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We reexamine the screening mechanism in fðRÞ gravity using N-body simulations. By explicitly
examining the relation between the extrascalar field δfR and the gravitational potential ϕ in the perturbed
Universe, we find that the relation between these two fields plays an important role in understanding the
screening mechanism. We show that the screening mechanism in fðRÞ gravity depends mainly on the depth
of the potential well and find a useful condition for identifying unscreened haloes in simulations. We also
discuss the potential application of our results to real galaxy surveys.
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I. INTRODUCTION

Compelling cosmological observations [1–3] show
that our Universe is undergoing a phase of accelerated
expansion. The leading explanation to this acceleration is a
cosmological constant in the framework of general rela-
tivity (GR). Despite its notable success in explaining
current cosmological data sets, this standard paradigm
suffers from several serious problems: the measured value
of the cosmological constant is far smaller than the
prediction of quantum field theory, and there is also a
coincidence problem as to why the energy densities of
matter and the cosmological constant are of the same order
today (see, e.g., Ref. [4] for a review).
There are suggestions that GR might not be accurate on

cosmological scales, and modified gravity theories are
proposed as alternatives to explain the cosmic acceleration.
One of the simplest attempts is the so-called fðRÞ gravity,
in which the Ricci curvature R in the Einstein-Hilbert
action of GR is replaced by an arbitrary function of R
[5–16]. fðRÞ gravity introduces a new scalar field degree of
freedom that has profound impacts on cosmology. At the
background level, the self-interaction of this scalar field
allows the theory to produce any cosmic expansion history
with desired effective dark energy equation of state wðaÞ.
At the perturbed level, the local scalar curvature R does not
necessarily follow the matter density field, and thus, high
density might not imply high curvature in fðRÞ cosmology.
If the curvature is significantly lower than the correspond-
ing GR result for the same density field, the local space-
time will be altered and the model may fail to pass the local
tests of gravity. Therefore, for viable fðRÞ models the
standard local spacetime should be recovered in high-
density regions. To this end, a screening mechanism [17] is
essential and plays an important role in the viability of fðRÞ
gravity.

The aim of this paper is to further investigate this
important issue. Instead of studying the screening mecha-
nism based on individual isolated galactic haloes [18–20],
we examine the relation between the scalar field, δfR, and
the gravitational potential, ϕ, in fðRÞ cosmologies, using
N-body simulations. We demonstrate that this relation
plays an important role in understanding the screening
mechanism in fðRÞ gravity. In order to strengthen our
argument, we study two different fðRÞ models: one which
exactly reproduces the ΛCDM background expansion [21]
and the other being the Hu-Sawicki model (H-S here-
after) [18].
This paper is organized as follows: In Sec. II, we

introduce the details of the fðRÞ models investigated in
this work. In Sec. III, we briefly review the technique
details of N-body simulations. In Sec. IV, we discuss the
distribution of the scalar curvature R in the void regions and
the screening mechanism in the high-density regions. In
Sec. V, we discuss the screening mechanism in the dark
haloes. In Sec. VI, we summarize and conclude this work.

II. f ðRÞ MODEL

We work with the four-dimensional modified Einstein-
Hilbert action

S ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p ½Rþ fðRÞ� þ
Z

d4xLðmÞ; ð1Þ

where κ2 ¼ 8πG with G being Newton’s constant, g is the
determinant of the metric gμν, LðmÞ is the Lagrangian
density for matter, and fðRÞ is an arbitrary function of
the Ricci scalar curvature R [5–16] (see Refs. [22,23] for
reviews). It is well known that the functional form fðRÞ
completely specifies the quantitative behavior of a model,
in particular how efficient the screening mechanism is. As a
result, to better illustrate our points, in this work we study
two different fðRÞ models as described below.*jianhua.he@brera.inaf.it
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The first model to be considered is proposed by one of
us, which can exactly reproduce the ΛCDM background
expansion history [21]. We call this “our model,” and it is
specified by

fðRÞ ¼ −6Ω0
dH

2
0−

3DΩ0
mH2

0

pþ−1

�
3Ω0

mH2
0

R−12Ω0
dH

2
0

�
pþ−1

× 2F1

�
qþ; pþ−1; rþ;−

3Ω0
dH

2
0

R−12Ω0
dH

2
0

�
: ð2Þ

The indices in the above expression are given by

qþ ¼ 1þ ffiffiffiffiffi
73

p

12
; rþ ¼ 1þ

ffiffiffiffiffi
73

p

6
; pþ ¼ 5þ ffiffiffiffiffi

73
p

12
:

2F1½a; b; c; z� is the hypergeometric function. When
c > b > 0, the hypergeometric function has the integral
representation

2F1½a; b; c; z� ¼
ΓðcÞ

ΓðbÞΓðc−bÞ
×
Z

1

0

tb−1ð1−tÞc−b−1ð1−ztÞ−adt; ð3Þ

where ΓðxÞ is the Euler Gamma function; 2F1½a; b; c; z� is a
real function that is well defined in the range −∞ < z < 1
in this case. H0 is the Hubble constant today. Ω0

m is the
matter density today, and Ω0

d ¼ 1−Ω0
m. D is an additional

parameter that characterizes the fðRÞ model. For the
instability issue as discussed in Ref. [24], D must be
constrained as D < 0. Our model predicts a lower bound
for the scalar curvature R across the Universe

R ∈ ð4Λ;þ∞Þ; ð4Þ

where

Λ ¼ 3Ω0
dH

2
0: ð5Þ

The other model we consider is the one proposed by H-S
[18], for which

fðRÞ ¼ −Ω0
mH2

0

c1ð R
Ω0

mH2
0

Þn
c2ð R

Ω0
mH2

0

Þn þ 1
: ð6Þ

This model is designed to explain the late-time cosmic
acceleration without a cosmological constant. In the high-
curvature regime, where

R
Ω0

mH2
0

≫ 1; ð7Þ

however, fðRÞ actually does reduce to a phenomenological
cosmological constant 2 c1

c2
Ω0

mH2
0 ∼ 4Λ [18]. In the opposite

limit, it satisfies fðR ¼ 0Þ ¼ 0. If one chooses jfR0j ≪ 1
[where fR ≡ dfðRÞ=dR and a subscript “0” is used to
denote its present-day value], the background expansion of
the H-S model is practically indistinguishable from the
ΛCDM model. For simplicity, we take n ¼ 1 for the H-S
model throughout this work.

III. N-BODY SIMULATIONS

In this section, we briefly summarize the basic equations
to be used in fðRÞ cosmological simulations, as well as the
technical details of our simulations.

A. Nonlinear perturbation equations

The large-scale structure formation in fðRÞ gravity is
governed by the modified Poisson equation

∇2ϕ ¼ 16πG
3

δρ−
δR
6
; ð8Þ

and the equation of motion for the scalar field fR. If
jfRj ≪ 1, its equation approximately becomes

∇2δfR ¼ 1

3c2
½δR−8πGδρ�; ð9Þ

where ϕ denotes the gravitational potential, δfR≡
fRðRÞ−fRðR̄Þ, δR≡ R−R̄, and δρ≡ ρ−ρ̄. The overbar
denotes the background quantities, and ∇ is the derivative
with respect to the physical coordinates. Equations (8) and
(9) are derived in linear perturbation theory under the
quasistatic approximation, but can also be used in the
nonlinear regime, as long as the fully nonlinear relation
between fðRÞ and R is used.
In order to incorporate nonlinear effects into fðRÞ

simulations, we simply need to express R in terms of
fR. In practice, however, it is difficult to do this by inverting
the exact expression [Eq. (2)] for our model. Instead, we
use a fitting formula

fðRÞ ∼ −6Ω0
dH

2
0−

3DΩ0
mH2

0

pþ−1

�
3Ω0

mH2
0

R−12αΩ0
dH

2
0

�
pþ−1

; ð10Þ

where α is a fitting parameter depending on Ω0
m. Taking the

derivative of the above equation, we obtain

fRðRÞ ∼D

�
3Ω0

mH2
0

R−12αΩ0
dH

2
0

�
pþ
: ð11Þ

By fitting α, Eq. (11) is found to be relatively a good
approximation to the exact derivative of Eq. (2). In Fig. 1,
we show the relative error of our fitting formula with
respect to the exact expression, where
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����ΔfRfR

