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We investigate the energy levels of heteronuclear alkali-metal dimers in levels correlating with the lowest
rotational level of the ground electronic state, which are important in efforts to produce ground-state ultracold
molecules. We use density-functional theory to calculate nuclear quadrupole and magnetic coupling constants
for KRb and RbCs and explore the hyperfine structure in the presence of electric and magnetic fields. For
nonrotating states, the zero-field splittings are dominated by the electron-mediated part of the nuclear spin-spin
coupling. They are a few kilohertz for KRb isotopologs and a few tens of kilohertz for RbCs isotopologs.
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I. INTRODUCTION

There is great interest in the formation of ultracold mol-
ecules and in achieving molecular Bose-Einstein condensa-
tion and Fermi degeneracy. Molecules can be formed in ul-
tracold atomic gases either by photoassociation �1,2� or by
tuning through zero-energy Feshbach resonances with mag-
netic fields �1,3�. Since alkali-metal atoms are easier to cool
than other species, most work on ultracold molecule forma-
tion has focused on alkali-metal dimers.

There is particular interest in forming ultracold polar mol-
ecules. Dipole-dipole interactions are both stronger and
longer-range than the quadrupole-quadrupole and dispersion
forces that exist between nonpolar molecules. As a result,
dipolar quantum gases are predicted to have novel properties
�4�. Ultracold dipolar molecules might also be used in
quantum-information storage and processing �5�.

Both photoassociation and Feshbach resonance tuning
form molecules that are initially in highly excited vibrational
states. Quantum gases of such molecules can be formed
�6–8�, but they are long-lived only in very specific cases,
such as homonuclear fermion dimers in the highest vibra-
tional level, tuned to large scattering lengths �9�. For other
cases the molecules undergo fast inelastic collisions that lead
to trap loss �10–12�. Furthermore, even heteronuclear mol-
ecules are essentially nonpolar when they are in weakly
bound vibrational states. Because of this, there is intense
current effort directed at producing ultracold molecules in
their absolute ground states, for which inelastic losses cannot
occur and for which heteronuclear molecules have significant
dipole moments. Very recently, there have been major ad-
vances in transferring Feshbach molecules to deeply bound
states by laser-based methods such as stimulated Raman
adiabatic passage �13–15�. Formation of quantum gases of
ground-state molecules is now within reach.

There has been a considerable amount of work on the
energy levels of homonuclear alkali metal dimers, especially
in the near-dissociation states formed by Feshbach resonance

tuning �16–19�. However, remarkably little is known about
the hyperfine structure of the energy levels of alkali-metal
dimers in their lowest rotational states. The tiny splittings are
beyond the resolution of most spectroscopic techniques.
Nevertheless, an understanding of these energy levels is es-
sential in designing laser-based methods to produce mol-
ecules in specific states and will be crucial in developing
methods to control the resulting quantum gases. The purpose
of the present paper is to investigate the lowest energy levels
of heteronuclear alkali-metal dimers and to explore how they
behave in electric and magnetic fields. We focus here on
KRb and RbCs, which are topical for current experiments.

II. THEORY

Molecular Hamiltonian

The Hamiltonian of a diatomic molecule in the presence
of external magnetic and electric fields can be decomposed
into six different contributions: the electronic, vibrational,
rotational, hyperfine, Stark, and Zeeman terms. By restricting
our analysis to 1� molecules in the ground electronic state
and in a fixed vibrational level, the first two terms take a
constant value and the rotational, hyperfine, Stark, and Zee-
man parts of the Hamiltonian can be written �20–22�

