1. This
concludes the proof of Proposition 3.2. 2

4 Monte Carlo simulations
In this section, we run Monte Carlo simulations to evaluate the performance of the Bernstein estimator
of copula density in the interior region and at the corners. We compare the finite sample properties of the
Bernstein copula density estimator [hereafter BR] with those of:

(1) Local linear estimator with multiplicative Epanechnikov kernel [hereafter LL];

(2) Mirror-reflection estimator with multiplicative Epanechnikov kernel [hereafter MR];

(3) Beta kernel estimator [hereafter BT];

(4) Transformation estimator using multiplicative Epanechnikov kernel and Gaussian transformation
[hereafter TR].

We choose these estimators because they are known to have a good behavior at the borders. For more
details about the LL estimator and the MR, BT and TR estimators, the reader can consult Chen and Huang
(2007) and Charpentier, Fermanian, and Scaillet (2006), respectively.

To study the performance of these estimators in different contexts that one can encounter in practice,

we consider several data generating processes (DGPs). We simulate our bivariate data
{
(Xi1, Xi2)

>
}n
i=1

using a uniform distribution Unif [0, 1]2 and under one of the following copula densities: (1) Normal cop-
ula [hereafter c(n)]; (2) Student copula [hereafter c(t)]; (3) Clayton copula [hereafter c(cl)]; (4) Gumbel
copula [hereafter c(g)]; and (5) Frank copula [hereafter c(f)]. These copulas densities are extremely useful
in practice. Except Frank copula, all these copula densities are unbounded at (0, 0) or/and at (1, 1). We con-
sider two scenarios corresponding to two level of dependency as measured by the Kendall rank correlation
coefficient: (a) τ = 0.25 for weak dependence and (b) τ = 0.75 for strong dependence.

To keep the computing time reasonable, we consider small and moderate sample sizes: n = 50 and
n = 150 and we perform N = 1000 simulations. We evaluate the performance of each estimator using two
measures: the Averaged Mean Squared Error (AMSE) and the Averaged Median Absolute Relative Error
(AMAE).

AMSE =
1

I

I∑
i=1

MSE(ui),
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where MSE(ui) =
1
N

∑N
j=1 (ĉj(ui)− c(ui))

2, ui = (u1i, u2i) ∈ S, a subset of [0, 1] × [0, 1] of size I ,
and ĉj(.), j = 1, . . . , N , is the estimator of the copula density corresponding to the j-th replication.

AMAE =
1

I

I∑
i=1

MAE(ui),

where MAE(u) is the empirical median of the sequence
{∣∣∣ ĉj(u)−c(u)c(u)

∣∣∣}N
j=1

. Clearly, this criterion is less

sensitive to extreme deviations than the classical AMSE which may be the result of only few atypically
large deviations. Also, observe that AMSE = 1

N

∑
j ASE(ĉj), where ASE(ĉ) = 1

I

∑
i(ĉ(ui) − c(ui))2

is the averaged squared error of ĉ. To assess the uncertainty in the AMSE measure, we also report the

standard deviation of {ASE(ĉj)}Nj=1, i.e. SASE =
√

1
N

∑
j (ASE(ĉj)−AMSE)

2.
We calculate the AMSE and AMAE using h = 0.001, 0.04, . . . , 0.97 for BT, LL, TR and MR esti-

mators and using k = 3, 6, . . . , n (n is the sample size) for BR estimator. Since the optimal smoothing
parameter (the one that minimize AMSE) may depend strongly on the local behavior of our target function
(the copula density) and since we are interested in studying the copula estimation not only in the interior
but also at the boundary, we do the above calculation in four different regions:

(1) S = {(u1i, u2i) = (0.01, 0.01), (0.01, 0.03), . . . , (0.99, 0.99)};

(2) S0 = S ∩
{
(u1i, u2i) :

√
u21i + u22i < 0.56

}
, i.e. the 25% extreme left points;

(3) S1 = S ∩
{
(u1i, u2i) :

√
u21i + u22i > 0.98

}
, i.e. the 25% extreme right points; and

(4) Si = S r {S0,S1}, i.e. all points in S except the extreme ones.