���� ¼
���� fR;app−fR;exactfR;exact

����: ð12Þ

In Fig. 1, we find α ¼ 0.9436 for Ω0
m ¼ 0.316. The relative

error between Eq. (11) and the exact derivative of Eq. (2) is
less than 5.5% for R > R0 where R0 is the Ricci curvature
today. When R > 3.3R0, the error drops rapidly down to
1%. At R ∼ R0, the error is around 1.5%, and it only goes
up to 10% when R approaches 4γΛ where γ ¼ 1.0338.
However, as we show later, 4γΛ is the minimal value of R
that can be found in our simulations, which is actually
very rare.
Using this fitting formula, we can express R in terms of

fR as

R ¼ 12αΩ0
dH

2
0 þ 3Ω0

mH2
0

�
D
fR

� 1
pþ
; ð13Þ

for our model. As for the H-S fðRÞ model, for R ≫ H2
0Ω0

m,
the scalar field fR can be approximated as

fRðRÞ ≈ −n
c1
c22

�
Ω0

mH2
0

R

�
nþ1

: ð14Þ

Figure 1 also shows the accuracy of this approximation, and
we can see that it is less accurate when R ∼ R0, where the
error goes up to 7%.We can similarly invert this equation to
get R as a function of fR for the H-S model, and the final
result can be found in, e.g., Ref. [18].

B. N-body equations

Our fðRÞ simulations are performed using the ECOSMOG

code [25], which is itself based on the adaptive mesh
refinement (AMR) N-body code RAMSES [26]. The code
uses the supercomoving coordinates

~x ¼ x
aB

; ρ ¼ ρa3

ρcΩ0
m
; ~v ¼ av

BH0

;

~ϕ ¼ a2ϕ
ðBH0Þ2

; d~t ¼ H0

dt
a2

; ~c ¼ c
BH0

;

where x is the comoving coordinate, ρc is the critical
density today, c is the speed of light and B is the size of the
simulation box in units of h−1 Mpc.
For our fðRÞ model and in code units, Eqs. (8) and (9)

can be rewritten respectively as

~∇2 ~ϕ ¼ 2aΩ0
mð~ρ−1Þ þ

a
2
Ω0

m−
a4Ω0

m

2

�
Da2

~fR

� 1
pþ

þ 2a4ð1−αÞΩ0
d; ð15Þ

~∇2 ~fR ¼ −
aΩ0

m

~c2
ð~ρ−1Þ

þ a4Ω0
m

~c2

�
Da2

~fR

� 1
pþ
−
4a4ð1−αÞΩ0

d

~c2
−
aΩ0

m

~c2
; ð16Þ

where ~fR ≡ a2fR.
Since these equations are different from those in

the default ECOSMOG code, we need to test the accuracy
of our modified code. Following [25], we take the density δ
as a one-dimensional (in the x direction without loss of
generality) Gaussian field

δðxÞ ¼
�ðx− 1

2
Þ2

W2
−
1

2

�
4βa~c2f̄RðaÞ

W2Ω0
m

exp

�
−
ðx− 1

2
Þ2

W2

�

þ a3
�

D

f̄RðaÞ½1−βexpð− ðx−1
2
Þ2

W2 Þ�

� 1
pþ

−4a3ð1−αÞ Ω
0
d

Ω0
m
−1; ð17Þ

which admits the following solution to the field ~fR:

~fRðxÞ ¼ a2f̄RðaÞ
�
1−βexp

�
−
ðx− 1

2
Þ2

W2

��
; ð18Þ

where W and β are constants. We use W ¼ 0.1, β ¼
0.99999 in the test. In Fig. 2, we show the numerical
results on domain grids, as well as the first and second
refinements. The numerical results are in good agreement
with the analytical solutions. In addition to the Gaussian
field test, we have also tested the code with both sine and

FIG. 1 (color online). The error of the approximation for fRðRÞ
relative to the exact expressions. When the curvature is high, the
error in our model drops very quickly. When R > 3.3R0, the error
is below 1%. When the curvature is low, e.g., R ∼ R0, the error is
around 1.5%. The error goes up to 10% when R is around 4γΛ,
where γ ¼ 1.0338. However, 4γΛ is the minimal value of R in our
simulations, which actually is a rare case. The results show that
the overall accuracy of the approximate expression of fRðRÞ for
our model is better than that for the H-S model with n ¼ 1.

REVISITING THE SCREENING MECHANISM IN fðRÞ … PHYSICAL REVIEW D 90, 103505 (2014)

103505-3



homogenous fields and found the numerical results to be in
excellent agreement with the analytical solutions. We do
not present results of the latter tests here.
The perturbation equations in code units for the H-S

model have been presented in Refs. [25,27–29]. Interested
readers are referred to these papers for further details, and
we do not repeat them here.

C. Simulation details

The cosmological parameters used in our simulations
are Ω0

b ¼ 0.049, Ω0
c ¼ 0.267, Ω0

d ¼ 0.684, h ¼ 0.671,
ns ¼ 0.962, and σ8 ¼ 0.834, which are the Planck [30]
best fit values for the standard ΛCDM model. We use the
MPGRAFIC package [31] to generate initial conditions at
zini ¼ 49. The number of particles in our simulations is
N ¼ 2563 and the box size is Lbox ¼ 150 h−1Mpc. We run
four realizations for each model. For each realization, the
different models share the same initial conditions. In Fig. 3
we show the ratio of the power spectra

ΔP=P ¼ PfðRÞðkÞ=PΛCDMðkÞ−1

at z ¼ 0, measured using the POWMES [32] code. The power
spectra are averaged over the four realizations. The fðRÞ
parameter fR0 is taken to be fR0 ¼ −10−6;−10−5;−10−4
for both our model and the H-S model. Compared with our
previous work [33], we have significantly improved the
accuracy of the background field fR in the regime R ∼ R0

by introducing the parameter α in the fitting formula
Eq. (10). When α ¼ 0, the perturbation equations (15)
and (16) reduce to the equations used in Ref. [33].

IV. COSMOLOGICAL INEQUALITIES

In this section we lay out the theoretical framework for
the screening mechanism in fðRÞ gravity. We begin by
discussing the importance of the homogenous field solution
in fðRÞ gravity and then introduce two inequalities. Using
these inequalities, we explain how the screening works. In
the next section, we apply the theory presented here to dark
matter haloes.

A. Homogeneous density field

We begin by discussing the solutions of Eqs. (8) and (9)
for a homogenous density field (δρ ¼ 0). From Eq. (9), the
vanishing of δfR gives

fR ¼ f̄RðR̄Þ ¼ D

�
3Ω0

mH2
0

R̄−12αΩ0
dH

2
0

�
pþ
; ð19Þ

where

R̄ðaÞ ¼ ½3Ω0
ma−3 þ 12Ω0

d�H2
0: ð20Þ

The error of the field fR obtained from Eq. (19) relative to
the exact expression of the derivative of the background
field Eq. (2) is shown in Fig. 1. As described above, the
maximal deviation is about 5.5% in the range R0 < R <
3.3R0 and, when R > 3.3R0, the error rapidly drops to
below 1%. For the modified Poisson equation (8), δρ ¼ 0
gives the homogeneous solution of the field ϕ ¼ 0, namely
the zero point of the potential, which, as we show later,
plays an important role in understanding the screening
mechanism in fðRÞ cosmology.
On the other hand, roughly speaking, when the local

density in the simulations is above the background density

FIG. 2 (color online). (Upper panel) The numerical solution of
the Gaussian field on the 2563 domain grids, as well as the first
and second refinements. The solid line is the analytical solution.
We take jfR0j ¼ 10−5 in the tests, and the size of the simulation
box is 150 h−1 Mpc. (Lower panel) The errors of the numerical
results relative to the exact solution on the domain grid and each
refinement.

FIG. 3 (color online). The matter power spectra for our model
(red) and the H-S (black) model measured from the simulations.
From top to bottom, fR0 takes the values −10−4;−10−5;−10−6
respectively.
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(ρ > ρ̄), the potential ϕ is negative (ϕ < 0) and δfR is
positive (δfR > 0). When the local density is below the
background density (ρ < ρ̄), the potential ϕ is positive
(ϕ > 0) and δfR is negative (δfR < 0). However, as we

show later, the ratio − c2δfR
ϕ is usually positive − c2δfR

ϕ > 0

because ϕ and δfR will change their signs simultaneously
as ϕ crosses zero.