H = Hrot + Hhf + HS + HZ, �1�

where

Hrot = BvN2 − DvN2N2, �2�

Hhf = �
i=1

2

Vi · Qi + �
i=1

2

ciN · Ii + c3I1 · T · I2 + c4I1 · I2, �3�

HS = − � · E , �4�

HZ = − gr�NN · B − �
i=1

2

gi�NIi · B�1 − �i� . �5�

The three different sources of angular momentum in a 1�
diatomic molecule are the rotational angular momentum N
and the spins I1 and I2 of nuclei 1 and 2. The rotational and
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centrifugal distortion constants of the molecule are Bv and
Dv �the centrifugal distortion contribution will not be consid-
ered in the calculations�. The hyperfine Hamiltonian of Eq.
�3� consists of four terms. The first is the electric quadrupole
interaction with coupling constants �eqQ�1 and �eqQ�2,
where qi is the electric field gradient at nucleus i and eQi is
its nuclear quadrupole moment. The second is the interaction
between the nuclear magnetic moments and the magnetic
field created by the rotation of the molecule, with spin-
rotation coupling constants c1 and c2. The two remaining
terms represent the tensor and scalar interactions between the
nuclear dipole moments, with spin-spin coupling constants c3
and c4, respectively. The tensor T describes the angle depen-
dence of the direct spin-spin interaction and the anisotropic
part of the indirect spin-spin interaction �22�.

The Stark and Zeeman Hamiltonians, Eqs. �4� and �5�,
describe the interaction of the molecule with an external
electric field E and magnetic field B, where � is the molecu-
lar dipole moment. The Zeeman Hamiltonian consists of two
terms representing the rotational and nuclear Zeeman effects.
The former arises because the molecular rotation produces a
magnetic moment gr�NN, where gr is the rotational g factor
of the molecule, which interacts with the external magnetic
field. The latter arises from the interaction of the nuclear
magnetic moments gi�NIi with the magnetic field, where gi
is the nuclear g factor for nucleus i and Ii is its nuclear spin.
The nuclear shielding tensor �i is approximated here by its
isotropic part �i; terms involving the anisotropy of �i are
extremely small for the states considered here. The diamag-
netic Zeeman effect is not included in the Hamiltonian as it
causes level splittings of less than 1 Hz for the range of
magnetic fields considered in this work.

The nuclear g factors and quadrupole moments are well
known �23�. The dipole moments of KRb and RbCs have
been calculated from relativistic electronic structure calcula-
tions �24,25�.

III. EVALUATION OF THE COUPLING CONSTANTS

Nuclear quadrupole coupling constants have been mea-
sured for several alkali metal dimers as shown in Table I.
However, the only such species for which the magnetic cou-
pling constants have been measured is Na2 �26�, and even
there the experiments did not resolve hyperfine splittings for
the N=0 state. To the best of our knowledge, no experimen-
tal data are available for the hyperfine structure of the mol-
ecules we consider here, KRb and RbCs, in their ground
electronic state. We therefore carry out electronic structure
calculations to estimate them, using density-functional
theory �DFT�. The electric quadrupole coupling constants
�eqQ�1 and �eqQ�2 are directly related to electron densities,
while the nuclear shielding tensors and spin-spin coupling
constants c3 and c4 can be expressed as second derivatives of
the electronic energy �36�. The spin-rotation constants c1 and
c2 are related to the nuclear shielding tensor. In the present
work we use the Amsterdam density functional �ADF� pack-
age �37,38�, which uses Slater functions and allows the in-
clusion of relativistic corrections. The rotational g factor �not
implemented in the ADF code� is evaluated with the DALTON

package �39�.

The objective of the present paper is to explore the behav-
ior of the molecular energy levels in the presence of external
fields. A detailed discussion of the features and effectiveness
of the many different methods and basis sets available for the
calculation of the coupling constants is beyond the scope of
this work. However, to estimate the reliability of the func-
tionals and basis sets employed here we compare the cou-
pling constants obtained for a group of molecules containing
alkali-metal atoms with experimental results in Tables I–IV.
For simplicity we have omitted experimental uncertainties
and vibrational state dependences. It may be seen that the
calculated coupling constants are generally within 40% of
the experimental values, except in occasional cases where
the experimental values are unusually small �such as c4 for
85Rb35Cl�.

Evaluation of hyperfine coupling constants requires a ba-
sis set that properly describes the electron density near the
nuclei. Because of this, we employ all-electron basis sets
rather than valence basis sets with effective core potentials.
However, for core orbitals of heavy elements such as those
considered here, relativistic effects can be important. In the

TABLE I. Comparison of electric quadrupole coupling constants
for alkali-metal atoms calculated as described in the text with ex-
perimental values. The units are megahertz.

