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Short Title - Mapping sub-pixel grain sizes 

 

ABSTRACT 

This paper presents an investigation of image texture approaches for mapping sub-pixel 

fluvial grain-size features from airborne imagery, allowing for the rapid acquisition of surface 

sand and coarse fraction (>1.41 mm) grain-size information. Imagery at 30 mm resolution 
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was acquired over four gravel bars from the Fraser River (British Columbia, Canada). 

Combined first-order and second-order image texture approaches (windowed standard 

deviation filter and the grey level co-occurrence matrix) were used. First-order image texture, 

through the application of a standard deviation filter and subsequent thresholding was used to 

detect the presence of surface sand, with optimal accuracy achieved at 91 ± 1.9%. A wide-

ranging parameter space investigation was used to derive optimum parameters for the grey 

level co-occurrence matrix. Subsequently first- and second-order image textures were used in 

multiple linear regression to achieve good calibrations with several sub-pixel grain-size 

percentiles; relative error at 1.44%, 3.18%, 6.80% and 10.6% for D5, D16, D35 and D50, 

respectively. The larger percentiles of D84 and D95 had relative errors of 24.7% and 29.7%, 

respectively. The breakdown of calibration precision for larger percentiles is attributed to a 

‘pixel averaging effect’. It is concluded that multispectral imagery is not required, because 

sufficient image texture information can be derived from standard colour imagery. 

Recommendations are suggested for application of this method to other localities and 

datasets, thus reducing exhaustive parameter searches in future studies. 

 

Key words:  Fluvial grain size, airborne remote sensing, digital image processing, sub-pixel 
features, hyperspatial imagery, image texture, grey level co-occurrence matrix. 

 

INTRODUCTION 

Research into fluvial systems is often based on field studies that are inevitably limited in 

terms of spatial coverage and resolution (Fausch et al., 2002). However, technological 

advances are changing the way river scientists map, manage and analyse rivers (Marcus & 

Fonstad, 2008). Among these new technologies, the increasing acquisition and processing of 

hyperspatial imagery (<100 mm spatial resolution; Rango et al., 2009; Carbonneau and 

Piegay 2012) is revealing great potential for catchment scale mapping at unprecedented 

resolutions (Carbonneau et al., 2012). 

Grain-size information for gravel bed rivers is important in a wide variety of contexts, 

providing information to guide the development of flood defences and maintaining 

navigability, biodiversity and ecological integrity within large rivers (Klingeman, 1998). 

Within the remote sensing literature, two main categories of techniques are discussed for 
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extracting grain-size information from digital imagery, close range ‘photosieving’ techniques 

and reach scale assessments using image texture analysis. Photosieving techniques are based 

on images of sediment collected at ground level where each grain is imaged by several pixels; 

images are rapidly acquired in the field and grains manually measured from the image at a 

later date (Ibbeken & Schleyer, 1986). Thus, photosieving reduces the need for surface gravel 

sampling and increases the amount of collected data. More recently, automated procedures to 

extract grain-size information from digital images have been developed. These procedures 

use image segmentation and boundary detection approaches to emulate the way a human user 

would delineate grains (McEwan et al., 2000; Butler et al., 2001; Graham et al. 2005a,b; 

Chung & Chang, 2012).  Alternatively, statistical methods such as mathematical 

morphological operators (Pina et al., 2011), spatial autocorrelation (Rubin, 2004) or spectral 

autocorrelation (Buscombe, 2008; Buscombe et al., 2010; Buscombe and Rubin 2012a,b) can 

be used. Given the requirement for pixel sizes much smaller than grain sizes, photosieving 

uses terrestrial imagery.   

In the case of airborne, reach scale studies, image texture applied to hyperspatial imagery has 

been used to extract grain-size information (Carbonneau et al., 2004; Verdu et al., 2005). 

Image texture analysis involves quantifying the differences in pixel intensity values within a 

region of neighbouring pixels.  These operations can be split into two types; first-order 

methods which are simple statistical measures where pixel neighbour relations are not 

considered and second-order methods which consider the spatial relation and spatial structure 

of the pixels. Some common measures of first-order image texture include mean, variance, 

and range of pixel intensity values within a local neighbourhood. For second-order methods 

the grey level co-occurrence matrix (GLCM) (Haralick et al., 1973; Haralick, 1979) is 

perhaps the best-known texture measure.  

Early applications of airborne grain-size mapping were limited to gravels, cobbles and 

boulders. Sand particles, being much smaller than the pixel size, remained undetectable 

(Carbonneau, 2005).  However, preliminary results presented by Chandler et al. (2004) 

suggest that simple first-order texture measures are sufficient for detecting the presence of 

surface sand, whilst the work of Carbonneau et al. (2004) and Verdu et al. (2005) showed 

that second-order texture approaches can be used to extract multiple grain-size percentiles. 

However, measures such as the GLCM require several input parameters (for example, 

directional offset, grey levels and window size); an extensive parameter investigation also 

increases data processing time. Carbonneau et al. (2004) and Verdu et al. (2005) investigated 
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only a small sub-set of GLCM parameters and did not address the applicability of these 

methods for detecting sub-pixel grains.   

In this paper, a detailed investigation into first-order and second-order image texture 

approaches is presented, expanding the parameter space investigated by Carbonneau et al. 

(2004) and Verdu et al. (2005), with the main aim of extracting sub-pixel fluvial grain-size 

features from hyperspatial imagery. The preliminary investigations of Chandler et al., (2004) 

were limited; hence, first-order image texture methods are re-examined in more detail. 

Second-order image texture methods (through the GLCM and its expansive parameter space) 

were applied to the coarser (>1.41 mm) fluvial sediment size fraction. These tasks were 

formulated into two research objectives: 

• To investigate first-order image texture methods for producing maps of surface sand 

areas. 

