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The behaviour of most physical systems is affected by their natural surroundings. A quantum
system with an environment is referred to as ”open”, and its study varies according to the classical
or quantum description adopted for the environment. We propose an approach to open quantum
systems that allows us to follow the crossover from quantum to classical environments; to achieve
this, we devise an exact parametric representation of the principal system, based on generalized
coherent states for the environment. The method is applied to the s= 1

2
Heisenberg-star with frus-

tration, where the quantum character of the environment varies with the couplings entering the
Hamiltonian H. We find that when the star is in an eigenstate of H, the central spin behaves as if it
were in an effective magnetic field, pointing in the direction set by the environmental coherent-state
angle variables (θ, ϕ), and broadened according to their quantum probability distribution. Such
distribution is independent on ϕ while, as a function of θ, is seen to get narrower as the quantum
character of the environment is reduced, collapsing into a Dirac-δ function in the classical limit. In
such limit, as ϕ is left undetermined, the Von Neumann entropy of the central spin remains finite.
It is equal to the entanglement of the original fully-quantum model, which further establishes a
relation between this latter quantity and the Berry-phase characterizing the dynamics of the central
spin in the effective magnetic field.

I. INTRODUCTION

Quantum systems with an environment are usually
referred to as open quantum systems (OQS). Despite
having been extensively studied since the very birth of
quantum mechanics, the relevance acquired by certain
features (such as coherence and entanglement) in the
last decades, have boosted further the interest towards
their behaviour, both in the dissipative and in the non-
dissipative case1–4. The description of an OQS in terms
of the corresponding reduced density matrix, defined as
the partial trace of the density matrix of the global sys-
tem over the Hilbert space of the environment, is ax-
iomatically exact and fully retains the quantum charac-
ter of the environment, making it the preferred approach,
particularly in the realm of quantum information theory
and computation5–8. However, there exists another de-
scription of OQS, where the principal system is in a pure
state, but under the effect of a local Hamiltonian depend-
ing on “external” parameters, whose presence testifies the
existence of a surrounding environment. At the heart of
this approach stands the approximation that the envi-
ronment be classical, so that the operators acting on its
Hilbert space are replaced by c-number parameters; in
this way, the interaction Hamiltonian is reduced to an
effectively local one for the sole principal system. The
prototypical example of this theoretical scheme is that
of a spin in an external magnetic field, but many other
examples can be easily spotted.

In the two approaches sketched above, the environ-
ment is either quantum or classical. Aim of this work
is to devise a method for studying OQS in the non-

dissipative case, capable of interpolating between the
quantum description of the environment and its classi-
cal limits, without affecting the quantum nature of the
principal system. Inspired by the Born-Oppenheimer
approach9, where electrons are described in terms of pure
states parametrically dependent on the nuclear positions,
we construct a representation of OQS in terms of pure
states that depend on continuous parameters character-
ising the environment. Such representation is formally
exact, in the same way that the parametric separation
between electronic and nuclear subsystems can be made
exact10,11, with the role of principal system and envi-
ronment essentially interchangeable. Once the proce-
dure for constructing the above parametric representa-
tion, which is based on the use of generalized coherent
states for the environment, is devised, we implement it in
the case of a specific spin model, namely the spin- 1

2 star

with frustration12,13: this system belongs to the large
family of the so-called ”central-spin” models, which have
been extensively studied14–24, since they describe mag-
netic interactions that play a relevant role in the physics
of candidate future nanodevices25–32.

The parametric representation, besides providing an
insight into the physical behaviour of the above spin
model, prove suitable for dealing with peculiar geomet-
rical effects such as the Berry’s phase33,34, and allows us
to confront a very relevant topic pertaining OQS, namely
the subtle connection between geometric aspects of quan-
tum mechanics and entanglement35,36, as discussed in the
final part of the paper.
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II. THE PARAMETRIC REPRESENTATION
WITH COHERENT STATES

Let us consider an isolated system in a pure, normal-
ized, state |Ψ〉: the system is made of a principal system
A and its environment B, with separable Hilbert spaces
HA and HB , respectively. Given two orthonormal bases
{|α〉} ⊂ HA and {|β〉} ⊂ HB , it is |Ψ〉 =

∑
αβ cαβ |α〉|β〉.