B. Voids

In this subsection, we discuss solutions of the fields in
void regions, where ρ ∼ 0. In fðRÞ gravity, voids are not
really empty, but permeated with the scalar field fR. The
solutions of Eq. (9) in these regions are usually quite
complicated—they depend not only on the size of the
void but also on the environment surrounding it [34].
However, if we consider an extreme case where, for a large
enough void, the distribution of the cosmic field fR near the
void center is nearly homogeneous (δfR ∼ 0), we have
∇2δfR ∼ 0 and Eq. (9) yields

R ∼ 4Λ; ð21Þ

where we have used the expression for the background
Ricci curvature R̄

R̄ ¼ 8πGρ̄þ 4Λ; ð22Þ

and the assumption that at the void center ρ ∼ 0 so
that δρ ∼ −ρ̄.
Equation (21) implies that in the perturbed Universe,

even at the centers of voids, the local curvature R in fðRÞ

gravity has a nonzero lower bound 4Λ. This result does not
assume any specific functional form of fðRÞ and just
requires that the background expansion is practically
indistinguishable from that of the ΛCDM model. As a
result, this conclusion is general. To check this explicitly,
we generate a two-dimensional map from our simulations
by finding the minimal value of the curvature R along the z
direction through the simulation box and project them onto
the x-y plane. As shown in Fig. 4, in the cases with
jfR0j ¼ 10−6, the minimal values of R are very close to
4Λ, and we can see clearly that R > 4Λ for both fðRÞ
models. In the cases with jfR0j ¼ 10−4, the minimal
values of R are very close to R0 and the distribution of
Min½R� is nearly homogeneous. These numerical checks
thus confirm that

R > 4Λ: ð23Þ

From this inequality, we know that the approximate
formulae for the background fields fR [e.g., Eqs. (11) and
(14)] only need to be accurate in the range R > 4Λ.
Furthermore, fðR ¼ 0Þ ¼ 0 is not a necessary condition
for fðRÞ models, given the fact that the point R ¼ 0 will
never be arrived at in the Universe since R > 4Λ if the
background expansion of the fðRÞ model is practically
indistinguishable from the ΛCDM model. Nevertheless,
our model explicitly predicts R > 4Λ and is therefore
naturally consistent with this inequality.

C. High-density regions

In this subsection, we discuss the solutions of Eqs. (8)
and (9) in regions of high density. There are two types of

FIG. 4 (color online). The projected map of Min½R�
4Λ −1 for the H-S model with n ¼ 1 (upper row) and our model (lower row). We find the

minimal value of R along the z direction in the simulation box for each (x, y) point. In cases where jfR0j ¼ 10−4, the minimal values of R
are very close to R0 (the background curvature at present) and the distribution of the projected value is close to homogenous. In cases
where jfR0j ¼ 10−6, the minimal values of R are very close to 4Λ. We can see that R is greater than 4Λ (R > 4Λ) for both models.
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solutions. If δR ≈ 8πGδρ, the solution is called the high-
curvature solution. Correspondingly, the solution with
δR ≪ 8πGδρ is called the low-curvature solution. Note
that high density does not necessarily imply high curvature
in fðRÞ gravity.
The low-curvature solution is usually arrived at when the

amplitude of the background field, jf̄Rj, is large compared
to the local potential: c2jf̄Rj > jϕj [27]. The terms which
are associated with the perturbation of the curvature,
δRðfRÞ ¼ ∂R

∂fR δfR ≪ 8πGδρ, in Eqs. (8) and (9) have a
minor effect and can be neglected. These equations can
therefore be linearized and reduced to

∇2ϕ ≈
16πG
3

δρ ð24Þ

∇2δfR ≈ −
8πG
3c2

δρ: ð25Þ

Equations (24) and (25) indicate that, given the density
field δρ and under the same (e.g., periodic) boundary
conditions, their solutions satisfy the relation c2δfR∼
−ϕ=2. In this extreme case, the scalar field jδfRj and
the local potential jϕj attain their maximum values as
j− 2ϕN

3
j and j− 4ϕN

3
j, respectively, where ϕN is the standard

Newtonian potential for the given density field δρ. By
combining Eqs. (8) and (9), we obtain

∇2

�
ϕþ c2δfR

2

�
¼ 4πGδρ: ð26Þ

The standard Newtonian potential, ϕN , is related to the total
potential ϕ and the scalar field c2δfR as

ϕN ¼ ϕþ c2δfR
2

: ð27Þ

In general, if the background field jf̄Rj is not large
enough, we have

c2jδfRj ≤
����− 2ϕN

3

����; ð28Þ

which is a known result in the literature [17,18].
Furthermore, in high-density regions, we usually have
ϕN < 0, ϕ < 0 and δfR > 0. Inserting Eq. (27) into
Eq. (28), we have

c2jδfRj ≤
����−ϕ

2

����; ð29Þ

which only involves the quantities δfR and ϕ [remember
that ϕN is not a physical quantity in fðRÞ gravity]. In high-
density regions, applying Eqs. (27) and (29) and using
ϕN < 0, ϕ < 0, δfR > 0, we obtain

j−ϕN j ≤ j−ϕj ≤
����− 4

3
ϕN

����; ð30Þ

where the left and right limits correspond to the extreme
cases of high-curvature and low-curvature solutions,
respectively. It is evident that Eq. (30) is equivalent to
the well-known result that G ≤ Geff ≤ 4

3
G in fðRÞ gravity,

where Geff is the effective Newtonian constant which is
defined by

Geff

G
≡ 4

3
−

δR
3κ2δρ

: ð31Þ

Geff determines the strength of the gravitational interactions
between massive particles in fðRÞ gravity, and G, on the
other hand, is what is felt by photons and other massless
particles.
From Eq. (30), we notice that Eq. (29) imposes a tighter

constraint on the scalar field perturbation c2jδfRj than
Eq. (28). We therefore focus on Eq. (29) throughout this
work, and take it as the starting point of our analyses for the
rest of this paper. We first check its validity against our
numerical simulations, before trying to quantitatively
understand the screening mechanism in fðRÞ gravity based
on it.
To check Eq. (29) in our simulations, we statistically

compare the values of − c2δfR
ϕ and −ϕ. We divide the

potential ϕ into 100 equal bins from the minimal value to
the maximal value. For convenience, ϕ is in code units. We

then count the number of occurrences of − c2δfR
ϕ and

calculate its arithmetic average in each bin. The results
are shown in the upper panels in each plot of Fig. 5.
Included in Fig. 5 are the results at z ¼ 0 for our fðRÞ
model (red) and for the H-S model (black), each with
different parameters fR0 ¼ −10−4;−10−5;−10−6. We

clearly find there that − c2δfR
ϕ is a positive and rather smooth

function with respect to the potential ϕ, except in the
vicinity of ϕ ¼ 0, where the discontinuities are due to

numerical errors. We find that the maximal value of − c2δfR
ϕ

is 1=2, which only happens in the fR0 ¼ −10−4 case. In the
other two cases (fR0 ¼ −10−5;−10−6), the value of − c2δfR

ϕ

is much smaller than 0.5. Our numeric simulations there-
fore confirm Eq. (29). For completeness, we also check this
issue at higher redshifts (z ¼ 0.5; 1.0; 1.5; 2.0). Taking
fR0 ¼ −10−4 as an example, as shown in the upper panels
in each plot of Fig. 6, Eq. (29) also holds at higher redshifts.
We are now in a position to understand the screening

mechanism using Eq. (29). We focus on high-density
regions (δ ≫ 1) in this work. As mentioned above, in
these regions, the potential is usually negative (ϕ < 0), and
the magnitude of the scalar field fR is smaller than the value
of the background field, jfRj < jf̄Rj (see Fig. 6), implying
that δfR > 0. Equation (29) in this case can be rewritten as
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−
ϕ

2
≥ c2ðfR−f̄RÞ ¼ c2δfR > 0; ð32Þ

from which we have

c2fR ≤ −
ϕ

2
þ c2f̄R: ð33Þ

Recall that fR must satisfy the physical constraint fR < 0
due to the stability considerations of the perturbation
evolution in the high curvature regime [24], and it can
be shown that if the right-hand side of Eq. (33) is less than
zero or, equally, c2f̄R < ϕ

