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Abstract. Measurements of CO2 partial pressures (pCO2) in
small headwater streams are useful for predicting potential
CO2 efflux because they provide a single concentration rep-
resenting a mixture from different hydrological pathways and
sources in the catchment. We developed a model to predict
pCO2 in headwater streams from measurements undertaken
on snapshot samples collected from more than 3000 channels
across the landscape of England and Wales. We used a subset
of streams with upstream catchment areas (CA) of less than
8 km2 because below this scale thresholdpCO2 was indepen-
dent of CA. A series of catchment characteristics were found
to be statistically significant predictors ofpCO2, including
three geomorphic variables (mean altitude, mean catchment
slope and relief) and four groups of dominant catchment land
cover classes (arable, improved grassland, suburban and all
other classes). We accounted for year-round, temporal vari-
ation in our model of headwaterpCO2 by including weekly
or monthly analyses of samples from three headwater catch-
ments with different land use and geomorphic features. Our
model accounted for 24 % of the spatial and temporal varia-
tion in pCO2.

We combined predictions from thepCO2 model (on a
1 km grid) and monthly runoff volumes (litres) on 0.5◦ reso-
lution grid across England and Wales to compute potential C
fluxes to the atmosphere. Our model predicts an annual av-
erage potential C flux of 65.4 kt C across England and Wales
(based on free C concentrations), with lower and upper 95 %
confidence values of 56.1 and 77.2 kt C, respectively.

1 Introduction

There is increasing interest in approaches to compute fluxes
in the global carbon cycle, including the role of freshwater
channels (Raymond et al., 2013; Benstead and Leigh, 2012)
which are active conduits for the transfer of greenhouse gases
to the atmosphere from the terrestrial biosphere (Battin et al.,
2009). Evasion of carbon dioxide (CO2) from surface wa-
ters may account for between 10 % (Sun et al., 2011) of net
ecosystem exchange at the continental scale to as much as
70 % in peatland catchments (Hope et al., 2001). In a re-
cent study,Butman and Raymond(2011) used stream water
pCO2 concentrations from samples collected at flow gauging
stations (channels ranging from 1st to 10th order) in combi-
nation with estimates of stream surface area and gas transfer
velocities to compute CO2 efflux across the USA. For many
continents, although some geochemical data sets exist to es-
timate CO2 efflux (Regnier et al., 2013), it may be possible
to develop alternative approaches to compute stream water
pCO2 concentrations (and fluxes) from more readily avail-
able, landscape data.

Measurements of CO2 partial pressures (pCO2) in small
headwater streams may be particularly useful for predicting
CO2 efflux because (i) it has been suggested that the prove-
nance of 77 % of the CO2 evasion from channels in large river
basins such as the Amazon is from soil respiration (Johnson
et al., 2008), and headwater streams are closely connected to
the soil; (ii) they provide a single concentration representing
a mixture from different hydrological pathways and sources
within the catchment including soil water, both shallow and
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deeper groundwater contributions (Jones and Mulholland,
1998) and in-stream (e.g. through the mineralisation of or-
ganic carbon in stream water and bed sediments) sources of
CO2; and (iii) pCO2 concentrations typically decline with
increasing stream order/catchment size (Butman and Ray-
mond, 2011; Li et al., 2013) and, accounting for lengthy up-
stream evasive losses (based on measurements from larger
channels), may be prone to substantial error because the gas
transfer coefficient (KCO2) exhibits a considerable degree of
spatial and temporal variation (Wallin et al., 2011).

In our experience, measurements of headwater stream
pCO2 from large, landscape-scale surveys are rare. In this
study we investigated those catchment characteristics which
account for variations inpCO2 using data from a headwa-
ter stream survey across England and Wales. We hypothe-
sised that a range of upstream catchment characteristics –
defined by the delineated watershed of a particular sampling
location – could account for variations in headwaterpCO2.
A similar approach was applied to channel water chemistry
data from the channels of 814 substantially larger catchments
(catchment area (CA) from< 1000 to> 10 000 km2) across
North America and Canada. In this study, multiple analyses
were available at each site from which a meanpCO2 was
computed (Lauerwald et al., 2013). In their study,Lauer-
wald et al.(2013) found that mean air temperature, mean
catchment slope gradient and mean annual precipitation ex-
plained 43 % of the variation in the negative logarithm of
meanpCO2 in rivers from which these catchment character-
istics were calculated; the proportion of agricultural land was
not found to be a statistically significant predictor of mean
pCO2. Other studies have also shown that catchment char-
acteristics including CA, dominant land cover class (includ-
ing urban/suburban) (Butman and Raymond, 2011; Prasad
et al., 2013; Li et al., 2013) and geomorphic features such
as slope and elevation (Jones et al., 1998) account for vari-
ations in channelpCO2. However, no previous studies have
used landscape-scale data onheadwaterpCO2 values from
which evasive loss of CO2 would be substantially smaller
than for larger channels with larger (Strahler) stream orders
(e.g.> 3). Lauerwald et al.(2013) reported there was no ob-
servable effect of including a temporal component into their
multiple regression approach based on inclusion of average
sampling year.

Both stream CA and (Strahler) stream order account for
variations in headwaterpCO2 (Butman and Raymond, 2011)
because in small headwater streams (lower stream orders)
there is a greater net loss of CO2 from the stream surface, due
to the effect of flow turbulence on the gas transfer coefficient.
By delineating stream catchment boundaries it is possible to
establish landscape predictors of streampCO2 based on ge-
omorphic features and land cover for entire landscapes from
widely available digital terrain and remotely sensed data, re-
spectively. It may be possible to develop a statistical model
to predictpCO2 for those parts of similar landscapes where
stream chemistry data are unavailable.

The vast majority of the sampling sites in our snapshot
(one visit per site) survey data set were headwater streams
(CA 1–10 km2). We wished to investigate whether it is pos-
sible – by undertaking a statistical analysis for catchments
across a range of scales and considering other predictors – to
determine a threshold scale below which streampCO2 are
independent of CA. In large-scale studies undertaken to date,
headwater streams generally have largerpCO2 values than
channels of greater stream order (Butman and Raymond,
2011) and a large proportion of the CO2 evades from the
headwater; in the case of the Amazon Basin this was es-
timated to be as large as 90 % of the total CO2 flux from
channels (Johnson et al., 2008). By restricting our analysis
to those data below this CA threshold we will have confi-
dence that our model does not underestimatepCO2 due to
downstream net loss. Even though headwater streams have
greater potential for CO2 evasion (compared to the higher
order channels) due to their larger gas transfer coefficients
associated with larger velocities and turbulent flow, thenet
loss is restricted, as shallow groundwater water entering the
headwaters will have similarpCO2 values to the stream they
enter because they connect the local soil environment to the
channel. In other words, evasion of CO2 in the headwater
streams is not substantially greater than inputs from shallow
groundwater or in-stream sources, such as the turnover of flu-
vial carbon.

Where model predictions are available for headwater
pCO2 across a landscape it may be possible to use a simpli-
fying approach to compute potential CO2 evasion fluxes. The
approximate timescale for dissolvedpCO2 to reach equilib-
rium with the atmosphere is around 100 hours in a large river
system (Morel and Hering, 1993), similar to the water resi-
dence time of many large waterbodies of England and Wales.
In this study we compute CO2 evasion fluxes, assuming that
channel residence times are sufficient for all free CO2 to
evade and also that there are limited downstream changes
in water chemistry because mixing of flow from headwater
channels over a range of bedrock types will tend towards a
mean chemical composition in higher order channels, and
changes in pH associated with CO2 evasion are also smaller
in larger channels. This is a different approach to efforts to
model downstream losses based on gas transfer velocities
and stream hydraulics (Raymond et al., 2012).