Aimed at the interpolation scheme mentioned in the In-
troduction, we understand that describing the environ-
ment in terms of continuous parameters, rather than with
a set of discrete ones, can be rewarding. The idea of in-
troducing proper “environmental coherent states” natu-
rally follows, and we accomplish it by resorting to the
group-theoretical construction proposed by Gilmore (see
Ref.37 and references therein). Let the total environmen-
tal Hamiltonian be HB + HAB , where the first, local,
term contains operators acting on HB , while the second,
interaction, term contains operators acting on HA⊗HB .
We assume HAB is a linear combination of tensor prod-
ucts of operators acting on HA and on HB , as is the
case in most physical situations. Let G be the dynamical
group in terms of whose generators we can write the en-
vironmental Hamiltonian; the Hilbert space HB is given
by the specific physical set up and is associated with a
unitary irreducible representation of G. The choice of a
reference state |β0〉 ∈ HB fixes: i) the maximum stability
subgroup F ⊂ G, i.e. the set of those operators f such
that f |β0〉 = eiλf |β0〉; ii) the quotient G/F , such that
any g ∈ G can be locally decomposed as g = Ωf , with
f ∈ F and Ω ∈ G/F . Generalized coherent states |Ω〉 are
eventually defined as |Ω〉 = Ω|β0〉, with Ω ∈ G/F ; they
can be normalized, and form an overcomplete set in HB ,
i.e. ∫

dµ(Ω)|Ω〉〈Ω| = 1HB
, (1)

with dµ(Ω) a proper group-invariant measure in G/F ,
and 〈Ω|Ω′〉 6= δ(Ω − Ω′). Using the above resolution of
the identity in HB , the state of the total system can be
written as

|Ψ〉 =

∫
dµ(Ω)χΨ(Ω)|Ω〉|φΨ

A(Ω)〉 , (2)

with

|φΨ
A(Ω)〉 ≡ 1

χΨ(Ω)

∑
α

fα(Ω)|α〉 , (3)

fα(Ω) ≡
∑
β

〈Ω|β〉cαβ , (4)

χΨ(Ω) ≡ eiΛ(Ω)

√∑
α

|fα(Ω)|2 , (5)

where eiΛ(Ω) is a gauge freedom. Each ket |φΨ
A(Ω)〉 is

a normalized element of HA and therefore represents a
physical state for the principal system.

By parametric representation of A we will here-
after mean its description in terms of the pure states
{|φΨ

A(Ω)〉}: the dependence of |φΨ
A(Ω)〉 on the parameter

Ω is the fingerprint that an environment exists. Actually,
it can be easily shown that |φΨ

A〉 depends on the param-
eter Ω if and only if the global state |Ψ〉 is entangled: it
is the entangled structure of |Ψ〉 that causes the depen-
dence on Ω to be conveyed from the environment to the
principal system, a fact that will play a crucial role in re-
lating entanglement and geometrical phases, as discussed
in the last Section.

The normalization of |Ψ〉 implies
∫

dµ(Ω)|χΨ(Ω)|2 =
1, allowing |χΨ(Ω)|2 to be interpreted as a proba-
bility distribution on G/F , which turns out to be
the phase space of the environment under rather gen-
eral assumptions37; indeed, by a simple calculation
it is immediate to show that |χΨ(Ω)|2 is just the
Husimi Q-function of the environmental reduced density
matrix37,38, 〈Ω|(TrA |Ψ〉〈Ψ|)|Ω〉 = |χΨ(Ω)|2.

The resulting picture for the principal system is that
of a continuous collection of pure, parametrized, states
whose occurrence is ruled by a probability distribution
over the phase space of the environment. The rela-
tion TrB [ · ] =

∫
dµ(Ω)〈Ω| · |Ω〉 holds38, yielding, for the

reduced density matrix of the principal system, ρA =∫
dµ(Ω)|χ(Ω)|2|φΨ

A(Ω)〉〈φΨ
A(Ω)|, and hence

〈O〉 ≡ TrA(ρAO) =

∫
dµ(Ω)|χ(Ω)|2〈φΨ

A(Ω)|O|φΨ
A(Ω)〉 ,

(6)
for any principal-system observable O. The above con-
struction provides an exact description for both the prin-
cipal system and its environment, and further allows us
to treat them in a very different formal scheme: in fact,
and at variance with other related works17,39,40, coherent
states are here exclusively adopted for the environment.
This makes the approximations which naturally arise in
the coherent state formalism available for describing the
environment, but it also prevents the principal system
from being affected by those same approximations.