2
, the absolute value of c2fR will

have a nonzero lower bound: c2jfRj ≥ j− ϕ
2
þ c2f̄Rj > 0. If

the background field jf̄Rj is large (c2jf̄Rj ≫ j ϕ
2
j), this lower

bound will be rather high as well (j− ϕ
2
þ c2f̄Rj ≫ 0),

which means that jfRj cannot be adequately suppressed
in high-density regions, leading to a strong fifth force. This

physical picture can also be viewed in a different way: the
existence of the lower bound for jfRj, for both fðRÞmodels
studied in this work, conversely, means that there is an
upper bound on the curvature: Rmax ¼ RðfR ¼ −j− ϕ

2c2 þ
f̄RjÞ in high-density regions. If Rmax ≪ 8πGρ, the solution
to the curvature is far below the GR prediction, so that the
model does not have a high-curvature solution in high-
density regions and would be ruled out. Therefore,
c2jf̄Rj ≫ j− ϕ

2
j is a sufficient condition for the model to

admit the low-curvature solution.
On the other hand, if − ϕ

2
þ c2f̄R ∼ 0, the magnitude of

the scalar field fR can be sufficiently suppressed: jfRj → 0
and Rmax can be close enough to its GR solution,
Rmax ∼ 8πGρ, so that a fðRÞ model could admit the
high-curvature solution. Moreover, if the local scalar field
ϕ satisfies jϕj > 2c2jf̄Rj, there will be no constraint on the
maximal value of the local scalar curvature (Rmax ¼ þ∞),
and the high-curvature solution can possibly be arrived at

FIG. 5 (color online). The statistics of − c2δfR
ϕ and Geff

G for our model and the H-S model at z ¼ 0. The horizontal axis is the potential ϕ
in code units. The condition jϕj > 2c2jf̄Rj is equivalent to j ~ϕj > j ~ϕcj where ~ϕc ¼ 2~c2f̄R is the critical potential and is indicated by red
(black) solid vertical lines for our (the H-S) model. We can see clearly that when j ~ϕj > j ~ϕcj the screening mechanism starts to work.

REVISITING THE SCREENING MECHANISM IN fðRÞ … PHYSICAL REVIEW D 90, 103505 (2014)

103505-7



too. jϕj≳ 2c2jf̄Rj is therefore the necessary condition for
the high-curvature solution. However, this is not a sufficient
condition: as we show later, to guarantee a high-curvature
solution (Geff ∼G), the potential well ϕ needs to be deep
enough relative to the background field 2c2jf̄Rj.
Inorder to test the above conclusions,weperforma similar

statistical analysis, to that of − c2δfR
ϕ , for the effective

Newtonian constant Geff , which is defined by Eq. (31).
Recall that Geff ∼ G indicates the high-curvature solution
(δR ∼ κ2δρ) and Geff ∼ 4

3
G implies the low-curvature sol-

ution (δR ≪ κ2δρ). The numerical results for the statistics of
Geff=G are shown in the lower panels in each plot of Figs. 5
and 6. We define a critical potential as ϕc ¼ 2c2f̄R, and in
Figs. 5 and 6,ϕc (in code units) is indicated by vertical lines.
As we have expected, when the magnitude of the local
potential jϕj is higher than the critical potential jϕcj, the
screeningmechanism starts towork, as can be seen clearly in

Fig. 5 for both fðRÞmodels studied, and for different values
of the parameter fR0. For completeness, we also check this
conclusion at higher redshifts (z ¼ 0.5; 1.0; 1.5; 2.0). We
take fR0 ¼ −10−4 for illustration purposes. Figure 6 shows
that jϕcj lies accurately at the point above which the
screeningmechanism starts towork. These numerical results
are in good agreement with our above analysis. From Figs. 5
and 6, we can also see that high-curvature solutions with an
effective Newtonian constant close to that in standard
gravity, Geff ≈ G, usually happen in regimes where the
potential ϕ is substantially deeper than ϕc.
Before leaving this section, we briefly summarize the

main results obtained from the above analyses:
(i) 2c2jf̄Rj ≫ j−ϕj is a sufficient condition for the low-

curvature solution. Combining the constraint R >
4Λ obtained above, we find that the curvature scalar
R is bounded locally as

FIG. 6 (color online). The statistics of − c2δfR
ϕ and Geff

G for our model and the H-S model at higher redshifts. We take fR0 ¼ −10−4 for
illustrative purpose. The potential ϕðzÞ is in code units. The condition jϕðzÞj > 2c2jf̄RðzÞj is equivalent to j ~ϕðzÞj > j ~ϕcðzÞj, where
~ϕcðzÞ ¼ 2~c2f̄RðzÞ=ð1þ zÞ2. The red and black solid vertical lines indicate the critical values ~ϕcðzÞ for our model and the H-S model,
respectively. When j ~ϕðzÞj > j ~ϕcðzÞj, the screen mechanism starts to work.
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4Λ < R < R

�
fR ¼ −

����− ϕ

2c2
þ f̄R

����
�
;

for the low-curvature solution. If this occurs in the
Solar system, the model is ruled out. Using
j− 4

3
ϕN j ≥ j−ϕj, it can be shown that 2c2jf̄Rj ≫

j− 4
3
ϕN j is also a sufficient condition for the low-

curvature solution and is indeed stronger than the
condition 2c2jf̄Rj ≫ j−ϕj because, logically, we
have

2c2jf̄Rj ≫
����− 4

3
ϕN

���� ⇒ 2c2jf̄Rj ≫ j−ϕj:

(ii) j−ϕj≳ 2c2jf̄Rj is a necessary but not sufficient
condition for the high-curvature solution. From
j− 4

3
ϕN j ≥ j−ϕj, we can show that j− 4

3
ϕN j ≳

2c2jf̄Rj is also a necessary condition for the high-
curvature solutions. However, it is much weaker
than that of j−ϕj≳ 2c2jf̄Rj because, logically, we
have

j−ϕj≳ 2c2jf̄Rj ⇒
����− 4

3
ϕN

����≳ 2c2jf̄Rj: ð34Þ

In addition to the above results, we also find that the
critical potential ϕc ¼ 2c2f̄R is a good indicator which tells
us when the screening mechanism starts to work. Such a
universal criterion applies excellently to both fðRÞ models
studied here, with different parameters (fR0 ¼ −10−6;
−10−5;−10−4) at different redshifts (see Fig. 6). Regions
where the local potential ϕ is below jϕcj are usually
completely unscreened.
A potential application of the result obtained above is

that the condition j 4
3
ϕN j < jϕcj can be used to identify

unscreened galaxies and to make screening maps for galaxy
surveys [35]. Such maps play an important role in astro-
physical constraints on fðRÞ gravity [36], which can place
much tighter constraint than what can be obtained from
cosmological observations.
Nevertheless, there are some caveats before applying the

conclusions made in this section to real galaxies. In the
widely accepted picture, galaxies often form inside dark
matter haloes, which are highly biased tracers of the
underlying dark matter field. To make the necessary
connections, we extend our analysis to dark matter haloes
in the next section.

V. DARK MATTER HALOES

From the previous analysis, we know that the screening in
fðRÞ gravity depends mainly on the depth of the gravita-
tional potential. From the condition j−ϕj≳2c2jf̄Rj, we can

infer that there are two possible ways for a dark matter halo
to be screened. First, the halo itself is so massive that it
can generate a deep enough potential well that satisfies
j−ϕj ≫ j−ϕcj: this case is dubbed “self-screening” [35,37–
39]. Second, for a halo too small to be self-screened but lying
in a very deep potential well, if the magnitude of the total
local potential satisfies j−ϕj ≫ j−ϕcj, then the halo can still
become screened: this case is called “environmental screen-
ing” [35,37–39]. In the following, we discuss these two
different screening scenarios in detail.
We identify haloes in our simulations using a modified

version of the AHF code [40]. We follow the standard
procedure in the AHF code to locate density peaks as
the positions of the dark matter haloes, but remove the
unbound particles in haloes by taking into account the
modification to gravity. We use the effective density δρeff ≡
Geff
G δρ instead of δρ to calculate the gravitational potential.
In order to characterize screened and unscreened dark
matter haloes, we follow [39] by defining the lensing mass
ML and dynamical mass MD for a dark matter halo.
The lensing mass is the bare mass of the dark matter

haloes, which is defined by

ML ¼
Z

δρðxÞdV: ð35Þ

The dynamic mass, on the other hand, is defined by

MD ¼
Z

δρeffðxÞdV; ð36Þ

which includes the effect of the scalar field. For a totally
unscreened halo, the ratio between the two masses is
MD
ML

≈ 4
3
, while for a well screened halo we have MD

ML
≈ 1.

