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Abstract. In this paper we develop the a posteriori error estimation of hp–version discontinuous
Galerkin composite finite element methods for the discretization of second–order elliptic partial
differential equations. This class of methods allows for the approximation of problems posed on
computational domains which may contain a huge number of local geometrical features, or micro-
structures. While standard numerical methods can be devised for such problems, the computational
effort may be extremely high, as the minimal number of elements needed to represent the underlying
domain can be very large. In contrast, the minimal dimension of the underlying composite finite
element space is independent of the number of geometric features. Computable bounds on the error
measured in terms of a natural (mesh-dependent) energy norm are derived. Numerical experiments
highlighting the practical application of the proposed estimators within an automatic hp–adaptive
refinement procedure will be presented.
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1. Introduction. In recent years, a new class of finite elements, referred to as
Composite Finite Elements (CFEs), have been developed for the numerical solution of
partial differential equations, which are particularly suited to problems characterized
by small details in the computational domain or micro-structures; see, for example,
[10, 9], for details. The key idea of CFEs is to exploit general shaped element domains
upon which elemental basis functions may only be locally piecewise smooth. In par-
ticular, an element domain within a CFE may consist of a collection of neighbouring
elements present within a standard finite element method, with the basis function of
the CFE being constructed as a linear combination of those defined on the standard
finite element subdomains. In this way, CFEs offer an ideal mathematical and prac-
tical framework within which finite element solutions on (coarse) aggregated meshes
may be defined. CFEs have been developed in the context of h–version conforming
finite element methods by Sauter and co-workers in the series of articles [10, 9, 23]; the
generalization to hp–version discontinuous Galerkin composite finite element methods
(DGCFEMs) has been considered in our recent article [4]. We point out that the gen-
eral philosophy of CFE methods is to construct the underlying finite element spaces
based on first generating a hierarchy of meshes, such that the finest mesh does indeed
provide an accurate representation of the underlying computational domain, followed
by the introduction of appropriate prolongation operators which determine how the
finite element basis functions on the coarse mesh are defined in terms of those on the
fine grid.

In this article, we extend the work presented in [4] to consider the a posteriori
error analysis of the hp–version DGCFEM. In particular, we shall derive a computable
upper bound on the error, measured in terms of the underlying DG-energy norm,
which is explicit in terms of the dependence on h and p. This upper bound is based
on the general techniques developed in the articles [13, 14, 15, 17]. Indeed, here the
proof crucially relies on the approximation of discontinuous finite element functions by
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conforming ones. Results of this type have been developed independently by a number
of authors in the context of the h-version of the DGFEM; see, for example, [12, 18].
Numerical experiments highlighting the performance of the proposed estimator within
an hp-adaptive mesh refinement algorithm will also be presented.

The structure of this article is as follows. In Section 2, we introduce the model
problem and state the necessary assumptions on the computational domain Ω. Sec-
tion 3 introduces the composite finite element spaces considered in this article, based
on exploiting the ideas developed in the series of articles [4, 10, 9, 23]. In Section 4
we formulate the hp–DGCFEM; the a posteriori analysis of the proposed method is
then undertaken in Section 5. The practical performance of the proposed hp–error in-
dicators within an automatic hp–refinement algorithm for a range of two–dimensional
problems is studied in Section 6. Finally, in Section 7 we summarize the work pre-
sented in this article and draw some conclusions.

2. Model problem. In this article we consider the following model problem:
given f ∈ L2(Ω), find u such that

−∆u = f in Ω, (2.1)

u = 0 on ∂Ω. (2.2)

Here, Ω is a bounded, connected polyhedral domain in Rd, d > 1, with boundary
∂Ω; in particular, it is assumed that Ω is a ‘complicated’ domain, in the sense that it
contains small details or micro-structures. With this in mind, throughout this article,
we assume that Ω is such that the following extension result holds.

Theorem 2.1. Let Ω be a domain with a Lipschitz boundary. Then there exists
a linear extension operator E : Hs(Ω)→ Hs(Rd), s ∈ N0, such that Ev|Ω = v and

‖Ev‖Hs(Rd) ≤ C‖v‖Hs(Ω),

where C is a positive constant depending only on s and Ω.
Proof. See Stein [25, Theorem 5, p. 181]; the extension of this result to domains

which are simply connected, but may contain micro-scales, is considered in [24].

3. Construction of the composite finite element spaces. In this section,
we outline the construction of the underlying CFE space. In particular, we construct
a hierarchy of so-called reference and physical meshes. For simplicity, here we consider
a simplification of the algorithm presented in [4]; indeed, [4] introduced an additional
hierarchy of meshes, referred to as logical meshes. In that setting, nodes were also
moved as part of the construction of the mesh hierarchy; in the current article, the
physical and logical meshes coincide. We point out that, with a judicious choice of
the initial background mesh, and (potentially) nonstandard element refinement, a
wide range of complicated domains may be studied by simply exploiting the proposed
two-mesh hierarchy. For related work, we refer to the articles [10, 9, 23].

3.1. Finite element meshes. In this section we briefly outline a general strat-
egy to generate a hierarchy of reference and physical finite element meshes, cf. [4]. We
point out that any such hierarchy of meshes may be employed within this framework
to describe a complicated domain Ω ⊂ Rd; for simplicity of presentation, we assume
that d = 2, though the general approach naturally generalizes to higher–dimensional
domains.

To begin, we first need to construct a sequence of reference meshes, which we
shall denote by T̂hi , i = 1, . . . , `. We assume that the reference meshes are nested,
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Algorithm 3.1 Refine Mesh

1: Set T̂h1
= T̂H , and the mesh counter ` = 1.

2: Set T̂h`+1
= ∅.

3: for all κ̂ ∈ T̂h` do
4: if κ̂ ⊂ Ω then
5: T̂h`+1

= T̂h`+1

⋃
{κ̂};

6: else
7: Refine κ̂ =

⋃nκ̂
i=1 κ̂i, nκ̂ ≥ 1.

8: for i = 1, . . . , nκ̂ do
9: if κ̂i ∩ Ω 6= ∅ then

10: Set T̂h`+1
= T̂h`+1

⋃
{κ̂i}.

11: end if
12: end for
13: end if
14: end for
15: Perform additional refinement of elements in T̂h`+1

to undertake appropriate mesh
smoothing, e.g., to ensure that the resulting mesh is 1–irregular, etc. For further
details on this issue, we refer to [4].

