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We present a conformational factorization approach. The theory is based on a superposition partition function, where the
partition function is written as a sum over contributions from local minima. The factorisation greatly reduces the number of
minima that need to be considered, by employing the same local configurations for groups that are sufficiently distant from
the binding site. The theory formalises the conditions required to analyse how our definition of the binding site region affects
the free energy difference between the apo and holo states. We employ basin-hopping parallel tempering to sample minima
that contribute significantly to the partition function, and calculate the binding free energies within the harmonic normal mode
approximation. A further significant gain in efficiency is achieved using a recently developed local rigid body framework in both
the sampling and the normal mode analysis, which reduces the number of degrees of freedom. We benchmark this approach
for human aldose reductase (PDB code 2INE). When varying the size of the rigid region, the free energy difference converges
for factorisation of groups at a distance of 14 Å from the binding site, which corresponds to 80% of the protein being locally
rigidified. This approach is likely to be useful for estimating the binding free energy of protein-ligand complexes.

1 Introduction

Predicting binding affinity between two non-covalently bound
molecules is a challenging problem in molecular science. Cal-
culating binding affinities using atomistic simulations can pro-
vide detailed molecular level insights into molecular recogni-
tion, and help inform fields such as structure-based drug de-
sign1–3 and self-assembly.4,5. For instance, an accurate and
efficient method for predicting protein-ligand binding free en-
ergy can help screen a library of candidate compounds against
a protein target, or assist in lead optimisation, by predicting
the impact of chemical modifications. Hence this is an active
field for the computational drug design community.1,6,7

A broad class of methods for computing protein-ligand
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binding docks the ligand into the binding pocket and uses
a scoring function to estimate the binding affinity6,7. The
scoring functions have explicit terms to model various con-
tributions to the binding free energy, such as the hydrophobic
effect, hydrogen-bonding, and further entropic contributions,
which are usually fitted to experimental binding data. This
docking and scoring approach is fast, but may not be accu-
rate, due to training set bias and an approximate treatment of
conformational entropy.

An alternative class of methods employs atomistic force
fields to model the interatomic and intermolecular interac-
tions. To describe protein-ligand binding the energy function
is typically taken to be an empirical form, either with explicit
water molecules, or an implicit solvent model. The AMBER
forcefield8 is employed in the present study.

A range of simulation methods have previously been devel-
oped to compute binding free energies using force field en-
ergy models and molecular dynamics (MD) or Monte Carlo
(MC) simulations. Alchemical methods, where atoms of one
ligand are transformed to those for another ligand, are used
to compute relative binding affinity. Thermodynamic inte-
gration9 and free energy perturbation10–12 have been em-
ployed for alchemical free energy simulations. In another
approach, the absolute free energy of binding is computed
by equilibrium13,14 or non-equilibrium simulations15,16 along
a physical pathway between the free and the bound ligand.
These methods are formally rigorous, but are computation-
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ally expensive due to sampling limitations in MD or MC
simulations of proteins. Another class of methods, includ-
ing Molecular Mechanics/Poisson-Boltzmann Surface Area
(MM/PBSA)17–20, Linear Interaction Energy (LIE),21–24 and
others,25 rely on MD simulation of only the free and bound
states. These endpoint methods are relatively less expensive
than pathway methods, since intermediate states are not con-
sidered, but still require adequate MD sampling of the end
states, which can be challenging for protein sized systems. On
the whole, current physics-based methods are computationally
much more expensive than docking and scoring based meth-
ods and therefore have limited in applications such as virtual
screening.

The force field-based methods are potentially more accurate
than docking and scoring approaches, as they have been devel-
oped to account for explicit intermolecular interactions and are
typically fitted using statistical mechanical theories. However,
these methods can be computationally expensive, since MD
or MC simulations are easily trapped in local minima of the
potential or free energy surface for relatively long time scales.

The superposition approach provides an alternative formu-
lation for global thermodynamics within the energy landscape
framework.26–28 Here, the partition function is written as the
sum of contributions from the catchment basins29 of local
potential energy minima.30–32 The contribution of each min-
imum can be estimated using the harmonic approximation,
possibly with anharmonic33 or quantum34 corrections. To
apply this procedure to calculate a binding free energy we
can evaluate the free energy of the complex and the free
molecules separately from databases of local minima for each
species. This approach to binding free energy calculations is
employed in the mining minima algorithm,35 which has been
successfully applied to various biomacromolecular systems,
especially small host-guest systems. Benchmark superposi-
tion calculations for atomic and molecular clusters show that
the energy landscape approach can be much faster than MD
or MC based methods, especially for cases of broken ergodic-
ity,36,37,37–39 since the superposition partition function is ex-
plicitly ergodic.

To apply the superposition method for large systems re-
quires appropriate sampling, because the number of local
minima increases exponentially with system size.40,41 A new
method has recently been described to implement such sam-
pling systematically, and was applied successfully to atomic
clusters.42 Alternatively, the mining minima method has been
extended to larger protein-ligand systems43 by focusing the
calculation on regions around the binding pocket. For exam-
ple, in Ref.43, protein atoms were partitioned into three layers
of different thickness with respect to the distance from ligand
atoms. Atoms in the 7 Å layer closest to the ligand were free
to move, while those in the middle layer of thickness 5 Å were
fixed. Atoms in the outermost layer were deleted.

In the present contribution, we present a method concep-
tually similar to mining minima, but with key differences in
the implementation, which aim to improve the accuracy and
sampling efficiency. We again partition the protein atoms
into three layers according to distance from the bound lig-
and. Atoms in the ‘inner’ region, adjacent to the ligand, are
unconstrained, while those in the ‘intermediate’ region are
treated using the local rigid body framework.44 All atoms in
the ‘outer’ layer were grouped as one rigid body, but their con-
tributions to the potential energy of the system are retained.
The local rigid body framework is used to reduce the number
of degrees of freedom, both in sampling minima and in the
calculation of normal mode frequencies. All ligand atoms are
fully flexible.