In general, however, the value of MD
ML

is somewhere in
between.
We now present our results for several representative

models. Shown in Figs. 7–9 are the numerical results for the
two fðRÞ models with fR0 ¼ −10−4 at z ¼ 1 (in Fig. 7,
note that we do not show the z ¼ 0 results for fR0 ¼ −10−4
because all haloes in this case are simply unscreened) and
the models with fR0 ¼ −10−5, fR0 ¼ −10−6 at z ¼ 0,
respectively. In these figures, each point represents a dark
matter halo, and the color of the point describes the ratio
between the dynamical mass and the lensing mass. We find
the maximal value of the gravitational potential −ϕ inside a
dark matter halo and show Max½−ϕ� with respect to the
lensing mass of the said halo. For convenience, the
potential ~ϕ is in code units, and ~ϕc ¼ 2~c2f̄R is the critical
potential we have defined in the previous section. From
these figures, we can see that if − ~ϕ > 0, the completely
screened dark matter haloes (MD

ML
≈ 1.0) only appear in

potentials much deeper than the critical potential ~ϕc. It
is also evident that below this critical potential, almost all
the haloes are completely unscreened (MD

ML
≈ 4

3
). These
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observations apply to both fðRÞ models under consider-
ation and for different values of fR0.
Next, we look at the two different ways of screening

haloes as mentioned before. The efficiency of the screening
depends on the depth of the potential well, j−ϕj. In the
fR0 ¼ −10−4 case, as is shown in Fig. 7, the dark matter
haloes, even the largest ones, cannot generate a deep
enough potential well for self-screening, and most of them

are completely unscreened. However, we also see that there
are several small haloes that are well screened. In these
cases, the screened haloes are environmentally screened
because they reside in deep potential wells generated by
nearby structures. In order to confirm this point, in Fig. 10,
we show the minimal values of the gravitational potential
−ϕ found inside dark matter haloes with respect to the
lensing mass of the haloes. Compared with Fig. 7, for the

FIG. 7 (color online). Scatter plot for the maximal value of the gravitational potential Max½−ϕ� inside a dark matter halo with respect
to the lensing mass of the halo for fðRÞ models with fR0 ¼ −10−4 at z ¼ 1. Each point represents a dark matter halo, and its color
encodes the ratio between the dynamical mass and the lensing mass (see the colorbar on the right-hand side). j ~ϕcj ¼ 2~c2jf̄Rj is the
critical value in code units, above which the screening mechanism starts to work. Halos with the maximal depth of the potential well
j−ϕj below the threshold j ~ϕcj are completely unscreened in this case. In the right panel, some small haloes are well screened due to
environmental screening. However, in this case, large haloes cannot generate deep enough potential wells for self-screening and
therefore are only partially screened.

FIG. 8 (color online). Scatter plot for the maximal value of the gravitational potential Max½−ϕ� inside a dark matter halo with respect
to the lensing mass of the halo for fðRÞmodels with fR0 ¼ −10−5 at z ¼ 0. It is clear that below the horizontal line, which represents the
critical potential j ~ϕcj ¼ 2~c2jf̄Rj, the haloes are completely unscreened. It is also clear that most of the well-screened haloes lie in very
deep potential wells.
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large haloes, we find that although the maximal depth of the
potential well (Max½−ϕ�) inside the haloes is far above the
critical potential, the minimal depth Min½−ϕ� can be below
it: the large haloes are therefore only partially screened,
leading to MD

ML
> 1. On the other hand, for the well-screened

small haloes, from Fig. 10, we can see that even the
minimal depths of the potential inside the haloes are far
above the critical potential (see the blue points in Fig. 10):
since the small haloes themselves could not produce such

deep potentials, the latter should have been generated by
their environments (note that the results are unlikely to be
noise as a halo normally contains at least hundreds of
simulation particles).
If the background field jf̄Rj is small (e.g., fR0 ¼ −10−6),

most haloes can generate relatively deeper potential wells
than the small critical potential ~ϕc and thus easily be self-
screened. From Fig. 9, we find that all haloes more massive
than about 1013M⊙ are well screened. However, not all the

FIG. 9 (color online). Scatter plot for the maximal value of the gravitational potential Max½−ϕ� inside a dark halo with respect to the
lensing mass of the halo for fðRÞmodels with fR0 ¼ −10−6 at z ¼ 0. In this case, most of the massive haloes (e.g.Mvir > 1013M⊙) can
generate deep enough potential well and get self-screened. It is also obvious that a substantial fraction of the small haloes are also well
screened due to the environment screening. Below the horizontal line, which represents the critical potential j ~ϕcj ¼ 2~c2jf̄Rj, most of the
haloes are completely unscreened.

FIG. 10 (color online). Scatter plot for the minimal value of the gravitational potential Min½−ϕ� inside a dark halo with respect to the
lensing mass of the halo for fðRÞ models with fR0 ¼ −10−4 at z ¼ 1. The small haloes indicated by the blue points are embedded in
potential wells significantly deeper than the threshold j ~ϕcj and are therefore well screened. However, the minimal depth of the potential
well Min½−ϕ� for the massive haloes is not far above the threshold of the potential j ~ϕcj. These massive haloes are only partially screened
(e.g., MD

ML
∼ 1.20).
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FIG. 11 (color online). Scatter plot for MD
ML

with respect to the lensing mass and the maximal value of the gravitational potential
Max½−ϕ� of each halo for fðRÞ model at z ¼ 0 with fR0 ¼ −10−5 (top row) and fR0 ¼ −10−6 (middle row), respectively. Statistically
speaking, the screening level also depends on the depth of the potential well. It is clear that the scatter in terms of halo mass is much lager
than that of the potentials. The transition from unscreened to screened haloes is much sharper in the fR0 ¼ −10−6 case than that in the
fR0 ¼ −10−5 case. The bottom row shows the distribution of MD

ML
for isolated haloes. It is evident that most of the isolated haloes are

completely unscreened haloes. In fR0 ¼ −10−6 case, the screening level shows clear dependence on the halo mass. This is because for
isolated haloes the potential is more dependent on its own mass.
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FIG. 12 (color online). Scatter plot for the maximal value of the standard Newtonian potential Max½−ϕN� inside a dark halo with
respect to the lensing mass of the halo for fðRÞ models with fR0 ¼ −10−4 at z ¼ 1 (top row), and fR0 ¼ −10−5 (middle row), −10−6
(bottom row) at z ¼ 0, respectively. The values of the Newtonian potential are evaluated by ϕN ¼ ϕþ c2δfR

2
and ~ϕN is in the code units.

The critical potential is defined by ~ϕNc ¼ 3
2
~c2f̄R. From the plots, we can see clearly that j ~ϕN j > j ~ϕNcj is not accurate enough for

identifying the screened haloes. However, j ~ϕN j < j ~ϕNcj is accurate for identifying the unscreened haloes in the fR0 ¼ −10−4 and
fR0 ¼ −10−5 cases. In the fR0 ¼ −10−6 case, below the horizontal line, most of the haloes are completely unscreened, though several of
them are only partially unscreened.
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small haloes less massive than ∼1013M⊙ are unscreened.
As explained in the above, there are a substantial fraction of
the small haloes which are environmentally screened: as the
critical potential jϕcj is smaller for fR0 ¼ −10−6, there will
be more regions in which nearby structures can create a
potential well deeper than jϕcj.
Further, statistically speaking, the screening level MD

ML
also

depends on the depth of the potential well. In Fig. 11 we
show the distribution of MD

ML
with respect to ML and the

maximal value of the gravitational potential, Max½−ϕ�, of
each halo. It is evident that the scatter of MD