16: if Reference mesh T̂h` is sufficiently fine, in the sense that it provides an accurate
representation of the boundary of Ω then

17: STOP.
18: else
19: Set ` = `+ 1, and GOTO 2.
20: end if

in the sense that every element κ̂i ∈ T̂hi , i = 1, . . . , ` − 1, is a parent of a subset
of elements which belong to the finer mesh T̂hj , where j = i + 1, . . . , `, respectively.
To this end, we proceed as follows: we define a coarse conforming shape–regular
mesh T̂H = {κ̂}, consisting of (standard) closed elements κ̂, whose open intersection
is empty. By standard element domains, we mean quadrilaterals/triangles in two
dimensions (d = 2), and tetrahedra/hexahedra when d = 3. Here, we assume that T̂H
is a non-boundary fitting mesh is the sense that it does not resolve the boundary of the
computational domain Ω. More precisely, we assume that T̂H satisfies the following
condition:

Ω ⊂ ΩH =

 ⋃
κ̂∈T̂H

κ̂

◦ and κ̂◦ ∩ Ω 6= ∅ ∀κ̂ ∈ T̂H ,

where, for a closed set D ⊂ Rd, D◦ denotes the interior of D, cf. [23], for example. The
finite element mesh T̂H should be viewed as having a granularity that is affordable for
which to solve our underlying problem, though is far too coarse to actually represent
the underlying geometry Ω.

Given T̂H , we now construct a sequence of successively refined (nested) compu-
tational meshes using Algorithm 3.1. We stress that Algorithm 3.1 simply provides
a prototype of a typical refinement algorithm that could be employed to generate
the sequence of nested reference meshes {T̂hi}`i=1; alternative sequences of grids may
also be exploited. We implicitly assume that element refinements are undertaken in
such a manner to ensure that the boundary of the computational domain is precisely
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Fig. 3.1. Composite finite element domains (black lines), together with the underlying reference
fine mesh (grey lines).

described by the finest reference mesh T̂h` .
We recall that the reference meshes {T̂hi}`i=1 are nested, cf. above. Formally, we

write this as follows: given κ̂i ∈ T̂hi , for some i, where 2 ≤ i ≤ `, the parent element
κ̂i−1 ∈ T̂hi−1 such that κ̂i ⊂ κ̂i−1 is given by the mapping

Fii−1(κ̂i) = κ̂i−1.

Thereby, the mapping F`i = Fi+1
i ◦ Fi+2

i+1 ◦ . . . ◦ F``−1, provides the link between the

parent elements on the reference mesh T̂hi , i = 1, . . . , ` − 1, with its children on the
finest reference mesh T̂h` . More precisely, given an element κ̂` ∈ T̂h` , the parent

element κ̂i ∈ T̂hi , i = 1, . . . , `− 1, which satisfies κ̂` ⊂ κ̂i is given by:

F`i(κ̂`) = κ̂i.

We now proceed to define the sequence of physical meshes Thi , i = 1, . . . , `. To
this end, we define the finest physical mesh Th` to be equal to the finest reference

mesh T̂h` , i.e., Th` = T̂h` . The newly created finest physical mesh Th` is a standard
boundary conforming mesh upon which standard finite element/finite volume methods
may be applied. In the current context, we assume that the geometry is complicated
in the sense that Th` is too fine to undertake computations. Instead, we wish to only
use Th` to create a coarse composite finite element mesh TCFE upon which numerical
simulations will be performed.

With this construction, we may now naturally create a hierarchy of physical
meshes {Thi}`i=1 by simply coarsening Th` . In order to ensure that these meshes are
nested, the element domains within these meshes may consist of general polygons. To
this end, we write

Thi = {κ : κ = ∪κ`, κ` ∈ Th` , which share a common parent from mesh level i, i.e.,

F`i(κ`) is identical for all members of this set},

i = 1, . . . , ` − 1. We refer to the coarsest level physical mesh Th1
as the composite

finite element mesh; in particular, we denote this by TCFE, i.e., TCFE = Th1
. We stress

that the elements κ ∈ TCFE consist of general polygons; cf. Figure 3.1 for examples
of potential element configurations, together with the underlying fine reference mesh
T̂h` .

3.2. Finite element spaces. Given the meshes {T̂hi}`i=1 and {Thi}`i=1, we de-
fine the corresponding sequences of reference and physical discontinuous Galerkin
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finite element spaces V (T̂hi , p̂) and V (Thi ,p), i = 1, . . . , `, respectively, consisting of
piecewise discontinuous polynomials. To this end, we first construct the coarsest ref-
erence space V (T̂h1

, p̂) ≡ V (T̂H , p̂). For each κ̂ ∈ T̂h1
, we assign a polynomial degree

pκ̂. Writing p̂ = {pκ̂ : κ̂ ∈ T̂h1}, we define

V (T̂h1
, p̂) = {u ∈ L2(ΩH) : u|κ̂ ∈ Ppκ̂(κ̂) ∀κ̂ ∈ T̂h1

},

where Pp(κ̂) denotes the set of polynomials of degree at most p ≥ 1 defined over
κ̂. With the coarsest reference finite element space defined, the sequence of spaces
V (T̂hi , p̂), i = 2, 3, . . . , `, are constructed so that the child elements inherit the same
polynomial degree assigned to their parent element. More precisely, we write

V (T̂hi , p̂) = {u ∈ L2(Ωhi) : u|κ̂ ∈ Ppκ̂1 (κ̂), where κ̂1 = Fi1(κ̂) ∀κ̂ ∈ T̂hi},

where Ωhi =
(⋃

κ̂∈T̂hi
κ̂
)◦

, i = 2, 3, . . . , `. Under the foregoing assumptions, we note

that Ωh` ≡ Ω.
The composite finite element spaces are now constructed based on employing the

polynomial degree vector p = {pκ : pκ = pκ̂, κ ⊂ κ̂, κ̂ ∈ T̂h1 , ∀κ ∈ Th1}. Thereby,

V (Th1
,p) = {u ∈ L2(Ω) : u|κ ∈ Ppκ(κ) ∀κ ∈ Th1

},

and

V (Thi ,p) = {u ∈ L2(Ω) : u|κ ∈ Ppκ1 (κ), where κ ⊂ κ1, κ1 ∈ Th1 , ∀κ ∈ Thi},

i = 2, 3, . . . , `. Thereby, noting that the meshes {Thi}`i=1 are nested, we deduce that
V (Th1

,p) ⊆ V (Th2
,p) ⊆ . . . ⊆ V (Th` ,p).

We now refer to V (Th1
,p) as the composite finite element space V (TCFE,p), i.e.,

V (TCFE,p) = V (Th1
,p).