To benchmark the procedure we systematically increase the
radius defining the innermost unconstrained region until the
binding free energy converges. The key idea is that contribu-
tions from minima corresponding to alternative conformations
of groups that are sufficiently distant from the binding site are
expected to cancel between the free protein and the complex.
Hence, we only need to sample consistent conformations for
these degrees of freedom. The theory, described in §2.1, there-
fore corresponds to a factorisation of the partition functions
for the protein, ligand, and complex. We therefore refer to the
method as a factorised superposition approach (FSA).

We apply the FSA procedure to compute the binding free
energy for human aldose reductase (5113 atoms) and one of
its inhibitors, phenyl acetic acid (PAC). Human aldose reduc-
tase is an NADPH-dependent oxidoreductase, which catalyses
the reduction of a variety of aldehydes and carbonyls, includ-
ing monosaccharides. It is primarily known for catalysing the
reduction of glucose to sorbitol, the first step in the polyol
pathway of glucose metabolism.45

The next section describes the theory underlying the factori-
sation procedure, the calculation of approximate free energies,
local rigidification, and the sampling of local minima. We then
describe the system setup for aldose reductase in §3, and dis-
cuss the conditions for convergence. We find that a flexible
region of 14 Å, corresponding here to rigidification of about
80% of the protein, is required to obtain a converged binding
free energy.

2 Methodology

2.1 Factorised Superposition Approach

We wish to estimate the binding free energy or the free en-
ergy change, ∆F , involved in forming a complex AB from non-
covalent association of two molecules A and B. The standard
free energy difference of this reaction is given by46–48

e−β∆F◦
=

C◦

8π2
ZAB

ZAZB
, (1)
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where ZX is the configurational part of the single-molecule
partition function of species X ∈ {A,B,AB}, C◦ is the standard
concentration, and β = 1/kT , with k the Boltzmann constant
and T the temperature. The above expression is derived us-
ing classical thermodynamics so that the momentum factors
in the partition function of the free molecules and the bound
complex cancel. The translational and rotational degrees of
freedom have been integrated out from the configurational in-
tegral; see references47,48 for a detailed derivation of the above
expression.

We compute the partition functions [henceforth referring to
the configurational integrals in Eq. (1)] using the superposition
approach,26,28,30 where each ZX is written as a sum of contri-
butions from local minima of the potential energy surface. In
this section, we describe the FSA framework, an extension of
the superposition approach, which facilitates calculation of an
approximate binding free energy from a subset of local min-
ima.

The FSA framework was developed in order to provide a
route to protein-ligand binding energies, where the number of
relevant local minima becomes problematic for the standard
superposition approach. To limit the number of minima, we
assume that the contributions of analogous alternative confor-
mations of functional groups that are sufficiently distant from
the binding region cancel out. This scheme can be formalised
by thinking in terms of the possible local conformations of dis-
tinct parts of the protein, such as backbone and side chain ge-
ometries. As a further simplification, we consider molecules
that are not rotating or translating, and focus on the vibrational
partition function for each local minimum.

To index the local minima we consider the possible confor-
mations for each part of the molecule, and assume that we can
identify them independently of the conformations adopted by
the rest of the system (a factorisation). Each minimum can
then be represented by a vector, x = (x1,x2, ....), where each
component xi for i = 1, 2, 3, . . . identifies the local conforma-
tion of a region i. Some conformations of one region will pre-
clude conformations of other regions, so the permitted combi-
nations of xi are restricted, which prevents further factorisation
in general. We now identify local minima corresponding to AB
as xAB = (xA,xB). If certain local conformations are only pos-
sible in the complex, then the corresponding geometries in the
separate A and B molecules are presumably high in energy, but
can still be included in the possible conformations enumerated
by xA and xB. To analyse the most plausible cancellation of
contributions from alternative conformations that lie outside
the binding region (the factorisation) we now assume that xAB
can be partitioned into two sets as xAB = (uAB,vAB), as shown
in Fig. 1. This formalism is designed to reflect our intuition
that some local conformations are common to each molecule,
while others associated with the binding region are not. The
conformations collected in the vAB set therefore correspond to
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Fig. 1 (Left) Schematic representation of the conformational
indexing vectors for molecules A and B, and for the complex AB.
(Right) Schematic representation for the free energies of one local
minimum of A, B and AB, representing fA(uA,vA), fB(vB,uB) and
fAB(vAB,uAB). The difference, ∆ f , does not change if the shift
corresponding to different vAB, ∆ fAB(vAB;v0

AB), is independent of
uAB [Eq. (6)] and is additive for ∆ fA(vA;v0

A) and ∆ fB(vB;v0
B)

[Eq. (7)].

local structure that is identifiable in each of A, B and AB for
all the conformations specified by the vector uAB. The corre-
sponding regions in the separate A and B molecules are written
as uA, vA, uB, and vB, and we assume that all possible confor-
mations specified by vA and vB are also available in vAB for
any uAB.

A significant simplification is possible if we need only con-
sider a consistent reference conformation, v0

A and v0
B, respec-

tively, for each group collected in vA and vB. In fact, this
choice produces a combinatorial reduction in the number of
minima that may need to be sampled. The analysis that fol-
lows defines quantitative conditions under which this simplifi-
cation will be valid. Furthermore, our local rigidification pro-
cedure44 provides an ideal framework for implementing this
approach, and enables us to determine a minimal set of states
for estimating free energies of binding.

The partition function for separate A and B molecules fac-
torises and we therefore consider

ZA = ∑
uA

∑
vA

zA(uA,vA)e−βVA(uA,vA)

= ∑
uA

zA(uA,v0
A)e

−βVA(uA,v0
A)

× ∑
vA

zA(uA,vA)

zA(uA,v0
A)

e−β [VA(uA,vA)−VA(uA,v0
A)], (2)

where zA(uA,vA) and VA(uA,vA) are the vibrational partition
function and potential energy for minimum (uA,vA). The sum
is over all local minima of A, identified via their uA and vA
conformational assignment. Next, we define a free energy
shift, ∆ fX (uX ,vX ;v0

X ), as the free energy difference between
a given minimum (uX ,vX ) and the corresponding reference
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(uX ,v0
X ),

e−β∆ fX (uX ,vX ;v0
X ) ≡ zX (uX ,vX )

zX (uX ,v0
X )

e−β [VX (uX ,vX )−VX (uX ,v0
X )]. (3)

The partition function for each molecule can then be written
as

ZX = ∑
uX

e−β fX (uX ,v0
X )∑

vX

e−β∆ fX (uX ,vX ;v0
X ), (4)

where e−β fX (uX ,v0
X ) ≡ zX (uX ,v0

X )e
−βVX (uX ,v0

X ).