ML
as functions of

the potentials is much smaller than that of the halo masses.
There are clear statistical transition features of haloes from
being completely unscreened to being very well screened as
the potential deepens. The transition is much sharper in
fR0 ¼ −10−6 than in fR0 ¼ −10−5, which is as expected
given that the condition j−ϕj≳ j−ϕcj can be more easily
satisfied in fR0 ¼ −10−6 case.
In the bottom row of Fig. 11, we show the screening level

for isolated haloes with respect to lensing masses for fR0 ¼
−10−5 and fR0 ¼ −10−6, respectively. The isolated halo is
defined as a halo with no neighbors around, by

jj~ri−~rjjj ≥ NðRi
vir þ Rj

virÞ; ð37Þ
in which ~ri is the position of a halo’s center and Ri

vir is its
viral radius; N characterizes the separation of haloes, and
we take N ¼ 10 in this work. From the bottom row of
Fig. 11, it is clear that most of the isolated haloes are
completely unscreened. In the fR0 ¼ −10−6 case, the
screening level shows clear dependence on the halo mass,
because for isolated haloes the screening is mainly self-
screening, determined by the halo mass.
So far, our analysis of the screening mechanism is based

on comparing the local gravitational potential −ϕ to the
value of the background field c2f̄R. The condition j−ϕj ≲
2c2jf̄Rj is useful for identifying unscreened haloes theo-
retically. However, in practice a global map of potential −ϕ
may not be easily constructed in real galaxy surveys, and
we need to use the standard Newtonian potential ϕN ,
namely the lensing potential, which is related to ϕ by
Eq. (27). There are two reasons for this:

(i) First, a global map of ϕN can be easily constructed in
real galaxy surveys if a group catalog [41] is
available because ϕN satisfies the linear equation
[Eq. (26)]. ϕ, on the other hand, cannot be recon-
structed without solving the more complicated non-
linear scalar field equation.

(ii) Second, measurements of galaxy shear also have the
potential to reconstruct the three-dimensional map of
the lensing potential ϕN using weak lensing tomog-
raphy [42].

As we have discussed in the previous section, for
identifying the unscreened haloes, the condition j− 4

3
ϕN j ≲

2c2jf̄Rj is stronger than j−ϕj≲ 2c2jf̄Rj. Let us now

examine the power of the condition j− 4
3
ϕN j≲ 2c2jf̄Rj

for identifying unscreened haloes. In Fig. 12, we show the
maximal value of the Newtonian potential ϕN inside a halo
(Max½−ϕN�) with respect to the lensing mass of the halo for
fR0 ¼ −10−4 models at z ¼ 1 (top panel) and fR0 ¼ −10−5
(middle panel) and fR0 ¼ −10−6 (bottom panel) models at
z ¼ 0. The horizontal lines indicate the critical potentials
for the Newtonian potential ϕN , which is defined by

ϕNc ¼
3

2
c2f̄R: ð38Þ

We can see that jϕN j > jϕNcj is not very useful for
identifying screened haloes. However, the opposite case
jϕN j < jϕNcj is very accurate for identifying completely
unscreened haloes in fR0 ¼ −10−4 and fR0 ¼ −10−5 cases.
For fR0 ¼ −10−6 cases, as shown in Fig. 12, not all haloes
with Max½−ϕN � < j−ϕNcj are completely unscreened:
several of them (mainly the more massive ones) are only
partially unscreened. However, the condition jϕN j < jϕNcj
in this case does distinguish unscreened haloes (including
partially unscreened ones) from well-screened haloes (dark
blue points in Fig. 12). In order to show this point, in
Fig. 13 we present a histogram for the distribution of the
well-screened dark haloes (jMD

ML
−1j < 0.01) with respect to

the maximal potential −ϕN inside the halo. It is clear that
below the threshold j−ϕNcj, the number counts of well-
screened haloes are fairly low.

VI. SUMMARY AND DISCUSSION

The chameleon screening plays an important role in the
viability of fðRÞ gravity. In this paper, we have reexamined

FIG. 13 (color online). Histogram for the well-screened dark
haloes (jMD

ML
−1j < 0.01) with respect to the maximal potential

−ϕN inside them for the fR0 ¼ −10−6 cases. It is clear that almost
all of the well-screened dark haloes lie above the critical potential
j−ϕNcj, and below the threshold j−ϕNcj the number counts are
very small.
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the screening in fðRÞ cosmology using a suite of N-body
simulations and found a number of useful results, which are
summarized as follows.

(i) In low-density regions, we find that the local
curvature R has a nonzero lower bound given by

R > 4Λ: ð39Þ

This conclusion applies to a large family of fðRÞ
models that can closely mimic the ΛCDM back-
ground expansion regardless the functional form of
fðRÞ. A practical application of this result is that the
approximation for the scalar field fR only needs to
be accurate in the range R > 4Λ.

(ii) In high-density regions, we find an inequality

c2jδfRj ≤
����−ϕ

2

���� ð40Þ

that plays an important role in understanding the
screening. We find that screening happens only if the
depth of the local potential, −ϕ, is close to or above
the value of the background field, namely
j−ϕj≳ 2c2jf̄Rj. However, this condition is not
sufficient for all haloes to be well screened. On
the other hand, we find that the opposite case,
j−ϕj ≤ 2c2jf̄Rj, can be reliably used to identify
completely unscreened haloes in the simulations.
To make connection between our results and real

galaxy surveys, we have also expressed the con-
dition in terms of the standard Newtonian potential
ϕN , or the lensing potential, which can be more
straightforwardly inferred from observations. We
show that

����− 4

3
ϕN

���� ≤ 2c2jf̄Rj ð41Þ

is a stronger and more conservative criterion to find
unscreened haloes. It works very well in the fR ¼
−104 and fR ¼ −10−5 cases, for which below the
threshold potential jϕNcj ¼ 3

2
c2jf̄Rj all our dark

matter haloes are completely unscreened. In the
case of fR ¼ −10−6, although the criterion in
Eq. (41) no longer guarantees that all the selected
haloes are completely unscreened, it does cleanly
separates unscreened haloes from the well-screened
ones, and the contamination of the unscreened
samples is very low.

We point out that the way we separate self and
environmental screenings of dark matter haloes is slightly
different from some works in the literature. When talking
about environmental screening, people often use a criterion
similar to Eq. (41), but with (i) f̄R replaced by its “local”
version f̄R;ξ, where the subscript ξ means that f̄R;ξ is the
average over a region of size ξ, usually assumed as

comparable to the Compton wavelength of fR, and (ii) ϕN
taken as the Newtonian potential generated by the object
(halo or galaxy) being considered, instead of the total
Newtonian potential measured near the said object (the
latter could have contribution from nearby objects). Our
criterion is more directly related to observations, as we can
only measure the total ϕN with gravitational lensing—if the
latter is known, we know the total screening and the
separation of self and environmental screening are of no
practical interest. Furthermore, note that ϕN satisfies the
usual superposition principle, while ϕ does not, and thus,
the use of ϕN makes it easier to estimate the contributions
from environment (neighboring structures).
Although our conclusions are based on pure dark matter

simulations, we would like to point out that the screening of
a galaxy should be generally determined by the screening
of the underling dark matter field since the baryon field
only accounts for a small fraction of the total matter field on
the scale of halos.
State-of-the-art hydro simulations in the standardΛCDM

model, such as the EAGLE [43] project, have led to clear
pictures of the baryon distribution in dark matter haloes.
For illustrative purposes, we assume that this picture also
roughly holds for fðRÞ gravity. The baryon contribution to
halo masses is just ∼2%–3% for haloes of ∼1011M⊙, rising
gradually to ∼15% for haloes of ∼1014M⊙. It is clear that
the baryons only account for a small fraction of the halos
mass and further only a small fraction of baryons comes
into the form of the stellar mass.
Within dark matter haloes, dark matter dominates the

matter field when the radius is above 5% halos radius
r > 0.05Rvir, where the density profile is well described by
the Navarro, Frenk, and White (NFW) profile [44]. In the
core part of the halo r < 0.05Rvir, baryons would make up
a significantly larger fraction of the total masses, at
∼10%–25% for haloes of 1011–1014M⊙. In this region,
baryons are almost completely in the form of stars.
Although the total density profile in this region is deeper
than NFW, using the fitting results of [43], we find that the
baryons still contribute a sub-dominate fraction to a halo’s
own potential ϕN . It is about ∼25% in haloes of 1011M⊙,
rising to ∼40% for haloes of ∼1012M⊙ and then decreasing
to below ∼10% for haloes of 1014M⊙. The presence of a
galaxy near the halo center therefore will not dramatically
change the screening property therein, though it can make a
quantitative difference.
Although the screening properties on the scale of a