• To investigate first-order and second-order image texture methods (through the 

GLCM) for deriving grain-size distributions for the coarse (>1.41 mm) size fraction. 

METHODS 

Study Area 

The Fraser River (British Columbia, Canada) is one of the large rivers in North America, 

draining an area of approximately 233,000 km2. The river rises in the high plateaux and 

mountains in the central part of the province and descends a series of canyons to enter the 

distal Fraser Valley where it receives its final major tributary, Harrison River. Mean annual 

flow at Mission, downstream of Harrison River is 3410 m3s-1 and mean annual flood is 9710 

m3s-1.  Gravel is the predominant bed sediment type in the 100 km ‘gravel reach’ of the lower 

Fraser, between Hope and Mission (Figure 1); however there are also significant quantities of 

sand. The sediments show both downstream and vertical patterns of sorting within the 

channel system (Rice & Church, 2010), becoming finer and more sand-rich downstream. 

Four gravel bars within the ‘gravel reach’ were selected for data acquisition: Queens Bar, N 

Bar, Calamity Bar and Harrison Bar (Figure 1). These bars are located between 110 km and 

120 km upstream of Sand Heads (mouth of the Fraser River).  



This article is protected by copyright. All rights reserved. 

Airborne Hyperspatial Image Acquisition 

In March 2012, hyperspatial imagery was acquired over Queens Bar, N Bar, Calamity Bar 

and Harrison Bar by the DTM Mapping Corporation (http://www.dtm-global.com). Eight-bit 

imagery was collected using a Vexel Imaging UltraCamX (Vexcel Imaging GmbH, Graz, 

Austria) at a spatial resolution of 30 mm. Imagery was acquired in Near Infrared, Red, Green 

and Blue bands.  Following the collection of raw imagery image enhancement was performed 

during the orthorectification stage, through the application of an image dodger. The image 

dodger performed histogram matching on the overlapping region of the neighbouring images 

to normalise the intensity values between individual images. Due to the consistent (cloudy 

bright) lighting conditions during acquisition the effects of the image dodger on pixel 

intensities were minimal. Images were automatically mosaicked and rectified, producing ca 

230 image tiles covering the areas shown in Figure 1. 

 

Ground truth grain-size data 

 

In the field, 23 vegetation-free gravel sites were randomly selected for surface grain-size 

analysis, on Queens Bar (11), N-Bar (5), Harrison Bar (3) and Calamity Bar (4). Sample sites 

were visually homogeneous over several metres. At each of these sites a rectangular frame 

was placed over a 1.0 x 0.8 m area (Figure 2). Within the frame area, the surface grains were 

spray-painted and subsequently, painted grains were collected and measured; a technique 

commonly known as paint-and-pick (Lane, 1953; Church et al., 1987). For sediment larger 

than 8 mm, field templates were used to measure the grains, with the remaining smaller grain 

fraction being stored for later laboratory sieving. In the laboratory, samples were sieved to 

1.41 mm; weights were calibrated to particle counts and converted to a full distribution. 

Geolocation of the field sites was carried out using a Trimble 5700 differential Global 

Positioning System (GPS; Trimble Navigation Limited, Sunnyvale, CA, USA). Post-

processing of the GPS data was carried out using the Canadian Spatial Referencing System 

(CSRS) online GPS Processing service (http://www.geod.nrcan.gc.ca/products-

produits/ppp_e.php). With an integrated base station time of around seven hours, the GPS 

points have an estimated precision in X, Y and Z of ±20 mm. 
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Image texture and grain-size features 

Sand 

To assess the relation between image texture and the presence of surface sand, a collage of 

three image tiles (15 x 15 m) was created (Figure 3). The collage image encompasses a 

variety of features that may influence image texture calculations within the study region 

including areas of gravel–sand and wet–dry sand transitions, natural features such as log 

jams, and areas of human disturbance (tyre tracks). All of these features introduce variations 

in the intensity levels of the image and, therefore, image texture will be sensitive to these 

intensity changes. To facilitate accurate assessment, non-sand areas were manually delineated 

on the composite image using a Graphical User Interface (GUI) (Figure 3). To give an idea of 

the likely error associated with manual delineation, five independent users delineated a 

sand/gravel patch in the same image and their results diverged by 1.9% (ca 0.8m2 in real 

terms). 

 

A standard deviation moving window was applied across this composite image over a range 

of window sizes (Chandler et al., 2004). The resultant texture image was thresholded at 

increasing values to produce binary images of sand, non-sand. The relation between image 

texture values and sand was assessed to confirm the hypothesis that low texture values are 

linked to the presence of surface sand. Assessment was made using a figure of merit (Klug et 

al. 1992; Pontius et al. 2008) to give a percentage accuracy of classification of ‘sand’ pixels, 

as shown in Eq. 1: 

un

ov

px

px
FoM =            (1) 

where pxov is the number of mutually classified pixels in the manually delineated image and 

the texture thresholded image (i.e. correctly identified pixels), and pxun is the number of 

unique pixels in either image (i.e. pixels representing both errors of commission and 

omission). The figure of merit index is used for the analysis of spatial patterns (Klug et al. 

1992; Perica & Foufoula-Georgiou, 1996), as it is a dimensionless index with a theoretical 

range from 0 to 1, where 0 is no overlap and 1 is perfect overlap. 
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Coarse Fraction 

The relation between image texture and seven, field sampled, coarse fraction grain-size 

percentiles (D5, D16, D35, D50, D65, D84 and D95 determined from the field samples) was 

investigated using both first-order and second-order image texture and linear regression 

between image texture values and grain-size values for each percentile. First-order image 

texture was assessed through the application of a standard deviation filter and second-order 

image texture was investigated through the GLCM within a large parameter space. Both first-

order and second-order image texture methods were then applied through Multiple Linear 

Regression to assess their combined relation with each of the seven coarse fraction grain-size 

percentiles. 