The ratio of partition functions in Eq. (1) becomes

ZAB

ZAZB
≡ e−β∆F

= ∑
uAB

e−β fAB(uAB,v0
AB) ∑

vAB

e−β∆ fAB(uAB,vAB;v0
AB)

/ ∑
uA

e−β fA(uA,v0
A)∑

vA

e−β∆ fA(uA,vA;v0
A)

/ ∑
uB

e−β fB(uB,v0
B)∑

vB

e−β∆ fB(uB,vB;v0
B). (5)

As noted above, we require the vAB = (vA,vB) conformations
to appear in both the separate molecules and in the complex,
and they must be identifiable for each minimum specified by
different conformations in uAB = (uA,uB). Next we introduce
two assumptions, schematically described in Fig. 1, to sim-
plify Eq. (5). First, we assume that the shifts with respect
to the reference conformation in the free energies, ∆ fX , are
independent of uX , if the partition of the complex is chosen
appropriately. That is,

∆ fX (uX ,vX ;v0
X )≈ ∆ fX (vX ;v0

X ) ∀ uX . (6)

Second, we assume that, for a given minimum, the shifts
in energy and vibrational frequencies relative to the reference
conformation, v0

AB = (v0
A,v

0
B), are the same in the complex and

the separated molecules for all uAB, that is,

∆ fAB(vAB;v0
AB)≈ ∆ fA(vA;v0

A)+∆ fB(vB;v0
B) ∀ uAB. (7)

Note that by construction, every vAB conformation in the nu-
merator of Eq. (5) can be associated with a product of terms
from the vA and vB sums in the denominator. Therefore, using
Eq. (7), the factors with summations over the common region
in Eq. (5) cancel, giving the final result

e−β∆F ≈
∑
uAB

e−β fAB(uAB,v0
AB)

∑
uA

e−β fA(uA,v0
A)×∑

uB

e−β fB(uB,v0
B)
, (8)

defines the free energy of a specific minimum. We must there-
fore sum over members of the uAB minima and over local min-
ima corresponding to all conformations of A and B in the same
regions, with a Boltzmann weighting. A consistent set of lo-
cal reference conformations v0

AB must be used for the other
regions corresponding to vAB.

In the present work, the common regions consisted of only
the protein atoms (molecule A) while the ligand (molecule B)
was treated as fully flexible, reducing Eq. (8) to

e−β∆F ≈ e−βFAB(v0
AB)

e−βFA(v0
A)× e−βFB

, (9)

where

e−βFX (v0
X ) ≡ ∑

uX

e−β fX (uX ,v0
X ), X ∈ A,AB,

and

e−βFB ≡ ∑
uB

e−β fB(uB)

are the free energies for the free molecules and the complex.
Note that the free energy of the protein and complex depend
on the reference configuration of the common regions. Eq. (9)
is the working equation for the applications considered below.
Since we are primarily interested in the convergence of the
binding free energy with respect to the FSA framework, we do
not include the 8π2/C◦ prefactor from Eq. (1), and we treat all
molecules in vacuum for this initial benchmarking.

Eq. (9) is quite intuitive, with consistent reference confor-
mations selected for regions of the protein that interact only
weakly with the binding site. The derivation defines the valid-
ity of this approximation. In particular, it is clear that sampling
over a small number of local minima where the conformations
in the weakly interacting region are not consistent would in-
troduce systematic errors. For large systems the number of
possible conformations will be combinatorial, and randomly
chosen conformations are unlikely to be in correspondence.

A straightforward method for implementing Eq. (9) is to
sample local minima with the common region constrained in
the reference conformation. This sampling is accomplished
here using the local rigidification framework44. Our strategy
for testing Eq. (9) is to check the convergence of the binding
free energy as we expand the unconstrained region specified
by u. As a cross-validation, the result should be independent
of the reference conformations specified by v0.

2.2 Free Energy of Local Minima

In the harmonic approximation, the free energy, f , of a mini-
mum is given by

e−β f =
e−βVmin

(βhν̄)κ , with ν̄ =

(
∏

i
νi

)1/κ

,(10)
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where h is Planck’s constant, Vmin is the potential energy of
the minimum, and ν̄ is the geometric mean of the κ = 3N −6
vibrational normal mode frequencies. For a fully flexible
molecule, κ = 3N − 6 where N is the number of atoms.
The number of vibrational modes is reduced if parts of the
molecule are rigidified, as described in the next section. When
applying the superposition formula we collect together the
identical contributions for all permutation-inversion isomers
of a given minimum, which corresponds to weighting e−β f by
1/o, with o the order of the corresponding point group.26,30,49

An additional factor that depends on the atomic composition
of the system is needed to enumerate the distinct local min-
ima precisely, but cancels from all thermodynamic quantities.
Since the point group is C1 for all the minima considered in
the present work, o = 1. Eq. (10) also ignores overall trans-
lational and rotational contributions (Section 2.3.1 in Ref47),
which were found to make a negligible contribution to the free
energy differences of interest in the present study.

2.2.1 Normal Mode Analysis in the Local Rigid Body
Framework.The cost of diagonalisation of the 3N × 3N di-
mensional Hessian matrix required for calculating the normal
mode frequencies for each minimum scales as O(N3). The
computational expense is reduced when we consider the Hes-
sian corresponding to local rigidification. Since the ligand is
treated as fully flexible, its normal mode frequencies are com-
puted by diagonalising the standard all-atom Hessian.