Molecule �eQq�calc �eQq�expt Reference

23Na2 −0.456 −0.459 �26�
39K2 −0.290 −0.158 �27�
39K19F −7.87 −7.93 �28�
39K7Li −0.830 −1.03 �29�
39K23Na −0.671 −0.718 �29� �for K�
39K23Na −0.216 0.171a �29� �for Na�
85Rb2 −2.457 −1.1 �27�
85Rb19F −73.1 −70.7 �30�
85Rb35Cl −53.5 −52.8 �31�
85Rb79Br −46.8 −47.2 �32�
85Rb127I −39.6 −58.9 �33�
85Rb7Li −8.04 −9.12 �29�
133Cs19F 1.30 1.25 �34�
133Cs35Cl 1.05 �1.1a �35�
aOnly the absolute value was determined experimentally.

TABLE II. Comparison between spin-rotation coupling con-
stants calculated as described in the text and experimentally mea-
sured. The label 1 refers to the less electronegative atom �K, Rb, or
Cs� and the label 2 to the more electronegative one. The units are
kilohertz.

Molecule c1
calc c1

expt c2
calc c2

expt Reference

23Na2 0.299 0.243 0.299 0.243 �26�
39K19F 0.235 0.270 17.5 10.7 �28�
85Rb19F 0.598 0.498 16.1 10.6 �30�
35Rb35Cl 0.457 0.395 0.569 0.394 �31�
133Cs19F 1.05 0.662 21.9 15.1 �34�
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present work, relativistic corrections were included by means
of, the two-component zero-order regular approximation
�42–44�, including spin-orbit coupling as well as scalar ef-
fects �which are the equivalent of Darwin and mass-velocity
terms in the Breit-Pauli Hamiltonian�.

DFT generally performs well for calculations of electric
quadrupole coupling constants for main-group elements
�45–53�. Following most of these examples, we use the
Becke three-parameter Lee-Yang-Parr hybrid �B3LYP� func-
tional �54,55� in our calculations with the QZ4P basis set �a
quadruple-� all-electron basis set with four polarization func-
tions�.

Shielding tensors were evaluated using the Keal-Tozer
�KT2� functional �56� with the same basis set and relativistic
correction as for the quadrupole coupling constants. For cal-
culation of shielding tensors of main-group atoms �H, C, N,
O, and F�, the performance of this functional is excellent,
and is better �57� than that of more popular functionals such
as the Becke–Lee-Yang-Parr �BLYP� �54,58� and B3LYP
functionals.

Two nuclear magnetic moments can interact both directly
�through space� and indirectly �via the electron distribution�.
The coupling constant for the direct interaction is �22,59�

RDD =
�0

4�

�N
2

h
g1g2�R−3� , �6�

where R is the internuclear distance. The indirect interaction
is represented by a tensor J �22,59� with isotropic part Jiso
and anisotropy �J=J� −J�. The coupling constants c3 and c4
are related to the direct and indirect components by �22,59�

c3 = RDD −
�J

3
�7�

and

c4 = Jiso. �8�

In the present work, �R−3� was approximated by Re
−3, where

Re is the equilibrium distance.
Methods for calculating spin-spin coupling constants have

been recently reviewed by Helgaker et al. �60�. In the present
work, the components of J were calculated using the same
methods as for the quadrupole coupling constants, except
that the Perdew-Burke-Ernzerhof �PBE� �61� functional was
used. This functional produced results slightly closer to the
experimental measurements than KT2 for the molecules con-

sidered in Table III �although the differences were small�.
The BLYP functional performed well for all except Na2, for
which it gave the wrong sign and order of magnitude; it also
gave qualitatively different results from the PBE and KT2
functionals for KRb and RbCs.

ADF does not calculate spin-rotation constants directly.
However, the spin-rotation constants are given approxi-
mately by �62–64�

ci 	
2meBvgi

mp
��i� − �i�� for i = 1,2, �9�

where mp and me are the proton and electron masses, Bv is
the rotational constant, gi is the nuclear g factor, and �i�
−�i� is the anisotropy of the nuclear shielding tensor �i.
Two approximations underlie this expression. First, a quad-
rupole term has been neglected. Second, it was obtained in
the frame of the nonrelativistic theory developed by Flygare
�62�. However, previous studies �65� and our own results
�see Table II� suggest that it can be applied reliably in the
relativistic case.