Before ending this section, we notice that any resolu-
tion of the identity in the Hilbert space of the environ-
ment defines a parametric representation for the princi-
pal system. In fact, the construction of the parametric
representation described above can be both generalized,
referring to approaches to quantum mechanics on phase
space41 that go beyond the theory of coherent states,
and made more specific, whenever continuous variables
different from those related to coherent states emerge in
dealing with specific types of environment42,43.

III. THE SPIN- 1
2
STAR WITH FRUSTRATION.

We apply the above formalism to the specific physical
situation where a spin 1/2 (σ/2, hereafter called qubit)
interacts with an even set of N spins 1/2 (si, hereafter
called environmental spins) via an isotropic antiferro-
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magnetic coupling12,13. The environmental spins inter-
act among themselves and the total Hamiltonian is that
of the so-called “spin- 1

2 star with frustration”,

H = HB +HAB , (7)

HB =
k

N

N∑
i

si · si+1 ; k > 0 (8)

HAB =
g

N

σ

2
·
∑
i

si ; g > 0 (9)

where i runs over the sites of the external ring. As men-
tioned in the introduction, the spin- 1

2 star with frustra-
tion belongs to a class of “central-spin”-like models that
have been extensively studied in the last decade. With-
out entering a detailed case study, which goes beyond the
scope of this paper, we underline that this model poss-
eses the most welcome property of allowing the quantum
character of the environment, as measured by the total
spin of the ring, to be varied acting on the ratio k/g
(usually referred to as the frustration ratio), as discussed
below. Moreover the model is exactly solvable and ana-
lytical expressions of its eigenstates and eigenvalues are
available12.

Let us briefly review the main known facts about the
spin- 1

2 star with frustration, Hamiltonian (7)-(9): the in-
tegrals of motion are the total Hamiltonian H, the local
environmental Hamiltonian HB , the square J2 of the to-
tal angular momentum J ≡ σ/2 +

∑
i si, its component

along the quantization axis, Jz, and the square S2 of
the total spin of the ring S =

∑
i si, with the respec-

tive eigenvalues E, kEB , J(J+1), M, and S(S+1); it is
also useful to define m as the eigenvalues of the compo-
nent Sz of the total environmental spin S. The relations
J = S± 1

2 and M = m± 1
2 hold. The total spin S ranges

from 0 to N/2. Apart from the state with S = 0, which
has energy kEB , for each assigned value S > 0 the energy
spectrum consists of the two multiplets

E+ = kEB +
g

2N
S , (10)

E− = kEB −
g

2N
(S + 1) ; (11)

the lowest eigenvalue of HB obeys the Lieb-Mattis
ordering44, EB(S) < EB(S+1), and the competition be-
tween the two terms in Eq. (11), embodying the antifer-
romagnetic frustration of the model, makes the ground-
state (GS) of the star belong to the E− multiplet with a
value of S that varies with the frustration ratio k/g. In
fact, for 0 ≤ k/g ≤ 1/4 ≡ α0, the GS has S = N/2 while,
when k/g increases, there exists a sequence of critical val-
ues αn, n = 1, ..., (N/2 − 1), such that S = N/2 − n for
αn−1 < k/g ≤ αn, and S = 0 for k/g > αN/2−1 >> 1.
Notice that the critical values αn depend on N , with the
exception of α0 which equals 1/4 for all N . The basic
structure of the eigenstates belonging to a subspace with
fixed S is

|Ψ±M 〉 = a±M |↑〉|m−〉+ b±M |↓〉|m+〉 , (12)

where |↑, ↓〉 are the eigenstates of σz, |m±〉 are the eigen-
states of Sz with eigenvalues m = M ± 1/2, and the
apex ± refers to the state having energy E±. Introduc-

ing S̃ ≡ S + 1/2, the coefficients are

a±M = ± 1√
2

√
1± M

S̃
, b±M =

1√
2

√
1∓ M

S̃
, (13)

yielding a± = ±b∓. The entanglement between the qubit
and its environment for the states (12), as measured
by the Von Neumann entropy, is easily found to be the
same for both multiplets and to depend just on the ratio

M/S̃ ≡ cosϑM , according to

EσS = −h
[

1

2
(1− cosϑM )

]
, (14)

where h[x] (0 ≤ x ≤ 1) is the binary entropy x log x +
(1− x) log(1− x).