We need to address two issues in order to perform a nor-
mal mode calculation with local rigidification. First, the Hes-
sian matrix of second derivatives required for the normal mode
analysis has dimension 3N for N atoms. Rigidification reduces
the dimensionality, and corresponds to a projection of the de-
grees of freedom of the constrained atoms onto the rotational
and translational degrees of freedom of the rigid bodies. Sec-
ond, the moment of inertia tensor is generally not diagonal
for the kinetic energy expressed in the local rigid body coordi-
nates. Hence we need two steps to calculate the corresponding
normal modes, as detailed below.

First we establish our notation, denoting the number of rigid
bodies by NRB and the number of unconstrained atoms by NA.
In the angle-axis representation27,50 each rigid body I has six
degrees of freedom: three representing the position of the cen-
tre of mass (translational degrees of freedom) rI = {rI

1,r
I
2,r

I
3},

and three representing its orientation (rotational degrees of
freedom) pI = {pI

1, pI
2, pI

3}. For clarity, we employ capital
letters for rigid bodies, and lower case for the sites in the rigid
bodies. The coordinates of the sites, i, for rigid body I are
denoted by rI(i) = {rI

1(i),r
I
2(i),r

I
3(i)}, where

rI(i) = rI +SIxI(i); i ∈ I. (11)

We define xI(i) = {xI
1(i),x

I
2(i),x

I
3(i)} as the reference coordi-

nates of the sites relative to the centre of mass of rigid body

I, and SI as the rotation matrix constructed from the rotational
degrees of freedom {pI} (in the angle-axis representation) that
rotates rigid body I from its reference frame to its current ori-
entation,

SI = I+(1− cosθ I)p̃I p̃I + sinθ I p̃I , (12)

with I the identity matrix, θ I =
(
(pI

1)
2 +(pI

2)
2 +(pI

3)
2
)1/2

and p̃I the skew-symmetric matrix obtained from the rotation
vector pI :

p̃I =
1
θ I

 0 −pI
3 pI

2
pI

3 0 −pI
1

−pI
2 pI

1 0

 . (13)

Using the above notation, the Hessian corresponding to lo-
cal rigid body coordinates is given by

∂ 2V
∂ rI

α ∂ rJ
β
= ∑

i∈I
∑
j∈J

∂ 2V
∂ rI

α(i)∂ rJ
β ( j)

,

∂ 2V
∂ rI

α ∂ pJ
β
= ∑

i∈I
∑
j∈J

3

∑
a=1

∂ 2V
∂ rI

α(i)∂ rJ
a( j)

[
∂SJ

∂ pJ
β

xJ( j)

]
a

,

∂ 2V
∂ pI

α ∂ pJ
β
=

∑
i∈I

∑
j∈J

3

∑
a=1

3

∑
b=1

∂ 2V
∂ rI

b(i)∂ rJ
a( j)

[
∂SI

∂ pI
α

xI(i)
]

b

[
∂SJ

∂ pJ
β

xJ( j)

]
a

,

for I ̸= J, (14)

∂ 2V
∂ pI

α ∂ pI
β
=

∑
i1∈I

∑
i2∈I

3

∑
a=1

3

∑
b=1

∂ 2V
∂ rI

b(i1)∂ rI
a(i2)

[
∂SI

∂ pI
α

xI(i1)
]

b

[
∂SI

∂ pI
β

xI(i2)

]
a

+∑
i∈I

3

∑
a=1

∂V
∂ rI

a(i)

[
∂ 2SI

∂ pI
α ∂ pI

β
xI(i)

]
a

,

where we have used

∂ rI
a(i)

∂ pI
α

=

[
∂SI

∂ pI
α

xI(i)
]

a
, i ∈ I. (15)

The notation [. . . ]a corresponds to the a-th component of the
vector given inside the bracket. Further details of the deriva-
tions are given in the Supporting Information.

To illustrate the computation of the normal modes, we first
focus on the kinetic energy terms for the rigid bodies:

KRB =
NRB

∑
I

1
2

MI (ṙI)2
+

NRB

∑
I

3

∑
α=1

3

∑
β=1

1
2

JI
αβ ṗI

α ṗI
β , (16)
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where the mass of rigid body I is MI = ∑i∈I mi and JI
αβ is the

corresponding moment of inertia tensor. We choose to work
in the moving frame of reference, where SI = I, as we find
diagonalisation of the inertia matrix the most straightforward
procedure. Here the moment of inertia has the usual definition.

We now wish to transform to coordinates where the kinetic
energy is diagonal, with QI,T and QI,R for the translational and
rotational degrees of freedom of rigid body I, so that

KRB =
NRB

∑
I=1

(
1
2
(
Q̇I,T )2

+
1
2
(
Q̇I,R)2

)
. (17)

For the translational degrees of freedom, the required coor-
dinate transformation is a simple rescaling: QI,T =

√
MIrI .

However, for the rotational degrees of freedom, we must first
apply a coordinate transformation wI = AI pI , so that the mo-
ment of inertia becomes a diagonal matrix with diagonal el-
ements ΩI

α (α = 1, 2, 3).51,52 Then we can simply rescale
the orientational coordinates by the moment of inertia QI,R

α =√
ΩI

α wI
α .

More generally, the total kinetic energy of the system con-
sists of contributions from the rigid bodies and free atoms, and
we can write it as

K =
η

∑
i=1

1
2

Q̇i
2
, (18)

where η = 3NA + 6NRB is the total number degrees of free-
dom. For the unconstrained atoms, Qi = Xi

√
mi, where mi is

the mass of the atom corresponding to atomic Cartesian coor-
dinate Xi.