Table 4.1 reports the AMSE for the BR estimator using the optimal smoothing parameter kopt =
argmink AMSE(k) on S, S0, S1 and Si. As expected, we see that the AMSE decreases with the sam-
ple size n and increases with the Kendall’s rank correlation τ . In other words, we find that the strength of
the dependence between X1 and X2 makes the estimation of copula density more difficult. Except for the
Clayton copula density and for τ = 0.75, we obtain relatively small integrated mean squared errors. We
also find that the performance of the BR estimator depends on the target region (S, S0, S1, Si). in the “inte-
rior” region (Si), the estimator behaves clearly better than at the borders. Further, it can be seen from Table
4.1 that kopt, the optimal smoothing parameter, increases with n and τ , as predicted by the theory. The
fact that kopt increases with n reflect the fact that for Bernstein copula density estimator to be (uniformly)
consistent, k → ∞, as n → ∞, see Proposition 1. On the other hand, when τ increases, the dependence
in the data increases and the estimation becomes more complicated. In such a case, in order to reduce the
bias, one need a larger value of k , see e.g. (Sancetta and Satchell 2004). Interestingly, we see that kopt also
depends on the target region. One should use a larger value of k near the extreme points where the values
of the copula function become very large. Thus, in practice an adaptive smoothing parameter should be
used in order to get a better approximation. One such an adaptation could be the method of “shrinking” of
the smoothing parameter at the borders.

In Tables 4.2 and 4.3, we compare the performance of BR estimator with the other estimating methods
cited above for n = 50 and n = 150, respectively. To facilitate such a comparison, we provide the relative
efficiency of each estimator (E = LL,MR, BT, TR) with respect to Bernstein copula estimator. Thus, we
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S0 S1 Si S
n τ Cop. kopt AMSE kopt AMSE kopt AMSE kopt AMSE

50

c(cl) 9 0.597 3 0.071 6 0.056 6 0.216
c(f) 3 0.098 3 0.121 6 0.050 3 0.080

0,25 c(g) 3 0.084 6 0.534 3 0.043 6 0.185
c(n) 3 0.133 6 0.163 6 0.047 6 0.097
c(t) 9 0.656 9 0.725 6 0.072 9 0.385

c(cl) 50 33.348 9 0.453 27 0.201 50 9.402
c(f) 15 1.052 15 0.893 36 0.247 21 0.635

0,75 c(g) 21 1.353 50 11.249 27 0.190 45 3.431
c(n) 30 2.277 33 2.251 24 0.158 30 1.197
c(t) 50 8.567 50 8.455 30 0.239 50 4.364

150

c(cl) 21 0.365 9 0.057 9 0.027 12 0.139
c(f) 6 0.054 6 0.066 6 0.025 6 0.042

0,25 c(g) 9 0.063 21 0.343 9 0.025 9 0.128
c(n) 6 0.082 6 0.091 6 0.024 6 0.054
c(t) 24 0.430 24 0.470 9 0.040 21 0.256

c(cl) 150 28.236 15 0.240 48 0.108 150 7.542
c(f) 30 0.584 27 0.492 65 0.133 36 0.351

0,75 c(g) 39 0.762 95 8.669 45 0.105 95 2.480
c(n) 65 1.343 65 1.292 39 0.084 54 0.698
c(t) 150 6.812 150 6.789 54 0.133 150 3.415

Table 4.1 Averaged Mean Squared Error (AMSE) of the BR estimator on the unit square (S), near (0, 0) (S0), near
(1, 1) (S1) and in (Si), under different families of copula and using optimal smoothing parameter.

provide RES = AMSE(E)
AMSE(BR) and REA = AMAE(E)

AMAE(BR) . We also report the ratio of the averaged variance to
AMSE

(
AVAR
AMSE

)
and the standard deviation of the averaged squared error (SASE); see the definition given

above. Note that the values reported in Tables 4.2 and 4.3 are expressed as percentages. From these, we see
that for weakly dependent data (τ = 0.25), the BR and LL estimators are quite comparable and give the
best results in terms of AMSE and AMAE. The BR estimator performs better than the rest of the estimators
for three of the five copulas that we studied here (Clayton, Gumbel and Student copulas). Looking at the
ratio AVAR

AMSE and at the standard deviation of the averaged squared error (SASE), we see clearly that the BR
estimator has the advantage to be less variable than the LL estimator. We also see that the Transformation
estimator (TR) gives the worse result with a very high variance and a large AMSE. However, the opposite
happens for strongly dependent data (τ = 0.75). In the latter case the TR method becomes the best since
it behaves better for three of the five copulas considered here (Clayton, Gumbel and Student copulas).
The performance measure AMAE indicates that the BR estimator still behaves reasonably well. The only
case where the BR estimator is beaten by the TR estimator is when we consider the Clayton copula with
τ = 0.75.