4. Composite discontinuous Galerkin finite element method. In this sec-
tion, we introduce the hp-version of the (symmetric) interior penalty DGCFEM for the
numerical approximation of (2.1)–(2.2). To this end, we first introduce the following
notation.

We denote by FI(TCFE) the set of all interior faces of the partition TCFE of Ω,
and by FB(TCFE) the set of all boundary faces of TCFE. Furthermore, we define
F(TCFE) = FI(TCFE) ∪ FB(TCFE). We emphasize that the term ‘faces’, of a given com-
posite element κ ∈ TCFE, consists of straight/coplanar (d−1)–dimensional segments of
the polygonal/polyhedral domain κ. The boundary ∂κ of an element κ and the sets
∂κ \ ∂Ω and ∂κ ∩ ∂Ω will be identified in a natural way with the corresponding sub-
sets of F(TCFE). Let κ+ and κ− be two adjacent elements of TCFE, and x an arbitrary
point on the interior face F ∈ FI(TCFE) given by F = ∂κ+ ∩ ∂κ−. Furthermore, let
v and q be scalar- and vector-valued functions, respectively, that are smooth inside
each element κ±. By (v±,q±), we denote the traces of (v,q) on F taken from within
the interior of κ±, respectively. Then, the averages of v and q at x ∈ F are given by

{{v}} =
1

2
(v+ + v−), {{q}} =

1

2
(q+ + q−),

respectively. Similarly, the jumps of v and q at x ∈ F are given by

[[v]] = v+ nκ+ + v− nκ− , [[q]] = q+ · nκ+ + q− · nκ− ,
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respectively, where we denote by nκ± the unit outward normal vector of ∂κ±, respec-
tively. On a boundary face F ∈ FB(TCFE), we set {{v}} = v, {{q}} = q, and [[v]] = vn,
with n denoting the unit outward normal vector on the boundary ∂Ω.

With this notation, we make the following key assumptions:
(A1) For all elements κ ∈ TCFE, we define

Cκ = card {F ∈ F(TCFE) : F ⊂ ∂κ} .

In the following we assume that there exists a positive constant CF such that

max
κ∈TCFE

Cκ ≤ CF ,

uniformly with respect to the mesh size.
(A2) Given the construction of the reference meshes T̂hi , i = 1, 2, . . . , `, we assume

that the finest mesh T̂h` is the minimal mesh representation of the domain Ω
in the following sense. Given a face F ∈ F(TCFE) of an element κ ∈ TCFE, i.e.,
F ⊂ ∂κ, we assume there is a constant ρ1 ≥ 1 such that

ρ−1
1 ≤ hF /hκ̂ ≤ ρ1 ∀κ̂ ∈ Sκ = {κ̂ ∈ T̂h` : κ̂ ⊂ κ},

where hF and hκ̂ denote the diameter of F and κ̂, respectively.
(A3) We assume that the polynomial degree vector p is of bounded local variation,

that is, there is a constant ρ2 ≥ 1 such that

ρ−1
2 ≤ pκ/pκ′ ≤ ρ2,

whenever κ and κ′ share a common face ((d− 1)–dimensional facet).
We remark that, as an immediate consequence of Assumption (A2), the following

inverse inequality holds: given a face F ∈ F(TCFE) of an element κ ∈ TCFE, there exists
a positive constant Cinv, independent of the local mesh size and local polynomial
order, such that

‖∇v‖2L2(F ) ≤ Cinv
p2
κ

hF
‖∇v‖2L2(κ) (4.1)

for all v ∈ V (TCFE,p), cf. [4].
With this notation, we consider the (symmetric) interior penalty hp–DGCFEM

for the numerical approximation of (2.1)–(2.2): find uh ∈ V (TCFE,p) such that

BDG(uh, v) = Fh(v) (4.2)

for all v ∈ V (TCFE,p), where

BDG(u, v) =
∑
κ∈TCFE

∫
κ

∇u · ∇v dx−
∑

F∈F(TCFE)

∫
F

(
{{∇hv}} · [[u]] + {{∇hu}} · [[v]]

)
ds

+
∑

F∈F(TCFE)

∫
F

σ [[u]] · [[v]] ds,

Fh(v) =

∫
Ω

fv dx.
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Here, ∇h denotes the elementwise gradient operator. Furthermore, the function σ ∈
L∞(F(TCFE)) is the discontinuity stabilization function that is chosen as follows: we
define the function p ∈ L∞(F(TCFE)) by

p(x) :=

{
max(pκ, pκ′), x ∈ F ∈ FI(TCFE), F = ∂κ ∩ ∂κ′,
pκ, x ∈ F ∈ FB(TCFE), F ⊂ ∂κ ∩ ∂Ω,

and set

σ|F = γp2h−1
F , (4.3)

with a parameter γ > 0 that is independent of hF and p.
We conclude this section by equipping the composite finite element space V (TCFE,p)

with the DG energy norm ||| · |||DG defined by

||| v |||2DG =
∑
κ∈TCFE

‖∇v‖2L2(κ) +
∑

F∈F(TCFE)

‖σ1/2[[v]]‖2L2(F ).

The stability and a priori error analysis of the hp–DGCFEM defined by (4.2) has been
undertaken in our recent article [4]; in particular, we note that the discrete problem
is well–posed only if γ is chosen to be sufficiently large.

5. A posteriori error analysis. In this section, we develop the a posteriori
error analysis of the hp–DGCFEM defined by (4.2). To this end, we denote by Π
the L2–projection operator onto V (TCFE,p); with this notation, we state the following
upper bound.

Theorem 5.1. Let the analytical solution u of (2.1)–(2.2) belong to H1
0 (Ω). Fur-

thermore, let uh ∈ V (TCFE,p) be its composite discontinuous Galerkin approximation
defined by (4.2). Then, the following hp–version a posteriori error bound holds:

|||u− uh |||DG ≤ C

( ∑
κ∈TCFE

(η2
κ +O2

κ)

) 1
2

, (5.1)

where the local error indicators ηκ, κ ∈ TCFE, are defined by

η2
κ = h2

κp
−2
κ ‖Πf + ∆uh‖2L2(κ)

+
∑

F⊂∂κ\∂Ω

h2
κh
−1
F p−1

κ ‖[[∇uh]]‖2L2(F ) + σh2
κh
−2
F pκ‖[[uh]]‖2L2(∂κ), (5.2)

and the data oscillation term Oκ is given by

Oκ = h2
κp
−2
κ ‖f −Πf‖2L2(κ).