The next step in computing the normal modes is to expand
the potential energy, V , in a Taylor series around a local min-
imum configuration with potential energy Vmin up to second
order in the Q coordinates:

V =Vmin +
1
2

η

∑
i, j=1

∂ 2V
∂Qi∂Q j

QiQ j. (19)

Here, Q is understood as the deviation from the local min-
imum configuration, which is defined as the local origin of
coordinates. The Hessian matrix Hi j = ∂ 2V/∂Qi∂Q j can be
diagonalised using a matrix B, whose columns are the eigen-
vectors of H with associated eigenvalues ω2

i = 4π2ν2
i :

η

∑
j=1

Hi jB jk = ω2
k Bik; qi =

η

∑
j=1

Bi jQ j, (20)

where qi are the normal mode coordinates. In this coordinate
system the Hamiltonian H can be written as

H =Vmin +
1
2

η

∑
i=1

(q̇2
i +ω2

i q2
i ). (21)

Due to the overall translational and rotational symmetries,
there are six zero normal mode eigenvalues. The total num-
ber of vibrational degrees of freedom in local rigid body co-
ordinates is therefore κ = η −6, which is used in Eq. (10) to
define the harmonic free energy of an individual minimum.

2.3 Basin-Hopping Parallel Tempering

The minima used in Eq. (9) to compute the binding free energy
were sampled using basin-hopping global optimisation.53–55

The basin-hopping method steps between local minima of the
potential energy surface, proposing moves by perturbing the
current minimum, and accepting or rejecting the new struc-
ture obtained after minimisation using criteria such as the en-
ergy difference.53–55 We used the group rotation moves56 de-
scribed in §2.3.1 for perturbing the conformation of the current
minimum in both the unconstrained inner and locally rigid
intermediate regions. The perturbed conformation was min-
imised using a modified L-BFGS algorithm57 with a tolerance
of 0.001 kcal/mol/Å on the root mean square force. The new
minimum was accepted or rejected using a Metropolis crite-
rion based on the potential energy difference with respect to
the previous minimum. Since the Metropolis criterion is based
on the energy difference between local minima, all downhill
barriers on the potential energy surface are removed. Uphill
barriers are reduced to the difference in energy of the two min-
ima. The minimisation and reduced barriers permit large per-
turbations of geometry, leading to effective sampling of the
low energy regions of the potential energy surface of interest.

To enhance the sampling we employed the basin-hopping
parallel tempering (BHPT) approach58. Conventional paral-
lel tempering involves carrying out a parallel set of canonical
Monte Carlo simulations at a range of temperatures, with pe-
riodic exchange attempts between the runs.59,60 In the BHPT
approach the replicas evolving at different temperatures are
all basin-hopping runs58 and the exchanges are between the
current minima in adjacent replicas.

2.3.1 Group Rotations.To propose perturbed conforma-
tions within each basin-hopping replica, generalised rotation
moves were developed. This scheme allows arbitrary groups
of atoms to be rotated about an axis defined by a bond vector,
maintaining maximum flexibility without introducing reliance
on standard topologies. Each group i has an associated user
specified selection probability, P(select)i, and maximum rota-
tion angle, θ max

i , to allow for further fine tuning of the con-
formational sampling. These perturbations are referred to as
group rotation moves.56 During each basin-hopping step:

1. for each group i, a random number ρ1 is drawn between
zero and one. If P(select)i > ρ1 then the group is rotated
in this step,
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Fig. 2 The amino acid Lysine (LYS) (a) coloured by element with
carbon atoms labelled. (b), (c) and (d) show the αβ , βγ and γδ
groups that can be rotated during basin-hopping, with their
associated selection probabilities P(select)i and maximum rotation
amplitudes θ max

i . The axis of rotation is shown in red, while the
atoms to be rotated are shown in blue. The graphical representations
in Fig.2-5 were prepared by Pymol program. 61

2. a second random number ρ2 in the range [−0.5,0.5] is
drawn and the rotation angle to be applied to the group
is calculated as θi = 2πρ2θ max

i , where θ max
i is the max-

imum desired rotation angle for group i as a fraction of
2π .

3. The bond vector that connects the group to the rest
of molecule is calculated and normalised before being
scaled by θi.

For an atom with position vector r, the rotation matrix S
is generated using an implementation of Rodrigues’ rotation
formula,62,63

Sr =
[
(Icosθ)+ k̂× sinθ + k̂k̂T (1− cosθ)

]
r, (22)

where I is the identity matrix, k̂ is the rotation axis, and k̂× is
the ‘cross-product matrix’:

k̂ =

k1
k2
k3

 , k̂× =

 0 −k3 k2
k3 0 −k1
−k2 k1 0

 . (23)

This scheme was initially developed to allow for comprehen-
sive sampling of small ligands, but in the current work it has
been adapted to sample the rotameric states of protein side
chains. Fig. 2 shows the rotatable groups used to explore the
conformations of the LYS side chain as an illustration. We de-
fine up to three such rotatable groups for each amino acid side
chain, where atoms are rotated about the Cα -Cβ , Cβ -Cγ and
Cγ -Cδ bonds. For simplicity, we set P(select)i = 0.025 for all
groups, giving an average of 5.5 rotations per basin-hopping
step for the 220 groups present when R = 14 Å (see §3.4). The
maximum rotation amplitude θ max

i for each group was cho-
sen based on the group’s size and spatial extent, in an effort
to achieve the largest possible step size while minimising pos-
sible atom clashes following a rotation. The values used in
the current work can be found in the Supporting Information
(Table S1) along with associated input files.

While the conformational changes during sampling are
mainly determined by the group rotation of side chains and lig-
and, we also included small (0.1 Å) random Cartesian pertur-
bations for all atoms, including the backbone, at every basin-
hopping step. In addition, the backbone was free to move dur-
ing minimization in the free and locally rigid regions to ac-
commodate side chain/ligand movement. Thus, the backbone
moves during the sampling. To estimate the contribution of
the backbone movement, we looked at eight aldose reductase
crystal structures with different ligands bound, which were ob-
tained from the Protein Data Bank. Among these complexes,
the smallest ligand has 18 atoms and the largest has 49. The
highest Cα -RMSD between the one we used as a starting point
and any other is 0.723 Å for the whole protein and 0.609 Å for
the residues within 16 Å of the ligand (Table S2). These small
differences in backbone conformation reflect the fact that the
backbone conformation is quite well defined for the species
considered in the FSA procedure.

