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Interconnection networks of degree three
obtained by pruning two-dimensional tori

Iain A. Stewart

Abstract—We study an interconnection network that we
call 3Torus(m,n) obtained by pruning the 4m × 4n torus
(of links) so that the resulting network is regular of degree
3. We show that 3Torus(m,n) retains many of the useful
properties of tori (although, of course, there is a price to be
paid due to the reduction in links). In particular: we show
that 3Torus(m,n) is node-symmetric; we establish closed-
form expressions on the the length of a shortest path joining
any two nodes of the network; we calculate the diameter
precisely; we obtain an upper bound on the average inter-
node distance; we develop an optimal distributed routing
algorithm; we prove that 3Torus(m,n) has connectivity 3 and
is Hamiltonian; we obtain a precise expression for (an upper
bound on) the wide-diameter; and we derive optimal one-to-
all broadcast and personalized one-to-all broadcast algorithms
under both a one-port and all-port communication model. We
also undertake a preliminary performance evaluation of our
routing algorithm. In summary, we find that 3Torus(m,n)
compares very favourably with tori.

Index Terms—interconnection network, torus, degree 3,
shortest paths, routing, broadcasting.

I. INTRODUCTION

Interconnection networks are becoming more and more
prevalent in computing. Their adoption ranges from the
small-scale (in spatial terms), such as in a multi-core
processor (e.g., the Tilera TILE 64 multicore processor,
with its 64 processor cores), through the medium-scale,
such as in a distributed-memory parallel machine or a
cluster (e.g., IBM’s Blue Gene/Q which can have millions
of processor cores), and on to the large-scale, such as in a
data centre network (e.g., as used by Google or Amazon and
consisting of thousands of servers). The efficiency of any
of these computational systems is crucially dependent upon
the design and operation of the underlying interconnection
network.

No matter how interconnection networks are employed,
it is desirable that they possess a variety of specific topo-
logical properties, where by a ‘topological property’ we
mean some structural property of the undirected graph that
results by abstracting the processing units of the network
as vertices or nodes and the inter-unit links of the network
as edges. These topological properties impact directly upon
key practical aspects of the interconnection network, such
as latency, throughput and fault-tolerance, and can be wide-
ranging, with the influence of any one of these properties
sometimes dependent upon the application to which the
host computational system is directed. However, core to
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almost all performance measures of interconnection net-
works are the following desirable topological properties.
Interconnection networks should:

• be node-symmetric (and, to a lesser degree, link-
symmetric) so as to aid: load balancing when de-
signing routing algorithms; parallel programming (the
same program can be employed at each node in a
distributed-memory parallel machine with the given
underlying interconnection network); and theoretical
analysis (many different situations requiring analysis
can be reduced to a smaller number by applying
arguments based on symmetry);

• have low degree so as to lessen hardware implemen-
tation costs, associated software complexity and the
overheads associated with communication;

• have small diameter and a small average inter-node
distance so as to reduce message latency;

• be tolerant of (a limited number of) faulty nodes or
links so that their deployment can continue even in
the presence of component failures (with this tolerance
being in the form of, for example, path redundancy);

• be algebraically concise so that their mathematical
descriptions can be utilized in the design and im-
plementation of routing algorithms, flow control and
switching methods; and

• possess embeddings of structures such as (Hamilto-
nian) cycles, paths and trees that are prevalent in
parallel programs and so as to aid the implementation
of common network operations like one-to-all and all-
to-all broadcasting.

We could go on but instead refer the reader to, for example,
[1], [14], [15], [22], [24], [42] for more on the theory
and application of interconnection networks in a variety of
domains. Whilst it is often trivial to build an interconnection
network that has some particular property in isolation,
designing an interconnection network possessing a range
of such properties is extremely difficult (and more often
than not impossible); consequently, in practice trade-offs
and compromises have to be made.

As regards the choice of interconnection network in
practice, the mesh and the torus are probably those that
appear most, primarily because of their simplicity allied
with relatively good topological properties. However, the
mesh suffers from a significant lack of symmetry and a
relatively large diameter, and increasingly it is the torus that
tends to be more popular (along with its derivations). As
technology advances, the dimension of the tori appearing
in practice is increasing; for example, the interconnection

Digital Object Indentifier 10.1109/TC.2013.139 0018-9340/13/$31.00 ©  2013 IEEE

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



network of IBM’s Blue Gene/Q parallel computer [11] is
based on a 5-dimensional torus whilst the Tofu intercon-
nection network of Fujitsu’s K computer [3] is based on a
6-dimensional torus. Nevertheless, it is 2-dimensional tori
that are more common and it is 2-dimensional tori that are
our focus here (see, for example, [14] for occurrences of
2-dimensional tori as practical interconnection networks).