Here, C > 0 is a constant that is independent of discretization parameters, and only
depends on the shape-regularity of the mesh and the constants CF , ρ1, and ρ2 from
Assumptions (A1), (A2), and (A3), respectively.

Remark 5.2. Theorem 5.1 represents the generalization of the analogous a poste-
riori error bound derived in [15] for the standard discontinuous Galerkin finite element
approximation of (2.1)–(2.2), to the composite setting. In particular, we note that the
flux jump and penalty terms arising in the definition of the error indicator (5.2) are
suitably modified to take into account the face dimension hF ; for standard element
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domains, hF ≈ hκ, in which case the flux and penalty terms contain the usual scaling
of hκ and h−1

κ , respectively.
Remark 5.3. In order to incorporate the inhomogeneous boundary condition

u = g on ∂Ω, the error indicators ηκ are simply adjusted by modifying the jump
indicators on ∂κ ∩ ∂Ω, with the inclusion of an additional data-oscillation term; for
details, see [15].

Remark 5.4. The derivation of (local) lower bounds crucially depends on exploit-
ing suitable (weighted) inverse inequalities on general polygonal/polyhedral (possibly
disconnected) element domains, cf. [19, 15] for the case when standard element shapes
are employed. Initial work in this direction has been pursued in the recent article [6].

5.1. Proof of Theorem 5.1. In this section we present the proof of the upper
bound stated in Theorem 5.1.

5.1.1. DG decompositions. The proceeding proof is based on employing an
hp–version decomposition result for the finest (reference) finite element space V (T̂h` , p̂).

To this end, for simplicity, we assume that the finest reference mesh T̂h` is conforming,
i.e., it does not contain any hanging nodes; we remark that meshes containing hanging
nodes can be admitted, based on exploiting the hierarchical construction studied in
[17, 29, 28]. Writing F(T̂h`) to denote the set of all faces of the partition T̂h` of Ω, we

define the discontinuity stabilization function σ̂ on F(T̂h`) by

σ̂ = γ p̂2 ĥ−1.

Here, p̂ ∈ L∞(F(T̂h`)) is defined in an analogous fashion to p; indeed,

p̂(x) :=

{
max(pκ̂, pκ̂′), x ∈ F = ∂κ̂ ∩ ∂κ̂′,
pκ̂, x ∈ F ⊂ ∂κ̂ ∩ ∂Ω.

Similarly, ĥ ∈ L∞(F(T̂h`)) is given by

ĥ(x) :=

{
min(hκ̂, hκ̂′), x ∈ F = ∂κ̂ ∩ ∂κ̂′,
hκ̂, x ∈ F ⊂ ∂κ̂ ∩ ∂Ω.

Furthermore, on T̂h` , we define the norm

||| v |||2
D̂G

=
∑
κ∈T̂h`

‖∇v‖2L2(κ) +
∑

F∈F(T̂h` )

‖σ̂1/2[[v]]‖2L2(F ).

We write V c(T̂h` , p̂) = V (T̂h` , p̂)∩H1
0 (Ω). The orthogonal complement of V c(T̂h` , p̂)

in V (T̂h` , p̂) with respect to the norm ||| · |||D̂G is denoted by V ⊥(T̂h` , p̂), such that

V (T̂h` , p̂) = V c(T̂h` , p̂)⊕ V ⊥(T̂h` , p̂).

With this notation, the following approximation result holds.
Proposition 5.5. There is an approximant A : V (T̂h` , p̂) → V c(T̂h` , p̂) that

satisfies

‖∇h(v −Av)‖2L2(Ω) ≤ C
∑

F∈F(T̂h` )

∫
F

p̂2ĥ−1|[[v]]|2 ds, v ∈ V (T̂h` , p̂),
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with a constant C > 0 that is independent of the mesh size and polynomial degrees.
Proof. For d = 2, we refer to [15, 17]; see also [29] for 1–irregular quadrilateral

meshes. For d = 3, meshes consisting of 1–irregular hexahedral elements have been
considered in [28].

Noting that V (TCFE,p) ⊆ V (T̂h` , p̂), the DG-solution uh ∈ V (TCFE,p) obtained
by (4.2) may be split accordingly,

uh = uch + u⊥h , (5.3)

where uch ∈ V c(T̂h` , p̂) and u⊥h ∈ V ⊥(T̂h` , p̂). Furthermore, we define the error of the
hp–DGCFEM by

eh = u− uh ≡ ech − u⊥h , (5.4)

where

ech = u− uch ∈ H1
0 (Ω). (5.5)

With this notation, employing Proposition 5.5, we immediately deduce the following
result.

Proposition 5.6. With u⊥h and ech defined by (5.3) and (5.4), respectively, the
following bounds hold:

‖∇hu⊥h ‖L2(Ω) ≤ C

 ∑
F∈F(TCFE)

∫
F

p2h−1
F |[[v]]|2 ds

1/2

, ‖∇ech‖L2(Ω) ≤ C||| eh |||DG,

where C is a positive constant which is independent of the discretization parameters.
Proof. Consider the proof of the first inequality: to this end, application of

Proposition 5.5 gives

‖∇hu⊥h ‖L2(Ω) = ‖∇h(uh − uch)‖L2(Ω) ≤ C
∑

F∈F(T̂h` )

∫
F

p̂2ĥ−1|[[uh]]|2 ds.

Again, noting that V (TCFE,p) ⊆ V (T̂h` , p̂), we deduce that for F ∈ F(T̂h`)\F(TCFE),
[[uh]]|F = 0. Moreover, exploiting Assumption (A2), together with the definition of
the polynomial degree vector p, gives

‖∇hu⊥h ‖L2(Ω) ≤ C

 ∑
F∈F(TCFE)

∫
F

p2h−1
F |[[uh]]|2 ds

1/2

,

as required.
The second bound follows from the triangle inequality, the bound for ‖∇hu⊥h ‖L2(Ω),

together with the fact that u ∈ H1
0 (Ω); cf. [17], for details.

Next, we develop the approximation results needed for the forthcoming a poste-
riori error estimation. To this end, given κ ∈ TCFE, we write κ̂ ∈ T̂h1

to denote the
element in the reference mesh T̂h1 such that κ ⊆ κ̂. With this notation, we now recall
the following approximation result.

Lemma 5.7. Given v|κ̂ ∈ H1(κ̂), for κ̂ ∈ T̂h1
, there exists Îv in Ppκ̂(κ̂), pκ̂ =

1, 2, . . . , such that

h−1
κ̂ pκ̂‖v − Îv‖L2(κ̂) + ‖∇(v − Îv)‖L2(κ̂) ≤ C‖∇v‖L2(κ̂),
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where C is a positive constant, which is independent of the local mesh size hκ̂ and the
local polynomial degree pκ̂.