3 Application to Human Aldose Reductase

We employ the binding of human aldose reductase64 with
phenyl acetic acid (PAC) as a model system to test the fac-
torisation superposition approach (see Fig. 3). Because the
protein is adequately large and the ligand is quite small, which
complex can be a simple case described as Eq. (9). In addi-
tion, the crystal conformation of the complex and the experi-
mental binding free energy are known. For the purposes of
this study, not looking at the catalytic activity of the enzyme,
the NADP+ cofactor of the enzyme is considered to be part of
the protein. The details of the simulation and local rigidifica-
tion are described in §3.1 and §3.2, respectively. The goals of
this study are to test the following two hypotheses. First, that
the binding free energy should converge if the active binding
site region is sufficiently large. Second, that the binding free
energy should then be independent of the configuration of the
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Rigidification

PAC

NADP+

C
7

Fig. 3 Cartoon (left top) and rigidified representations (right) of
St1-Comp-R12.In the rigidified structure, the yellow lines represent
the unconstrained inner region, the red surface shows the locally
rigidified intermediate region, and the gray part is the outer region,
rigidified as one group. The ligand PAC with the atom labels used in
the text and the cofactor NADP+ are described in the insert.

inactive region. These hypotheses are tested by computing
the binding free energy for systematic rigidification with three
different reference conformations and examining the conver-
gence to identify the maximum rigidification (factorisation)
for which Eq. (9) holds.

3.1 Simulation Set Up

The simulations were performed using the AMBER ff99SB
force field8 for the protein. Parameters for NADP+ were
obtained from the AMBER parameter database65. The PAC
ligand was parametrised using the General Amber Force
Field66,67 with RESP68,69 charges generated iteratively using
GAMESS-US.70 The cutoff radius of 999.99 Å is used for
non-bonded interactions. To evaluate the influence of the
reference conformation, corresponding to v0

A in Eq. (9), we
prepared three initial conformations with different geometries
for the rigid region. One conformation, named ‘St-1’, was ob-
tained from the Protein Data Bank (PDB code 2INE)64. The
other conformations, named ‘St-2’ and ‘St-3’, were prepared
using a small number of basin-hopping steps starting from St-
1 without any rigidification. Fig. 4(a) shows St-1 and St-2
aligned on all atoms (RMSD 1.5 Å), while Fig. 4(b) shows the
alignment for St-1 and St-3 (RMSD 1.9 Å). The main differ-
ences are the partial unfolding of a helix in St-2 and St-3, re-
spectively. Most of the calculations were performed in vacuo
to reduce the computational cost and facilitate more thorough
benchmarking. An accurate solvation model is not required
for the present study since the objective is to test the factorisa-

(a)

(b)

Fig. 4 (a) Cartoon descriptions of St-1 (red) and St-2 (sky blue)
after alignment.The blue color of St-2 is translucent, thus the
overlapped region looks gray. (b) St-1 (red) and St-3 (yellow).

tion approach, rather than compare directly with experiment.
The calculations in aqueous solvent will be the focus of future
work, discussed in §3.6. In the present contribution we have
simply relaxed the key local minima using an implicit solvent
model to check that the convergence criteria are robust. Ex-
ample input files are provided in the Supporting Information.

3.2 Systematic Rigidification

For each structure, the free energy calculations were per-
formed on multiple rigidified versions of the protein. The
rigidification was applied systematically to fewer protein
atoms, with the corresponding complex initially defined from
identical protein and ligand coordinates. We determined the
rigidified regions using the distance, R (in Angstroms), from
the C7 atom of the PAC ligand, labelled in Fig. 3. The un-
constrained inner layer consisted of all atoms of amino acid
residues having any atom within a radius R of the C7 refer-
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Local Rigidification

Fig. 5 Examples of the local rigidifications corresponding to the
intermediate region of Fig. 3.The image at the top left shows
residues 47-49 in human aldose reductase. In the local rigidification
(right), the red group is an aromatic ring corresponding to the
TYR47 residue, the blue group corresponds to a peptide bond
between GLN48 and ASN49, and the orange group is a trigonal
centre (an amide group in this case) in the side chain of GLN48.

ence atom. If any atoms of a residue lay between radii R and
R+ 1 then we rigidified their peptide bonds, sp2 centres, and
aromatic rings. This set formed the intermediate layer with lo-
cal rigid bodies. Atoms in the outer layer were rigidified as a
single group. Fig. 3 shows the resulting rigidification scheme
for the complex with a threshold value of R = 12Å defined
for St-1 (denoted St1-Comp-R12) and the details of the local
rigidification are shown in Fig. 5. For St-1, six different rigid-
ified versions were used, corresponding to R = 6,8,10,12,14
and 16, Å. For St-2, four versions (R = 8,10,12,14, Å) were
prepared, and for St-3, two versions (R = 12,14, Å) were pre-
pared. In each case the cofactor NADP+ was part of the rigidi-
fied region. The number of atoms in each group is summarised
in Table 1 as a function of R.

3.3 Sampling Local Minima

The BHPT method (§2.3)58 implemented in our GMIN71

program was used to sample local minima for the protein
and complex for the different R values with both refer-
ence structures. All BHPT simulations were performed with
12 replicas and temperatures exponentially spaced between
97 K and 2435 K. Minimisation was performed using a mod-
ified version of the L-BFGS57 algorithm with a tolerance of
0.001 kcal/mol/Å for the root mean square force. Minima with
energies within 0.01 kcal/mol were considered duplicates and
excluded from the set used for computing the free energy. For
the BHPT run for the complex of St-1, the probability of es-
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Fig. 6 Binding free energies as a function of the number of distinct
local minima sampled, corresponding to the progress of the BHPT
run. Results are shown for six different values of the radius R, which
defines the unconstrained region.

cape from the previous minimum is 37% at the lowest temper-
ature and 62% at the highest temperature, which corresponds
to an efficient choice of parameters.