Whilst the degree of a 2-dimensional torus is 4, having
interconnection networks of degree 3 is often preferable as
the lower the node degree, the lower the implementation
complexity and cost (for example, fewer wires and ports
are required) and the lower the communication overhead
(in addition, when an interconnection network in a data
centre, say, is composed of commodity switches, sometimes
these switches have only 3 ports, or even fewer). Our aim
in this paper is to derive an interconnection network that
is regular of degree 3 but which is obtained from the 2-
dimensional torus by pruning links so that the resulting
interconnection network has topological properties that are
comparable with those of the 2-dimensional torus. We
define the interconnection network 3Torus(m,n), where
m,n ≥ 1 and are row and column parameters, that is
obtained from the torus with 4m rows and 4n columns
by uniformly pruning selected links so that a network
that is regular of degree 3 results. We establish a range
of topological properties for 3Torus(m,n) concerning,
for example, symmetry, the precise lengths of shortest
paths, the diameter, connectivity and Hamiltonicity. We also
exhibit source routing algorithms and algorithms for one-
to-all and personalized one-to-all broadcasting, with these
algorithms optimal in both the one-port and all-port models
that we study.

We give our basic definitions in Section II, and in
Section III we overview a considerable body of research
related to existing interconnection networks that are regular
of degree 3. In Section IV we prove that the network
3Torus(m,n) is node-symmetric, but not link-symmetric
(having node-symmetry simplifies our subsequent analysis
considerably), and we look at a variety of ways in which it
might be constructed. In Section V we establish closed-
form expressions for the lengths of the shortest paths
between any two nodes of 3Torus(m,n), and thus for
the diameter of 3Torus(m,n). We also obtain an upper
bound on the average inter-node distance and we describe
an optimal routing algorithm (presented as a source rout-
ing algorithm but which can be trivially implemented as
a distributed routing algorithm), as well as considering
connectivity and Hamiltonicity. In Section VI, we derive
optimal one-to-all and personalized one-to-all broadcast
algorithms in two models: a one-port model; and an all-
port model. We present our evaluation in Section VII, and
finally, in Section VIII, we present our conclusions and
some directions for further research.

II. BASIC DEFINITIONS

Whilst our interconnection networks are, in fact, undi-
rected graphs, we tend to use the terms ‘node’ and ‘link’

rather than ‘vertex’ and ‘edge’ in order to emphasise the
network context; indeed, we usually refer to a ‘graph’ as a
‘network’ for the same reason, although we revert to graph-
theoretic terminology when we discuss concepts residing
almost exclusively within graph theory. Except where we
give explicit definitions of or specific references for such
definitions, our terminology and notation is standard and
can be found in, for example, [22], [42].

The torus Torus(m,n) has node set {(i, j) : 0 ≤ i <

m, 0 ≤ j < n} and link set:

{((i, j), (i, j′)) : j′ = j±1}∪{((i, j), (i′, j)) : i′ = i±1},

with addition modulo m or n, as appropriate. Tori are
abundant in the study and application of interconnection
networks, and their properties in this regard have been
extensively investigated (see, for example, [14], [15], [22],
[42]).

In order to obtain the interconnection networks relevant
to this paper, we prune tori by judiciously removing se-
lected links. The interconnection network 3Torus(m,n)
has node set {(i, j) : 0 ≤ i < 4m, 0 ≤ j < 4n} (and so
it shares its node set with Torus(4m, 4n)) and its link set
is:

{((i, j), (i, j′)) : j′ = j ± 1}

∪ {((i, j), (i+ 1, j)) : i ≡ 0 (mod 2),

j ≡ 0, 1 (mod 4)}

∪ {((i, j), (i− 1, j)) : i ≡ 1 (mod 2),

j ≡ 0, 1 (mod 4)}

∪ {((i, j), (i− 1, j)) : i ≡ 0 (mod 2),

j ≡ 2, 3 (mod 4)}

∪ {((i, j), (i+ 1, j)) : i ≡ 1 (mod 2),

j ≡ 2, 3 (mod 4)},

with addition modulo 4m or 4n, as appropriate. The
interconnection network 3Torus(4, 5) can be visualized
in Fig. 1 (as a pruned version of Torus(16, 20) and with
the node (0, 0) in the centre of the diagram).
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Fig. 1. 3Torus(4, 5) (a pruned version of Torus(16, 20)).
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Note that there are alternative ways in which we might
have defined 3Torus(m,n). Consider all the cycles of
length 4 within 3Torus(m,n). If we condense each of
these cycles into a single node, as is depicted in Fig. 2, then
we obtain a network that can be described as a tessellation
of the toroidal surface so that the faces are ‘diamonds’. In
more detail, this ‘diamond’ network has node set {(i, j) :
0 ≤ i < 2m, 0 ≤ j < 2n, i+ j ≡ 0 (mod 2)} and link set:

{((i, j), (i′, j′)) : (i′, j′) = (i, j) + (ε, δ),

with ε, δ ∈ {+1,−1}}

(with all addition componentwise and modulo 2m or 2n,
as appropriate). Consequently, we could have started with
this ‘diamond’ network and obtained 3Torus(m,n) by
amending the ‘diamond’ network so as to replace each
node with a cycle of length 4, similarly to when the
cube-connected cycles network is obtained from an n-
dimensional hypercube by replacing each node with a cycle
of length n (see, for example, [42]). Note that viewing
3Torus(m,n) in this way yields an alternative indexing
for the nodes, with a node determined by its coordinates
(i, j) in the ‘diamond’ network and a ‘tag’ of N , S, E or
W (denoting ‘north’, ‘south’, ‘east’ or ‘west’).
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Fig. 2. Condensing 4-cycles in 3Torus(4, 5) to get a ‘diamond’ network.

As a matter of fact, the ‘diamond’ network pictured in
Fig. 2 is actually one of the two (isomorphic) connected
components of the Kronecker product of a cycle of length
16 and a cycle of length 10. The Kronecker product of the
graph G1 = (V1, E1) and the graph G2 = (V2, E2) was
first defined in [39] and has vertex set V1×V2 and edge set
{((u1, u2), (v2, v2)) : (u1, v1) ∈ E1 and (u2, v2) ∈ E2}.
In general (when constructing 3Torus(m,n) as we did
3Torus(4, 5) in Fig. 2), the starting ‘diamond’ network
is one of the two connected components of the Kronecker
product of C4m and C2n. Such a ‘diamond’ network can
also be realised as a two-dimensional circulant or an L-
network (see [10] for definitions and further details).

Yet another alternative view of 3Torus(m,n) is as the
network obtained by pruning a hexagonal torus H2m,2n

(see, for example, [43] for a definition of this network) and
then undertaking a ‘cube-connected cycles’ construction, as
above. We can visualize the construction of 3Torus(4, 5)
in this way in Fig. 3 (where the dashed edges are the pruned
edges). Finally, we remark that our network 3Torus(m,n)
has actually arisen as a Brane Tiling in mathematical
physics; more precisely, as the Hirzebruch zero brane tiling
(see Fig. 10 of [20], for example). The upshot is that
although 3Torus(m,n) arises in this paper as an attempt
to obtain a degree-3 interconnection network that broadly
retains many of the property of the torus, it clearly has a
more wide-ranging significance.
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Fig. 3. Constructing 3Torus(4, 5) from H2m,2n.

III. RELATED WORK

As we have stated, our intention is to study networks
of degree 3 with a view to ascertaining their effectiveness
for deployment as interconnection networks. There already
exists a significant body of research as regards the study of
(the systematic construction of) interconnection networks
of degree 3,

Parhami, Kwai and Xiao have undertaken a detailed and
systematic consideration of pruning techniques so as to
yield interconnection networks that are regular of degree 3.
Their thesis has been that if pruning is undertaken with care
then the pruned networks inherit many desirable properties
from the parent networks. They have especially focussed on
Cayley graphs (and the associated algebra) in order to yield
pruned networks that inherit various properties, relating
to symmetry and inter-node distances, for example, from
their parent networks. In [33] Parhami and Kwai applied
pruning techniques to 2- and 3-dimensional tori (building
on earlier ad hoc instances of research on sub-networks
of tori; see [33] for further details of these ad hoc con-
siderations). The resulting networks were the honeycomb
networks and the diamond networks, which they proved
are Cayley graphs. They also derived results relating to the
diameter, the average inter-node distance and the layout of
these networks. Incomplete (or pruned) k-ary n-cubes were
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derived by Parhami and Kwai in [34] and properties relating
to symmetry, shortest paths, connectivity and Hamiltonicity
were established. Certain pruned 3-dimensional tori were
also studied by Xiao and Parhami in [40], and in [41]
Xiao and Parhami established general algebraic construc-
tions (based on commutative groups) to develop pruning
techniques, which were used to improve known results
relating to honeycomb networks and to diamond networks.
The algebraic approach of Parhami, Kwai and Xiao was
subsequently continued: in [35] where Rahman, Jiang,
Masud and Horiguchi applied pruning techniques to the
hierarchical torus network and studied properties relating
to shortest paths, average inter-node distance, bisection
width and VLSI layout area; and in [9] where an alge-
braic construction related to group semidirect products was
developed and used to provide a generalization of earlier
pruning schemes. Beyond the concerted research effort
described above, there have also been various more isolated
considerations of interconnection networks of degree 3,
e.g., [6], [13], [25], [37], [44].