First-order Image texture – Standard Deviation Filter: In a manner similar to the assessment 

of image texture and sand, a standard deviation filter ranging from 3 x 3 in steps of two pixels 

to a maximum of 69 x 69 pixels was applied and subsequently linearly regressed to the seven 

coarse fraction percentiles. Each combination of window size and image band was computed, 

leading to a total of more than 3,100 first-order image texture calculations. 

Second-order Image texture – Grey Level Co-occurrence Matrix : Second-order texture 

measures using the GLCM were assessed through a similar process of image texture 

calculation and subsequent linear regression with the seven percentiles. When calculating a 

GLCM, there are several parameters to consider; window size f(x,y), directional offset O(x,y), 

number of grey levels L, the wavelength band of the image used (NIR, R, G, B) and the 

statistic calculated. A GLCM can be defined as follows: let O(x,y) be an operator that defines 

the spatial relation of the two pixels relative to each other, on a sub-image f(x,y) (i.e. a 

window extracted from the larger input image, I) with L possible intensity levels. Intensity 

levels L (grey DN levels) are the range of pixel values represented in the GLCM; for example 

an 8-bit image can be processed at L = 256 to produce an 8-bit GLCM with a size of 256 x 

256. However, it is common practice to ‘downsample’ grey levels before calculating a 

GLCM as high numbers of grey levels are computationally expensive. The GLCM, G, is a 

matrix whose element G(i,j) is the number times that the pixel pairs with intensity levels zi 

and zj occur in the image f at the positions specified by O(x,y).  

Consider the example shown in Figure 4 (Gonzalez and Woods, 2008) for image f where L = 

8, and O is defined as ‘one pixel to the right’. This example shows that element (6,2) of G has 

a value of 3, as there are 3 occurrences in image f of a pixel value of 6 where its neighbour to 
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the immediate right  has a value of 2. In this example, the window size is equal to the size of 

the sub-image f (for example, 6 x 6). Following the calculation of this GLCM, statistical 

descriptors can be calculated reducing the GLCM to a scalar value. This value is placed in the 

texture image, T, at the location of sub-image f. Therefore the resolution of the texture image, 

T, is proportional to the window size (size of sub-image) used to process input image, I. For 

example, a 1024 x 1024 input image, I, processed with a window size, f(x,y) of 64 x 64 

produces a texture image, T, with size of 16 x 16 (with no overlap of adjacent windows).  

 

In order to reduce the number of GLCM calculations to manageable processing times, a 

limited parameter space was investigated. Following the recommendations of Clausi (2002), 

the ‘preferred statistic set’ was investigated; GLCM contrast, correlation and entropy (Eqs 2a, 

2b and 2c): 
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where (i,j) represents the image coordinates, p(i,j) represents the normalised GLCM matrix 

value at the point (i,j), σ (i) σ (j) represents standard deviation of the GLCM row (i) or 

column (j) and µ(i) µ(j) represent the mean of the GLCM row (i) or column (j). This 

‘preferred statistic set’ combines the GLCM statistics which are independent and not 

correlated (Clausi, 2002).  Table 1 shows the parameters investigated. Offsets are given as 

O(x,y) and calculated only in cases where the Offset is smaller than the window size. A 

symmetrical GLCM was calculated (Haralick et al., 1973); for example, the sum of two 

GLCMs with offsets O(0,+1) and O(0,-1) is equal to the symmetrical GLCM of O(0,+1).  

 

The full parameter space outlined above led to more than 84,000 sets of GLCM parameters, 

each calculated on 23 images resulting in a final total of over 1.9 million image texture 

calculations.  
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Combined First-order and Second-order Image texture using Multiple Linear Regression: 

Verdu et al., (2005) observed increased accuracy of calibrations with multiple linear 

regression (MLR) of several image texture measures. The increased accuracy is probably a 

result of the increased information provided by several texture measures and the combination 

of this information through MLR, straightforwardly possible with independent image texture 

measures. To further test this finding, the ‘best performing’ parameter sets (high r2 and low 

MSE) from first-order image texture (standard deviation) and second-order image texture 

(contrast, correlation and entropy) were selected for MLR.  

Leave-one-out cross-validation (Friedman et al., 2001) was used to give a precise estimate of 

MSE (cross-validated Mean Square Error: MSEcv). Leave-one-out cross-validation involves 

using a single observation from the original sample as validation data, and the remaining 

observations as training data. The process is iterated until each observation in the sample is 

used once for validation.  

Grain-Size Mapping: Workflow 

Following the investigations of first- and second-order image texture measures for deriving 

surface grain size information outlined in the Sand and Coarse fraction section above, a 

workflow was developed for batch-processing of all of the hyperspatial image tiles from the 

study region. The optimal results from those investigations were used to guide this workflow. 

All of the image tiles from the study area were processed to produce continuous grain-size 

maps for the entire study region. The workflow is summarised in Figure 5.  

First, the raw image tile was segmented using the Otsu method (Otsu, 1979) to remove water 

and vegetation. This method sets a threshold by minimising the interclass variance of the 

pixels either side of the threshold value. A visual assessment of the imagery ensured that the 

threshold value was appropriate for the imagery. The threshold value may then be manually 

adjusted as required to ensure that vegetation and water areas are appropriately masked. 

Masking of these areas is not explicitly required to calculate surface sand and grain-size 

maps, because vegetated and water surfaces can be masked at any stage. However, masking 

earlier in the workflow avoids unnecessary computation in the latter stages.  

A standard deviation filter was then applied and thresholded to produce surface sand content. 