Lastly, the rotational g factors were evaluated with the
DALTON program using the KT2 functional and the all-
electron basis sets of Huzinaga and co-workers �66,67�.
Again, the choice of the functional is based on its reliability
for this molecular property �68�. No relativistic corrections
were included in this case. Previous calculations �69� for
hydrogen halides and noble gas hydride cations including
atoms as heavy as I and Xe suggest that relativistic correc-
tions are relatively small for rotational g factors �less than
5% of the nonrelativistic value�.

The coupling constants obtained for KRb and RbCs are
given in Tables V and VI. All the calculations were carried
out at the equilibrium geometries, Re=4.07 Å for KRb �70�
and 4.37 Å for RbCs �71�. This neglects small corrections
due to vibrational averaging even for v=0, but nevertheless
gives results that are qualitatively valid for any low-lying
vibrational state. ADF generally gives coupling constants for
only one isotopic species, but the others may be obtained by
simple scaling. The nuclear quadrupole coupling constants
scale with the nuclear quadrupoles Qi, the spin-spin coupling
constants with the product of nuclear g factors gigj, and the
spin-rotation coupling constant with the product of gi and the
rotational constant Bv. The rotational g factor scales in a
more complicated way that depends on Bv and the shift of
the center of mass �72�.

TABLE III. Comparison between spin-spin coupling constants
calculated as described in the text and experimentally measured.
The units are kilohertz.

Molecule c3
calc c3

expt c4
calc c4

expt Reference

23Na2 0.298 0.303 1.358 1.067 �26�
39K19F 0.470 0.540 0.032 0.030 �28�
85Rb19F 0.751 0.797 0.151 0.237 �30�
85Rb35Cl 0.027 0.033 0.010 0.026 �31�
133Cs19F 0.875 0.927 0.471 0.627 �34�

TABLE IV. Comparison between rotational g factors calculated
as described in the text and experimentally measured.

Molecule gr
calc gr

expt Reference

23Na2 0.0324 0.0386 �40�
39K2 0.0247 0.0212 �40�
23Na39K 0.0253 0.0253 �41�
85Rb2 0.0082 0.0095 �40�
133Cs2 0.0051 0.0054 �40�
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IV. HYPERFINE ENERGY LEVELS

We calculate the hyperfine levels by diagonalizing the
complete Hamiltonian of Eqs. �2�–�5� in a basis set of angu-
lar momentum functions. We employ three different basis
sets,


I1M1I2M2NMN� �uncoupled basis� , �10�


�I1I2�IMINMN� �spin-coupled basis� , �11�


�I1I2�INFMF� �fully coupled basis� . �12�

Here I and F are quantum numbers for the total nuclear spin
and total angular momentum and MI and MF represent their

projections onto the Z axis defined by the external field. We
consider here only cases in which only one field, electric or
magnetic, is present. The matrix elements corresponding to
the different terms of the Hamiltonian in each of the basis
sets are calculated through standard angular momentum tech-
niques �73�.

The use of three basis sets rather than one helps in assign-
ing quantum numbers to the energy levels. Although the
Hamiltonian matrix is not diagonal in any of the basis sets
employed, it is usually closer to diagonal for one basis than
for the others. When one coefficient of an eigenvector is
much larger than the others, it is possible to assign approxi-
mate quantum numbers to the state concerned. However, dif-
ferent basis sets achieve this in different field regimes.

A. Zeeman splitting for rotational ground-state molecules
(N=0)

Figure 1 shows the Zeeman splittings for energy levels of
39K85Rb with N=0. The splittings are dominated by the sca-
lar nuclear spin-spin interaction and the nuclear Zeeman ef-
fect, which are the only terms in the Hamiltonian with matrix
elements diagonal in N for N=0. It should be noted that the
scalar spin-spin coupling is entirely mediated by the electron
distribution, and has no contribution from the direct dipolar
interaction. In the absence of external fields, the energy lev-
els are split into groups labeled by the total nuclear spin I.
For small magnetic fields B, I remains a nearly good quan-
tum number and the levels split according to the value of its
projection MI �which in this case coincides with the projec-
tion of the total angular momentum, which is always a good
quantum number�. Energy levels corresponding to the same
value of MI display avoided crossings as a function of the
field as shown in Fig. 2. For fields well above the crossings
�which are at 2–10 G in this case�, I is destroyed and the
good quantum numbers are MRb and MK. Since both nuclear
g factors are positive for 39K85Rb, states where both projec-

TABLE V. Nuclear properties and coupling constants for the different isotopic species of the KRb molecule.