5 Smoothing parameter selection
Here, we investigate the performance of the Bernstein copula density estimator when an automatic data-
driven smoothing parameter is used. We use the least-squared cross-validation (LSCV) method which
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τ = 0.25 τ = 0.75

Copula Method RES REA AVAR
AMSE

SASE RES REA AVAR
AMSE

SASE

c(cl)

BR 100.0 100.0 29.6 5.5 100.0 100.0 20.2 244.8
LL 101.3 112.3 32.7 6.1 103.2 87.4 14.2 167.5
BT 104.5 110.6 29.9 5.6 103.6 2087.0 16.1 206.8
MR 114.8 120.1 20.0 5.6 116.8 87.4 8.1 74.1
TR 168.7 113.8 87.5 19.8 89.4 72.9 24.3 326.3

c(f)

BR 100.0 100.0 40.1 3.9 100.0 100.0 52.7 17.3
LL 95.2 100.0 91.0 6.1 112.3 107.3 63.3 34.4
BT 108.3 109.9 46.1 3.8 94.8 113.5 53.3 15.0
MR 110.1 111.8 44.2 4.9 92.8 106.6 47.0 18.0
TR 399.8 149.5 88.1 16.5 161.3 110.4 48.1 38.8

c(g)

BR 100.0 100.0 33.1 4.7 100.0 100.0 24.5 79.9
LL 100.0 108.4 36.1 5.5 107.0 119.2 27.8 75.0
BT 105.2 108.1 27.4 4.6 111.1 101.4 41.5 96.4
MR 114.1 124.4 22.4 4.8 116.1 120.1 13.6 31.0
TR 196.2 133.1 88.0 18.9 92.5 89.9 28.4 99.5

c(n)

BR 100.0 100.0 62.6 4.3 100.0 100.0 45.5 31.0
LL 89.9 100.0 73.6 5.3 116.8 121.3 43.8 46.2
BT 106.8 116.8 36.7 3.7 108.4 105.9 24.4 23.5
MR 114.0 125.4 32.5 4.5 124.4 122.8 24.7 19.7
TR 338.5 133.2 89.8 17.3 107.0 99.2 46.5 41.3

c(t)

BR 100.0 100.0 29.7 7.5 100.0 100.0 31.9 107.6
LL 111.7 112.5 33.1 10.4 108.2 120.4 31.7 88.1
BT 103.0 103.5 28.5 7.4 107.0 105.4 34.3 107.5
MR 115.8 124.3 22.2 7.1 122.3 123.8 16.5 44.6
TR 127.9 104.0 80.2 22.0 91.1 100.9 32.0 117.9

Table 4.2 The ratios RES (%), REA (%) and AVAR /AMSE (%), and the SASE (%) of the estimators BR, LL,
MR, BT, and TR on the set S and for n = 50.

selects a smoothing parameter k̂ that minimizes the following function:

LSCV(k) =

∫ 1

0

∫ 1

0

ĉ2(u1, u2)du1du2 − 2n−1
n∑
i=1

ĉ(−i)(S1,i, S2,i),

where ĉ(−i)(·, ·), for i = 1, . . . , n, is the Bernstein copula density estimator calculated using a smoothing
parameter k and all the data except the observation (S1,i, S2,i). Observe that:

E (LSCV(k)) = E
(∫ 1

0

∫ 1

0

(ĉ(u1, u2)− c(u1, u2))2du1du2
)
−
∫ 1

0

∫ 1

0

c2(u1, u2)du1du2.