Remaining pixels (i.e. those not classified as water and vegetation or sand), were then 

processed through the GLCM and MLR to produce a surface grain-size distribution.  
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RESULTS 

Ground truth grain-size data 

Figure 6 shows the full grain-size distribution for all 23 coarse fraction sites, truncated at 1.41 

mm. Table 2 shows summary statistics, with percentile data being linearly interpolated 

between sieve data points shown in Figure 6. The samples represent a good range for 

investigation of texture detection methods. 

 

First-order image texture calibration: Sand 

Figure 7 shows the percentage accuracy for each window size calculated using the FoM with 

an initial threshold value of 3.5. Highest accuracies are found at the smaller window size, 

with a window size of 3 x 3 pixels producing the best result. Interestingly, the choice of band 

has little effect, with all four bands converging at the highest accuracies.  

The influence of changing threshold values was investigated (Figure 8). Lower threshold 

values result in lower accuracies, until a peak in accuracy is reached around 3.5. A broad 

peak in accuracy is observed for threshold values above 3, with a slight decline in accuracy 

beginning at threshold values greater than 4.5. 

 

First-order and second-order image texture calibration: Coarse fraction 

First-order image texture 

Figure 9 shows results of calibrations with the D50 grain-size percentile. Very similar 

coefficient of determination (r2) values are seen from D5
 to D65.

 For the largest percentiles, 

D84 and D95, the relation begins to break down and much poorer results are observed, 

particularly for D95 (Figure 10). Similar to the relation between first-order texture and sand 

(see First-order image texture calibration: Sand section), the band selected does not greatly 

affect the results; very similar calibrations are seen using either the red or NIR bands, with 

only the blue band producing noticeably lower r2 values.  
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Table 3 shows the parameters of the best performing standard deviation filter for each 

percentile, later used in multiple linear regression (see Multiple linear regression using first-

order and second-order image texture section below). 

 

Second-order image texture 

For each GLCM statistic (contrast, correlation and entropy), there were ca 28,000 parameter 

sets; containing all combinations of window size, offset (x), offset (y) and grey levels for 

each of the four image bands (R, G, B and NIR) for each of the seven grain-size percentiles 

(D5 through to D95). Visualisation and interpretation of these results can be difficult. To 

provide an initial insight into the parameters, for each percentile the top 1000 runs (sorted by 

r2 values) were extracted and split into two spectral groups; RGB and NIR. This grouping 

allows for an assessment of the use of standard RGB imagery versus multispectral (RGB and 

NIR) imagery. Figure 11 shows a bar chart of r2 results for the two groupings for each 

percentile. Reasonable results (r2 > 0.6) are achieved for all percentiles up to D65, after which 

results begin to deteriorate for the larger percentiles D84 and D95. 

In all cases, RGB and NIR produced very similar r2 values for the best performing runs; RGB 

outperformed NIR, with the exceptions of D5 and D95 where NIR r2 values were slightly 

larger (<0.1) than their RGB equivalent.  

 

Similarly, 16 grey levels were dominant within the ‘top 1000’ runs; Figure 12 shows the 

frequency of 16 grey levels within the ‘top 1000’ parameter sets; it is dominant (frequency 

>70%) in percentiles up to and including D84 for both RGB and NIR. Only when D95 is 

reached does its dominance decline; at D95 calibrations also greatly decline (see Figure 11). 

Hence, there is little difference between RGB and NIR bands, with RGB slightly 

outperforming NIR in all cases. 

Some parameters can be ruled out as their influence is negligible. For example, regardless of 

the choice of band similar relations between image texture and grain size are seen (Figure 

11). Similarly, 16 grey levels showed clear dominance; hence this parameter can also be fixed 

(Figure 12). The remaining parameters, window size and offsets (x,y) did not show such clear 

patterns;  each combination varied with different percentiles, however peaks in r2 occurred 

with window sizes largely above 20 x 20 pixels. No clear pattern could be discerned for the 



This article is protected by copyright. All rights reserved. 

offset (x) and offset (y) parameters as they were the most varied across all percentiles, 

although slight north–east, south–west trends were noted (offset (x) and (y) values >1 

representing north–east, south–west), probably linked to imbrication of sediment in the field.  

To investigate the influence of window size and offsets (x,y) on image texture–grain size 

relations a three-dimensional parameter space was established. Figure 13 shows three two-

dimensional extracts from this parameter space to visualise the parameters of offsets (x and y) 

and window size for D50. Offsets have an area of high r2 located around offset (x) of 0, and 

offset (y) of 0, with a similar area of high performance with offset (x) values around 6; 

optimal offsets are (0,5) for x and y respectively (Figure 13A). A very clear boundary is 

evident when considering variations in window size (Figure 13B and C), with notably high r2 

values prevalent above window sizes of ca 35. Variations in offset (x) values (Figure 13B) 

seem to show much less sensitivity, with high r2 values seemingly dependant only on window 

size; once in the optimal window size region (>35). For the offset (y) (Figure 13C), peak 

performance is clustered around values of 5, although similar performance is noted across all 

offsets above 4, with decreasing r2 values for the lowest offsets. 

Patterns similar to those shown in Figure 13 were noted for most of the other grain 

percentiles except for the largest percentiles, D84 and D95, for which the relations begin to 

break down and large, clear peaks in performance (such as those seen in Figure 13) are much 

less clearly defined.  

Following this investigation, the best performing parameter set for the three independent 

GLCM statistics (contrast, correlation and entropy) was established for each percentile. These 

parameter sets are shown in Table 4.  