39K85Rb 39K87Rb 40K85Rb 40K87Rb 41K85Rb 41K87Rb

IK 3 /2 3 /2 4 4 3 /2 3 /2

IRb 5 /2 3 /2 5 /2 3 /2 5 /2 3 /2

gK 0.261 0.261 −0.324 −0.324 0.143 0.143

gRb 0.541 1.834 0.541 1.834 0.541 1.834

Bv �GHz� 1.142 1.134 1.123 1.114 1.104 1.096

�eQq�K �MHz� −0.245 −0.245 0.306 0.306 −0.298 −0.298

�eQq�Rb �MHz� −3.142 −1.520 −3.142 −1.520 −3.142 −1.520

�K �ppm� 1321 1321 1321 1321 1321 1321

�Rb �ppm� 3469 3469 3469 3469 3469 3469

cK �Hz� 19.9 19.8 −24.2 −24.1 10.5 10.4

cRb �Hz� 127.0 427.5 124.8 420.1 122.8 413.1

c3 �Hz� 11.5 38.9 −14.2 −48.2 6.3 21.3

c4 �Hz� 482.5 1635.7 −599.0 −2030.4 264.3 896.2

gr 0.0144 0.0142 0.0141 0.0140 0.0139 0.0138

� �D� 0.76 0.76 0.76 0.76 0.76 0.76

TABLE VI. Nuclear properties and coupling constants for the
different isotopic species of the RbCs molecule.

85Rb133Cs 87Rb133Cs

IRb 5 /2 3 /2

ICs 7 /2 7 /2

gRb 0.541 1.834

gCs 0.738 0.738

Bv �GHz� 0.511 0.504

�eQq�Rb �MHz� −1.803 −0.872

�eQq�Cs �MHz� 0.051 0.051

�Rb �ppm� 3531 3531

�Cs �ppm� 6367 6367

cRb �Hz� 29.4 98.4

cCs �Hz� 196.8 194.1

c3 �Hz� 56.8 192.4

c4 �Hz� 5116.6 17345.4

gr 0.0063 0.0062

� 1.25 1.25
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tions are positive are high-field-seeking and those where
both are negative are low-field-seeking.

Although the splittings at low fields are dominated by the
scalar spin-spin coupling, there are several terms in the
Hamiltonian that are off-diagonal in N. The energies are
therefore obtained by diagonalizing a full matrix that in-
cludes enough rotational levels for convergence. For the Zee-
man effect, the only off-diagonal terms involving N=0 are
the electric quadrupole coupling and the tensor spin-spin
coupling, both of which are small. Convergence for N=0 is
achieved with Nmax=2 and the splittings obtained differ from
those calculated with only N=0 by less than 1%. For the
Stark effect, however, the Stark term itself mixes N=0 states
with N�0. Terms off-diagonal in N are then very important
and much larger basis sets are needed.

The scalar spin-spin interaction for N=0 is diagonal in the
spin-coupled and fully coupled basis sets,

�N = 0�I1I2�IMI
c4I1 · I2
N = 0�I1I2�IMI�

= �N = 0�I1I2�IFMF
c4I1 · I2
N = 0�I1I2�IFMF�

=
1

2
c4�I�I + 1� − I1�I1 + 1� − I2�I2 + 1�� . �13�

The nuclear Zeeman Hamiltonian is diagonal in the un-
coupled basis set, with nonzero elements given by

− �g1M1�1 − �1� + g2M2�1 − �2���NB . �14�

The splitting pattern is therefore determined by the allowed
values of the total nuclear spin quantum number I and by the
magnitudes and signs of the scalar spin-spin coupling con-
stant c4 and the rotational g factors. The nuclear shielding
constants �i are only a few parts per thousand. For large
values of the magnetic field, where the nuclear Zeeman ef-
fect is the dominant term in the Hamiltonian, the magnetic
moment �gradient of the energy with respect to B� is close to
−�g1M1+g2M2��N.