We construct the parametric representation of the
states (12), each having S fixed, by identifying S =

∑
i si

with the environment and σ with the principal system;
the dynamical group G to be employed in the generalized
coherent state construction is therefore SU(2), with HB
its spin−S irreducible representation. We choose the ref-
erence state |β0〉 to be the maximal weight of the spin S-
representation, i.e. |β0〉 = |m = S〉 ∈ HB , so that U(1)
is the maximum stability subgroup F , eventually ending
up in the Bloch coherent states |Ω〉, whose expansion over
the Sz basis {|m〉} ∈ HB is (using the conventions of38)

|Ω〉 ≡ eζS
−−ζ∗S+

|m = S〉 =

S∑
m=−S

gm(θ)ei(S−m)ϕ|m〉 ,

(15)
where S± = Sx ± iSy, ζ = θ

2e
iϕ,

gm(θ) ≡

√(
2S

S +m

)
cosS+m

(
θ

2

)
sinS−m

(
θ

2

)
, (16)

and Ω ≡ (θ, ϕ) is a point of the S2 ' SU(2)/U(1)
sphere. The resolution of the identity reads 1HB

=
S̃
2π

∫
dΩ|Ω〉〈Ω|, where dΩ ≡ sin θdθdϕ is the euclidean

measure on the S2 sphere. From the definitions (2)-(5)
and the expansion (15), we can explicitely write the states
(12) as

|Ψ±M 〉 =
S̃

2π

∫
dΩχ±M (Ω)|Ω〉|φ±M (Ω)〉 , (17)

where

χ±M (Ω) = ei(S̃−M)ϕ
√

[a±MgM− 1
2
(θ)]2 + [b±MgM+ 1

2
(θ)]2 ,

(18)
and the qubit parametrized states are

|φ±M (Ω)〉 = ± cos

(
Θ±M (θ)

2

)
|↑〉+ sin

(
Θ±M (θ)

2

)
eiϕ|↓〉 ,

(19)
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where Θ±M (θ) are the solution with respecto to Θ of the
equations

tan
Θ

2
=

(
tan

ϑM
2

)±1

tan
ϑM
2

cot
θ

2
. (20)

Notice that although |Ω〉 depends on ϕ according to
Eq.(15), the distribution |χ±M (Ω)|2 does not. This fol-
lows from the structure of the eigenstates (12), implying
that only one term enters the sum in Eq.(5) and no in-
terference effect consequently emerges in |χ±M (Ω)|2. Such
feature is specifically due to the symmetry of the Heisen-
berg interaction and plays an essential role when the clas-
sical limit of the ring is taken, as thoroughly discussed in
the next Section.

The parametric representation of the qubit is given by
the kets (19), each corresponding to the physical state
the qubit is in, provided the total system is in |Ψ±M 〉 and

the environment in the coherent state |Ω〉. As |χ±M (Ω)|
does not depend on ϕ, the Ω-occurence is ruled by the θ-

normalized probability distribution S̃ sin(θ)|χ±M (Ω)|2 ≡
p±M (θ), which can be shown to be the properly normal-
ized Q-representation of the environmental density ma-
trix. In the upper panel of Fig.1 we show p−M (θ) for

cos�1� 9
11
� cos�1� 3

11
� cos�1�� 3

11
� cos�1�� 9

11
� Θ

1

2

3

pM��Θ�

(a) p−M (θ) for varying S and ϑM

(b) M = 9/2 (c) M = 3/2 (d) M = −3/2 (e) M = −9/2

1

FIG. 1: Upper panel, (a): p−M (θ) for M

S̃
= 9

11
, 3
11
,− 3

11
,− 9

11

(from left to right) and S=5,16,27,38,49 (from below); the
vertical dashed lines mark the corresponding values of ϑM