Regular graphs of degree 3 (that is, cubic graphs) have
also been studied mathematically and in combinatorial
chemistry with respect to some of the properties that happen
to be of interest in interconnection network design (note
that these graphs were not studied as potential interconnec-
tion networks per se). These studies include, for example,
[16], [17], [26], [29]–[31]. Also, the Foster Census [8],
[12] was an enumeration of symmetric connected cubic
edge-transitive graphs of order up to 768. Interestingly,
in [27] Hamiltonian cubic graphs from the Foster census
were used as interconnection networks for computational
clusters undertaking efficient parallel molecular dynamics
simulations.

Finally, there is an extensive literature on other low-
degree interconnection networks but where the degree is
(at least) 4. Noteworthy amongst this literature is the work
in [10] and the references therein relating to manipulations
of tori but where the tori are not pruned and consequently
always have degree 4. The interconnection networks studied
in [10] include tori, twisted and doubly twisted tori, toroidal
diagonal meshes, chordal rings, and circulant graphs. Other
recent considerations of low-degree interconnection net-
works can be found in [4], [18], where hexagonal mesh net-
works, Gaussian networks and Eisenstein-Jacobi networks
are studied (and the degree of the networks considered tend
to be 4 or 6), and in [36] where Spidergon-Donuts of degree
5 are studied.

IV. SYMMETRY

We begin by proving that the network 3Torus(m,n) is
node-symmetric. Recall that a network G = (V,E) is node-
symmetric if given any two nodes u and v, there exists an
automorphism mapping u to v; that is, a bijection f : V →
V such that if (u, v) ∈ E then (f(u), f(v)) ∈ E. We
do this by constructing a set of basic automorphisms of
3Torus(m,n) that can be composed to yield a required
automorphism.

Consider the following (node-) maps of 3Torus(m,n):
α : (i, j) �→ (i, j + 4); β : (i, j) �→ (i + 2, j);
γ : (i, j) �→ (i + 1, j + 2); ϕ : (i, j) �→ (i′, j), where
i + i′ ≡ 1 (mod 4m); and ψ : (i, j) �→ (i, j′′), where
j + j′′ ≡ 1 (mod 4n) (all values and their additions are
modulo 4m or modulo 4n as appropriate). All of these
maps are clearly automorphisms: α, β and γ can be thought
of as ‘translations’ horizontally, vertically and diagonally,
respectively; and ϕ and ψ as ‘reflections’ in a horizontal
line between row 0 and row 1 and in a vertical line between
column 0 and column 1, respectively. By composing these
automorphisms we can clearly map any node to any other
node. For example, in order to map (0, 0) to (3, 5) in
3Torus(4, 5), we apply the automorphisms: ϕ (to take
(0, 0) to (1, 0)); ψ (to take (1, 0) to (1, 1)); and γ2 (to
take (1, 1) to (3, 5)).

However, 3Torus(m,n) is not link-symmetric. Recall
that a network is link-symmetric if there exists an automor-
phism mapping any given link to any other given link. To
see this, the link ((0, 0), (1, 0)) of 3Torus(m,n) lies in a
cycle of length 4 whereas the link ((1, 1), (1, 2)) does not.

Thus, we have proven the following.
Theorem 1: The interconnection network 3Torus(m,n)

is node-symmetric but not link-symmetric.
We remark here that the network 3Torus(m,n) does

possess a stronger property than node-symmetry in that
it is, in fact, a Cayley graph (and consequently its node-
symmetry follows immediately). However, a proof of this
fact involves combinatorial group theory and will be pre-
sented elsewhere.

V. PATHS, ROUTING AND CONNECTIVITY

In this section, we look at some other aspects of
3Torus(m,n) in relation to its adoption as an intercon-
nection network: the lengths of shortest paths between
nodes; the average inter-node distance; its diameter; rout-
ing algorithms; its connectivity; its wide-diameter; and its
Hamiltonicity.