Indeed,

E
[
ĉ(−i)(S1,i, S2,i)

]
=

1

n− 1

n∑
j=1,j 6=i

(
k2

k−1∑
υ1=0

k−1∑
υ2=0

E
[
ASj ,υ1,υ2 pυ1(S1,i)pυ2(S2,i)

])
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=
1

n− 1

n∑
j=1,j 6=i

(
k2

k−1∑
υ1=0

k−1∑
υ2=0

E
[
ASj ,υ1,υ2

]
E [pυ1(S1,i)pυ2(S2,i)]

)

=
1

n− 1

n∑
j=1,j 6=i

(
k2

k−1∑
υ1=0

k−1∑
υ2=0

E
[
ASj ,υ1,υ2

] ∫ 1

0

∫ 1

0

pυ1(u1)pυ2(u2)c(u1, u2)du1du2

)

=

∫ 1

0

∫ 1

0

E

 1

n− 1

n∑
j=1,j 6=i

k2
k−1∑
υ1=0

k−1∑
υ2=0

ASj ,υ1,υ2 pυ1(u1)pυ2(u2)

 c(u1, u2)du1du2

=

∫ 1

0

∫ 1

0

E
(
ĉ(−i)(u1, u2)

)
c(u1, u2)du1du2

=

∫ 1

0

∫ 1

0

E (ĉ(u1, u2)) c(u1, u2)du1du2.

τ = 0.25 τ = 0.75

Copula Method RES REA AVAR
AMSE

SASE RES REA AVAR
AMSE

SASE

c(cl)

BR 100,0 100.0 41.2 3.8 100.0 100.0 15.6 213.2
LL 104.8 103.9 39.5 4.0 109.3 80.0 9.5 147.0
BT 114.0 113.4 35.0 3.7 114.7 2865.0 6.0 128.4
MR 135.8 126.7 29.5 3.6 126.6 80.0 17.2 127.1
TR 108.4 115.6 69.7 6.3 79.0 60.5 31.9 317.2

c(f)

BR 100.0 100.0 48.0 1.9 100.0 100.0 58.0 8.5
LL 65.8 86.6 75.5 1.7 98.2 105.3 62.3 13.2
BT 116.7 112.1 55.9 2.0 110.2 105.8 27.0 6.5
MR 127.0 116.6 43.3 2.5 89.8 105.9 56.8 8.8
TR 306.7 147.7 70.8 5.6 166.2 110.8 51.4 18.5

c(g)

BR 100.0 100.0 38.2 3.0 100.0 100.0 24.1 66.3
LL 104.5 105.7 36.0 3.2 107.9 123.2 30.7 61.4
BT 111.8 111.4 27.0 2.9 108.0 108.5 19.6 58.6
MR 126.6 130.7 29.3 2.9 129.4 125.8 17.8 31.0
TR 117.7 130.1 70.5 5.7 84.1 93.4 39.4 91.7

c(n)

BR 100.0 100.0 56.1 2.1 100.0 100.0 53.0 20.3
LL 81.7 92.0 47.9 1.8 121.4 116.4 58.7 28.0
BT 122.3 122.3 41.7 2.2 118.8 108.6 63.4 22.0
MR 140.5 134.6 35.4 2.6 149.8 123.7 28.0 12.6
TR 243.9 134.1 74.4 5.9 104.6 94.4 53.6 23.9

c(t)

BR 100.0 100.0 43.5 5.8 100.0 100.0 13.3 65.4
LL 111.7 108.4 38.8 7.1 100.0 119.3 25.0 63.5
BT 110.5 110.4 37.8 5.5 104.0 102.2 15.0 64.4
MR 131.7 132.3 27.9 4.4 127.3 124.3 38.1 63.0
TR 88.7 110.7 58.3 7.6 77.2 100.9 40.2 104.8

Table 4.3 The ratios RES (%), REA (%) and AVAR /AMSE (%), and the SASE (%) of the estimators BR, LL,
MR, BT, and TR on the set S and for n = 150.
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Hence,

E(LSCV(k)) = E
(∫ 1

0

∫ 1

0

ĉ2 (u1, u2) du1u2 − 2

∫ 1

0

∫ 1

0

ĉ(u1, u2)c(u1, u2) du1u2

)
.