 

Multiple linear regression using first-order and second-order image texture 

Multiple linear regression (MLR) was used to relate data from first-order and second-order 

image texture to grain size. The best performing parameter sets were selected for each GLCM 

method (contrast, correlation and entropy) and combined with the best performing standard 

deviation measure (Tables 3 and 4).  Multiple linear regression was applied to these 

parameters, and leave-one-out cross-validation used to assess the results (Friedman et al., 

2001). Table 5 shows the MLR coefficients, and resulting statistics for each percentile. The 

highest r2 and lowest MSE values are found in the lower percentiles, with the best calibration 
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found for D5. Reasonable calibrations are seen up to D65, with MSE at 17.2%. Calibrations 

are poorest for D95 with MSE at 29.7%. For each percentile, the grain size was calculated, 

and compared to observed grain size (Figure 14).  

 

Grain-size maps: Sand and Coarse fraction 

Figure 15 shows a sample D50 map produced following the workflow outlined in the Grain-

size mapping: workflow section. These images are gridded at variable spatial resolutions. 

Sand classification maps are resolved at 81 cm2 (window size of 3 x 3 pixels), whilst coarse 

fraction percentiles have varying resolution. The spatial resolution is a product of the largest 

window size used; the coarsest resolution was that of D5, at ca 4.3 m2 (largest window of 69 x 

69 pixels). 

DISCUSSION 

Results show that first-order and second-order image texture approaches are suitable for the 

detection of surface sand and the extraction of surface grain-size percentiles from 

hyperspatial imagery. Unlike previous approaches using image texture, the applicability of 

these techniques for extracting both surface sand content and a grain-size distribution has 

been shown. The preliminary findings of Chandler et al. (2004) are confirmed; a simple first-

order texture measure proved adequate for detection of surface sand features. Similarly, 

following a wide-ranging parameter space investigation and multiple linear regression using 

first-order and second-order image texture, a technique suitable for extracting the finer scale 

grain-size percentiles (D5 through to D65) was also achieved. Both of these techniques 

improve on current methods by explicitly extracting sub-pixel grain-size distributions; 

however, an important constraint is noted as the pixel resolution is approached (see First-

order and second-order image texture grain-size calibration: Coarse fraction section below).  

First-order image texture grain size calibration: Sand  

Investigation of image texture and sand revealed that simple thresholding following the 

application of a windowed standard deviation filter can produce maps of surface sand with 

peak accuracies of ca 91%. Interestingly, optimal accuracies are achieved regardless of the 

choice of image band used (Figure 7). However, the threshold value selected affects the 

accuracy of the resulting sand classification. In this particular study region, optimal accuracy 



This article is protected by copyright. All rights reserved. 

was achieved with a threshold value of 3.5, but high performance (ca 90%) was noted for 

threshold values between 2.5 and 4.5 (Figure 8). The collage image used to assess this 

technique (Figure 3) contained transitions between wet and dry sand, transitions between 

surface sand and gravel, logs and tyre tracks. These features represent areas where pixel 

values vary in intensity and thus have a distinct textural signature. Conversely, in 

homogenous areas (larger than the window size) where sand is present pixel intensity values 

show little variation and thus can be easily detected. Figure 16 shows the differences in 

classifications with changing threshold values, calculated on the green band of the composite 

image. 

 

Selecting low threshold values can erroneously remove sand areas from the classification. 

This effect can be seen in Figure 16B and C, where particular features such as transitions 

between wet and dry sand, and tyre tracks have been misclassified. Increasing threshold 

values removes these features; however, even with threshold values in the optimal accuracy 

region (Figure 16D and E) errors are still present. Perhaps the most obvious of these is the 

transition area between the three images which make up the collage image itself. Even though 

these areas are mostly sand, they still have abrupt changes in intensity values and, hence, 

have high texture values which result in misclassification. Whilst this effect would be negated 

using full image tiles, it serves as a clear example to highlight how sensitive this method is 

even to slight changes in pixel intensity values. Areas where abrupt changes in pixel intensity 

values occur may be misclassified.  This could occur within areas entirely composed of sand; 

features such as shadows on the stoss or lee side of dunes and ripples, transitions from wet to 

dry sand, and human features such as tyre tracks are just a few examples which could cause 

pixel intensity differences. Therefore, it is recommended that threshold values be adjusted 

depending on the imagery and the user’s purpose. For example, in order to minimise errors of 

omission and assuredly classify all areas of surface sand the user may select a slightly higher 

threshold value with the knowledge that there may be some errors of commission (such as 

homogenous areas of fine gravel which may produce a low textural signature, and hence may 

be classified as sand).  

These results support the findings and suggestions of Chandler et al., (2004) that there is 

enough information present in standard colour imagery to yield accurate maps of surface sand 

content.  Accuracies achieved here represent an improvement on those presented by Chandler 
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et al., (2004) in terms of sand classification, probably due to the simple texture thresholding 

approach and the improved image quality (the aerial imagery used here was acquired in dry 

conditions with consistent lighting). This texture approach is beneficial as computational cost 

is modest, meaning large images can be easily and quickly processed, enabling rapid 

mapping of entire reaches. The sand calibrations derived here can also be applied to grey-

scale imagery because only one band is required for the computation of image texture; this 

allows for potential exploitation of archives of grey-scale imagery. However, it must also be 

noted that the hyperspatial resolution is a key factor in allowing the sand mapping method to 

function. Only homogenous sand areas greater than three times the pixel size can be mapped 

using this method (i.e. sites which occupy at least the area covered in a 3 x 3 pixel window). 

Furthermore, the excellent radiometric quality delivered by the Vexel UltraCamX (Vexcel 

Imaging GmbH) was undoubtedly another key factor in the success of the method.   

 

First-order and second-order image texture grain-size calibration: Coarse 

fraction 

A combined MLR approach encompassing all texture measures provides the best calibrations, 

a finding similar to that of Verdu et al., (2005). All of the derived grain-size percentiles in 

this study are smaller than the image resolution of 30 mm. Interestingly, relations become 

much weaker as the pixel resolution is approached, with the strongest relations found for the 

finer percentiles (D5 through to D65).  