A. Shortest paths, the diameter and average distances

We begin by investigating the lengths of the shortest
paths joining any two nodes in the network 3Torus(m,n).
By Theorem 1, we may assume that our source node is
the node (0, 0) and that we wish to find the lengths of the
shortest paths from node (0, 0) to every other node. As
illustrations, the situation for the networks 3Torus(4, 5)
and 3Torus(4, 4) can be depicted in Fig. 4 and Fig. 5,
respectively, and for the upper- and lower-right ‘quadrants’
of the network 3Torus(4, 8) in Fig. 6. In these figures,
the white nodes are such that the length of the shortest
path from node (0, 0) (the black node) is identical to the
length of a shortest path in Torus(16, 20), Torus(16, 16)
or Torus(16, 32) (as appropriate), otherwise the integer
labelling a node is the amount by which the length
of a shortest path from (0, 0) in the particular network
3Torus(4, 5), 3Torus(4, 4) or 3Torus(4, 8) differs from
the length of a shortest path from (0, 0) to the node in the
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corresponding torus. A useful fact to bear in mind when
calculating these labels is that if in 3Torus(m,n) the link
(u, v) is such that node u lies on a shortest path from (0, 0)
to node v in Torus(4m, 4n) and +i labels u then +i must
also label v.
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Fig. 4. Comparative lengths of shortest paths in 3Torus(4, 5).
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Fig. 5. Comparative lengths of shortest paths in 3Torus(4, 4).

No matter which network 3Torus(m,n) we are work-
ing with, the general pattern and construction of white
and labelled nodes is similar (with variations only being
down to the relative differences between m and n). This
construction should be obvious from Figs. 4–6: we start at
node (0, 0), with the labellings of nodes that are ‘nearby’
as depicted in these figures, and ‘work outwards’ until
we reach the boundaries. Note that in 3Torus(m,n) and
3Torus(m+ a, n+ b), where a > 0 and b > 0, any node
(i, j) in 3Torus(m,n) is labelled identically to node:

• (i, j) in 3Torus(m + a, n + b), if 0 ≤ i ≤ 2m and
0 ≤ j ≤ 2n;

• (i, j + 4b) in 3Torus(m + a, n + b), if 0 ≤ i ≤ 2m
and 2n+ 1 ≤ j ≤ 4n− 1;
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Fig. 6. Comparative lengths of shortest paths in 3Torus(4, 8).

• (i+4a, j) in 3Torus(m+ a, n+ b), if 2m+1 ≤ i ≤
4m− 1 and 0 ≤ j ≤ 2n; and

• (i+4a, j+4b) in 3Torus(m+a, n+ b), if 2m+1 ≤
i ≤ 4m− 1 and 2n+ 1 ≤ j ≤ 4n− 1.

Given the transparency of the pattern and the uniformity
of its construction, we do not mention the general case any
further but simply observe that closed-form expressions for
the lengths of shortest paths from node (0, 0) to the other
nodes of 3Torus(m,n) are as follows:

• if node (i, j) is such that 0 ≤ i ≤ 2m and 0 ≤ j ≤ 2n
(so the node lies in the lower-right quadrant) then the
length of a shortest path from (0, 0) to (i, j) is

i+ j +max

{
2

⌊
i−

⌊
j

2

⌋
2

⌋
, 0

}

• if node (i, j) is such that 2m+ 1 ≤ i ≤ 4m− 1 and
0 ≤ j ≤ 2n − 1 (so the node lies in the upper-right
quadrant) then the length of a shortest path from (0, 0)
to (i, j) is

(4m− i) + j +max

{
2

⌊
(4m+ 1− i)−

⌊
j

2

⌋
2

⌋
, 0

}

• if node (i, j) is such that 0 ≤ i ≤ 2m and 2n+ 1 ≤
j ≤ 4n−1 (so the node lies in the lower-left quadrant)
then the length of a shortest path from (0, 0) to (i, j)
is

i+ (4n− j) + max

{
2

⌊
i−

⌊
4n−1−j

2

⌋
2

⌋
, 0

}

• if node (i, j) is such that 2m+ 1 ≤ i ≤ 4m− 1 and
2n+1 ≤ j ≤ 4n−1 (so the node lies in the upper-left
quadrant) then the length of a shortest path from (0, 0)
to (i, j) is

(4m− i) + (4n− j)

+max

{
2

⌊
(4m− i)−

⌊
4n−1−j

2

⌋
2

⌋
, 0

}
.
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We are now in a position to establish the diameter
Δ(3Torus(m,n)) of 3Torus(m,n) (we denote the diam-
eter of any network G by Δ(G)). Consider any network
3Torus(m,n) annotated according to our shortest path
labelling (as in Figs. 4–6). Choose any column. The node
on row 2m is the node of this column for which the
shortest path from (0, 0) is longest. According to this
labeling, the lengths of a shortest path from (0, 0) to
(2m, 0), (2m, 1), . . . , (2m, 4m− 3), (2m, 4m− 2), assum-
ing that 2n < 4m− 2, are:

4m, 4m+ 1, 4m, 4m+ 1, 4m+ 2, 4m+ 3,

4m+ 2, 4m+ 3, 4m+ 4, 4m+ 5,

4m+ 4, 4m+ 5, 4m+ 6, 4m+ 7,

. . .

