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We use the energy method to find regions of stability for a horizontal layer of a Darcy porous medium
with an exothermic reaction on the lower layer. The results are compared to the linear instability results
for this model found by Scott and Straughan [16]. It is shown that there is a region in which sub-critical
instabilities may occur, but for small Lewis numbers, 0oLeo10, the non-linear stability boundary is
reasonably close to the linear instability boundary. The effect of varying the parameters of the reaction on
the stability curve is discussed.

& 2013 The Author. Published by Elsevier Ltd. All rights reserved.
1. Introduction

For many convection problems linear studies have been used to
demonstrate instability for Rayleigh numbers greater than a
critical value. These studies include a number of works that
consider systems containing a reaction such as Eltayeb et al. [5],
Malashetty and Biradar [11] and McKay [12]. Although useful, this
technique provides limited information about the system as it
does not show that it is stable below this critical Rayleigh number.
In order to prove stability for regions below the instability curve
non-linear methods must be used; for example the variational
methods used by Mulone and Rionero [14] and Hill et al. [6] and
for non-constant boundary conditions by Capone and Rionero [2].
Particularly relevant is the energy method used by McTaggart and
Straughan [13] to develop stability thresholds on a fluid with a
reaction on the lower boundary. In the standard Bénard problem
for a fluid it was shown by Joseph [7,8] that the linear instability
and non-linear stability boundaries coincide. In this case the
energy method is therefore of significant use as when combined
with the linear method the stability of the system is fully
described. It is shown in Chapter 4 of Straughan [17] that this is
blished by Elsevier Ltd. All rights
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tricted use, distribution, and
thor and source are credited.
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also the case for a Darcy porous medium and by Ahmadi [1] for a
micropolar fluid layer heated from below. However, for many
problems the stability boundary obtained by the energy method is
below the linear instability boundary, in some instances by a large
degree. Current methods are unable to show stability properties
between these two boundaries and instead the equations must be
solved numerically at each point using a three-dimensional
computation. It is often found that sub-critical instabilities occur,
for example Veronis [19] finds this is the case for a rotating fluid
and Joseph and Shir [10] and Joseph and Carmi [9] demonstrate
this for problems involving internal heating.

Postelnicu [15] and Scott and Straughan [16] linearly investi-
gated a horizontal layer of a saturated porous medium with an
exothermic reaction on the lower layer and discussed how the
boundary reaction terms affect the instability boundary. The aim
of the current work is to develop optimised stability boundaries
for this problem using a fully non-linear energy method.
2. Non-linear perturbation equations

We begin by presenting the equations for our model as

p;i ¼�μ

K
vi�ρ0g 1�α T�T0ð Þð Þki;

vi;i ¼ 0;
1
M
T ;t þ viT ;i ¼ κΔT ;

ϕ̂C;t þ viC;i ¼ ϕ̂kcΔC; ð1Þ
reserved.
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cf. Straughan [18], Scott and Straughan [16], where v, p, T and C are
the velocity, pressure, temperature and reactant concentration, ρ0
is the density at reference temperature T0, g is gravity, k¼(0,0,1), μ
is the dynamic viscosity of the fluid, α is the coefficient of thermal
expansion, K is the permeability of the porous medium, ϕ̂ is the
porosity of the medium, M¼ ðρ0cpÞf =ðρ0cÞm with ðρ0cÞm ¼ ϕ̂
ðρ0cpÞf þ ð1�ϕ̂ÞðρcÞs and κ¼ km=ðρ0cpÞf is the thermal diffusivity
of the porous medium, km being given by km ¼ ksð1�ϕ̂Þ þ kf ϕ̂. Here
the subscripts s and f represent the solid and saturating fluid,
respectively.