Thus, the smoothing parameter k̂ minimizes an unbiased estimator of the expected integrated squared error.
One can also show that∫ 1

0

∫ 1

0

ĉ2(u1, u2)du1du2 = n−2
∑
i

∑
j

B̃(bS1,ikc, bS1,jkc)B̃(bS2,ikc, bS2,jkc),

where b·c denotes the floor function and

B̃(a, b) =
B(a+ b+ 1, 2k − a− b− 1, )

B(a+ 1, k − a)B(b+ 1, k − b)
,

where B(a, b) is the usual Beta function, i.e. B(a, b) =
∫ 1

0
ta−1(1− t)b−1dt. The above formula facilitates

the calculation of the LSCV function, which reduces the simulation run time.

Figure 5.1 The ratio (ASE(k̂)−AMSE(kopt))/AMSE(kopt) of the BR estimator under weak and strong depen-
dence and different families of the copula, n = 150

We repeat the simulation study described in Section 4 using the data-driven smoothing parameter k̂
instead of the optimal smoothing parameter kopt. Figure 5.1 shows a box-plot of 1000 observations of the

ratio
ASE(ĉj,k̂j

)−AMSE(kopt)

AMSE(kopt)
. The latter should fluctuate around zero if the data-driven smoothing param-

eter k̂ and the optimal smoothing parameter kopt lead approximately to the same averaged squared error.
Although our results show that this is not the case for all considered scenarios, the averaged squared error
obtained using k̂ remains reasonably small and typically does not exceed 2 ∗ AMSE(kopt). The results
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Figure 5.2 The ratio (k̂ − kopt)/kopt of the BR estimator under weak and strong dependence and different families
of the copula, n = 150

for n = 50 are not very satisfactory, probably because the sample size is too small. However, these re-
sults improve when the sample size n increases, which seems to indicate the consistency of the smoothing
parameter selection method.

For weakly dependent data (τ = 0.25), we see that the averaged squared error changes a lot across the
simulations, especially for Normal and Frank copulas. Moreover, for the latter two cases, the smoothing
parameter k̂ seems to lead to some bias approximations. Surprisingly, when the dependence between X1

and X2 is strong (τ = 0.75), we find much better results in terms of ASE, even if the boundary problems
are more severe in this case. An explanation can be obtained by comparing k̂ to kopt. Figure 5.2 shows a

box-plot of 1000 observations of the ratio k̂j−kopt
kopt

, where k̂j is the smoothing parameter that corresponds
to the j-th replication selected using the least-squared cross-validation (LSCV) method. This figure clearly
shows that the LSCV method tend to choose a large smoothing parameter k when τ is small, which leads to
an over-smoothing. However, the opposite happens when τ is large, but the under-smoothing is much less
severe except for the Clayton copula density. Consequently, we recommend to correct the LSCV smooth-
ing parameter by taking into account the “degree of unboundedness” at corners of the copula density, in
particular for small size data. This can be done, for example, by adapting the method of ”Shrinkage” pro-
posed by Omelka, Gijbels, and Veraverbek (2009). This will be investigated and studied, theoretically and
by simulations, in a future work.

6 Empirical illustration
In this section, we re-examine the asymmetric dependence between international equity markets using
two nonparametric estimators of copula densities. Recent research suggests an increase in the correlation
between international equity markets during volatile periods. This increase is especially observed during
market downturns. Ang and Bekaert (2002) use a two-regime switching model and find evidence of one
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state with low returns and high correlation and volatilities, and a second state with high returns and low
correlation and volatilities. Longin and Solnik (2001) use extreme value theory and develop a new con-
cept named exceedance correlation, and find a high correlation between large negative returns and zero
correlation between large positive returns.

Rather than to use correlation coefficients, here we use copula densities which can be viewed as a
natural way to model the dependence between equity market returns. We focus on four equity markets (US,
Canada, UK, and France) and we use weekly observations that span 19 years.