HeadwaterpCO2 exhibit seasonal variations (Jones et al.,
1998), so to compute potential CO2 annual evasion fluxes it
is necessary to account for this. In this paper, the large-scale
survey data set of headwater stream samples was undertaken
between June and September. To encompass year-round vari-
ation we included data sets in our predictive model for a se-
ries of small (< 10 km2) headwater catchments which were
monitored for a full calendar year or more, one of which is
described in detail byDinsmore et al.(2010).

In this paper we develop a statistical model to predict
monthly headwater streampCO2 using large-scale survey
data from around 3000 locations across England and Wales,
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and a series of associated catchment characteristics. We de-
termine an optimum set of land cover class groupings to in-
clude in our model by undertaking a series of significance
tests. We also investigate the incorporation of the temporal
variation of headwaterpCO2 into our predictive model. We
apply the resulting model using landscape characteristics to
predictpCO2 values in flow from cells on a 1 km grid across
England and Wales. After convertingpCO2 to free C concen-
trations in water, we compute potential monthly C fluxes (us-
ing runoff volumes on a 0.5◦ resolution grid) across England
and Wales. We also calculate the 95 % confidence intervals
for potential C fluxes based on the model predictions.

2 Methods

2.1 Headwater streampCO2

2.1.1 Large-scale headwater survey

The methods used in the large-scale headwater survey are de-
scribed in detail inJohnson et al.(2005). Headwater stream
samples were collected during the summer months (June–
September) of the years between 1998 and 2002 (inclusive).
Sampling was undertaken between 9.00 and 17.00 LT each
day but the precise time was not recorded. In our study we
wished to avoid potential bias introduced by including stream
water sampling and analyses undertaken during large chan-
nel flows (greater than mean flow), so we selected only those
samples from sites where there had been no substantial rain-
fall for more than 7 days. We used information from local
flow gauging stations to determine whether local flow con-
ditions were below mean flow (Sect.2.3). Details of each
sampling location were recorded on a field card and collated
in a database with a unique sample identifier. The sampling
locations are shown in Fig.1.

A total of four separate water samples were collected from
each site so that a range of measurements could be made.
These include (analyses in parentheses):

1. a 250 mL Nalgene polyethylene bottle (alkalinity
titration);

2. a 30 mL polyethylene bottle (conductivity and pH);

3. a 60 mL Nalgene bottle which is filtered (0.45 µm) and
subsequently acidified (see below; prior to analysis by
ICP-AES);

4. a 60 mL Nalgene bottle which is filtered (0.45 µm) not
acidified (ion chromatography/TOC analyser).

All samples were collected from the middle of the stream.
In the case of samples 1 and 2 (above) the sample containers
were thoroughly rinsed three times. The containers were then
submerged in the streams and sealed underwater to ensure
that all the air had been expelled. On return to the field base
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Fig. 1.Locations of sites referred to in this study across England and
Wales (coastline shown). Blue symbols show the headwater stream
survey sampling locations. Red discs show the nearest national river
flow archive gauging stations to the survey sites. Green symbols
are headwater sites from which temporal (weekly or monthly) data
were available forpCO2 and stream temperature: E = Eden (Pow),
W = Wensum, B = Black burn in Scotland. Orange disc shows the
location of the Upper Hafren at Plynlimon (P) from which stream
water temperature data was used.

all samples were refrigerated at around 4◦C prior to further
analysis.

Conductivity and pH were measured on the evening of
sample collection and the containers were removed from
refrigeration around 1 hour prior to undertaking the analy-
ses; this allowed the water sample temperature to reach be-
tween approximately 10 and 15◦C at the time of measure-
ment. Conductivity was measured using a Hannah HI9033
portable conductivity meter calibrated with a conductivity
standard and thermometer. pH was determined using a ra-
diometer PHM80 meter with combination electrode using
buffer solutions (pH 4, 7 and 9). Alkalinity measurements
were made the day after sample collection based on a simple
laboratory titration method using a bromocresol green indi-
cator. Samples 3 and 4 were used to determine the concentra-
tions of a range of cations (including Ca2+, Mg2+, Na+, K+;
ICP-AES Fisons Instruments ARL 3580) and anions (NO−

3 ,
SO2−

4 , Cl−). For a subset of samples dissolved organic car-

www.biogeosciences.net/11/1911/2014/ Biogeosciences, 11, 1911–1925, 2014



1914 B. G. Rawlins et al.: Landscape predictors of headwater streampCO2

Table 1. Features of three headwater catchments where weekly or monthly stream water measurements or speciation-based estimates of
pCO2 were included in the predictive model (cf: Fig.2).

Regional catchment (headwater catchment)
Esk (Black burn) Eden (Pow) Wensum (Blackwater)

Catchment area (km2) 3.4 10 8
Dominant land cover Bog Impr. grass Arable
Mean elevation (m) 280 99 48
Mean slope (◦) 1.4 1.4 0.73
Relief (m) 60 96 26
Monitoring frequency weekly monthly weekly
pCO2 measurementsa D S S
Reference Dinsmore et al.(2010)b Owen et al.(2012) Wensum Alliance(2013)

a D = direct, S = estimated by PHREEQC speciation using measurements of alkalinity, pH plus major anions and cation
concentrations for the Wensum;b these data can be accessed via the DOI inDinsmore et al.(2013a).

bon (DOC) was determined using Shimadzu TOC 5000 anal-
yser, purging all inorganic carbon with hydrochloric acid.
Quality control was undertaken on these data using blank wa-
ters and duplicates collected in the field.

For each sample we calculated the theoretical partial pres-
sure of CO2 that would be in equilibrium with the dissolved
inorganic carbon, using the measurements of pH, alkalinity,
the seven major cations and anions (listed above) and the
DOC data where available, applied to the aqueous specia-
tion model PHREEQC (Parkhurst and Appelo, 1999) with
the phreeqc.dat database. Temperature measurements were
not available for the water samples and we assumed a stream
water temperature of 12◦C in all these speciation calcula-
tions. We associated a unique site identifier with the esti-
matedpCO2 value at each headwater survey site.

2.1.2 Seasonal variations in stream waterpCO2

To account for seasonal variations in stream waterpCO2
values we included data from three headwater catchments
(with differing dominant land use types and mean eleva-
tions) where monitoring was undertaken on either a weekly
or monthly basis through complete calendar years. The fea-
tures of these three catchments and the associated data are
summarised in Table1. In our subsequent analysis, we re-
strict our model to include only stream water data for catch-
ments with a total area of< 8 km2; note the Eden (Pow)
headwater catchment has an area of 10 km2, and we include
it despite the larger catchment area because it meets our other
criteria in terms data availability, land cover (grassland) and
with an intermediate elevation. In the case of the Pow and
Wensum catchments, we used measurements of pH, alkalin-
ity and dissolved cations and anions to predictpCO2 val-
ues using the same approach as the headwater survey (based
on the speciation model PHREEQCParkhurst and Appelo,
1999). For these catchments stream water temperature data
at the time of sampling were also available for the speciation
calculations. We converted the sampling date to a numeric

value representing day between 1 and 365 (1 January has a
value of 1).

2.2 Catchment characteristics

2.2.1 Catchment area

We used the ArcHydro extension and a 5 m resolution
digital surface model (NEXTMap Britain elevation data
from Intermap Technologies, Intermap, 2009) to create
drainage catchments upstream of all the stream sampling
sites (n = 3274). We created a series of catchment polygons
with a unique sample identifier so we could estimate catch-
ment properties from other landscape data. We calculated the
total area of each catchment polygon and associated it with
the unique identifier from each headwater survey site.