On the upper boundary wall (z¼h) the temperature and
reactant concentration are at constant values, on the lower
boundary wall (z¼0) an exothermic reaction occurs in which the
reactant is converted to an inert product and there is no mass flux
across either wall. The boundary conditions are then given by

T ¼ TU ; C ¼ CU ; vini ¼w¼ 0 on z¼ h ð2Þ
and

kT
∂T
∂z

¼�Qk0C exp
�E
RnT

� �
;

ϕ̂kc
∂C
∂z

¼ k0C exp
�E
RnT

� �
;

vini ¼w¼ 0 on z¼ 0 ð3Þ
where ni is the unit normal to the boundary, h is the depth of the
layer, k0 is the rate constant, Rn is the universal gas constant, E is
the activation energy of the reaction, Q is the heat of the reaction,
kT is the rate at which heat is conducted from the surface and kc is
the reactant diffusivity.

Employing the non-dimensionalisations

xi ¼ hxni ; t ¼ h2

κM
tn; vi ¼

κ

h
vni ;

T ¼ TUT
n; C ¼ CUC

n; p¼ κμ

K
pn

to Eqs. (1) we find

p;i ¼�vi�
ρ0gKh
κμ

1�αTU T�T0ð Þð Þki;

vi;i ¼ 0;

T ;t þ viT ;i ¼ΔT ;

Mϕ̂C ;t þ viC ;i ¼
1
Le
ΔC; ð4Þ

where Le¼ κ=ðϕ̂kcÞ is the Lewis number. Application of the non-
dimensionalisations to the boundary conditions (2), (3) yields

T ¼ 1; C ¼ 1; vini ¼w¼ 0 on z¼ 1

and

∂T
∂z

¼�AC exp
�ξ

T

� �
;

∂C
∂z

¼ BC exp
�ξ

T

� �
;

vini ¼w¼ 0 on z¼ 0;

where

A¼ Qhk0CU

kTTU
; B¼ k0h

ϕ̂kc
; ξ¼ E

RnTU
:

By now assuming that the concentration and temperature are
dependent on only the vertical position, i.e. that C¼C(z) and T¼T
(z), we find that at the steady state, ðv ; T ;C ; pÞ, the temperature,
reactant concentration and pressure are

T ¼ β1z þ β2;

C ¼ β3zþ β4;
p ;i ¼�ρ0gKh
κμ

1�αTU T�T0
� �� �

ki:

Evaluating this steady state on the upper and lower boundaries
gives the relations

1¼ β1 þ β2;

1¼ β3 þ β4;

β1 ¼�A 1�β3
� �

exp
�ξ

1�β1

� �
;

β3 ¼ B 1�β3
� �

exp
�ξ

1�β1

� �
: ð5Þ

Given values of A, B and ξ, the relations (5) may be solved to find
corresponding values for β1 and β3.

We introduce small perturbations ui, θ, ϕ, π from the steady
state to Eqs. (4) such that

vi ¼ vi þ ui; T ¼ T þ θ;

C ¼ C þ ϕ; p¼ p þ π

and then subtract the steady state solution to obtain the non-
linear perturbation

π;i ¼�ui þ Rθki;
ui;i ¼ 0;

θ;t þ β1wþ uiθ;i ¼Δθ;

Mϕ̂ϕ;t þ β3w þ uiϕ;i ¼
1
Le
Δϕ; ð6Þ

where w¼ u3 and the Rayleigh number is defined by

R¼ Khgρ0αTU

κμ
:

Following this same process, the non-linear perturbation
boundary conditions are

θ¼ 0; ϕ¼ 0; w¼ 0 on z¼ 1

and

∂θ
∂z

¼�Aβ4 exp
�ξ

β2 þ θ

� �
�exp

�ξ

β2

� �� �
�Aϕ exp

�ξ

β2 þ θ

� �
;

∂ϕ
∂z

¼ Bβ4 exp
�ξ

β2 þ θ

� �
�exp

�ξ

β2

� �� �
þ Bϕ exp

�ξ

β2 þ θ

� �
;

w¼ 0 on z¼ 0:

Scott and Straughan [16] discuss how the values of A, B, ξ and
Mϕ̂ influence the instability curve, however in the current work
we are unable to consider the effect of ξ. It is not possible to carry
out the following non-linear analysis with the conditions on the
lower boundary in their current form. Instead we here consider, as
a first approximation, the case E very small and consequently, we
let ξ-0. In this limit the non-dimensional perturbation boundary
conditions become

uini ¼ 0; θ¼ 0; ϕ¼ 0 on z¼ 1

uini ¼ 0;
∂θ
∂z

¼�Aϕ;
∂ϕ
∂z

¼ Bϕ on z¼ 0: ð7Þ
3. The energy method

It is now beneficial to rescale θ and ϕ by θ̂ ¼
ffiffiffi
R

p
θ and ϕ̂ ¼

ffiffiffi
R

p
ϕ

to obtain

π;i ¼�ui þ Raθki;
ui;i ¼ 0;

θ;t ¼�β1Raw�uiθ;i þ Δθ;

Mϕ̂ϕ;t ¼�β3Raw�uiϕ;i þ
1
Le
Δϕ; ð8Þ
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where we have dropped the ^ symbols, Ra ¼
ffiffiffi
R

p
, and the boundary

conditions (7) remain unchanged.
Next we define a general convection cell, V, in which 0ozo1

and the solution is periodic in x and y. We then multiply (8)1 by ui,
(8)3 by λθ, (8)4 by μ̂ϕ=Mϕ̂, where λ; μ̂40 are constants, and
integrate over V, using the boundary conditions. We then add
the results to find

1
2
d
dt

λ‖θ‖2 þ μ̂‖ϕ‖2
� �¼�‖u‖2�λ‖∇θ‖2� μ̂

LeMϕ̂
‖∇ϕ‖2

þRa 1�λβ1
� �

θ;wð Þ�μ̂β3
Mϕ̂

Ra w;ϕð Þ

þλA∮z ¼ 0θϕ dA� μ̂B

LeMϕ̂
∮z ¼ 0ϕ

2 dA; ð9Þ

where J f J ¼ RV f 2 dV is the standard L2ðVÞ norm and
ðf ; gÞ ¼ RV fg dV . We define an energy E as

E¼ 1
2 λ‖θ‖2 þ μ̂‖ϕ‖2
� �

and

I ¼ Ra 1�λβ1
� �

θ;wð Þ�μ̂β3
Mϕ̂

Ra w;ϕð Þ þ λA∮z ¼ 0θϕ dA

D¼ ‖u‖2 þ λ‖∇θ‖2 þ μ̂

LeMϕ̂
‖∇ϕ‖2 þ μ̂B

LeMϕ̂
∮z ¼ 0ϕ

2 dA

in order to write (9) as

dE
dt

¼ I�D

r�D 1�max
H

I
D

� �
;

where H is the set of admissible functions over which I and D are
defined and we aim to find a maximum. By use of Poincaré's
inequality we see that there exists a constant ξ such that DZξ2E
and therefore if 1�maxHI=DZ0 we find

dE
dt

r�ξ2E 1�max
H

I
D

� �
: ð10Þ

We define RE by

1
RE

¼max
H

I
D

and see from (10) that if 1=REr1 the energy E decays exponen-
tially and the system is stable, thus RE¼1 on the stability
boundary.

Before continuing we now define the parameter μ to be

μ¼ μ̂=Mϕ̂40: ð11Þ
4. Euler–Lagrange equations

In order to maximise I=D we must find the Euler–Lagrange
equations using the calculus of variations, Section IV of Courant
and Hilbert [3], Straughan [17], where the variables u; θ;ϕ are
varied by arbitrary functions h; η1; η2, respectively. We find that
maxHI=D occurs when

δD�REδI ¼ 0; ð12Þ
cf. Chapter 2 of Straughan [17], where for the current problem δI
and δD are defined as

δI ¼ d
dϵ

Rað1�λβ1Þðθ þ ϵη1;w þ ϵh3Þ�μβ3Raðwþ ϵh3;ϕþ ϵη2Þ
��

þλA∮z ¼ 0ðθ þ ϵη1Þðϕþ ϵη2Þ dA
�i

ϵ ¼ 0
and

δD¼ d
dϵ

‖uþ ϵh‖2 þ λ‖∇ θ þ ϵη1
� �

‖2 þ μ

Le
‖∇ ϕþ ϵη2
� �

‖2
	�

þμB
Le

∮z ¼ 0ðϕþ ϵη2Þ2 dA
��

ϵ ¼ 0
:

After differentiating and evaluating at ϵ¼ 0 these become

δI ¼ Rað1�λβ1Þ½ðw; η1Þ þ ðh3; θÞ��μβ3Ra½ðw; η2Þ þ ðh3;ϕÞ�
þλA∮z ¼ 0ðθη2 þ ϕη1Þ dAþ ðπ;i;hiÞ ð13Þ

and

δD¼ 2 ui;hið Þ�2λ Δθ; η1
� ��2

μ

Le
Δϕ; η2
� �þ 2

μB
Le

∮z ¼ 0η2ϕ dA

þ2λ∮z ¼ 0
∂θ
∂n

η1 dAþ 2
μ

Le
∮z ¼ 0

∂ϕ
∂n

η2 dA; ð14Þ

where the first three terms of δD have been integrated once using
the boundary conditions and (since H is restricted to divergence
free functions) the incompressibility condition ui;i ¼ 0 has been
included in δI .

We know that the stability boundary occurs when RE¼1 and so
from Eq. (12) we must solve δI�δD¼ 0. As Eqs. (13) and (14) must
hold for any arbitrary h; η1; η2 we find that the Euler–Lagrange
equations are

Ra 1�λβ1
� �

θki�μβ3Raϕki þ π;i�2ui ¼ 0;

Ra 1�λβ1
� �

w þ 2λΔθ¼ 0;

�μβ3Raw þ 2
μ

Le
Δϕ¼ 0: ð15Þ

We also find that the natural boundary conditions that arise are

w¼ 0;

λAϕ�2λ
∂θ
∂n

¼ 0;

λALeθ�2μBϕ�2μ
∂ϕ
∂n

¼ 0 on z¼ 0

and

w¼ θ¼ ϕ¼ 0 on z¼ 1;

Courant and Hilbert [3, pp. 208–211].
Next, we take curlcurl (15)1 to eliminate the pressure term, then

employ the Fourier transformation

w¼ ∑
1

j ¼ 1
esj t f jðx; yÞWjðzÞ;

where f is some function such that Δnf ¼ ð∂2=∂2xþ ∂2=∂2yÞf ¼�k2f
for a wave number k. Using similar expansions for θ and ϕ we
obtain

k2Ra 1�λβ1
� �

Θ�k2Raμβ3Φþ 2 D2�k2
	 


W ¼ 0;

Ra 1�λβ1
� �

W þ 2λ D2�k2
	 


Θ¼ 0;

�Raμβ3W þ 2
μ

Le
D2�k2
	 


Φ¼ 0; ð16Þ

where D¼d/dz, and the boundary conditions

W ¼ 0;
λAΦþ 2λDΘ¼ 0;

λALeΘ�2μBΦþ 2μDΦ¼ 0 on z¼ 0 ð17Þ
and

W ¼Θ¼Φ¼ 0 on z¼ 1; ð18Þ
It is now possible to solve Eqs. (16) with the boundary

conditions (17) and (18) to find a value of R¼ R2
a for which the

system is stable.



Fig. 2. Linear instability (Rc) and non-linear energy stability (Rs) curves, for A¼0.5,
B¼1.
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5. Numerical method and results

For each value of Le we initially fix λ and μ and use the Natural
D Chebyshev–Tau method to solve for Ra by treating it as an
eigenvalue for the system, cf. Dongarra et al. [4]. To do this we use
the boundary conditions (17) to define the natural variables χ1, χ2,
χ3 as

χ1 ¼DW

χ2 ¼DΘþ A
2
Φ

χ3 ¼DΦ�BΦþ λALe
2μ

Θ:

Using these new variables, Eqs. (16) may be written as

DW�χ1 ¼ 0;

�2k2W þ 2Dχ1 ¼�Rak
2 1�λβ1
� �

Θþ Rak
2β3μΦ;

DΘ�χ2 þ
A
2
Φ¼ 0;

A2λ2Le
2μ

�2λk2
 !