For each minimum, normal mode frequencies were com-
puted using our OPTIM72 program and harmonic free ener-
gies were obtained from Eq. (10) as the database of minima
expanded (Fig. 6). Sampling was terminated when the change
within the previous 2,400 basin-hopping steps was less than
0.01 kcal/mol. Table 2 gives the total number of basin-hopping
steps and the number of distinct minima sampled for the dif-
ferent simulations. Among these minima, only a few hundred
contribute significantly to the superposition sums in Eq. (9),
and this number increases with R, as expected. As an exam-
ple, we show how FAB varies for St-1 in Table 3.

A single basin-hopping run of 1,000 steps was performed
for the ligand using a temperature of 300 K in the accept/reject
step. Only the lowest two local minima contribute signifi-
cantly to the partition function of the noninteracting ligand.

3.4 Convergence of the Free energy with the Size of the
Unconstrained Region

We calculated binding free energies, ∆F , using Eq. (10) for St-
1, St-2 and St-3 as a function of R, as shown in Fig. 7. For St-1,
∆F increases from R = 6 Å to R = 14 Å and appears to have
converged at R = 14 Å . The ∆F values obtained for St-2 devi-
ate significantly from that of St-1 at R = 8 Å , but at R = 10 Å
∆F approaches the value obtained at R = 14 and 16 Å for St-1.
Similar ∆F values are also obtained for St-3. ∆F at R = 14,
16 Å for St-1, R = 12, 14 Å for St-2 and R = 12, 14 Å for St-3
are within 1.1 kcal/mol, even though the number of degrees of
freedom (κX ) and absolute free energies (FX ) are quite differ-
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Fig. 7 Binding free energies as a function of the rigidification
radius, R. Results for St-1, St-2 and St-3 are shown in red, blue and
green, respectively. The shaded region represents 1.0 kcal mol−1

around the average converged value.

ent for each R, as detailed in Table 1 and Table 2. Thus, we
conclude that the factorisation superposition approach seems
to be applicable for this system with R ≥14 Å, independent of
the reference conformation.

3.5 Computational Cost

In the BHPT sampling using GMIN, each basin-hopping step
for St1-Comp-R14 takes about 3.1 times longer than for St1-
Comp-R6 on average, because the coordinate space is larger
for St1-Comp-R14. For the normal mode analysis using
OPTIM, the diagonalisation of the Hessian matrix for one min-
imum with κ = 3246 (R = 14) and κ = 15387 (without any
rigidification) took 6 minutes and 46 minutes of cpu time on
average, respectively, the computational time scales roughly
as κ1.5, as suggested by the data in Fig. S1 of the Supporting
Information.

In spite of the speedup achieved using the rigid body frame-
work, normal mode calculations for the protein and complex
minima are still relatively expensive. It is therefore desirable
to use as few minima as possible in the superposition sums.
Due to the Boltzmann weight in Eq. (13), the low-energy min-
ima dominate these sums. Table 4 shows the binding free
energy computed using minima whose energies lie within a
cutoff (Ecut) of the global minimum energy. We find that the
binding free energy is determined by minima with energies
within 10kT of the global minimum at T = 298 K. This cutoff

corresponds to a small fraction of the total number of minima
sampled for the protein and complex. For example, a cut-off of
10kT applied to the database of minima for the R = 14 Å sim-
ulations with St-1 drastically reduces the number of minima of
the complex from 4,452 to 149. The number of relevant min-
ima for smaller R is even less. A substantial reduction in the
total computational cost can therefore be achieved by restrict-
ing the normal mode calculations to the low-energy minima.

3.6 Extension to FSA in aqueous solvent

The converged binding free energy was found to be approxi-
mately −36.8 kcal/mol, corresponding to a standard binding
free energy of −29.8 kcal/mol, which is significantly lower
than experimental binding affinity of −5.5k̇cal/mol64. We
suspected that this discrepancy is primarily due to the absence
of solvent effects. To test this hypothesis, we repeated the cal-
culation for R = 14 Å with St-1, using the Generalized Born
implicit solvent model, as implemented in AMBER.73 We re-
laxed the lowest 500 minima identified in vacuum and recom-
puted the normal mode frequencies for both the protein and
the complex. Note that we did not resample minima while
accounting for solvent contributions, as the vacuum and the
corresponding recomputed potential energies in the implicit
solvent were found to be highly correlated (Fig. S2). Both
the ligand minima were also relaxed using implicit solvent.
The resulting binding free energy was ∆F◦ = −8.4 kcal/mol,
much closer to the experimental value. We expect that sam-
pling with a more accurate implicit solvent model, such as
linearized Poisson-Boltzmann74, would further improve the
agreement with experiment.

We note that, in principle, the FSA framework can also be
applied for explicit solvent. However, a large number of ex-
plicit water molecules would significantly increase the num-
ber of minima, and further work would be needed to sample
these structures efficiently. Nevertheless, including a few wa-
ter molecules might be desirable, for example, in situations
where the crystal structure contains bridging water molecules
between the ligand and the protein.

4 Conclusions

We have presented a new method based on potential energy
landscape theory,26 the factorisation superposition approach
(FSA), for computing the binding free energy of protein-
ligand complex. In this scheme the free energy of the free
and bound molecules are computed using the superposition
approach from a database of local potential energy minima.
Due to the exponential increase in the number of minima with
system size, exhaustive sampling is not feasible for a protein-
sized system. The FSA approach addresses this problem by
focusing the calculation on protein atoms that interact strongly
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with the ligand. In §2.1 we presented the theory for factorising
the conformational space of the protein and complex into two
regions based on the size of the binding pocket. The factori-
sation facilitates estimation of the binding free energy using
minima corresponding to fluctuations of the binding region,
thereby reducing the number of degrees of freedom signif-
icantly. We describe the approximations under which such
a factorisation is valid, employing a local rigid-body frame-
work44 to implement the FSA by treating atoms further from
the binding site as collections of local rigid bodies. This pro-
cedure reduces the number of active degrees of freedom, but
retains all the terms in the force field.