2.2.2 Geomorphic variables

Previous studies (Butman and Raymond, 2011) have shown
that over prolonged periods total rainfall is positively corre-
lated with CO2 evasion due to larger stream surface area and
increased flushing of CO2 from the soil. In temperate cli-
mates there is typically a strong correlation between altitude
and total rainfall, so the former may be a useful proxy for
the latter where accurate rainfall data is unavailable at fine
scales (e.g< 10 km 2). Other geomorphic features such as
catchment slope may also account for variations in stream
waterpCO2 because it influences contact time between soil
and percolating water. We used the digital surface model to
compute mean elevation (m), mean slope (◦), and relief (dif-
ference between minimum and maximum elevation (m)) for
each of the headwater catchments in our study based on the
catchment polygons. We also calculated the same measures
for a 1 km grid across all of England and Wales.
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2.2.3 Land cover class

The dominant land cover class in each catchment was deter-
mined by intersecting the catchment polygons with a 25 m
pixel Land Cover map of Great Britain 2000 (Fuller et al.,
1994) and identifying for each catchment the class with the
largest number of pixels. The dominant class is that which
accounts for the largest proportion of land cover in the catch-
ment; in some cases this could be< 50 %. We also calculated
the dominant land cover class for the 1 km grid across Eng-
land and Wales.

2.2.4 Soil and geology

We also wished to establish whether spatial data on soils
and hydrogeology could account for variations in headwa-
ter pCO2. We used a simplified classification to determine
the dominant parent material (PM) group for each catchment
polygon and associated the PM code with each catchment
(Lawley and Smith, 2008). We also determined the mean
BFIHOST value for each catchment. The BFIHOST value
is an index value (between 0 and 1) relating to hydrological
source of river flow. It is a data set that was derived for the
UK from a combination of information on catchment base-
flow index (BFI) and associated maps classified by the hy-
drology of their soil types and substrates (HOST). A BFI-
HOST value of 1 implies that river flow is entirely related
to groundwater sources (no runoff contributions), whilst a
value of 0 implies all flow is from shallow runoff. The 1 km
grid BFIHOST data for England and Wales were derived
from a combination of information on catchment baseflow
index (Gustard et al., 1992) and associated maps classified
by the hydrology of their soil types and substrates (HOST)
(Boorman et al., 1995).

2.3 Removal of survey sites with the largest flows

We considered that bias might be introduced into our pre-
dictive model if we included stream sites which had large
flows when they were sampled (Dinsmore et al., 2010).
Time series of headwater stream flow exhibit strong posi-
tive skewness; we chose to exclude sites where data from
local gauging stations showed that flow on the stream sam-
pling date was larger than mean daily flow. We used theann
function in the R package yaImpute (Crookston and Finley,
2007) to determine the nearest neighbouring National River
Flow Archive (http://www.ceh.ac.uk/data/nrfa/index.html)
flow gauging station (based on their coordinates). This was
the nearest gauging station regardless of whether it was sited
on the same channel. We identified a total of 93 local gauging
stations (Fig.1) which were the nearest neighbouring stations
to the selected sampling sites and which also had flow data
spanning the full period of sampling. We then extracted the
mean daily flow data for each of these gauging stations for
the full-year period spanning the dates over each full year for

Fig. 2. Flow diagram showing stages in the development and ap-
plication of a model to predict potential C (CO2) fluxes from sur-
face water across England and Wales. Red boxes = data sets, green
boxes = data selection, blue boxes = computations.a see supplemen-
tary file for exploratory analysis;b England and Wales.

which the samples were collected (1 January 1988 to 31 De-
cember 2003). We computed the mean of the mean daily
flow values for this period for each of the 93 gauging sta-
tions and compared these to mean daily flow on the sampling
date recorded for each nearest neighbouring, large-scale sur-
vey site. By doing so, we identified 85 sites (from a total of
3274 sites) where mean flow was exceeded. We removed the
data for these sites from our survey data set prior to further
statistical analysis (Fig.2).

2.4 Model of stream waterpCO2

We undertook preliminary exploratory statistical analyses us-
ing the headwater survey data. The steps we undertook in de-
veloping and applying a model to predict stream waterpCO2
across England and Wales using the available data are sum-
marised in Fig.2. These include selecting subsets of the data,
applying a transformation to thepCO2 values, predicting
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pCO2 on the transformed values, including the calculation
of confidence intervals for these predictions, and computing
potential C fluxes based on flow from a 1 km grid across Eng-
land and Wales. We describe below the rationale for develop-
ing the model and its implementation.

The calculatedpCO2 values at the stream survey
sites were strongly positively skewed (skewness coeffi-
cient = 2.66). We found that a logarithmic transformation
of the pCO2 applied after the addition of a small posi-
tive value (linear shift) of 3e−05 produced a variate with an
normal approximately normal distribution (skewness coeffi-
cient =−0.06). We undertook all subsequent statistical anal-
yses using this transformed data, and back-transformed the
values to original units for the calculation of C fluxes (Fig.2).

2.4.1 Catchment area threshold

The stream sites which were sampled as part of the large-
scale headwater survey exhibited a range of catchment ar-
eas from 0.01 to 254 km2 with a mean of 5.49 km2. We
needed to ensure that estimates ofpCO2 from all these sites
were representative of headwaters; there is strong evidence
(Butman and Raymond, 2011) that as CA (or stream or-
der) increases from the smallest catchments,pCO2 decreases
because evasion exceeds inputs of CO2 from a combina-
tion of groundwater and in-stream sources. In their study,
Lauerwald et al.(2013) did not observe any correlation be-
tween CA and negative logpCO2 because their analyses
were based on substantially larger catchments (generally
greater than 1000 km2; two orders of magnitude larger than
in our study) from which a substantial proportion of CO2
will have evaded to the atmosphere. To investigate this fur-
ther, we formed a scatterplot ofpCO2 versus CA (Fig.3).
This suggested that those sample sites with the larger CA
had – on average – lowerpCO2 values. To determine if there
was a threshold CA below which this effect was not statisti-
cally significant, we fit ordinary least squares models (using
the lm function in the R computing environmentR Develop-
ment Core Team, 2012). In each case the predictors were CA
values for subsets of headwater sites truncated at thresholds
of < 2, < 4, . . . , < 20, < 50, < 100 and< 250 km2 and the
predictand was the series of transformedpCO2 values. We
investigated (i) whether CA is a statistically significant pre-
dictor of pCO2 (P < 0.05) for this range of CA values, and
(ii) if there is a threshold at which CA was no longer statisti-
cally significant.