(see text), each identified by a given color. Lower panel, (b-e):
qubit-states distributions, π−

M (π − θ, ϕ), on the Bloch sphere
for S = 5 and ϑM as in the upper panel. A black line of
latitude marks ϑM on each sphere, and the corresponding
value of M is reported below.

different values of M/S̃; the values of S are chosen so
as to consistently correspond to half-integer M . Two

effects clearly testify that we are dealing with a quan-
tum environment: the finite width of the distribution
and the position shift of its maximum with respect to
ϑM , such shift being the signature that the qubit ex-
ists. When the quantum character of the environment is

reduced, i.e. S is increased with M/S̃ fixed, both quan-
tities lessen. The probability distribution of the qubit
states (19) on the Bloch sphere, parametrized by Θ and
ϕ, is the integrand of Eq.(6) with O = |φ±M 〉〈φ

±
M |, and

reads π±M (Θ, ϕ) = p±M (θ), with Θ and θ connected by
Eq.(20). When the total system is in its GS multiplet, it
is easily seen that Θ = π − θ for all values of M . The
lower panel of Fig.1 shows π−M (Θ, ϕ) = p−M (π − θ) for

M/S̃ as in the upper panel, and S = 5 (each sphere is
below the corresponding distribution); the angle ϑM is
identified by the black line of latitude. The conditional

cos-1J
9

11
N cos-1J

3

11
N cos-1J-

3

11
N cos-1J-

9

11
N

Θ

1

2

3

y-,
MHΘL

FIG. 2: Conditional probability distributions for the qubit to
be in the |↑〉 state when the total system is in its ground state.

Values of S and M/S̃, as well as dashed lines meaning, as in
Fig. 1.

probability distribution for the qubit to be, say, in the
state |↑〉, reads

y±,↑M (θ) = p±M (θ) cos2 Θ±M (θ)

2
; (21)

In the case of the GS multiplet, despite |φ−M (Ω)〉 being

independent on M , due to Θ−M = π − θ for all M , the
conditional probability distribution (21) inherits the de-
pendence on M from the environment, as cleary seen in
Fig.2. Notice, that such dependence accounts for the an-
tiferromagnetic character of the interaction term (9) by
representing the counteralignment of the qubit with re-
spect to the total environmental spin.

Let us now further comment on the parametrized qubit
states (19): it is easily shown that one can always define
magnetic fields such that the kets |φ±M (Ω)〉 are the ground
(“-”) and excited (“+”) states of the corresponding Zee-
man terms. In fact, defining h±M (Ω) ≡ ε±n(Θ±M , ϕ),

with n(Θ±M , ϕ) ≡ (sin Θ±M cosϕ, sin Θ±M sinϕ, cos Θ±M )

and Θ±M from Eq.(20), it is easily verified that h±M ·
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σ
2 |φ
±
M (Ω)〉 = ε±

2 |φ
±
M (Ω)〉, for all M . By further requiring∫

dµ(Ω)|χ(Ω)|2〈φ±M (Ω)|h±M ·
σ

2
|φ±M (Ω)〉 = 〈Ψ±M |HAB |Ψ±M 〉 ,

(22)

one can also fix the field intensity, ε± = ± g
N (S̃∓1). The

above result means that when the star is in one of its
eigenstates |Ψ±M 〉 the central spin can be described by a
continuous collection of pure states which are the eigen-
states of h±M (Ω) · σ2 , with the direction of the fields dis-
tributed according to the environmental quantum prob-
ability |χ±M (Ω)|2. This also provides a key to the reading
of Fig.1, whose lower panel visualizes the qubit response
to the application of a field with direction distributed as
shown in the upper panel. Picturing the qubit in terms
of the above ”effective” magnetic fields, one is naturally
led to the last part of our work, namely the crossover
from a quantum to a classical environment.

IV. THE LARGE-S LIMIT.

From a direct calculation one can see that

p±M (θ)
S→∞−−−−→ δ(θ − ϑM ) , (23)

meaning that the variable describing the polar angle
of the environmental coherent states, θ, gets frozen to
the value ϑM , which is fixed by the state of the global
system, |Ψ±M 〉. The qubit parametrized states conse-

quently collapse into the kets (19) with Θ+
M = ϑM and

Θ−M = π − ϑM , hereafter indicated by |φ±M (ϕ)〉. Notice
that the dependence on θ is fully removed by the above
classical limit, but all the azimuthal angles ϕ ∈ [0, 2π)
are still allowed.