6m− 4, 6m− 3, 6m− 2, 6m− 1,

6m− 2,

and if 2n ≥ 4m−2 then the lengths of a shortest path from
(0, 0) to (2m, 4m−1), (2m, 4m), . . . , (2m, 2n) (within the
lower-right quadrant) are:

6m− 1, 6m, 6m+ 1, 6m+ 2, . . . , 2m+ 2n.

Consequently, a node on row 2m that is furthest from node
(0, 0) in 3Torus(m,n) (from amongst all nodes on row
2m) is as follows:

• if n < 2m is odd then the node (2m, 2n−1) is furthest
from node (0, 0) and its distance from (0, 0) is 4m+n;

• if n < 2m is even then the node (2m, 2n) is furthest
from node (0, 0) and its distance from (0, 0) is 4m+n;

• if n ≥ 2m then the node (2m, 2n) is furthest from
node (0, 0) and its distance from (0, 0) is 2m+ 2n.

Hence, we have proven the following result.
Theorem 2: The network 3Torus(m,n) has diameter

4m+ n, if n < 2m, and diameter 2m+ 2n, if n ≥ 2m.
Whilst the diameter gives a worst-case bound on the

length of the path taken by a message according to an
optimal routing algorithm, sometimes a more representative
estimation is required. The average inter-node distance of
a network is the average length of a shortest path joining
any two nodes in the network.

Suppose that n = 2m − 1. As can be seen in Fig. 6,
this situation is the cusp when there is at least one column
of nodes, none of which has a label. Let us calculate the
sum of all the labels (we then use this sum to obtain an
estimate on how much the average inter-node distance in
3Torus(m, 2m−1) exceeds the average inter-node distance
in Torus(4m, 8m− 4)).

Consider the sum of the labels of nodes in column 2
and rows 3-2m. This sum is 4(1 + 2 + . . . + (m − 1)) =
2m(m− 1), and this is true for the sum of labels of nodes
in column 3 and rows 3-2m. Consider the sum of the labels
of nodes in column 4 and rows 4-2m. This sum is 2m(m−
1) − 2(m − 1) = 2(m − 1)2, and this is true for the sum
of labels of nodes in column 5 and rows 4-2m. Proceeding
in this way yields that the sum of the labels of nodes in

columns 1-2n and rows 1-2m is

2m2 + 4m(m− 1) + 4(m− 1)2

+ 4(m− 1)(m− 2) + 4(m− 2)2 +

. . .

+ 4 · 2(2− 1) + 4 · 12

< 8
m∑
i=1

i2 =
4

3
(2m3 + 3m2 +m).

Consequently, by symmetry of 3Torus(m, 2m − 1) (see,
for example, Fig. 6), we have that the average inter-
node distance in 3Torus(m, 2m − 1) exceeds that of
Torus(4m, 8m− 4) by

1

3(2m− 1)
(2m2 + 3m+ 1) =

m+ 2

3
+

1

2m− 1

<
m+ 4

3
.

We do not feel that it is particularly worthwhile pursuing
a similar comparison for when n < 2m− 1 and for when
n > 2m − 1 beyond remarking that in the former case
the difference gets bigger as n gets smaller, and in the
latter case the difference gets smaller as n gets bigger. We
shall return to this comparison later on in our evaluation in
Section VII.

B. Routing algorithms

We now turn to routing algorithms in 3Torus(m,n).
By Theorem 1, we may assume that we have a message at
node (0, 0) and that we wish to route this message to node
(u, v). If the source node is some other node, (x, y) say,
and the destination node is (u, v) then we simply: obtain the
mapping, Γ say, from Section IV that maps (x, y) to (0, 0);
apply this mapping Γ to (u, v) so as to obtain (u′, v′),
say; obtain the path from the algorithm below that results
when we wish to route from (0, 0) to (u′, v′); and obtain
our required path by applying the inverse mapping Γ−1 to
each node of this path.