2.4.2 Land cover: orthogonal contrasts

In their study,Butman and Raymond(2011) showed that land
use was strongly related to area-normalised C fluxes from
surface water for a range of drainage basin regions across the
USA. Preliminary exploratory analyses (Fig.4) suggested
that catchment-dominant land cover class would likely be a
statistically significant predictor of headwater streampCO2
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Fig. 3.Scatterplot of headwater catchment area (CA) versus stream
waterpCO2 (µatm). The threshold chosen to select a subset of the
data corresponding to the smallest headwater catchments (< 8 km2)
is shown by the red dashed line.

in our survey data from England and Wales. There are rea-
sons why we might expect the magnitude of ecosystem
soil respiration (a major factor in controlling streamwater
pCO2) to reflect land cover type. For example, the addi-
tion of nutrients (fertilisers) to maximise agricultural pro-
duction enhances both net primary production and also soil
heterotrophic respiration, leading to larger soil gaspCO2
values (Smith, 2005). Lowland areas with agricultural land
cover generally have smaller mean annual rainfall than up-
land regions, so water : soil contact time in the former re-
gions is longer and there is also less dilution of gaseous CO2.
Therefore we might expect meanpCO2 values in streams
draining agricultural catchments (arable or improved grass-
land) to be greater than those draining less managed or semi-
natural habitats. Catchments dominated by urban land use
may also have largerpCO2 values because of nutrient in-
puts to managed gardens and increased heterotrophic respira-
tion associated with nutrient loads in urban waste water. We
wished to determine the most appropriate set of land cover
classes for inclusion in our statistical model. The 10 dom-
inant land cover classes (from the Land Cover Map) were:
Arable, Bog, Broadleaf, Coniferous (Forest), Fen, Heather,
Heather Grass, Improved Grassland, Rough Grassland and
Suburban. We formed a hierarchical classification (Fig.5) of
these groups and undertook a statistical analysis using five
orthogonal contrasts based on it:

1. managed land versus less managed land+ urban;

2. urban versus less managed;
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Fig. 4.Boxplot of headwater streampCO2 concentrations by dom-
inant land cover class for each catchment (n = 2637) based on broad
habitat types. Box widths are proportional to number of samples in
each class. The red dashed line is the overall median of the data.

3. within less managed (forested versus non-forested);

4. within less managed: non-forested (wetter versus
drier);

5. within managed (arable versus improved grassland).

The orthogonal treatment contrasts were entered using the
contrasts function in the R environment (R Development
Core Team, 2012). Each of the contrasts was tested using the
aov command to determine whether they were statistically
significant (P < 0.05).

2.4.3 Temporal variation

To account for seasonal variations inpCO2 we converted
sampling dates from all the headwater surveys into a year day
value (numeric values between 1 and 365). We expressed the
year day values on a radian scale (range from zero to 2× π ).
To account for any seasonal trend we included terms for both
sine and cosine of the radian-based units for year day in the
ordinary least squares regression model.

2.4.4 Refining the model

We formed separate linear models for the prediction ofpCO2
from both the large headwater stream survey data set for
those catchments with a total area of less than 8 km2, and
also for the temporal data for the three headwater catchments.
We investigated which of the various predictors (landscape-
related and seasonal) accounted for statistically significant
variations in thepCO2 data. The models formed in the these
analyses and their interpretation are presented in a supple-
mentary file to this paper.

Using a subset of the initial headwater survey data (based
on the CA threshold) and including the temporal data from
three headwater catchments (Fig.2) we performed stepwise
selection of the model predictors using thestepAICfunction
from the MASS library (Venables and Ripley, 2002). This
tests the inclusion of predictors based on the Akaike infor-
mation criterion; thek value (multiple of the degrees of free-
dom for penalty) was 2 and the mode of stepwise search was
forwards and backwards. In our model specification we in-
cluded an interaction term between elevation and the land
cover classification (based on the findings from the orthogo-
nal contrasts) as we considered this may be significant.

2.5 Monthly flow volumes

Our measurements ofpCO2 from headwater streams repre-
sent pathways combining shallow and deeper flow routes.
Their relative magnitude depends on both geomorphology
and the physical properties of local bedrock, any Quater-
nary deposits and the soils overlying them. We extracted data
for E&W for composite monthly runoff in millimetres (mm)
published byFekete et al.(2002) on a 30 min (0.5◦) resolu-
tion grid. The discharge data are from the World Meteorolog-
ical Organization Global Runoff Data Centre and the water-
balance model was applied using long-term mean monthly
climate forcings (air temperature and precipitation). We se-
lected the monthly runoff (mm) from the 0.5◦ resolution grid
and extracted the values for the 1 km grid cells across E&W.

2.6 Model of headwater stream temperature

The conversion ofpCO2 to free CO2 concentration in fresh-
water relies on the computation of Henry’s constant which is
temperature dependent. There is a substantial degree of vari-
ation in annual stream temperature in temperate regions such
as the UK due to a combination of seasonal air temperature
and variations in altitude. We used year-round data on stream
water temperature from three catchments with widely differ-
ing mean elevations in England and Wales (Upper Hafren;
Neal et al., 2012, 550 m, Pow; 99 m, Wensum; 48 m) to es-
tablish an ordinary least squares model of stream tempera-
ture. The predictors of stream water temperature were alti-
tude (alt) and a combination of sine and cosine coefficients
of the transformed (zero to 2×π ) year day (yr day) values
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Fig. 5. Hierarchical classification of the ten land cover classes used to define groups for statistical analysis using orthogonal contrasts. Less
Man. refers to less managed land cover types in contrast to more intensively managed (agricultural) land.

for each observation. The sum of two sinusoidal terms is a
phase-shifted sine curve with a period of 365 days. The re-
gression model took the form

Ti = α + β1alti + β2sinyrdayi + β3cosyrdayi + εi, (1)

whereα andβ are coefficients of the ordinary least squares
model andε is the random component of the linear relation-
ship. We included interaction terms between the predictors
and used the same stepwise selection procedure described
above.

2.7 Potential monthly carbon fluxes and
their uncertainty

We used the linear model (lm function in the R package) se-
lected from the stepwise procedure (Sect.2.4.4) to predict
log pCO2 in flowing water on 1 km grid across England and
Wales. We made these predictions for each of the 12 months
based on (i) the geomorphic and land cover predictors, and
(ii) the year day value for the midpoint of each calendar
month (Fig.6). We used the model to predict the values for
the 95 % confidence intervals (using the interval argument in
the predict function) for each 1 km grid cell. We then back-
transformed the predictions and the confidence interval val-
ues onto the original scale; the back-transformed values are
the median values in the original units. We then used the
model of stream water temperatures to convertpCO2 (atm)
to a dissolved gas concentration using Henry’s Law and so
estimated free C concentrations in water (mg L−1). This con-
centration can be converted to a quantity of potential C eva-
sion when it is multiplied by flow volume (Fig.2).

3 Results

3.1 Predictive model

3.1.1 Catchment area threshold

The formation of linear models for the prediction of log
pCO2 based on subsets of a range of CA thresholds (< 2,
< 4,. . . , < 20,< 50,< 100 and< 250 km2) showed that CA
was a statistically significant predictor above 8 km2, but not
at smaller CA thresholds. This threshold is highlighted in
Fig. 3. We infer that at positions on streams which drain
catchments finer than this threshold area, the rate of CO2 eva-
sion is balanced by combined inputs from groundwater and
in-stream sources. To ensure our final model of stream wa-
ter pCO2 was not biased by inclusion of observations from
coarser catchments, we undertook all subsequent analysis on
those catchments with areas less than 8 km2.

3.1.2 Land cover: orthogonal contrasts

The results from significance tests for five orthogonal, land
cover contrasts are shown in Table2. It shows that the first
(managed land versus less managed land+ urban), second
(urban versus less managed) and fifth (arable versus im-
proved grassland) orthogonal contrasts were all statistically
significant (P < 0.05). By contrast, the third (forested versus
non-forested) and fourth (non-forested: wetter versus drier)
contrasts were not statistically significant. It is noteworthy
that there was no evidence for statistically significant larger
pCO2 values in wetter areas of land cover (that includes
wetlands) where one might expect greater concentrations of
both dissolved organic carbon and CO2 to influence CO2
export from soils. These findings suggest that the most ef-
fective reclassification of the land cover classes would be
to group all the less managed, non-urban classes to form a
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Table 2.Results from orthogonal contrasts between groups of selected land cover classes based on the hierarchical classification (Fig.5).