Proof. See [17] and the references cited therein, for example.
Given the operator Î defined in Lemma 5.7, we introduce the projection operator

I on κ by the relation

Iv = Î(Ev)|κ, (5.6)

where E denotes the extension operator defined in Theorem 2.1. With this notation,
we state the following approximation result.

Lemma 5.8. Given κ ∈ TCFE, let F ⊂ ∂κ denote one of its faces. For a function
v ∈ H1(κ), the following bound holds

h−1
κ pκ‖v − Iv‖L2(κ) + ‖∇(v − Iv)‖L2(κ) + h

1/2
F h−1

κ p1/2
κ ‖v − Iv‖L2(F ) ≤ C‖∇Ev‖L2(κ̂),

where pκ ≥ 1 and C is a positive constant, independent of v and the discretization
parameters.

Proof. We first consider the proof of the upper bounds on the L2(κ) norms of
v − Iv and ∇(v − Iv). Exploiting Lemma 5.7, we immediately deduce that

h−1
κ pκ‖v − Iv‖L2(κ) + ‖∇(v − Iv)‖L2(κ)

≤ h−1
κ pκ‖Ev − Î(Ev)‖L2(κ̂) + ‖∇(Ev − Î(Ev))‖L2(κ̂) ≤ C‖∇Ev‖L2(κ̂). (5.7)

The proof of the upper bound on the approximation error measured in terms of
the L2(F )-norm now follows immediately from the above result, together with the
multiplicative trace inequality

‖v‖2L2(F ) ≤ C(‖∇v‖L2(κ)‖v‖L2(κ) + h−1
F ‖v‖

2
L2(κ)), (5.8)

where C is a positive independent of the meshsize. We remark, cf. [7, 4], that hF
appears in (5.8) rather than hκ due to the general shape of the element κ.

5.1.2. Proof of Theorem 5.1. The proof of Theorem 5.1 is based on the ana-
lytical techniques developed in [17]; an alternative proof, based on employing so-called
lifting operators is presented in [15].

Exploiting the decomposition (5.4), we note that

||| eh |||2DG =
∑
κ∈TCFE

‖∇eh‖2L2(κ) +
∑

F∈F(TCFE)

‖σ1/2[[eh]]‖2L2(F )

=
∑
κ∈TCFE

∫
κ

∇eh · ∇echdx−
∑
κ∈TCFE

∫
κ

∇eh · ∇u⊥h dx +
∑

F∈F(TCFE)

∫
F

σ|[[eh]]|2ds

≡ T1 + T2 + T3. (5.9)

We now proceed to bound each of the terms T1, T2, and T3 individually.
Term T1. Exploiting integration by parts gives

T1 = −
∑
κ∈TCFE

∫
κ

∆u echdx−
∑
κ∈TCFE

∫
κ

∇uh · ∇echdx

=
∑
κ∈TCFE

∫
κ

f echdx−
∑
κ∈TCFE

∫
κ

∇uh · ∇echdx.
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We write Iech ∈ V (TCFE,p) to be the element-wise interpolant of ech defined by (5.6).
Thereby, exploiting the definition of the hp–DGCFEM (4.2) and integrating by parts
elementwise, we get

T1 =
∑
κ∈TCFE

∫
κ

f (ech − Iech)dx−
∑
κ∈TCFE

∫
κ

∇uh · ∇(ech − Iech)dx

−
∑

F∈F(TCFE)

∫
F

(
{{∇huh}} · [[Iech]] + {{∇hIech}} · [[uh]]

)
ds

+
∑

F∈F(TCFE)

∫
F

σ [[uh]] · [[Iech]] ds

=
∑
κ∈TCFE

∫
κ

(f + ∆uh) (ech − Iech)dx−
∑
κ∈TCFE

∫
∂κ

∂uh
∂nκ

(ech − Iech)ds

−
∑

F∈F(TCFE)

∫
F

(
{{∇huh}} · [[Iech]] + {{∇hIech}} · [[uh]]

)
ds

+
∑

F∈F(TCFE)

∫
F

σ [[uh]] · [[Iech]] ds.

We now recall the following result used to transfer between element-based and face-
based integrations, cf. [11]:

∑
κ∈TCFE

∫
∂κ

∂uh
∂nκ

(ech − Iech)ds =
∑

F∈F(TCFE)

∫
F

{{∇huh}} · [[ech − Iech]] ds

+
∑

F∈FI(TCFE)

∫
F

[[∇huh]]{{ech − Iech}} ds. (5.10)

Recalling that ech ∈ H1
0 (Ω), it follows that [[ech]]F = 0 for all F ∈ F(TCFE). Thereby,

T1 =
∑
κ∈TCFE

∫
κ

(f + ∆uh) (ech − Iech)dx−
∑

F∈FI(TCFE)

∫
F

[[∇uh]]{{ech − Iech}} ds

−
∑

F∈F(TCFE)

∫
F

{{∇hIech}} · [[uh]] ds+
∑

F∈F(TCFE)

∫
F

σ [[uh]] · [[Iech]] ds

≡ T11 + T12 + T13 + T14. (5.11)

Proceeding as in [17], employing the Cauchy–Schwarz inequality, together with the
approximation result stated in Lemma 5.8 gives

T11 ≤

( ∑
κ∈TCFE

h2
κp
−2
κ ‖f + ∆uh)‖2L2(κ)

)1/2( ∑
κ∈TCFE

h−2
κ p2

κ‖ech − Iech‖2L2(κ)

)1/2

≤ C

( ∑
κ∈TCFE

h2
κp
−2
κ ‖f + ∆uh)‖2L2(κ)

)1/2

‖∇Eech‖L2(ΩH). (5.12)
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Analogously, exploiting Lemma 5.8 and Assumption (A1), we deduce that

T12 ≤

 ∑
κ∈TCFE

∑
F⊂∂κ\∂Ω

h2
κh
−1
F p−1

κ ‖[[∇uh]]‖2L2(F )

1/2

×

 ∑
κ∈TCFE

∑
F⊂∂κ\∂Ω

h−2
κ hF pκ‖ech − Iech‖2L2(F )

1/2

≤ C

 ∑
κ∈TCFE

∑
F⊂∂κ\∂Ω

h2
κh
−1
F p−1

κ ‖[[∇uh]]‖2L2(F )

1/2

‖∇Eech‖L2(ΩH). (5.13)

To deal with Term T13, we employ the inverse inequality (4.1), together with (A3)
and (A1):

T13 ≤

 ∑
F∈F(TCFE)

σ‖[[uh]]‖2L2(F )

1/2 ∑
F∈F(TCFE)

σ−1‖{{∇hIech}}‖2L2(F )

1/2

≤ C

 ∑
F∈F(TCFE)

σ‖[[uh]]‖2L2(F )

1/2

‖∇hIech‖L2(Ω).