We applied the FSA method to calculate the free energy
change for ligand binding with human aldose reductase pro-
tein while varying the size of the binding region. We per-
formed the calculations for three different conformations of
the rigid part of the protein and for different sizes of the bind-
ing pocket. For a given conformation of the rigidified region,
we found that the binding free energy converged to within
1 kcal/mol as the size of the binding pocket was increased to
about 14 Å, corresponding to an 80% reduction in the number
of protein degrees of freedom. The converged binding free en-
ergy for all three conformations were found to be within 1.1
kcal/mol, suggesting weak interactions between the ligand and
protein atoms beyond 14 Å.

Several further improvements in the accuracy and speed of
the FSA method as presented here can be envisioned. Larger
systems are likely to derive a greater benefit from the factori-
sation scheme, because the whole region unrelated to ligand
binding can be rigidified into a single unit, with only six rigid-
body degrees of freedom. A surprising result of this study is
that, even though the number of minima increased rapidly with
the size of the unconstrained region around the binding pocket,
the number of thermally relevant minima remained small, of
the order of few hundred conformations. Anharmonicity cor-
rections33,75,76 could improve the accuracy of the method, and
the computationally intensive minima sampling and normal
mode calculations should be highly amenable to distributed
computing.

One key aspect of the FSA approach is the rigidification
of large protein regions distant from the binding site. This ap-
proach assumes that the configurations of such regions change
relatively little upon ligand binding. For proteins with signif-
icant allosteric effects,77,78 the regions should be rigidified in
smaller domains, to avoid freezing out the protein allostery.
The local rigid body approach, used in the ‘intermediate re-
gion’, and group rotations for sampling should still be appli-
cable for any ligand binding system.

The converged radius for the flexible region obtained in the
present work, R = 14 Å, is not expected to be universal, and
other protein/ligand combinations will require analogous con-
vergence checks. However, for a given protein, the value of R

is likely to be transferable for different ligands of comparable
size.

In future work we will consider solvent effects in more de-
tail, and present comparisons with alternative approaches for
calculating the free energy difference. Our main purpose in
the present work was to demonstrate the convergence of the
FSA scheme. We hope that, with further benchmarking and
computational optimisation, the FSA method could facilitate
screening calculations associated with drug design.
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Table 1 The binding free energy calculations are performed with the protein (molecule A) atoms separated into three different regions. The
inner region is fully flexible, the intermediate region consists of local rigid bodies (LRB), and the outer region is treated as a single rigid body.
The total number of atoms in the ligand, protein (including the cofactor NADP+) and complex (molecule AB) are 18, 5113 and 5131,
respectively. The table gives the number of degrees of freedom for protein (κA) and complex (κAB). The number of degrees of freedom for the
ligand is κB = 48

St Radius R % rigid Number of rigidified atoms
(Å) (protein) intermediate (# LRB) outer κA κAB

1,2 6 99 0 (0) 5091 66 120
8 97 36 (7) 4903 564 618
10 92 92 (17) 4640 1245 1299
12 87 114 (25) 4338 2133 2187
14 80 135 (29) 3972 3192 3246

1 16 78 100 (21) 3886 3507 3561
3 12 88 137 (27) 4378 1956 2010

14 81 146 (32) 3992 3117 3171

Table 2 Total basin-hopping (BH) steps for 12 temperatures and the number of distinct local minima obtained for the complex (AB) and the
protein (A). The binding free energies (∆F) are calculated from the free energies of the complex (FAB), protein (FA) and ligand (FB). A
converged value of FB = 11.4 kcal/mol is obtained from the two lowest minima characterised in a BH run of 1000 steps

Total BH steps # minima obtained Free energies (kcal/mol)
St R Complex Protein Complex Protein Complex Protein ∆F

1 6 50723 46602 3229 2298 −9920.3 −9886.1 −45.6
8 25002 24106 3733 3595 −9464.1 −9434.6 −40.9
10 24072 20859 3680 2861 −8921.4 −8894.4 −38.4
12 28467 29130 4873 4606 −8221.7 −8194.9 −38.2
14 26351 23930 4800 4056 −7348.8 −7323.2 −37.0
16 47880 41172 6962 6200 −4052.7 −4027.1 −37.0

2 8 18303 19473 2117 2259 799.3 822.7 −34.8
10 15610 31317 1593 2091 1337.2 1362.1 −36.3
12 17183 16474 2400 2351 2021.2 2046.6 −36.8
14 19235 15030 3932 2899 2876.9 2901.9 −36.4

3 12 38676 31608 4388 3394 −5104.1 −5077.9 −37.5
14 33816 26340 3382 3405 −4398.7 −4372.9 −37.2

Table 3 Free energies of the complex (kcal/mol) for reference St-1 using the Nmin lowest minima. The free energies changing by more than
0.001 kcal/mol from the previous value are summarised below. The final values correspond to FAB in Table 2

Nmin R = 6 Å R = 8 Å R = 10 Å R = 12 Å R = 14 Å R = 16 Å
1 −9916.821 −9463.359 −8920.421 −8219.631 −7346.759 −4049.182
10 −9917.676 −9464.074 −8921.024 −8220.497 −7347.315 −4050.390
30 −9920.302 −9464.075 −8921.306 −8220.884 −7348.228 −4050.837
50 −8921.314 −8221.049 −7348.355 −4051.481
70 −8921.416 −8221.126 −7348.515 −4052.084
90 −8221.161 −7348.649 −4052.097

110 −8221.589 −7348.732 −4052.173
130 −8221.667 −7348.777 −4052.181
150 −8221.669 −7348.796 −4052.634
170 −7348.801 −4052.636
190 −7348.804 −4052.683
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Table 4 Binding free energy (kcal/mol) for reference St-1 using protein and complex minima with energies within Ecut of the global
minimum. The binding free energy computed using all the minima is given in Table 2. Ecut is in units of kT for T = 298K

Ecut R = 6 Å R = 8 Å R = 10 Å R = 12 Å R = 14 Å R = 16 Å
2 −42.8 −40.9 −40.6 −39.0 −36.7 −35.2
5 −45.6 −40.8 −38.4 −39.5 −37.7 −36.5
10 −45.6 −40.8 −38.4 −38.2 −37.0 −37.0
20 −45.6 −40.8 −38.4 −38.2 −37.0 −37.0
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