Theoretical considerations; the ‘pixel averaging effect’  

Image texture and grain-size relations begin to deteriorate above D65. The breakdown of 

calibrations for the coarser percentiles is attributed to those percentiles lying within the 

transition from ‘pixel averaged texture’ to ‘actual grain texture’.  

‘Pixel averaged texture’ is a direct result of the finer grain-size percentiles being much 

smaller than the pixel resolution (30 mm); hence these grain sizes are sub-pixel. Therefore, 

one pixel is an averaged measure of a population of several grains. Within homogeneous 

grain-size patches this leads to low intensity variance between neighbouring pixels and 

‘smooth’ image texture patterns; these ‘smooth’ textures calibrate well with the grain size of 

the smaller percentiles. 
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As grain size approaches the pixel resolution a transition is gradually made from ‘pixel 

averaged texture’ to ‘actual grain texture’. ‘Pixel averaging’ reduces as smaller populations 

of individual grains are represented in one pixel, hence the variance in image texture values 

between neighbouring pixels increases and relations between image texture and grain size 

become unstable. In this study, the coarser grain size percentiles of D84 and D95 are an 

example of this; they lie in the transition area between ‘pixel averaged texture’ and ‘actual 

grain texture’, and poorer relations between grain size and image texture are noted as a result.  

After the threshold is fully crossed, image texture values are then directly related to ‘actual 

grain texture’ as one pixel is no longer an average measure of a population of several grains. 

Image texture and grain-size relations begin to stabilise again (Figure 17). Verdu et al., 

(2005) found strong calibrations for intermediate and larger percentiles (D50 and D84) using 3 

mm resolution imagery and measuring ‘actual grain texture’.  

 

When considering grain sizes that lie below the pixel resolution, there is a clear link between 

the spatial resolution of the imagery and the window size used to calculate image texture. For 

example, higher resolution imagery requires larger window sizes, and coarser spatial 

resolution imagery requires smaller window sizes. This is to offset the averaging that takes 

during image acquisition; with coarser resolution imagery there is greater averaging due to 

the larger spatial coverage of one pixel (and the subsequent averaging of a larger population 

of grains). This is corroborated by comparison with other studies. Carbonneau et al., (2004) 

observed peak performance at window sizes around 33 x 33 pixels using 30 mm resolution 

imagery. However, a later study using coarser 10 cm resolution imagery noted peak 

performance with a smaller 20 x 20 pixel window (Carbonneau, 2005). 

Parameter space investigation; which parameters are important? 

First-order image texture measures present the simple situation in which the user has only to 

consider which combination of band and window size to adopt. Figure 9 shows an 

investigation of these parameters. Interestingly, there is a high degree of similarity in the 

results irrespective of the band used; namely, red, green, blue and NIR bands produce very 

similar results. This is probably due to the high degree of correlation amongst the RGB–NIR 

bands in the imagery and the spectral similarity of sediment in these bands; hence image 

texture calculations produce very similar results irrespective of the band used. Similarly, 
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second-order image texture also showed that there is little additional benefit gained from 

having an NIR band.  

For the second-order GLCM parameter of grey levels, a clear pattern could be discerned. 

Within the percentiles that produced robust relations (D5 to D65), over 70% of the ’top 1000’ 

parameter sets had 16 grey levels (Figure 12). Similarly, Table 4 shows this pattern with a 

distinct dominance of 16 grey levels. The resampling of grey levels to this smaller value may 

have introduced some stability into the texture calculations and reduced grey level noise; 

conversely the expansion of grey levels, up to 64 (and beyond, such as 128 or 256) increases 

the amount of information captured in the GLCM, because there is less resampling. However, 

the downside is that there is much greater variance in the GLCM itself, as well as within the 

GLCM statistics. Subsequent image texture and calibrations begin to break down as a result. 

This suggests that the downsampling of grey levels is an acceptable practice (in line with 

findings of Carbonneau, 2005), and is even beneficial. 

Patterns could also be discerned for window sizes and offsets for the reliably estimated 

percentiles (D5 to D65). An illustrative example of this is shown in Figure 13. Distinct areas of 

higher performance were evident, most clearly articulated for window sizes. A clear threshold 

was observed; performance greatly deteriorated with window sizes smaller than ca 35 x 35 

pixels. The optimal window size is reached when enough pixels are present to produce stable 

calibrations; in this instance, this occurs with window sizes above 35 x 35 pixels (cf. ‘pixel 

averaging effect’; Theoretical considerations; the ‘pixel averaging effect’ section). 

Offset directions (x and y) had their own high performance areas respectively; however 

patterns are more difficult to interpret. Predominantly north–south, and slight north-

east/south-west GLCM orientations (using a symmetrical GLCM) (Table 4) were noted (in 

GLCM coordinate space, where north–south represents offsets in the y direction, and east–

west the x direction). A potential reason for the trend in GLCM orientation could be the 

imbrication of sediment in the field; GLCM orientations are the same as the downstream flow 

direction of the river. 

Each of the independent GLCM statistics (contrast, correlation and entropy) was calculated 

with the premise that they would be later used in MLR; but reasonable results (r2 > 0.65) 

were achieved for percentiles up to and including D65 without the use of MLR. Performance 

was similar irrespective of the method used, however both correlation and entropy rapidly 

deteriorated for the larger percentiles (D84 and D95), suggesting that contrast may produce the 
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most stable relations when considering the full seven point coarse fraction grain-size 

distribution. In assessing the applicability of these techniques at other study localities and 

with differing scales of imagery, a reduced parameter space is recommended. Multispectral 

imagery is not required, because similar relations are found using only standard colour 

imagery.  Future studies need consider only the parameters of window size (where the 

minimum window size is set according to the image resolution), and offsets. Offsets should 

be investigated with prior knowledge of sediment imbrication in the field, as it is likely that 

the optimal GLCM orientation will be coincident with any imbrication. Remaining 

parameters can be set as desired; if MLR is used, the independent statistic set (contrast, 

correlation and entropy) is advised, and contrast is recommended if no MLR is used. Grey 

levels can be fixed at 16 (or perhaps even reduced).  