Exploiting Lemma 5.8, we note that

‖∇hIech‖L2(Ω) ≤ ‖∇h(Iech− ech)‖L2(Ω) + ‖∇ech‖L2(Ω) ≤ C‖∇Eech‖L2(ΩH) + ‖∇ech‖L2(Ω)

Thereby,

T13 ≤ C

 ∑
F∈F(TCFE)

σ‖[[uh]]‖2L2(F )

1/2

(‖∇Eech‖L2(ΩH) + ‖∇ech‖L2(Ω)). (5.14)

Again, noting that [[ech]]F = 0 for all F ∈ F(TCFE), recalling Assumption (A3) and
exploiting Lemma 5.8 gives

T14 =
∑

F∈F(TCFE)

∫
F

σ [[uh]] · [[Iech − ech]] ds

≤

 ∑
F∈F(TCFE)

σh2
κh
−2
F p‖[[uh]]‖2L2(F )

1/2 ∑
F∈F(TCFE)

σh−2
κ h2

F p
−1‖[[Iech − ech]]‖2L2(F )

1/2

≤ C

 ∑
F∈F(TCFE)

σh2
κh
−2
F p‖[[uh]]‖2L2(F )

1/2

‖∇Eech‖L2(ΩH). (5.15)
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Substituting the bounds (5.12)–(5.15) into (5.11) and exploiting Theorem 2.1, we
deduce that

T1 ≤ C

( ∑
κ∈TCFE

h2
κp
−2
κ ‖f + ∆uh)‖2L2(κ)

)1/2

+

 ∑
κ∈TCFE

∑
F⊂∂κ\∂Ω

h2
κh
−1
F p−1

κ ‖[[∇uh]]‖2L2(F )

1/2

+

 ∑
F∈F(TCFE)

σh2
κh
−2
F p‖[[uh]]‖2L2(F )

1/2
 ‖∇ech‖L2(Ω).

Thereby, employing the Cauchy–Schwarz inequality and Proposition 5.6, gives

T1 ≤ C

( ∑
κ∈TCFE

(η2
κ +O2

κ)

)1/2

||| eh |||DG. (5.16)

Term T2. As above, employing the Cauchy–Schwarz inequality, together with
Proposition 5.6, we get

T2 ≤ ‖∇eh‖L2(Ω)‖∇u⊥h ‖L2(Ω) ≤ C

( ∑
κ∈TCFE

η2
κ

)1/2

||| eh |||DG. (5.17)

Term T3. Noting that u ∈ H1
0 (Ω) gives

T3 =
∑

F∈F(TCFE)

∫
F

σ[[eh]] · [[uh]]ds ≤

( ∑
κ∈TCFE

η2
κ

)1/2

||| eh |||DG. (5.18)

Inserting the bounds (5.16), (5.17), and (5.18) into (5.9) and dividing both sides by
||| eh |||DG completes the proof of Theorem 5.1.

6. Numerical experiments. In this section we present a series of computa-
tional examples to highlight the practical performance of the a posteriori error bound
derived in Theorem 5.1 for problems where the underlying computational domain con-
tains micro-structures. Throughout this section the DGCFEM solution uh defined by
(4.2) is computed with the constant γ appearing in the discontinuity stabilization
function σ equal to 10. All the numerical examples presented in this section have
been computed using the AptoFEM package (www.aptofem.com); furthermore the
resulting system of linear equations are solved based on employing the Multifrontal
Massively Parallel Solver (MUMPS), see [1, 2, 3].

Algorithm 6.1 outlines the general adaptive algorithm employed within this sec-
tion. In particular, we point out that the elements are marked for refinement/dere-
finement, according to the size of the local error indicators ηκ, based on employing
the fixed fraction refinement strategy; here, we set the refinement and derefinement
fractions θr and θd, respectively, equal to 25% and 5%, respectively. Once an element
κ ∈ TCFE has been marked for refinement/derefinement, we employ the hp–adaptive
strategy developed in [16] to decide whether h– or p–refinement/derefinement should
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Algorithm 6.1 Adaptive Refinement Algorithm

1: Input parameters: refinement/derefinement fractions θr and θd, respectively; ter-
mination tolerance tol; maximum number of refinement steps kmax.

2: Initial step: Input initial composite finite element mesh TCFE and reference mesh
T̂h` , cf. Algorithm 3.1, and select initial polynomial degree distribution p in order
to construct the composite and reference finite element spaces V (TCFE,p) and
V (T̂h` , p̂), respectively.

3: Set V (TCFE1 ,p1) = V (TCFE,p) and the mesh counter k = 1.
4: while k < kmax do
5: Compute uh ∈ V (TCFEk ,pk), cf. (4.2).
6: Evaluate the error indicators ηκ, defined by (5.2), for all κ ∈ Tk
7: if C

(∑
κ∈TCFEk

(η2
κ +O2

κ)
)1/2

< tol then

8: Exit.
9: else

10: Mark elements for refinement/derefinement employing the fixed fraction
refinement strategy with refinement and derefinement fractions θr and θd, respec-
tively.

11: if Element κ is marked for refinement/derefinement then
12: Perform hp–refinement/derefinement based on testing the smoothness

of the computed solution uh; see, e.g., [16, 8].
13: end if
14: Set k = k + 1 and generate the new composite finite element space

V (TCFEk ,pk).

15: hp–Refine the reference finite element space V (T̂h` , p̂) (if necessary), to

ensure that the inclusion V (TCFEk ,pk) ⊆ V (T̂h` , p̂) holds.
16: end if
17: end while

be performed on κ; for related work, we refer to [8, 26], for example, and the review ar-
ticle [20]. Finally, we remark that to ensure that the inclusion V (TCFEk ,pk) ⊆ V (T̂h` , p̂)
remains valid as the adaptive algorithm proceeds, subsequent refinement of the (finest)
reference finite element space V (T̂h` , p̂) may need to be undertaken. Indeed, addi-
tional refinement is performed to ensure that the following two conditions hold:

1. Given any element κ ∈ TCFE, we may write κ = ∪κ`, κ` ∈ Sκ, where Sκ
denotes a subset of elements which belong to T̂h` .