We begin by assuming that 0 ≤ u ≤ 2m and 0 ≤ v ≤ 2n
(that is, that the node (u, v) lies in the lower-right quadrant).
Consider the following algorithm route(u, v).

route(u,v):
while i < u and j < v do

if i+ j ≡ 1 or 2 (mod 3) then
j = j + 1

else
i = i+ 1

output (i, j)
if i = u then

while j < v do
j = j + 1
output (i, j)

else
while i 	= u or j 	= v do

if (i ≡ 0 (mod 2), j ≡ 0, 1 (mod 4))
or (i ≡ 1 (mod 2), j ≡ 2, 3 (mod 4))
then
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i = i+ 1
else

if j ≡ 1 (mod 2) then
j = j + 1

else
j = j − 1

output (i, j)

The path obtained by executing the algorithm route(7, 5)
in 3Torus(4, 8) is depicted in Fig. 7. Given our analysis
above, it is clear that the algorithm route(u, v) is optimal;
that is, in general always results in a shortest path from
(0, 0) to (u, v).

...

...

...

...

...

...

...

row 1

row 0

row 
4m - 1

row 2m

row 
2m + 1

... ...

...

...

...

...

... ... ...

...

...

...

col 0 col 1col 4n - 1 col 2n

......

... ...

...

Fig. 7. Shortest paths in 3Torus(4, 8) from (0, 0) to (7, 5) and (9, 6).

If our target node (u, v) lies in some other quadrant of
3Torus(m,n) then the basic principles behind the algo-
rithm route(u, v) easily yield an optimal routing algorithm
(the resulting path for the node (9, 6) in 3Torus(4, 8) is
also depicted in Fig. 7). Also, it is trivial to implement any
of our routing algorithms so that they are distributed routing
algorithms (that is, the next link to traverse is calculated by
the node at which the message currently resides). Note that
the discussion immediately prior to the statement of our
routing algorithm, where we use the mapping Γ to obtain a
generic routing algorithm, can trivially be incorporated into
route(u, v) so that appropriate offsets are first calculated
and then universally applied throughout. Thus, we have the
following.

Theorem 3: The network 3Torus(m,n) has an optimal
source routing algorithm so that the time taken to output a
shortest path is linear in the length of this path. Moreover,
this algorithm can be implemented as a distributed routing
algorithm so that the time taken at each node to calculate
the next link to traverse is constant.

C. Connectivity and Hamiltonicity

We end this section by looking at some useful structural
properties of 3Torus(m,n) in the context of interconnec-
tion networks, namely its connectivity, its wide-diameter
and its Hamiltonicity.

Suppose that n ≥ 3. Let the node (u, v) lie in the
lower-right quadrant. We shall construct 3 node-disjoint
paths from (0, 0) to (u, v). Our first path is the path ρ1
constructed by route(u, v). There are two possibilities: the
path ρ1 has length different to the length of a shortest path
from (0, 0) to (u, v) in Torus(4m, 4n); or these lengths
are the same.

Suppose that it is the former possibility (which is the
more complex; as regards the latter possibility, we proceed
similarly to below and so we omit the details).

• Our second path ρ2 starts at (0, 0) so that the next node
is (0, 1). Thereafter, it runs ‘parallel’ to ρ1 before ‘zig-
zagging’ down and approaching (u, v) from the right.
This second path can be visualized in Fig. 8 as the
dotted path leaving node (0, 0) to the right (the first
path is depicted in solid bold). We do not detail the
actual path ρ2 but note that there are 4 essential cases,
depending upon the value of v (mod 4). It is easy to
verify that in each case the length of the path ρ2 is at
most the length of ρ1 plus 8.

• Our third path ρ3 starts at (0, 0) so that the next
three nodes are (0, 4n − 1), (0, 4n − 2), (0, 4n − 3).
Thereafter, it runs ‘parallel’ to ρ1 before ‘zig-zagging’
down and approaching (u, v) from the left. This third
path can be visualized in Fig. 8 as the dotted path
leaving node (0, 0) to the left. We do not detail the
actual path ρ3 but note that again there are 4 essential
cases, depending upon the value of v (mod 4). It is
easy to verify that in each case the length of the path
ρ3 is at most the length of ρ1 plus 8.

What results is 3 mutually node-disjoint paths where the
length of any of them is at most the length of a shortest
path from (0, 0) to (u, v) plus 8.

...

...

...

...

...

...

...

row 1

row 0

row 
4m - 1

row 2m

row 
2m + 1

... ... ... ...

...

...

...

...

... ...... ...

...

...

...

col 0 col 1col 4n - 1 col 2ncol 2n + 1

......

... ...

Fig. 8. Three paths in 3Torus(4, 5) from (0, 0) to (6, 5).