Θþ 2λDχ2�ABλΦ�Aλχ3 ¼�Ra 1�λβ1
� �

W ;

λALe
2μ

Θþ DΦ�BΦ�χ3 ¼ 0;

�λABΘ�λAχ2 þ
2μB2

Le
þ λA2

2
�2μk2

Le

 !
Φþ 2μB

Le
χ3 þ

2μ
Le

Dχ3 ¼ Raμβ3W
Table 1
For A¼0.5, B¼0.5, values of μ, λ, k for which the non-linear stability curve is
optimised and the corresponding values of Rs. The linear instability boundary Rc is
given for comparison.

Le μs λs ks Ra Rs Rc

0.1 0.37 2.99 2.325 9.0055 81.100 81.847
1.0 0.38 2.93 2.315 8.9097 79.382 86.836
2.0 0.39 2.86 2.295 8.8046 77.520 92.292
3.0 0.40 2.78 2.270 8.7011 75.709 97.550
4.0 0.44 2.64 2.300 8.5924 73.829 97.804
5.0 0.50 2.40 2.395 8.4364 71.174 93.145
6.0 0.53 2.12 2.450 8.2482 68.032 89.935
7.0 0.56 1.92 2.490 8.0455 64.730 87.577
8.0 0.58 1.74 2.520 7.8395 61.457 85.765
9.0 0.60 1.60 2.545 7.6367 58.319 84.329

10.0 0.61 1.46 2.560 7.4380 55.323 83.160
12.5 0.64 1.22 2.595 6.9811 48.736 81.016
15.0 0.65 1.04 2.615 6.5963 43.511 79.559
20.0 0.65 0.78 2.630 5.9595 35.516 77.716

Fig. 3. Linear instability (Rc) and non-linear energy stability (Rs) curves, for A¼1,
B¼1.
Fig. 1. Linear instability (Rc) and non-linear energy stability (Rs) curves, for A¼0.5,
B¼0.5.
with the boundary conditions

W ¼Θ¼Φ¼ 0 on z¼ 1;
W ¼ χ2 ¼ χ3 ¼ 0 on z¼ 0:

First, for each value of Le, with λ and μ remaining fixed, we
minimise over the wave number k to find a value of Ra for which
we know that the system is stable. We then vary λ and μ to
optimise the value of Ra obtained. Defining λs and μs to be the
values of λ and μ which maximise Ra, ks to be the value of k for
which this maximum occurs and Rs to be the maximum Rayleigh
number, Rs ¼ R2

a , we find the results given in Table 1 and Figs. 1–3.
Here the linear instability results, Rc, obtained by Scott and
Straughan [16] are included for comparison. To the left of the
peak in the Rc curve stationary convection is dominant and to the
right of this peak oscillatory convection dominates. The results for
A¼0.5, B¼0.5 are shown graphically in Fig. 1 and those for A¼0.5,
B¼1 and A¼1, B¼1 are shown in Figs. 2 and 3, respectively.
6. Conclusions

The linear instability results obtained by Scott and Straughan
[16] are useful as they provide a boundary above which we know
that the system (6) with boundary conditions (7) is unstable,
however they provide no information about stability or instability
below this curve. The results in Table 1 and Figs. 1–3 provide
stability curves, for values of R below these curves the system is
stable. For the given choices of A and Bwe see that when the linear
stationary convection occurs the two curves are close and as
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oscillatory convection becomes dominant they differ more sig-
nificantly. For the greater value of B the stability curve falls away
from the instability curve more quickly. Scott and Straughan [16]
found that when ξ¼ 0 doubling A doubled Rc, Figs. 2 and 3 show
that this also doubles the non-linear stability boundary Rs. For
0oLeo10 the stability curve remains relatively close to the
instability curve, irrespective of which value of A or B we choose,
and the non-linear energy analysis used here is therefore of use.

From definition (11) we see that the value of Mϕ̂ does not
influence the non-linear stability boundary, however it will affect
the value of μs for which this boundary occurs.

It is not possible to describe the stability properties of points
that lie between the stability and instability curves the using
current methods. To investigate the stability within this region the
equations must be solved using a three-dimensional computation.
As is usual with this type of problem we expect to find that sub-
critical instabilities occur.
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