2. Given κ ∈ TCFE and the corresponding set Sκ = {κ̂ ∈ T̂h` : κ̂ ⊂ κ} consisting
of fine level reference elements which form κ, we require that the polynomial
degree pκ̂ defined for each κ̂ ∈ Sκ is set equal to the polynomial degree pκ of
the composite element κ, i.e., pκ̂ = pκ for all κ̂ ∈ Sκ.

6.1. Example 1: Square domain with micro-structures. In this first exam-
ple, we consider the case when the computational domain Ω contains a large number
of small geometric features. To this end, we set Ω to be the unit square (0, 1)2 in two–
dimensions, which has had a series of uniformly spaced square holes removed; here,
we consider the case where 256 small square holes are removed from (0, 1)2, cf. [5].
In this example, we select the right-hand side forcing function f and an appropriate
inhomogeneous boundary condition u = g on ∂Ω, so that the analytical solution is
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Fig. 6.1. Example 1: Initial composite finite element mesh consisting of 32 elements, together
with the initial fine level reference mesh consisting of 6144 elements.
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Fig. 6.2. Example 1: Adaptive algorithm employing h–refinement with p = 2. (a) Comparison
of actual and estimated energy norm of the error with respect to the number of degrees of freedom;
(b) Effectivity indices; (c) Comparison between DGCFEM and the standard DGFEM (computed
without any holes); (d) Effectivity indices for DGCFEM and DGFEM.
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(a) (b)

Fig. 6.3. Example 1: Adaptive algorithm employing h–refinement with p = 2. h–Mesh (and
solution) after: (a) 7 adaptive refinements with 1426 elements; (b) 13 adaptive refinements, with
37355 elements.

given by

u(x, y) = x(1− x)y(1− y)(1− 2y) e−s(2x−1)2 ,

where s is a positive constant, cf. [15, 19]; throughout this section we set s = 25.
In order to compute the numerical approximation to (2.1)–(2.2) (subject to in-

homogeneous Dirichlet boundary conditions), using the DGCFEM defined in (4.2),
we first construct a sequence of meshes based on employing Algorithm 3.1 outlined
in Section 3. To this end, the coarsest reference mesh T̂H is selected to be a uniform
triangular mesh; in particular, T̂H is constructed from a uniform 4 × 4 square mesh
by connecting the north east vertex with the south west one within each mesh square.
This mesh is then subsequently adaptively refined in order to generate a fine reference
mesh T̂` consisting of 6144 triangular elements, which precisely describes the compu-
tational domain Ω, cf. Figure 6.1; thereby, the initial composite finite element mesh
TCFE simply consists of 32 elements.

We first begin by considering the performance of the proposed a posteriori error
estimators with h–refinement, i.e., the polynomial degrees are kept fixed; here, we set
p = 2, i.e., piecewise discontinuous quadratic polynomials are employed. To this end,
in Figure 6.2(a) we present a comparison of the actual and estimated energy norm
of the error versus the number of degrees of freedom in the composite finite element
space V (TCFE,p) for the sequence of meshes generated by Algorithm 6.1 (with fixed
polynomial degrees). Here, we observe that the error bound over-estimates the true
error by a (reasonably) consistent factor; indeed, from Figure 6.2(b), we see that the
computed effectivity indices tend to a value just below 5. In order to assess the quality
of the computed DGCFEM solution on adaptively refined composite meshes, in Figure
6.2(c) we compare the proposed DGCFEM with the standard DGFEM; in the latter
case, we simply compute the numerical solution on the unit square (0, 1)2 without any
holes, cf. [4], using the error indicators derived in [15]. Here, we now observe that the
accuracy and rate of convergence of the DGCFEM, which takes into account the holes
present in the computational domain, is very similar to the standard DGFEM which
cannot treat the micro-structures present in Ω on such coarse meshes. Indeed, this
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Fig. 6.4. Example 1: Adaptive algorithm employing hp–refinement. (a) Comparison of actual
and estimated energy norm of the error with respect to the square root of the number of degrees
of freedom; (b) Effectivity indices; (c) Comparison between DGCFEM and the standard DGFEM
(computed without any holes); (d) Effectivity indices for DGCFEM and DGFEM.

clearly illustrates that the presence of holes/micro-structures in the computational
domain does not lead to a degradation in the quality of the computed solution when
the DGCFEM is exploited, cf. [4]. The effectivity indices for both methods are
presented in Figure 6.2(d); here, we observe that the efficiency of both methods is
very similar as the mesh is adaptively refined. In Figure 6.3, we show the composite
finite element meshes generated using our a posteriori error indicator after 7 and 13
adaptive refinement steps. Here, we observe that h–refinement has been performed in
the vicinity of the exponential ‘hills’ situated in the middle of the domain where the
gradient/curvature of the analytical solution is relatively large.

Finally, we turn our attention to hp–adaptivity; to this end in Figure 6.4 we
present analogous results to those presented in Figure 6.2 for h–refinement. In par-
ticular, in Figure 6.4(a) we present a comparison of the actual and estimated energy
norm of the error versus the square root of the number of degrees of freedom in
V (TCFE,p) on a linear–log scale. Here, the convergence lines using hp–refinement are
roughly straight on a linear-log scale, which indicates that exponential convergence
is attained for this smooth problem. The comparison with the standard DGFEM
(computed on (0, 1)2 without any holes) again indicates that the presence of the holes
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(a)

(b)

Fig. 6.5. Example 1: Adaptive algorithm employing hp–refinement. hp–Mesh distribution
after: (a) 7 adaptive refinements with 416 elements and 4639 degrees of freedom; (b) 16 adaptive
refinements, with 2303 elements and 47499 degrees of freedom.

in Ω does not lead to a degradation of the DGCFEM, cf. Figure 6.2(c). The effectiv-
ity indices shown in Figures 6.4(b) & (d) demonstrate the efficiency of the proposed
error estimator. Finally, Figure 6.5 presents the hp–meshes after 7 and 16 adaptive
refinements. As before, we observe that some h–refinement of the mesh has been per-
formed in the vicinity of the base of the exponential hills situated in the left- and the
right-hand sides of the domain. However, once the h–mesh has adequately captured
the structure of the solution, the hp–adaptive algorithm increased the degree of the
approximating polynomial within the interior part of the domain containing these
hills.

6.2. Example 2: L–Shaped domain with micro-structures. In this section
we let Ω be the L-shaped domain (−1, 1)2 \ [0, 1)× (−1, 0] which has had 192 square
holes removed. Writing (r, ϕ) to denote the system of polar coordinates, we set f = 0
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Fig. 6.6. Example 2: Initial composite finite element mesh consisting of 24 elements, together
with the initial fine level reference mesh consisting of 4608 elements.