The Zeeman splittings for 85Rb133Cs are shown in Fig. 3.
They are qualitatively similar to those for 39K85Rb, except
that the range of I is different and the spin-spin coupling
constant c4 is significantly larger. Because of this, I remains
a good quantum number up to significantly higher magnetic
fields. At high fields, once the magnitude of the scalar spin-
spin interaction can be neglected compared to the Zeeman
effect, MRb and MCs become good quantum numbers.

The splitting patterns for other KRb and RbCs isotopologs
are qualitatively similar to those discussed above and the
corresponding figures are available as supplementary online
material �74�. The spin-spin coupling constant and the potas-
sium g factor are negative for 40K85Rb and 40K87Rb. The
sign of c4 determines whether the lowest zero-field energy
corresponds to the highest or lowest value of I. In general,
the fields where the avoided crossings occur and above
which M1 and M2 become good quantum numbers scale with

c4 / �g1−g2�
. When g1 and g2 are equal, as in homonuclear

I
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FIG. 1. Zeeman levels for 39K85Rb�v=0,N=0�.
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dimers, there are no avoided crossings for N=0 and the I
quantum number is conserved even at high fields.

B. Stark splitting for rotational ground-state molecules (N=0)

The Stark effect for levels of 39K85Rb correlating with
N=0 is shown in Figs. 4–6. Corresponding figures for the
remaining isotopologs of KRb and RbCs are available as
additional online material �74�. The Stark effect is quadratic
at low fields but becomes linear at high fields, as is usual for
diatomic molecules in � states �75�. This arises from mixing
between different rotational levels: while in the Zeeman case
this mixing is very weak and is exclusively due to hyperfine
terms, in the Stark case it is strong and is caused directly by
the electric field. At low fields the mixing is weak and can be
treated by second-order perturbation theory, giving rise to a
quadratic Stark effect. However, as the field increases the
mixing becomes increasingly important: the N=1 basis func-
tions contribute around 25% at 10 kV /cm and 40% at
20 kV /cm. Eventually the molecule becomes fully oriented
by the field and the linear Stark effect overcomes the qua-

dratic effect. The mixing also has numerical consequences as
the number of rotational levels required for convergence in-
creases with field: for example, calculations at 50 kV /cm
require Nmax=6.

The magnitude of the Stark shift in Fig. 4 obscures the
splittings between hyperfine levels. Figure 5 therefore shows
the levels correlating with N=0 relative to their average en-
ergy, for fields up to 1 kV /cm. As expected, each zero-field
level splits into I+1 components labeled by the different
possible values of 
MI
. For 
MI
�0 the levels exist in de-
generate pairs corresponding to changing the sign of M1 and
M2. However, changing the sign of one of M1 and M2 pro-
duces a different state with a different value of 
MI
. For
MI=0 there is an extra symmetry corresponding to reflection
in a plane containing the electric field vector.

At higher field, as shown in Fig. 6, the projections of the
individual nuclear spins become well defined as well as their
sum. At sufficiently large fields the splittings approach a lim-
iting value as the molecules become strongly oriented along
the field direction. In this limit the splittings are mostly de-
termined by the nuclear quadrupole coupling constants, with
relatively small contributions from the magnetic hyperfine
terms.

V. CONCLUSION

We have investigated the hyperfine level splittings ex-
pected for alkali-metal dimers in their rotational ground
states in the presence of electric and magnetic fields. We
have carried out density-functional calculations of the elec-
tronic structure of KRb and RbCs at the equilibrium geom-
etry of the ground 1� state and evaluated all the hyperfine
coupling constants necessary to calculate energy level pat-
terns. For nonrotating states, the zero-field splittings between
hyperfine states range from a few kilohertz for isotopologs of
KRb to a few tens of kilohertz for isotopologs of RbCs. They
are dominated by the electron-mediated contribution to the
nuclear spin-spin coupling. The results will be valuable in
designing laser-based schemes to produce ultracold mol-
ecules in their absolute ground states in applied fields.
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