Estimate Std. Error t value p value

Contrast1 −0.021 0.003 −6.82 1.1× 10−11

Contrast2 −0.024 0.008 −3.13 0.002
Contrast3 −0.007 0.009 −0.74 0.47
Contrast4 0.012 0.01 1.23 0.22
Contrast5 0.088 0.006 15.4 < 2× 10−16

Contrast 1 to 5 were: (1) managed land vs. less managed land+urban, (2) urban vs.
less managed, (3) within less managed (forested vs. non-forested), (4) within less
managed: non-forested wetter vs. drier, (5) within managed (arable vs. improved
grassland).

Table 3. Summary statistics for geomorphological and land cover
predictors (for catchments derived from 2637 sample sites) used to
form the model of streampCO2, and for a 1 km grid (n = 147829)
across England and Wales.

Model dataa 1 km grid

Geomorphic data
Minimum of mean elevation (m) 0 0
Mean of mean elevation (m) 215 124
Maximum of mean elevation (m) 722 945
Minimum of mean slope (◦) 0.09 0
Mean of mean slope (◦) 4.76 3.78
Maximum of mean slope (◦) 34.8 33.2
Minimum relief (m) 0 0
Mean relief (m) 99.5 58
Maximum relief (m) 626 669
Land cover classb (%)
Arable 34.7 41
Improved grassland 34.1 28.8
Suburban 0.007 0.09
Less managed 30.5 21.4

a Data from catchments of headwater streams with CA< 8 km2. b Dominant land
cover class in catchment or grid cell.

single class, and retain three other separate classes: arable,
improved grassland and urban. We undertook this reclassifi-
cation before undertaking the stepwise model selection pro-
cedure, reported in the next section.

3.1.3 Final model data

Summary statistics for the final data set used to form the
model for prediction of headwater streampCO2 are sum-
marised in Table3. It is based on data from 2637 locations
from the large headwater survey wherepCO2 measurements
were restricted to 4 months (June to September), and three
small headwater catchments where measurements were made
through full calendar years.

The predictors (based on stepwise selection) which were
included in the final linear model of logpCO2 in streams
across England and Wales are shown in Table4. The sum of
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Fig. 6.The sum of sine and cosine model coefficients multiplied by
year day highlighting the seasonal effect of temperature on headwa-
ter streampCO2. Differences in the magnitude of the coefficients
used to apply the model at the midpoint of each calendar month
(J = January, F = February, etc.) are highlighted by the dashed red
lines.

the model coefficients for sine and cosine functions multi-
plied by year day are presented in Fig. (6) highlighting the
effect of temperature on ecosystem respiration and stream
pCO2 values throughout the year. The residuals were close
to a normal distribution (histogram not shown: skewness co-
efficient =−0.31). Although the land use interaction terms
LM and Urban havep values< 0.05 they are included in the
final model because land use has statistically significant in-
teractions (with elevation) and so its terms must be included
to give a simple interpretation to the interaction. This model
accounted for 24 % of the variance (adjustedR2 = 0.24) in
pCO2 values in the combined spatial and temporal data set.
Although there is a considerable amount of variation which
the model cannot account for, we consider its performance
is reasonable given that (i)pCO2 in stream water exhibits a
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Table 4.Summary of the model from stepwise selection of predic-
tors of logpCO2 in stream water based on geomorphic variables,
land cover classification and year day. The coefficient (Estimate)
for the three land cover classes shown are expressed as differences
from the Arable land cover class (not shown).

Estimate Std. Error t value p value

Intercept −5.53 0.04 −131 < 2× 10−16

Sin(yr day) 0.11 0.03 3.903 9.70× 10−05

Cos(yr day) −0.24 0.03 −7.904 3.76× 10−15

Mean Slope −0.06 0.006 −10.5 < 2× 10−16

Relief −0.0009 0.0002 −3.802 0.0001
Mean Elev. −0.003 0.0004 −7.61 3.75× 10−14

IGa
−0.39 0.07 −5.44 5.75× 10−08

Urban −0.09 0.36 −0.260 0.79
LMb

−0.04 0.087 −0.47 0.64
Elev.c:IGb 0.002 0.0004 4.48 7.67× 10−06

Elev.c:Urban 0.001 0.002 0.47 0.63
Elev.c:LMb 0.0015 0.0004 3.72 0.0002

a Improved grassland,b less managed (non-urban),c mean elevation.

substantial degree of spatial (Jones and Mulholland, 1998)
and temporal (Dinsmore et al., 2010) heterogeneity, and (ii)
the landscape predictors can be obtained for most terrestrial
landscapes.

Those predictors which accounted for larger proportions
of the variation in headwaterpCO2 were the temporal co-
efficients (sin and cosine of year day), plus mean slope
and mean elevation, although in combination the land cover
classes also accounted for a reasonable proportion of the vari-
ance. Mean catchment elevation has a strong positive correla-
tion with rainfall. Greater rainfall leads to dilution of stream
pCO2 which likely explains why the variation of the latter is
accounted for by difference in mean catchment elevation.

It is noteworthy that neither PM class or BFIHOST values
were statistically significant predictors ofpCO2. We infer
that variations in headwater streampCO2 are more closely
associated with those factors closely related to the generation
of soil gas CO2 (such as land cover type) and less related to
the transport pathways determined by variations in soil par-
ent material and hydrogeology. However, mean catchment
slope is a significant predictor of headwaterpCO2. Steeper
average slopes likely lead to shorter contact times between
soil and water before it reaches a channel, and thus smaller
averagepCO2 values.

3.2 Model of headwater stream temperature

The range of headwater stream temperature values for the
three sites was 0.89 to 18.1◦ C, with a median of 12.25◦ C.
In combination, the use of sine and cosine functions based on
year day and elevation (in metres) accounted for 78 % of the
variance in headwater stream temperature. A summary of the
model coefficients are presented in Table5. We considered

the model provided a reasonable basis for predicting stream
temperatures on a 1 km grid across England and Wales for the
midpoint of each calendar month which we used to convert
pCO2 to its free CO2-C concentration in water.

3.3 Model predictions: England and Wales

To highlight differences in free CO2-C concentrations in
flow throughout the year across England and Wales, Fig.7
presents model predictions for the months of July and Jan-
uary, highlighting the differences in temperature controlling
ecosystem respiration. Free CO2-C concentrations in flow
are larger in July, reflecting the greater concentrations de-
rived from soil and in-stream respiration, but also greater di-
lution in January associated with larger quantities of rainfall
(Table6). The maps also reflect the differences in land cover
type; the south and east of England is dominated by arable
agriculture over neutral soils with fertiliser inputs which en-
hances ecosystem respiration. By contrast, soil pH is more
acidic in the north and west (of England and also in Wales)
where land cover types (Improved grassland or less managed
habitats) are subject to smaller, or no, nutrient and lime addi-
tions. In more intensive agricultural regions, where the pH is
maintained around neutral and fertilisers are applied to max-
imise productivity, soils have larger rates of soil respiration
leading to greater production of CO2. This may lead to large
fluxes of dissolved CO2 in percolating water, but this depends
on the balance between losses in percolation (dissolved CO2)
and gaseous CO2 emissions from the soil surface. Unfortu-
nately we do not have quantitative data on soil pH at a suffi-
ciently fine resolution to examine this relationship in greater
detail.