5 10 15 20 25
10

−4

10
−3

10
−2

10
−1

10
0

10
1

(Degrees of Freedom)
1/3

 

 

Error Bound
|||u−u

h
|||

DG

0 5 10 15
0

2

4

6

8

10

Mesh Number

E
ff
e
c
ti
v
it
y
 I
n
d
e
x

(a) (b)

5 10 15 20 25
10

−4

10
−3

10
−2

10
−1

10
0

10
1

(Degrees of Freedom)
1/3

 

 

Error Bound (CFE)
|||u−u

h
|||

DG
 (CFE)

Error Bound (DG)
|||u−u

h
|||

DG
 (DG)

0 5 10 15
0

2

4

6

8

10

Mesh Number

E
ff
e
c
ti
v
it
y
 I
n
d
e
x

 

 

DGCFEM

Standard DGFEM

(c) (d)

Fig. 6.7. Example 2: Adaptive algorithm employing hp–refinement. (a) Comparison of actual
and estimated energy norm of the error with respect to the (third root of the) number of degrees
of freedom; (b) Effectivity indices; (c) Comparison between DGCFEM and the standard DGFEM
(computed without any holes); (d) Effectivity indices for DGCFEM and DGFEM.
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(a)

(b)

Fig. 6.8. Example 2: Adaptive algorithm employing hp–refinement. hp–Mesh distribution
after: (a) 7 adaptive refinements with 75 elements and 1722 degrees of freedom; (b) 15 adaptive
refinements, with 198 elements and 9461 degrees of freedom.

and impose an appropriate inhomogeneous boundary condition for u so that

u = r2/3 sin(2ϕ/3);

cf. [27]. We note that although the boundary conditions imposed on the holes ensure
that u is smooth inside (−1, 1)2 \ [0, 1)× (−1, 0], ∇u is singular at the origin; indeed,
here u 6∈ H2(Ω).

Here, the initial coarse reference mesh T̂H is selected to be a uniform triangular
mesh, consisting of 24 elements, constructed as in the previous example. As before,
this mesh is then adaptively refined to generate a fine reference mesh consisting of
4608 triangular elements, cf. Figure 6.6.

For brevity, in this example, we focus our attention on hp–mesh adaptation. Fig-
ure 6.7(a) shows the history of the actual and estimated energy norm of the error
on each of the meshes generated by our hp–adaptive algorithm. As in the previous
example, we observe that the a posteriori bound over-estimates the true error by a
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(a)

(b)

Fig. 6.9. Example 3: Computed solution. (a) Ω contains 256 square holes; (b) Ω contains 256
circular holes.

consistent factor; the effectivity index tends to a value of just under 6, cf. Figure
6.7(b). In addition, from Figure 6.7(a) we observe exponential convergence of the
energy norm of the error using hp–refinement; indeed, on a linear-log scale, the con-
vergence lines are on average straight. Figure 6.7(c) presents a comparison between
the proposed DGCFEM with the standard DGFEM; as before, the latter scheme is
computed on the L-shaped domain (−1, 1)2\[0, 1)×(−1, 0] without any holes. As noted
above, we observe that the presence of holes/micro-structures in the computational
domain does not lead to a degradation in the quality of the computed solution when
the DGCFEM is exploited. The effectivity indices for both methods are presented in
Figure 6.7(d).

In Figure 6.8 we show the mesh generated using the local error indicators ηκ after
7 and 15 hp–adaptive refinement steps. Here, we see that the h–mesh has been largely
refined in the vicinity of the re-entrant corner located at the origin; additionally, we
see that the polynomial degrees have been increased away from the origin, since the
underlying analytical solution is smooth in this region, cf. [15].
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Fig. 6.10. Example 3: Adaptive algorithm employing both h– and hp–refinement. (a) Ω con-
tains 256 square holes; (b) Ω contains 256 circular holes.

6.3. Example 3: Problem with representative regularity. In this final ex-
ample, we again consider the case when Ω is the unit square (0, 1)2 in two–dimensions,
which has had a series of uniformly spaced holes removed. In particular, we shall con-
sider the two cases of when either 256 square or 256 circular holes have been removed
from (0, 1)2. We select the right-hand side forcing function f = 1 and impose the
homogeneous boundary condition u = 0 on ∂Ω. Thereby, the analytical solution
u contains small microstructure details, and moreover, in the case when the holes
are square, reentrant corner singularities at each corner of the removed holes. The
(computed) analytical solutions are depicted in Figure 6.9.

Here, the initial coarse reference mesh T̂H is selected to be a uniform triangu-
lar mesh, consisting of 32 elements, constructed as in Example 1. For the case of
square holes, this mesh is then adaptively refined to generate a fine reference mesh
consisting of 6144 triangular elements, cf. Example 1; when Ω contains circular holes,
we construct a fine reference mesh consisting of 85500 elements. Given that the an-
alytical solution is unknown in both cases, in Figure 6.10 we present a comparison

between the a posteriori error estimator
(∑

κ∈TCFE η
2
κ

)1/2
computed using both h– and

hp–refinement in the cases when either square or circular holes are present in Ω. Here,
we observe that both mesh refinement strategies lead to very similar estimated errors
for a given number of degrees of freedom; this is expected given the nature of the
analytical solutions to the problems under consideration. Finally, in Figure 6.11 we
show the hp–meshes generated using the proposed adaptive algorithm. Here we ob-
serve that while some p–enrichment has been undertaken, significant mesh refinement
in the vicinity of the holes present in Ω has occurred.

7. Concluding remarks. In this article we have derived an energy norm hp–a
posteriori error bound for the composite version of the discontinuous Galerkin dis-
cretization of second–order elliptic partial differential equations. This class of schemes
naturally allows for the approximation of problems posed on so-called complicated do-
mains using relatively coarse finite element spaces. Numerical examples employing
both h– and hp–refinement on domains containing a large number of holes have been
presented. Future work will be devoted to the consideration of more complex fluid
flow problems; for related work on the application of CFEs to the Stokes equations of
incompressible fluid flow, we refer to [21, 22].
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(a)

(b)

Fig. 6.11. Example 3: Adaptive algorithm employing hp–refinement. hp–Mesh distribution
for: (a) Ω contains 256 square holes, after 15 adaptive refinements with 26928 elements and 440849
degrees of freedom; (b) Ω contains 256 circular holes, after 18 adaptive refinements with 81001
elements and 1827834 degrees of freedom.
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