Grain-Size Mapping Considerations 

Figure 15 shows a D50 grain-size map calculated for N bar, at a spatial resolution of 2.34 m2 

(window size of 51 x 51 pixels). Coarser resolution is noted compared to Carbonneau et al., 

(2004) and Verdu et al., (2005) as a result of block processing at larger window sizes. This 

D50 map was produced following the workflow outlined in the Grain-size mapping: workflow 

section. The final outputs from this processing chain are eight images; a surface sand 

classification, and an image for each of the seven grain-size percentiles.  

Consideration must be given to the MSE values achieved for each percentile, and errors must 

be accounted for when using calculated grain sizes for other applications such as modelling. 

Significant uncertainty exists for the larger percentiles, particularly D84 and D95; however the 

finer grain fractions provide fairly precise estimates compared to field sieved data, and are 

much improved compared to previous remote sensing methods.  

The direct applicability of the actual parameters and MLR coefficients presented here for 

deriving similar results at other field sites is difficult to assess due to the lack of a similar 

dataset in a different location. It is expected that grain morphology, a consequence of grain 

lithology, may introduce variability in the parameters of the calibration equations. However, 

the same methodology and workflow (Grain-size mapping: workflow section) are directly 

transferable to other sites, although local calibration may be required. Parameter 

investigations need not be as exhaustive as those presented here, and can follow the general 

recommendations outlined at the end of the Parameter space investigation; which parameters 

are important? section.  
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Consideration must be given to computational power required to process expansive parameter 

spaces. Of all the parameters, the dominant control on CPU time is window size; smaller 

windows require the processing of more blocks, therefore more time is spent calculating 

GLCMs. The CPU time (seconds) is inversely proportional to window size w, with an 

approximate relation of 45(w-2) where w is the window size. This should then be multiplied 

by the total number of blocks to gain the approximate CPU time to process an entire image. 

Limitations 

Several limitations and areas of uncertainty exist in this study. An increased number of 

ground sampling sites would provide a better indication of calibrations and other methods of 

measuring grain size (for example, Wolman sampling) could have been employed to aid in 

validation of results, particularly for the sand sites. An increased number of sites would also 

allow for the retention of some data for grain-size validation, rather than using cross-

validation. Using the paint and pick technique, paint may have penetrated the interstitial 

space between surface and buried grains; hence some sub-surface grains may have been 

incorrectly collected and sampled, introducing some uncertainty into the results. Paint may 

have adhered smaller, particularly sand and silt, grains to larger particles, thereby introducing 

a bias into the finer grained fraction of the distribution (or in some cases it may have acted to 

remove finer grained material from the sample). Conversion of the finer grained material 

from weights to grain counts may have also introduced slight error within the data. 

The field sampling might introduce an additional difficulty for unbiased representation of the 

largest sizes. Large clasts are least common in a single sample, so a large number of samples 

must be recovered in order to assure that percentiles at the upper limit of the size distribution 

are correctly assigned (Church et al., 1987). However, in the present case, the largest grains 

(of order 22 mm) each occupy about 0.04% of the field sample area and the problem should 

not be significant.  

A particular area of uncertainty exists in reference to the aerial imagery itself. The 

georeferenced image tiles supplied by DTM Mapping Corporation had undergone some 

element of pre-processing, the summary effect of which has not been investigated. Raw, 

unprocessed image tiles were also supplied; however the influence of significant 

georeferencing issues and lack of perspective correction meant that the raw imagery 

introduced a much greater source of positional error; and thus could not be calibrated due to 

uncertainty in georeferencing. 
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CONCLUSIONS  

This study has investigated the relation between image texture and surface grain size using 

hyperspatial imagery. Detailed investigation of first-order and second-order image texture 

approaches for extracting sub-pixel grain-size information have  shown convincingly that 

simple first-order measures are suitable for delineating surface sand features, whilst a 

combined approach of first-order and second-order image texture can extract sub-pixel grain-

size percentiles for the coarse fraction. This study represents a significant step forward in 

terms of the applicability of image texture approaches for deriving sub-pixel grain-size 

features from hyperspatial imagery. The main conclusions are as follows: 

• The sand fraction can be automatically delineated with a peak classification accuracy 

of ca 90% using simple image texture thresholding. 

• Coarse fraction (>1.41 mm) grain-size percentiles can be extracted using combined 

first-order and second-order image texture and multiple linear regression; relative 

error in this study was 1.5%, 3.2%, 6.8% and 11% for D5, D16, D35 and D50, 

respectively. The largest percentiles of D84 and D95 had relative errors of 25% and 

30%, respectively. 

• Multispectral imagery (i.e. the additional of a near-infrared band) is not required, as 

standard colour imagery is sufficient. 

The final workflow presented in the Grain-size mapping: workflow section allowed for the 

production of surface sand classification and a seven point coarse fraction grain-size 

distribution covering the major sand and gravel bars of Queens Bar, N Bar, Calamity Bar and 

Harrison Bar located within the gravel reach of Fraser River. The limited number of field 

sites for calibration and validation (14 for sand and 23 for the coarse fraction) is noted as a 

point for expansion in future studies. This method allows for a rapid acquisition of a seven 

point grain-size distribution and map of surface sand content for large, vegetation-free 

sediment areas at a much higher spatial resolution than can be obtained through standard field 

techniques. 
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FIGURE CAPTIONS 

Figure 1: Location map showing the areas of hyperspatial image acquisition (red boxes) 

and four study bar locations. 