The predicted median free CO2-C concentrations in May
and November across England and Wales were 1.78 and
1.11 mg L−1, respectively. The median free CO2-C con-
centrations for the lower and upper 95 % confidence in-
tervals were 1.97 and 1.47 mg L−1 for May and 0.91 and
1.24 mg L−1 for November.

Based on the quantities of flow from each 1 km grid
square (Fig.2) we present the potential monthly evasion
fluxes for July and January using data on mean monthly an-
nual rainfall (Fig.8). For years in which monthly rainfall is
near the long-term average quantities, the largest potential
C fluxes (> 70 kg C km−2month−1) occur generally in the
winter months (December–March) in upland (> 300 m ele-
vation) areas subject to the largest monthly rainfall (north-
west England, Wales and south-west England). The lowest
potential fluxes occur in lowland settings with the smallest
monthly runoff quantities. Potential C efflux is dominated by
flow volumes rather than free C concentrations in surface wa-
ter; Table6 shows there is a 14-fold difference in maximum
(January) and minimum (July) monthly flow volume, whilst
there is less than a two-fold difference in mean free CO2-C
concentrations (1.18 and 1.78 mg L−1, December and June
respectively). So despite larger free CO2-C concentrations
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Fig. 7. Predicted free CO2-C concentration (mg L−1) in flow for a 1 km grid across England and Wales: May and November. Coordinates
are metres on the British National Grid. Note the maximum class limit is greater than the arithmetic scale used in the other classes.

Table 5.Summary of the ordinary least squares model used for the prediction of daily headwater stream temperature for the 1 km grid across
England and Wales. Year day (yr day) is the transformed numeric value of day in the calendar year. A colon (:) denotes inclusion of an
interaction (a product term) of predictors.

Estimate Std. Error t value p value

Intercept 10.2 0.024 434 < 2× 10−16

sin(yr day) −2.37 0.05 −47.6 < 2× 10−16

cos(yr day) −3.23 0.031 -103 < 2× 10−16

Elev. −0.004 0.0001 −38.1 < 2× 10−16

sin(yr day):cos(yr day) −2.64 0.088 −29.8 < 2× 10−16

sin(yr day):Elev. 0.001 0.0002 8.17 3.38× 10−16

cos(yr day):Elev. 0.0003 0.0001 2.147 0.031
sin(yr day):cos(yr day):Elev 0.005 0.0003 17.0< 2× 10−16

in surface water during summer months (assuming average
runoff), potential C fluxes are substantially smaller than for
average winter months.

Our model predicts a mean annual flux of
0.44 t C km−2 yr−1 or 1.6 g CO2 m−2 yr−1 (expressed
on the basis of total land area). This latter value is 25 times
smaller than the figure of 40.4 g CO2 m−2 yr−1 for this
region published byRaymond et al.(2013). In a study from
a peatland stream and catchment in Scotland (within the
region of the value published by Raymond et al., 2013),
Hope et al.(2001) gave a figure of 51.7 g CO2 m2 yr1 (14.1 g
C m−2 yr−1) for evasion per unit area of watershed. Peatland
or bog environments, which have substantially larger chan-
nel evasion fluxes than most land cover types, account for

a relatively small proportion (< 5 %) of land cover across
England and Wales according to the Land Cover Map of
England and Wales. We assume that the evasion fluxes
per unit land area presented byRaymond et al.(2013) are
based on studies from these peatland environments and this
would account for the substantially larger fluxes reported in
their study compared to our figure. Our estimate should be
towards the upper end of actual evasion rates because our
model assumes that all free CO2 evades.

The total potential annual C efflux from flow across Eng-
land and Wales (summing across 12 months) is 65.4 kt C
(kilotonnes carbon), with the lower and upper 95 % con-
fidence intervals of 56.1 and 77.2 kt C, respectively. The
confidence intervals we present only reflect the uncertainty
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Fig. 8.Predicted potential monthly source of carbon (kg) efflux based on flow for a 1 km grid across England and Wales (May and November).
Coordinates are metres on the British National Grid. Note the maximum class limit is greater than the arithmetic scale used in the other
classes.

Table 6.Summary of monthly predictions across all of England and
Wales for total flow volume (gigalitres; GL) based on composite
runoff (Fekete et al., 2002) on a 0.5◦ resolution grid, mean concen-
tration of free CO2-C (mg L−1) and potential carbon efflux (kilo-
tonnes carbon; kt C).

Flow Mean free C C effluxa

(Gl) (mg L−1) (kt C)

Jan 14003 1.34 16314
Feb 6651 1.52 9221
Mar 5601 1.69 8527
Apr 3885 1.77 6210
May 2491 1.78 3872
June 1460 1.74 2178
July 978 1.64 1325
Aug 1005 1.47 1127
Sept 1264 1.30 1198
Oct 2503 1.16 2170
Nov 5473 1.11 4830
Dec 8491 1.18 8496
Total 53806 – 65379

a Potential C efflux – assumes all free C evades to the
atmosphere.

associated with prediction ofpCO2 concentrations and do
not account for the uncertainties in the computation of flow
or with stream temperature estimation (used to compute
Henry’s constant). For the year 2002,Worrall et al. (2007)

estimated the total fluvial flux of C from the terrestrial bio-
sphere to surface water across English and Welsh rivers to be
1530 kt C yr−1 (megatonnes carbon per year; equivalent to
10.3 t C km2 yr−1). They estimated around 32 % (620 kt C)
of the total (equivalent to 4.2 t C km2 yr−1) was lost to the
atmosphere from surface water. The largest proportion of
this flux was DOC (42 %), but their flux of excess dissolved
CO2 was 0.37 Mt C yr−1. This estimate was based on mea-
surements ofpCO2 in groundwater from those regions with
major aquifers, having made assumptions concerning mixing
with surface waters. This estimate byWorrall et al. (2007)
for the year 2002 is around 6 times greater than our model
prediction of potential CO2 flux from surface water to the
atmosphere (0.06 Mt C yr−1) based on mean annual flow. In
their study,Worrall et al.(2007) computed an average free
C concentration in surface water of England and Wales of
5.2 mgC L−1 which is between 3 and 4 times larger than the
overall mean concentration of 1.48 mg C L−1 predicted by
our model. It may be helpful to compare the methodology
applied byWorrall et al.(2007) and that used in this study to
determine why the former has much larger free C concentra-
tions, based on mixing of ground- and surface water.

Our model could be applied using future land use change
scenarios to estimate the magnitude of their impact on po-
tential C evasion fluxes from surface water, an approach sim-
ilar to that used to assess changes in greenhouse gas emis-
sions from soil (Smith et al., 2010). However, certain soil
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properties that exert an influence onpCO2 values in drainage
water may be independent of local changes in land use. The
model could also be modified to assess differences in the
magnitude of potential annual C efflux based on yearly vari-
ations in monthly rainfall or changes in mean monthly tem-
perature.

We recognise that our model cannot currently account for
all the processes influencing the magnitude of potential CO2
evasion from surface water at the landscape scale. Our ap-
proach does not account for changes in headwater stream
CO2 flux due to variations in discharge; although dissolved
CO2 concentrations in headwater catchments are lower at
larger discharges (Dinsmore et al., 2013b), total fluxes in-
crease during storm events. To ensure our model was not bi-
ased by the inclusion ofpCO2 measurements from streams
at the largest flow conditions, we excluded sites where daily
flow was likely greater than long-term mean daily flow
(based on local gauging stations). To account for variations
in flow would require a much shorter time step (e.g. daily)
and parameters to predict concentration–discharge relation-
ships. Our model does not account for in-stream sources of
CO2 in the reaches of larger channels downstream of their
headwaters. Our model accounted for a smaller proportion
(24 %) of the variation in channelpCO2 by comparison to
that presented byLauerwald et al.(2013) (43 %). There are
two main factors which could account for this difference: (i)
Lauerwald et al.(2013) used meanpCO2 values from a se-
ries of water samples compared to the more variable, single
snapshot observations used in our study, (ii) the observations
reported byLauerwald et al.(2013) were for substantially
larger catchments providing more opportunity for smoothing
of the variation, in contrast to our smaller catchments which
likely exhibit greater variation.