galaxy is determined by the dark matter field, it is important
to note that on the scale of stars, the screening is determined
by the baryon field itself since dark matters cannot be
localized in such a small dense region. If the star is dense
enough, the potential in the center region will be very deep.
The star, at least, will be partially self-screened. It is very
interesting to note that, in an unscreened halo, the stars can
be treated as if living on the cosmological background. We
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take fR0 ¼ −10−6 for instance. If a halo is unscreened, it
means that its jϕN j is smaller than ∼10−6, the halo has a
mass of ∼1012M⊙ and its baryons contribute an additional
potential of ϕN ∼ −5 × 10−7, which is still not enough to
screen the halo. The contribution from the halo and galaxy
to the potential of stars can be neglected, which, in turn,
means that the screening of a star is determined by the
depth of its own potential relative to the cosmological
background field jf̄R0j.
Comparing the properties of galaxies in screened versus

unscreened haloes could potentially provide one of the
most robust tests of fðRÞ gravity [35–37] because the
formation and evolution of galaxies in these regions should
differ significantly due to the one-third enhancement of the
gravitational force. However, caution must be taken when
performing and interpreting these tests due to the difficulty
of correctly modeling the nonlinear environmental effects.
Detailed simulations and analysis of galaxy formation in
fðRÞ gravity are needed before drawing quantitative
conclusions.
When making applications to real galaxy surveys, the

first step is to build a screening map [35]. The unscreened
samples are of particular interest. As is discussed above,
massive components in the galaxy, such as stars, can self-
screen if they can generate deep enough local potential
wells such that jϕN j ≫ jϕNcj, where the threshold potential
jϕNc=c2j for models with different values of fR0 at z ¼ 0
are listed in Table I. Here remember that ϕN has additional
contributions from the galaxy, its host halo, and their large-
scale environment. The Sun typically has the potential as
jϕN⊙=c2j ∼ 10−6 and consequently main sequence stars
similar to or more massive than the Sun could be at least
partially self-screened for fðRÞ models with jfR0j ≤ 10−6.
Only low-density components like the gaseous disk and
low-mass stars, in unscreened haloes, are unscreened. This
picture of partially screened galaxy opens a novel oppor-
tunity to test fðRÞ gravity by examining the different
dynamics between their screened and unscreened compo-
nents [45].
However, as is pointed out in this work, to accurately

identify unscreened galaxies in real surveys, we need to
estimate the total Newtonian potential ϕN at the positions
of the galaxies, considering the latter to be tracers of the
underlying dark matter field. A group catalog could be used
for this kind of study (e.g., Ref. [35]), and it is crucial to
understand how well the group luminosity of galaxy

samples can trace the underling dark matter halo mass in
fðRÞ gravity. When converting the group luminosity to the
halo mass, further caution must be taken because there may
be significant difference in the biases of screened and
unscreened haloes. This work requires a careful investiga-
tion of halo and galaxy formation in fðRÞ gravity and
therefore higher resolution simulations, which will be
addressed in our future work.
Furthermore, the galaxy shear measurements may have

the potential of determining the Newtonian potential ϕN ,
namely the lensing potential, with significantly improved
precisions. Coming surveys such as Euclid [46] will be able
to reconstruct the three-dimensional lensing potential using
weak lensing tomography [42]. With these, the method
presented in this paper offers a reliable way to select
unscreened samples from galaxy surveys. Combining
galaxy shear measurements, galaxy surveys and additional
observations on the galaxy properties may yield powerful
tests on fðRÞ gravity in the future.
Finally, we would like to remark here that the efficiency

of screening depends on the absolute depth of the potential
well. This is due to the nonlinear nature of the scalar field
equation Eq. (9). The reference of the depth of the potential
well δfR cannot be chosen arbitrarily because δfR should
vanish for the homogenous density field, which actually
defines the zero point of δfR. The Newtonian potential, ϕN ,
should vanish for the homogenous density field as well. To
apply our results to real galaxies surveys, we need to
carefully take into account this point.

ACKNOWLEDGMENTS

We thank L. Guzzo for helpful discussions. J. H. H.
acknowledges support of the Italian Space Agency (ASI),
through contract agreement I/023/12/0. B. L. is supported
by the Royal Astronomical Society and DurhamUniversity.
A. J. H. and B. R. G. acknowledge support of the European
Research Council through the Darklight ERC Advanced
Research Grant (291521).

[1] S. J. Perlmutter et al., Nature (London) 391, 51 (1998);
A. G. Riess et al., Astron. J. 116, 1009 (1998); S. J. Perlmutter
et al., Astrophys. J. 517, 565 (1999); J. L. Tonry et al.,

Astrophys. J. 594, 1 (2003); A. G. Riess et al., Astrophys.
J. 607, 665 (2004); P. Astier et al., Astron. Astrophys. 447, 31
(2006); A. G. Riess et al., Astrophys. J. 659, 98 (2007).

TABLE I. jϕNc=c2j for fðRÞ models.

fR0 ϕNc=c2 ¼ ~ϕNc=~c2 ¼ 3
2
fR0

−10−4 −1.5 × 10−4

−10−5 −1.5 × 10−5

−10−6 −1.5 × 10−6

HE et al. PHYSICAL REVIEW D 90, 103505 (2014)

103505-16

http://dx.doi.org/10.1038/34124
http://dx.doi.org/10.1086/300499
http://dx.doi.org/10.1086/307221
http://dx.doi.org/10.1086/376865
http://dx.doi.org/10.1086/383612
http://dx.doi.org/10.1086/383612
http://dx.doi.org/10.1051/0004-6361:20054185
http://dx.doi.org/10.1051/0004-6361:20054185
http://dx.doi.org/10.1086/510378


[2] E. Komatsu et al., Astrophys. J. Suppl. Ser. 192, 18 (2011);
P. A. R. Ade et al., arXiv:1303.5076.

[3] A. G. Sanchez et al., arXiv:1203.6616.
[4] S. M. Carroll, Living Rev. Relativity 4, 1 (2001).
[5] P. G. Bergmann, Int. J. Theor. Phys. 1, 25 (1968).
[6] A. A. Starobinsky, Phys. Lett. 91B, 99 (1980).
[7] A. L. Erickcek, T. L. Smith, and M. Kamionkowski, Phys.

Rev. D 74, 121501 (2006).
[8] V. Faraoni, Phys. Rev. D 74, 023529 (2006).
[9] S. Capozziello and S. Tsujikawa, Phys. Rev. D 77, 107501

(2008).
[10] T. Chiba, T. L. Smith, and A. L. Erickcek, Phys. Rev. D 75,

124014 (2007).
[11] I. Navarro and K. Van Acoleyen, J. Cosmol. Astropart.

Phys. 02 (2007) 022.
[12] G. J. Olmo, Phys. Rev. Lett. 95, 261102 (2005).
[13] G. J. Olmo, Phys. Rev. D 72, 083505 (2005).
[14] L. Amendola, D. Polarski, and S. Tsujikawa, Phys. Rev.

Lett. 98, 131302 (2007).
[15] L. Amendola, R. Gannouji, D. Polarski, and S. Tsujikawa,

Phys. Rev. D 75, 083504 (2007).
[16] L. Amendola, Phys. Rev. D 60, 043501 (1999).
[17] J. Khoury and A. Weltman, Phys. Rev. D 69, 044026

(2004); Phys. Rev. Lett. 93, 171104 (2004).
[18] W. Hu and I. Sawicki, Phys. Rev. D 76, 064004

(2007).
[19] F. Schmidt, Phys. Rev. D 81, 103002 (2010).
[20] L. Lombriser, K. Koyama, G.-B. Zhao, and B. Li, Phys. Rev.

D 85, 124054 (2012); L. Lombriser, F. Schmidt, T. Baldauf,
R. Mandelbaum, U. Seljak, and R. E. Smith, Phys. Rev. D
85, 102001 (2012).

[21] J.-H. He and B. Wang, Phys. Rev. D 87, 023508
(2013).

[22] A. Silvestri and M. Trodden, Rep. Prog. Phys. 72, 096901
(2009); T. Clifton, P. G. Ferreira, A. Padilla, and C. Skordis,
Phys. Rep. 513, 1 (2012); T. P. Sotiriou and V. Faraoni, Rev.
Mod. Phys. 82, 451 (2010).

[23] A. De Felice and S. Tsujikawa, Living Rev. Relativity 13, 3
(2010).