The kets |φ±M (ϕ)〉 are the stationary states of a qubit

in a field g
2n
±
M (ϕ), with n±M (ϕ) ≡ n(Θ±M , ϕ) and Θ±M as

above (notice that S → ∞ implies S/N → 1/2, so that
ε± converge to g/2). From this perspective, the model
after Eq.(23) is that of a qubit in a pure state, which is
one of the eigenstates of a local parametric Hamiltonian
g
2n
±
M (ϕ) · σ2 , where the only parametric dependence left

is that on the azimuthal angle of the field. Put it this
way, with the qubit in a pure state, one seems to loose
the connection with the original composite quantum sys-
tem and, in particular, with the fact that the parame-
tric dependence is indeed a consequence of the entangled
structure of its global state |Ψ±M 〉, as seen in the second
Section.

Let us hence take a different point of view: Leaving
aside the local parametric Hamiltonian, we focus on the
qubit state. Once M is fixed, the qubit is described by all
the kets {|φ±M (ϕ)〉}ϕ∈[0,2π), which define a mixed state.
In fact, as these states are all equally likely, the corre-
sponding density matrix is given by the ensemble average
of their projectors, i.e. ρ±;M

σ = 1
2π

∫
dϕ|φ±M (ϕ)〉〈φ±M (ϕ)|.

Due to the ϕ-integral, that makes the off-diagonal ele-
ments vanish, ρ±;M

σ coincides with the reduced density

matrix of the qubit in the original fully quantum model,
i.e. Trring |Ψ±M 〉〈Ψ

±
M |. Therefore, not only the qubit can

still be characterized by a finite Von Neumann entropy,
EVN(ρσ), but this turns out to be equal to the entangle-
ment between the qubit and its environment before the
quantum limit of the latter is taken, i.e.

EσS(|Ψ±M 〉) = EVN(ρ±;M
σ ) . (24)

The above statistical picture fits in the scheme proposed
in Ref.45 for evaluating the Von Neumann entropy of a
qubit in whatever mixed state ρσ. It is there shown that
when a qubit is described by an ensemble of K equally
likely pure states, corresponding to the Bloch vectors
{np}p⊂P , with P some parameter space, its density ma-
trix is ρσ = 1

2 (1+n ·σ), with the ”average” Bloch vector

n defined as n ≡ 1
K

∑
p np, and its Von Neumann en-

tropy can be written as

EVN(ρσ) = −h
[

1

2
(1− |n|)

]
(25)

Furthermore, given the ensemble {np}p⊂P , one can
choose a sequence np1 → np2 → np3 ... → npK
thus defining a curve in the parameter space P . To
this curve corresponds a Pancharatnam phase46,47 γ ≡
arg{Tr[|np1〉ΠK−1

i=1 〈npi |npi+1
〉〈npK |]}, for which several

relations with geometrical properties of the ensemble
{np}p⊂P can be found45. Interpreting the sum defining n
as an ensemble average, and generalizing the above con-
struction to the continuum case, we find that the mixed
state in which the central qubit of the spin star is left,
after the classical limit of the ring is taken, corresponds
to

n±M ≡
∫
dϕn±M (ϕ) = (0, 0,± cosϑM ) (26)

so that EVN(ρ±;M
σ ) = −h

[
1
2 (1− cosϑM )

]
, consistently

with Eqs.(24) and (14). Furthermore, given our contin-
uous ensemble, we can choose the closed sequence cor-
responding to the clock(-) or counterclock(+) wise ori-
ented (with respect to the qubit quantization axis) line
of latitude ϑM , for which the Pancharatnam phase can
be shown to be

γ± = π(1± |n±M |) = π(1± cosϑM ) , (27)

which finally allows us to establish, via Eqs.(24) to (27),
the relation

EσS = −h
[γ±

2π

]
. (28)

Notice that the phase γ± as obtained via the above con-
struction is exactly the Berry phase which is picked by
the eigenstates of a qubit in a magnetic field g

2n
±
M (ϕ)

adiabatically rotating around the quantization axis with
fixed polar angle ϑM , a problem that pertains to the
study of models with parametric Hamiltonians. How-
ever, in the usual approach to the study of these models
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the parametric dependence is not derived as the effect of
some quantum environment, but rather assumed a priori,
a viewpoint that leaves no space for entanglement prop-
erties, hampering the disclosure of their possible relation
with geometrical phases.