A further improvement on our current approach would be
to compute actual rather than potential CO2 evasion fluxes
using functions which predict variations in downstream gas
transfer velocities using parameters of stream hydraulics
(Raymond et al., 2012) and channel surface area. A recent
study showed that channel-wetted widths across England and
Wales are strongly influenced by catchment area and hydro-
logical source of flow (Rawlins et al., 2013).

4 Conclusions

Using analyses of more than 3000 analyses of snapshot head-
water samples across different landscape settings of Eng-
land and Wales, we showed that below a CA threshold of
around 8 km2 there was no statistically significant differ-
ence in streampCO2 – evasion losses of CO2 from stream
channels below this scale are likely balanced by inputs from
groundwater and in-stream sources. We used estimates of
pCO2 from catchments with areas less than 8 km2 to as-
sess other landscape predictors of streampCO2, including
data from three catchments in whichpCO2 had been mea-

sured throughout a full calendar year. Based on a series of
orthogonal contrasts we found that grouping dominant catch-
ment land cover types into four classes provided the optimum
classification forpCO2. A seasonal variable (expressed as
a year day number), mean catchment elevation (interacting
with land cover class), mean catchment slope and catchment
relief (maximum minus minimum altitude) were also statis-
tically significant predictors ofpCO2. We formed a model
from these factors and stream water temperature which ac-
counted for 24 % of the combined spatial and temporal vari-
ation inpCO2 across England and Wales. We predicted free
CO2-C concentrations in water for a 1 km grid across Eng-
land and Wales using their catchment characteristics and a
model of stream water temperature as predictors. We also
used average monthly runoff on a 1 km grid across England
and Wales. By combining the predicted free CO2-C concen-
trations and runoff for each 1 km grid cell, we computed
monthly and total annual potential C fluxes (65.4 kt C with
95 % confidence intervals 56.1–7.2 kt C) from surface water
to the atmosphere, assuming that all CO2 entering surface
water evades.

Supplementary material related to this article is
available online athttp://www.biogeosciences.net/11/
1911/2014/bg-11-1911-2014-supplement.pdf.

Acknowledgements.The Land Cover Map and BFIHOST data
were provided under licence by the Centre for Ecology and Hydrol-
ogy (NERC). We would like to thank (i) all the staff and students at
the British Geological Survey who were involved in the collection
and analysis of samples from headwater streams across England
and Wales as part of the G-BASE (Geochemical Baseline Survey
of the Environment) project, (ii) staff from the Wensum and Eden
Demonstration test catchments for providing their data, (iii) Kerry
Dinsmore at CEH for providing the data on stream waterpCO2
concentrations for Black burn, (iv) Ben Marchant and Murray Lark
for statistical advice on the application of linear regression models
and (v) two anonymous reviewers for their helpful comments. This
paper is published with the permission of the Executive Director of
the British Geological Survey (NERC).

Edited by: S. Bouillon

References

Battin, T. J., Kaplan, L. A., Findlay, S., Hopkinson, C. S., Marti,
E., Packman, A. I., Newbold, J. D., and Sabater, F.: Biophysical
controls on organic carbon fluxes in fluvial networks (vol 1, pg
95, 2008), Nature Geosci., 2, 595–595, 2009.

Benstead, J. P. and Leigh, D. S.: An expanded role for river net-
works, Nature Geosci., 5, 678–679, 2012.

Boorman, D., Hollis, J., and Lilly, A.: Hydrology of soil types: a
hydrologically-based classification of the soils of United King-
dom, Tech. rep., Wallingford,http://nora.nerc.ac.uk/7369/, 1995.

www.biogeosciences.net/11/1911/2014/ Biogeosciences, 11, 1911–1925, 2014

http://www.biogeosciences.net/11/1911/2014/bg-11-1911-2014-supplement.pdf
http://www.biogeosciences.net/11/1911/2014/bg-11-1911-2014-supplement.pdf
http://nora.nerc.ac.uk/7369/


1924 B. G. Rawlins et al.: Landscape predictors of headwater streampCO2

Butman, D. and Raymond, P. A.: Significant efflux of carbon diox-
ide from streams and rivers in the United States, Nature Geosci.,
4, 839–842, 2011.

Crookston, N. L. and Finley, A. O.: yaImpute: An R Package for
kNN Imputation, J. Statist. Software, 23,http://www.jstatsoft.
org/v23/i10, 2007.

Dinsmore, K. J., Billett, M. F., Skiba, U. M., Rees, R. M., Drewer,
J., and Helfter, C.: Role of the aquatic pathway in the carbon and
greenhouse gas budgets of a peatland catchment, Glob. Change
Biol., 16, 2750–2762, 2010.

Dinsmore, K. J., Billett, M., and Dyson, K. E.: Five year
record of aquatic carbon and greenhouse gas concentra-
tions from Auchencorth Moss, doi:10.5285/3f0820a7-a8c8-
4dd7-a058-8db79ba9c7fe, 2013a.

Dinsmore, K. J., Billett, M. F., and Dyson, K. E.: Temperature
and precipitation drive temporal variability in aquatic carbon and
GHG concentrations and fluxes in a peatland catchment, Glob.
Change Biol., 19, 2133–2148, 2013b.

Fekete, B. M., Vorosmarty, C. J., and Grabs, W.: High-resolution
fields of global runoff combining observed river discharge and
simulated water balances, Global Biogeochem. Cy., 16, 1042,
doi:10.1029/1999gb001254, 2002.

Fuller, R. M., Groom, G. B., and Jones, A. R.: The Land Cover Map
of Great Britain: an automated classification of Landsat Thematic
Mapper data, Photogram. Engin. Remote Sens., 60, 553–562,
1994.

Gustard, A., Bullock, A., and Dixon, J. M.: Low flow estimation in
the United Kingdom, Tech. rep., Wallingford,http://nora.nerc.ac.
uk/6050/, 1992.

Hope, D., Palmer, S. M., Billett, M. F., and Dawson, J. J. C.: Carbon
dioxide and methane evasion from a temperate peatland stream,
Limnol. Oceanogr., 46, 847–857, 441CZ,http://aslo.org/lo/toc/
vol_46/issue_4/0847.pdf, 2001.

Johnson, C., Breward, N., Ander, E., and Ault, L.: G-BASE: Base-
line geochemical mapping of Great Britain and Northern Ire-
land., Geochem., 5, 1–13, 2005.

Johnson, M. S., Lehmann, J., Riha, S. J., Krusche, A. V., Richey,
J. E., Ometto, J. P. H. B., and Couto, E. G.: CO2 efflux
from Amazonian headwater streams represents a significant fate
for deep soil respiration, Geophys. Res. Lett., 35, L17401,
doi:10.1029/2008GL034619, 2008.

Jones, J., Partick, J., and Mulholland, J.: Influence of drainage basin
topography and elevation on carbon dioxide and methane super-
saturation of stram water, Biogeochemistry, 40, 52–72, 1998.