6.1 Data description
Our data consists of weekly observations on MSCI Equity Indices series for the US, Canada, the UK and
France. The sample runs from October 16th 1984 to December 21th 2004 for a total of 1054 observations.
The returns are computed using the standard continuous compounding formula. All returns are derived on
a weekly basis from daily prices expressed in US dollars. Summary statistics (not reported) for the US,
Canada, the UK and France equity returns indicate that the unconditional distributions of these returns ex-
hibit high kurtosis and negative skewness. The sample kurtosis is greater than the normal distribution value
of three. The values of Jarque-Bera test statistic show that the equity returns are not normally distributed.

(a) BR, k = 100 (b) BR, k = 50 (c) BR, k = 25

(d) LL, h = 0.035 (e) LL, h = 0.1 (f) LL, h = 0.5

Figure 6.1 Empirical Bernstein (BR) and Local linear (LL) estimators of the copula density for the pair US-Canada,
using weekly equity returns and different bandwidth parameters.
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6.2 Results

(a) BR, USA-UK, k = 50 (b) BR, USA-FR, k = 50

(c) LL, USA-UK, h = 0.1 (d) LL, USA-FR, h = 0.1

Figure 6.2 empirical Bernstein (BR) and Local linear (LL) estimators of the copula density for the pairs US-UK and
US-France, using weekly equity returns for.

To estimate the dependence between US, Canada, UK and France equity markets, we use the two
best estimators of the copula density that we have selected on the basis of simulation results of Section 4.
These estimators are the Bernstein copula estimator (BR) and the Local linear estimator with multiplicative
Epanechnikov kernel (LL). To assess the sensitivity of our estimation results, we consider various values
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for the smoothing parameter k. These values are k = 25, 50, 100 for the BR estimator and h = 0.035,
0.1 and 0.5 for the LL estimator. The smoothing parameter of the BR estimator plays the inverse role of
the bandwidth of the LL estimator, that is a large value of BR’s smoothing parameter reduces the bias but
increases the variance.

The empirical results for the copula density estimation for the pairs US-Canada, US-UK and US-France
are presented in Figures 6.1 and 6.2. From these, we see that using a small smoothing parameter it over-
smooths the BR estimator, whereas a large smoothing parameter under-smooths the estimator. The opposite
happens with LL estimator: we over-smooth the estimation of the copula density when we choose a large
value of the bandwidth and we under-smooth the estimator when a small bandwidth is chosen. Intermediate
values like k = 50 for the BR estimator and k = 0.1 for the LL estimator, produce more reasonable
results. As expected, we find that the dependence between US and Canada, UK, France equity markets is
asymmetric. That is, the international equity market returns are more dependent during the bear market
than during the bull market. The latter result is confirmed by comparing the values that takes the estimator
of the copula density at the extremes (0,0) and (1,1); with (0,0) corresponds to the bear market and (1,1)
to the bull market. We find that at (0,0) the estimator of the copula density takes a larger value than the
one it takes at (1,1). The result is quite stable when we use BR estimator, and it is more striking in the
US-France case. Since a large bandwidth tends to increase the bias in the LL estimator and to decrease
its variance, we find that using a large bandwidth for the LL estimator decreases the asymmetry in the
estimated dependence [see Figure 6.1]. Thus, the dependence between US and Canada, UK, France equity
markets look more symmetric. This is due to the high value of the bandwidth, so to the high-biased LL
estimator.

To sum up, it seems that the Bernstein copula estimator is a good estimator at the extremes. The em-
pirical results show that this estimator is able to capture the asymmetric dependence phenomena which is
observed in the international equity markets.

7 Conclusion
In this paper, we examined the asymptotic properties of the Bernstein estimator (BR) for copula density
functions which is not necessarily bounded at the corners. We showed that the BR estimator converges
to infinity at the corners. We established its relative convergence when the copula is unbounded and its
uniform strong consistency on every compact in the interior region. Furthermore, we studied the finite
simple performance of the estimator via an extensive simulation study and we compared with other well
known nonparametric estimators. Finally, we considered an empirical application where we re-examined
the asymmetric dependence between international equity markets US, Canada, UK, and France. We com-
pared the empirical results using the Bernstein copula density estimator and the Local linear estimator with
multiplicative Epanechnikov kernel. We found that the Bernstein copula density estimator is a good esti-
mator at the extremes. Our results showed that this estimator is able to capture the well known asymmetric
dependence phenomena observed in the international equity markets.
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