[24] I. Sawicki and W. Hu, Phys. Rev. D 75, 127502 (2007).

[25] B. Li, G.-B. Zhao, R. Teyssier, and K. Koyama, J. Cosmol.
Astropart. Phys. 1 (2012) 51.

[26] R. Teyssier, Astron. Astrophys. 385, 337 (2002).
[27] H. Oyaizu, Phys. Rev. D 78, 123523 (2008); H. Oyaizu,

M. Lima, and W. Hu, Phys. Rev. D 78, 123524 (2008);
F. Schmidt, M. V. Lima, H. Oyaizu, and W. Hu, Phys. Rev.
D 79, 083518 (2009).

[28] G.-B. Zhao, B. Li, and K. Koyama, Phys. Rev. D 83, 044007
(2011).

[29] E. Puchwein, M. Baldi, and V. Springel, Mon. Not. R.
Astron. Soc. 436, 348 (2013).

[30] P. A. R. Ade et al., arXiv:1303.5076.
[31] E. Bertschinger, arXiv:astro-ph/9506070.
[32] S. Colombi, A. H. Jaffe, D. Novikov, and C. Pichon, Mon.

Not. R. Astron. Soc. 393, 511 (2009).
[33] J.-H. He, B. Li, and Y. Jing, Phys. Rev. D 88, 103507 (2013).
[34] J. Clampitt, Y. C. Cai, and B. Li, Mon. Not. R. Astron. Soc.

431, 749 (2013).
[35] A. Cabre, V. Vikram, G. B Zhao, B. Jain, and K. Koyama,

J. Cosmol. Astropart. Phys. 7 (2012) 34.
[36] B. Jain, V. Vikram, and J. Sakstein, Astrophys. J. 779, 39

(2013).
[37] L. Hui, A. Nicolis, and C. Stubbs, Phys. Rev. D 80, 104002

(2009).
[38] G.-B. Zhao, B. Li, and K. Koyama, Phys. Rev. Lett. 107,

071303 (2011).
[39] B. Li, G.-B. Zhao, and K. Koyama, Mon. Not. R. Astron.

Soc. 421, 3481 (2012).
[40] S. R. Knollmann and A. Knebe, Astrophys. J. Suppl. Ser.

182, 608 (2009); S. P. D. Gill, A. Knebe, and B. K. Gibson,
Mon. Not. R. Astron. Soc. 351, 399 (2004).

[41] X. Yang, H. J. Mo, F. C. van den Bosch, and Y. P. Jing, Mon.
Not. R. Astron. Soc. 356, 1293 (2005).

[42] W. Hu, Astrophys. J. 522, L21 (1999).
[43] M. Schaller et al., arXiv:1409.8617.
[44] J. F. Navarro, C. S. Frenk, and S. D. M. White, Astrophys. J.

490493 (1997)
[45] V. Vikram, A. Cabre, B. Jain, and J. VanderPlas, J. Cosmol.

Astropart. Phys. 08 (2013) 020.
[46] Euclid Definition Study Report, arXiv:1110.3193.

REVISITING THE SCREENING MECHANISM IN fðRÞ … PHYSICAL REVIEW D 90, 103505 (2014)

103505-17

http://dx.doi.org/10.1088/0067-0049/192/2/18
http://arXiv.org/abs/1303.5076
http://arXiv.org/abs/1203.6616
http://dx.doi.org/10.12942/lrr-2001-1
http://dx.doi.org/10.1007/BF00668828
http://dx.doi.org/10.1016/0370-2693(80)90670-X
http://dx.doi.org/10.1103/PhysRevD.74.121501
http://dx.doi.org/10.1103/PhysRevD.74.121501
http://dx.doi.org/10.1103/PhysRevD.74.023529
http://dx.doi.org/10.1103/PhysRevD.77.107501
http://dx.doi.org/10.1103/PhysRevD.77.107501
http://dx.doi.org/10.1103/PhysRevD.75.124014
http://dx.doi.org/10.1103/PhysRevD.75.124014
http://dx.doi.org/10.1088/1475-7516/2007/02/022
http://dx.doi.org/10.1088/1475-7516/2007/02/022
http://dx.doi.org/10.1103/PhysRevLett.95.261102
http://dx.doi.org/10.1103/PhysRevD.72.083505
http://dx.doi.org/10.1103/PhysRevLett.98.131302
http://dx.doi.org/10.1103/PhysRevLett.98.131302
http://dx.doi.org/10.1103/PhysRevD.75.083504
http://dx.doi.org/10.1103/PhysRevD.60.043501
http://dx.doi.org/10.1103/PhysRevD.69.044026
http://dx.doi.org/10.1103/PhysRevD.69.044026
http://dx.doi.org/10.1103/PhysRevLett.93.171104
http://dx.doi.org/10.1103/PhysRevD.76.064004
http://dx.doi.org/10.1103/PhysRevD.76.064004
http://dx.doi.org/10.1103/PhysRevD.81.103002
http://dx.doi.org/10.1103/PhysRevD.85.124054
http://dx.doi.org/10.1103/PhysRevD.85.124054
http://dx.doi.org/10.1103/PhysRevD.85.102001
http://dx.doi.org/10.1103/PhysRevD.85.102001
http://dx.doi.org/10.1103/PhysRevD.87.023508
http://dx.doi.org/10.1103/PhysRevD.87.023508
http://dx.doi.org/10.1088/0034-4885/72/9/096901
http://dx.doi.org/10.1088/0034-4885/72/9/096901
http://dx.doi.org/10.1016/j.physrep.2012.01.001
http://dx.doi.org/10.1103/RevModPhys.82.451
http://dx.doi.org/10.1103/RevModPhys.82.451
http://dx.doi.org/10.12942/lrr-2010-3
http://dx.doi.org/10.12942/lrr-2010-3
http://dx.doi.org/10.1103/PhysRevD.75.127502
http://dx.doi.org/10.1088/1475-7516/2012/01/051
http://dx.doi.org/10.1088/1475-7516/2012/01/051
http://dx.doi.org/10.1051/0004-6361:20011817
http://dx.doi.org/10.1103/PhysRevD.78.123523
http://dx.doi.org/10.1103/PhysRevD.78.123524
http://dx.doi.org/10.1103/PhysRevD.79.083518
http://dx.doi.org/10.1103/PhysRevD.79.083518
http://dx.doi.org/10.1103/PhysRevD.83.044007
http://dx.doi.org/10.1103/PhysRevD.83.044007
http://dx.doi.org/10.1093/mnras/stt1575
http://dx.doi.org/10.1093/mnras/stt1575
http://arXiv.org/abs/1303.5076
http://arXiv.org/abs/astro-ph/9506070
http://dx.doi.org/10.1111/j.1365-2966.2008.14176.x
http://dx.doi.org/10.1111/j.1365-2966.2008.14176.x
http://dx.doi.org/10.1103/PhysRevD.88.103507
http://dx.doi.org/10.1093/mnras/stt219
http://dx.doi.org/10.1093/mnras/stt219
http://dx.doi.org/10.1088/1475-7516/2012/07/034
http://dx.doi.org/10.1088/0004-637X/779/1/39
http://dx.doi.org/10.1088/0004-637X/779/1/39
http://dx.doi.org/10.1103/PhysRevD.80.104002
http://dx.doi.org/10.1103/PhysRevD.80.104002
http://dx.doi.org/10.1103/PhysRevLett.107.071303
http://dx.doi.org/10.1103/PhysRevLett.107.071303
http://dx.doi.org/10.1111/j.1365-2966.2012.20573.x
http://dx.doi.org/10.1111/j.1365-2966.2012.20573.x
http://dx.doi.org/10.1088/0067-0049/182/2/608
http://dx.doi.org/10.1088/0067-0049/182/2/608
http://dx.doi.org/10.1111/j.1365-2966.2004.07786.x
http://dx.doi.org/10.1111/j.1365-2966.2005.08560.x
http://dx.doi.org/10.1111/j.1365-2966.2005.08560.x
http://dx.doi.org/10.1086/312210
http://arXiv.org/abs/1409.8617
http://dx.doi.org/10.1086/304888
http://dx.doi.org/10.1086/304888
http://dx.doi.org/10.1088/1475-7516/2013/08/020
http://dx.doi.org/10.1088/1475-7516/2013/08/020
http://arXiv.org/abs/1110.3193