Jones, J. B. and Mulholland, P. J.: Carbon dioxide variation in a
hardwood forest stream: An integrative measure of whole catch-
ment soil respiration, Ecosystems, 1, 183–196, 1998.

Lauerwald, R., Hartmann, J., Moosdorf, N., Kempe, S., and Ray-
mond, P. A.: What controls the spatial patterns of the riverine
carbonate system? — A case study for North America, Chem.
Geol., 337–338, 114 – 127, 2013.

Lawley, R. and Smith, B.: Digital soil mapping at a national scale:
a knowledge and GIS based approach to improving parent ma-
terial and property information, in: Digital soil mapping with
limited data, edited by: Hartemink, A., McBratney, A., and
de Lourdes Mendonca-Santos, M., Springer,http://nora.nerc.ac.
uk/4926/, 173–182, 2008.

Li, S., Lu, X. X., and Bush, R. T.: CO2 partial pressure and CO2
emission in the Lower Mekong River, J. Hydrology, 504, 40–56,
2013.

Morel, F. M. M. and Hering, J.: Principles and applications of
aquatic chemistry, Wiley-Interscience, 1993.

Neal, C., Reynolds, B., Rowland, P., Norris, D., Kirchner, J. W.,
Neal, M., Sleep, D., Lawlor, A., Woods, C., Thacker, S., Guyatt,
H., Vincent, C., Hockenhull, K., Wickham, H., Harman, S., and
Armstrong, L.: High-frequency water quality time series in pre-
cipitation and streamflow: From fragmentary signals to scientific
challenge, Sci. Total Environ., 434, 3– 12, 2012.

Owen, G. J., Perks, M. T., Benskin, C. M. H., Wilkinson, M. E.,
Jonczyk, J., and Quinn, P. F.: Monitoring agricultural diffuse pol-
lution through a dense monitoring network in the River Eden
Demonstration Test Catchment, Cumbria, UK, Area, 44, 443–
453, 2012.

Parkhurst, D. L. and Appelo, C.: User’s Guide to PHREEQC – (Ver-
sion 2) a computer program for speciation, batch-reaction, one-
dimensional transport, and inverse geochemical calculations,
Tech. Rep. 99-4259, US Geological Survey Water Resources In-
vestigations Report, 1999.

Prasad, M. B. K., Kaushal, S. S., and Murtugudde, R.: Long-term
pCO2 dynamics in rivers in the Chesapeake Bay watershed, Ap-
plied Geochemistry, 31, 209–215, 2013.

R Development Core Team: R: A Language and Environment for
Statistical Computing, R Foundation for Statistical Computing,
Vienna, Austria,http://www.R-project.org/, ISBN 3-900051-07-
0, 2012.

Rawlins, B. G., Clark, L., and Boyd, D. S.: Using air photos to pa-
rameterise landscape predictors of channel wetted width, Earth
Surf. Proc. Land.,http://dx.doi.org/10.1002/esp.3469, 2013.

Raymond, P. A., Zappa, C. J., Butman, D., Bott, T. L., Potter, J.,
Mulholland, P., Laursen, A. E., McDowell, W. H., and Newbold,
D.: Scaling the gas transfer velocity and hydraulic geometry in
streams and small rivers, Limnol. Oceanogr., 2, 41–53, 2012.

Raymond, P. A., Hartmann, J., Lauerwald, R., Sobek, S., McDon-
ald, C., Hoover, M., Butman, D., Striegl, R., Mayorga, E., Hum-
borg, C., Kortelainen, P., Dürr, H., Meybeck, M., Ciais, P., and
Guth, P.: Global carbon dioxide emissions from inland waters,
Nature, 503, 355–359, 2013.

Regnier, P., Friedlingstein, P., Ciais, P., Mackenzie, F. T., Gruber,
N., Janssens, I. A., Laruelle, G. G., Lauerwald, R., Luyssaert,
S., Andersson, A. J., Arndt, S., Arnosti, C., Borges, A. V., Dale,
A. W., Gallego-Sala, A., Godderis, Y., Goossens, N., Hartmann,
J., Heinze, C., Ilyina, T., Joos, F., LaRowe, D. E., Leifeld, J.,
Meysman, F. J. R., Munhoven, G., Raymond, P. A., Spahni, R.,
Suntharalingam, P., and Thullner, M.: Anthropogenic perturba-
tion of the carbon fluxes from land to ocean, Nature Geosci.,
available online at: doi:10.1038/ngeo1830, 2013.

Smith, P., Bhogal, A., Edgington, P., Black, H., Lilly, A., Barra-
clough, D., Worrall, F., Hillier, J., and Merrington, G.: Conse-
quences of feasible future agricultural land-use change on soil
organic carbon stocks and greenhouse gas emissions in Great
Britain, Soil Use Manag., 26, 381–398, 2010.

Smith, V. R.: Moisture, carbon and inorganic nutrient controls of
soil respiration at a sub-Antarctic island, Soil Biol. Biochem.,
37, 81–91, 2005.

Sun, G., Caldwell, P., Noormets, A., McNulty, S. G., Cohen, E.,
Moore Myers, J., Domec, J.-C., Treasure, E., Mu, Q., Xiao, J.,

Biogeosciences, 11, 1911–1925, 2014 www.biogeosciences.net/11/1911/2014/

http://www.jstatsoft.org/v23/i10
http://www.jstatsoft.org/v23/i10
http://dx.doi.org/10.5285/3f0820a7-a8c8-4dd7-a058-8db79ba9c7fe
http://dx.doi.org/10.5285/3f0820a7-a8c8-4dd7-a058-8db79ba9c7fe
http://dx.doi.org/10.1029/1999gb001254
http://nora.nerc.ac.uk/6050/
http://nora.nerc.ac.uk/6050/
http://aslo.org/lo/toc/vol_46/issue_4/0847.pdf
http://aslo.org/lo/toc/vol_46/issue_4/0847.pdf
http://dx.doi.org/10.1029/2008GL034619
http://nora.nerc.ac.uk/4926/
http://nora.nerc.ac.uk/4926/
http://www.R-project.org/
http://dx.doi.org/10.1002/esp.3469
http://dx.doi.org/10.1038/ngeo1830


B. G. Rawlins et al.: Landscape predictors of headwater streampCO2 1925

John, R., and Chen, J.: Upscaling key ecosystem functions across
the conterminous United States by a water-centric ecosystem
model, J. Geophys. Res., 116, 1–16, 2011.

Venables, W. N. and Ripley, B. D.: Modern Applied Statistics with
S, Springer, New York, 4th Edn.,http://www.stats.ox.ac.uk/pub/
MASS4, iSBN 0-387-95457-0, 2002.

Wallin, M. B., Quist, M. G., Buffam, I., Billett, M. F., Nisell, J.,
and Bishop, K. H.: Spatiotemporal variability of the gas transfer
coefficient (KCO2) in boreal streams: Implications for large scale
estimates of CO2 evasion, Global Biogeochem. Cy., 25, GB3025,
doi:10.1029/2010GB003975, 2011.

Wensum Alliance: Manual sample water quality data Wensum
Demonstration Test Catchment, Tech. rep., University of Nor-
wich (East Anglia: UK), 2013.

Worrall, F., Guilbert, T., and Besien, T.: The flux of carbon from
rivers: the case for flux from England and Wales, Biogeochem-
istry, 86, 63–75, 2007.

www.biogeosciences.net/11/1911/2014/ Biogeosciences, 11, 1911–1925, 2014

http://www.stats.ox.ac.uk/pub/MASS4
http://www.stats.ox.ac.uk/pub/MASS4
http://dx.doi.org/10.1029/2010GB003975