We underline that the relation Eq.(28) specifically
holds just for the particular model here considered. How-
ever, we believe that the reasoning behind its derivation
has a more general content, that pertains to the analysis
of the relation between geometrical properties of quan-
tum systems and the structure, or dynamical evolution,
of their states35,36,48–55. In particular we underline that
the entanglement of the state of the original composite
quantum system is the ultimate responsible for the de-
pendence on the coeherent state variables to be conveyed
from the environment to either the states or the local pa-
rametric Hamiltonian (depending on what point of view
is adopted) of the principal system. In the limit of a clas-
sical environment, these variables become the parameters
by exploring whose space the principal system can expe-
rience geometrical effects.

V. CONCLUSIONS

In this work we have proposed a method for study-
ing the behaviour of an open quantum system along the
quantum-to-classical crossover of its environment. The
method, which is based on an exact, parametric repre-
sentation for whatever state of an isolated system, is an
original tool for dealing with phenomena which manifest
themselves, and can be interpreted, very differently de-
pending on the way the environment is modelled, not
only in physical (see for instance Refs.56–58) but also in
chemical and biological processes59–61. As a first direct
outcome, this work clarifies why modelling a quantum
system with a parametric Hamiltonian implies the exis-
tence of an environment (”the rest of the Universe” to use
Berry’s words34) and shows that a non-trivial parametric
dependence can arise if and only if such environment is
entangled with the system itself. One of the most rel-
evant consequences of the above statement is that the
emergence of observable (i.e. gauge-invariant) quantities
which are not eigenvalues of Hermitian operators of the
system under analysis, such as the Berry’s phase, turns
out to be related not only to the fact that an environment
exists47, but specifically to the condition that the system
be entangled with its environment. In fact, in the specific
case of the spin-star here considered, Eq.(28) establishes
that the entanglement between the qubit and its envi-
ronment can be determined by measuring the observable
Berry’s phase characterizing the related model of a closed

qubit in a magnetic field, which suggests a possible way
for experimentally access entanglement properties via the
observation of gauge-invariant phases.

We conclude by mentioning some possible develop-
ments of this work that we think are worth pursu-
ing. First of all, one might exploit the peculiar proper-
ties characterizing the dynamics of generalized coherent
states, in order to relate a possible dynamical evolution
of the global system to that of the principal one. In-
deed, the formal scheme here presented opens the pos-
sibility of using established approaches for dealing with
quantum dynamics in phase space, such as the the path-
integral formalism, the adiabatic perturbation theory, the
Born-Oppenheimer approximation, and generalizations
to curved phase spaces of multi-configurational Eherefest
methods, as tools for taking into account the effects
of the environment on the principal system and vice
versa19,62–66. Moreover, the approach here presented
can be equivalently implemented in terms of generalized
coherent states of any type37, so that different phys-
ical systems can be taken into consideration, such as
those belonging to the spin-bosons family. As for the
spin- 1

2 star with frustration, it is worth mentioning that
different types of interaction between the environmen-
tal spins, in particular the antiferromagnetic Lieb-Mattis
and Heisenberg-on-a-square-lattice ones, define exactly
solvable models67 that can be treated in the very same
framework here proposed. This expands the set of real
physical systems where to look for a possible experimen-
tal analysis of our results. Finally, we find particularly
intriguing the idea of effectively studing the spin- 1

2 star

with frustration by quantum simulators (see e.g. Ref.68

and references therein, and Refs.69): In fact, the possibil-
ity of tuning the interaction parameters, which is recog-
nized as one of the key features of quantum simulators,
might allow the variation of the value of S, by acting on
the frustration ratio k/g, thus giving access to an exper-
imental analysis of the crossover from a quantum to a
classical environment.
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