Figure 2: An example of a calibration site prepared for the ‘paint and pick’ technique 

used to collect ground truth grain-size data. Gradations on the frame are 10 cm apart. 

Figure 3: Shows the collage image composed of three distinct images (A) and the 

manual delineation results overlain on the image (B), where non-sand areas delineated 

are shown in beige. The two irregular features present in the middle frame are patches 

of wood. 

Figure 4: An example of calculating a Grey Level Co-occurrence Matrix (adapted from 

Gonzalez and Woods, 2008). 

Figure 5: Flow chart showing the workflow for deriving grain-size maps.  

Figure 6: All 23 measured grain-size distributions from Fraser River Bar sites. 

Figure 7: Change in FoM accuracy with increasing window size and a fixed threshold 

value of 3.5. 

Figure 8: Change in FoM accuracy with a fixed window size of 3 x 3 and increasing 

threshold values. 

Figure 9: Change in r2 statistic with increasing window size for D50. 

Figure 10: Change in r2 statistic with increasing window size for D95. 

Figure 11: Average r2 values per percentile over the ‘top 1000’ parameter sets. 
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Figure 12: Frequency of 16 grey levels averaged over the ‘top 1000’ parameter sets. 

Figure 13: Variation in r2 for the combinations of parameters: (A) offset (x) and offset 

(y); (B) offset (x) and window size; and (C) offset (y) and window size. The fixed 

parameters given in the title of each graph represent the best parameter set (Table 4). 

Figure 14: Observed versus predicted grain size for each of the reference percentiles. 

Figure 15: N Bar: Hyperspatial imagery of the bar (A) and D50 grain-size map (B). 

Figure 16: (A) Composite image. (B) to (E) Classifications at increasing threshold values 

calculated from the green band of the composite image, where grey represents sand. 

Figure 17: Visual depiction of the differing image texture measures with increasing 

spatial resolution for a sample grain-size percentile, Dn. Point µ represents the point at 

which the grain size of sample Dn and the spatial resolution are equal. 

 

Window Size GLCM Statistic
Offset 

(x) 
Offset 

(y) Grey Levels Band 

3 x 3 Contrast 0 0 16 R 
5 x 5 Correlation 1 1 32 G 

... Entropy ... ... 64 B 
69 x 69   8 8   NIR 

 

  Minimum Maximum Range Mean

D5 1.52 2.04 0.52 1.64

D16 1.75 2.89 1.14 2.12

D35 2.24 4.41 2.17 3.08

D50 2.73 5.89 3.16 4.15

D65 3.62 8.44 4.82 5.83

D84 6.58 13.40 6.82 10.35

D95 15.23 23.41 8.18 19.26
 

  W B r² MSE (mm)

D5 55 4 0.62 0.01

D16 55 4 0.68 0.04

D35 57 4 0.66 0.16
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D50 55 4 0.63 0.39

D65 25 4 0.58 0.88

D84 25 2 0.36 2.54

D95 3 4 0.12 5.15
 

    Ox Oy W B GL r²
MSEcv 

(mm)
MSEcv 

(%) 
Relative 

Error (%)

C
O

N
T

R
A

S
T

 

D5 4 0 59 2 16 0.67 0.02 1.28 4.03

D16 5 0 61 2 16 0.73 0.06 2.61 4.86

D35 5 0 51 2 16 0.75 0.30 9.77 13.87

D50 5 0 51 2 16 0.75 0.64 15.40 20.22

D65 5 0 51 2 16 0.71 1.26 21.67 26.21

D84 6 0 51 2 16 0.45 3.15 30.46 46.22

D95 1 0 17 3 16 0.28 6.37 33.05 77.82

C
O

R
R

E
LA

T
IO

N
 D5 0 1 51 4 16 0.73 0.01 0.67 2.12

D16 0 1 49 4 16 0.72 0.05 2.33 4.33

D35 0 1 41 4 16 0.71 0.43 14.10 20.01

D50 0 1 21 4 16 0.67 0.60 14.44 18.97

D65 0 1 21 4 16 0.64 1.37 23.48 28.40

D84 4 2 23 3 16 0.59 3.02 29.15 44.24

D95 2 4 41 4 16 0.51 6.83 35.45 83.48

E
N

T
R

O
P

Y
 

D5 2 7 69 2 16 0.71 0.01 0.55 1.720

D16 1 3 21 2 16 0.72 0.05 2.59 4.808

D35 1 3 21 2 16 0.70 0.23 7.54 10.697

D50 1 3 21 2 16 0.65 0.56 13.47 17.695

D65 1 3 21 2 16 0.57 1.31 22.45 27.150

D84 2 5 23 2 16 0.29 4.42 42.73 64.849

D95 5 8 17 3 64 0.44 5.36 27.82 65.501
 

 

  C S CN CR E
MSEcv 

(mm)
MSEcv 

(%) 
Relative Error 

(%)

D5 2.89 0.01 
-

0.02 -1.23
-

0.27 0.01 0.46 1.44

D16 4.69 0.05 
-

0.30 -2.33
-

0.60 0.04 1.71 3.18
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D35 7.63 0.20 
-

0.91 -4.47
-

1.43 0.15 4.79 6.80

D50 8.57 0.23 
-

2.07 -4.83
-

1.11 0.33 8.04 10.56

D65 10.50 
-

0.01 
-

2.85 -6.23 0.87 0.83 14.23 17.21

D84 6.98 
-

0.01 
-

4.52 43.11 2.47 1.69 16.29 24.73

D95 8.15 0.12 
-

4.77 -33.02 3.65 2.43 12.62 29.71
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