Now suppose that the node (u, v) lies in any other
quadrant. By proceeding exactly as we have done above,
we can easily construct 3 mutually node-disjoint paths from
(0, 0) to (u, v) where the length of any of them is at most
the length of a shortest path from (0, 0) to (u, v) plus 8.
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When n = 2, we require a slightly different construction.
Rather than repeat the above analysis, we refer the reader
to the illustration in Fig. 9 where we depict 3 node-disjoint
paths from (0, 0) to (7, 3). We can adapt the strategy
in this figure to any destination node in the lower-right
quadrant (and so to any destination node in 3Torus(m, 2)).
Moreover, we looking at each distinctive case in turn, as
we did above, it is easy to verify that in 3Torus(m, 2) we
can construct 3 mutually node-disjoint paths from (0, 0) to
(u, v) where the length of any of them is at most the length
of a shortest path from (0, 0) to (u, v) plus 8.

row 1

row 0

col 0 col 1col 7

... ...

... ...

Fig. 9. Three paths in 3Torus(m, 2) from (0, 0) to (7, 3).

The wide-diameter δw of a graph G of connectivity γ

is the smallest integer such that for any pair of distinct
vertices u and v, there are γ mutually node-disjoint paths
from u to v such that each of these paths has length at most
δw. We have thus proven the following result.

Theorem 4: When n ≥ 2, the network 3Torus(m,n)
has wide-diameter at most Δ(3Torus(m,n)) + 8 and
connectivity 3.

Note that when n = 1, the conclusions of Theorem 4
do not hold. In order to see this note that no matter which
two consecutive rows we consider, there are only 2 links
from one of these rows to the other. Hence, if we have 3
paths from (0, 0) to some destination node in the lower-
right quadrant, say, at least one of these paths must ‘wrap
around’ via a link joining a node in row 2m+1 and a node
in row 2m.

Finally, we note that 3Torus(m,n) is Hamiltonian, for
n ≥ 1 and m ≥ 1. To see this, note that the nodes on every
row form a cycle and these cycles can be iteratively ‘joined’
by removing a pair of links and including an additional pair
of links (where the 4 links involved form a cycle).

Theorem 5: The network 3Torus(m,n) is Hamiltonian.

VI. BROADCASTING

In this section, we consider different aspects of broad-
casting in 3Torus(m,n). We look at: one-to-all broad-
casts, where one node sends the same message to every
other node; personalized one-to-all broadcasts (also called
one-to-all scatters or single-node scatters), where one node
sends different messages to every other node; and the
‘reverse’ operation to a personalized one-to-all broadcast,
namely a gather, where every node sends a message to
a particular node (personalized one-to-all broadcasts and

gathers feature heavily in data centre networks in the form
of map and reduce operations; see, for example, [28]).

Our presentation will be algorithmic and with respect to
two different distributed-memory models of computation:
a one-port model; and an all-port model. In both models,
each node of our interconnection network represents a
processor and the network is: synchronous, in that each
processor at each node operates according to the ticks of a
global clock (which determine the time-steps of the global
computation), with message-passing undertaken on a clock
tick and local computation undertaken between-times; and
full-duplex, in that neighbouring nodes can send messages
to each other at the same time. We assume that the size
of any message is such that the message can be delivered
between two neighbouring nodes in one time step and
that any amount of local computation can be undertaken
between ticks of the global clock. Our one-port model (as
in, for example, [2], [7], [21]) is such that on any tick of the
global clock, any processor can send at most one message
(to one of its neighbours) and receive at most one message
(from one of its neighbours). This one-port model roughly
corresponds to having store-and-forward switching so that
network contention is impossible (if a message arrives at
some node then it can always be forwarded on at the next
tick of the global clock; that is, queues do not build up at
nodes). Our all-port model (as in, for example, [7], [32],
[38]) is less stringent and such that on any tick of the global
clock, any processor can send a message to any number of
its neighbours and also receive a message from any number
of its neighbours. It is possible within our all-port model
for network contention to occur, for we might have two
simultaneously incoming messages that need to be next
sent down the same output link. We are only interested in
contention-free algorithms; that is, where such contention
does not arise. Finally, our algorithms are distributed in
that any decision as to where to route a message from
some node is undertaken by the node at which the message
resides (that is, the complete route of the message has not
been pre-calculated by the source node and included within
the message).

A. A spanning tree

We shall begin by constructing a minimum-depth span-
ning tree in 3Torus(m,n). We subsequently use this
spanning tree to undertake various broadcasts. However, we
need to be aware that not only must we prove the existence
of such a tree but we must also construct algorithms
that stipulate what each node does on any tick of the
global clock (in both of our models). In order to facilitate
these algorithmic descriptions in our one-port model, we
construct a d-labelled tree, which is a spanning tree rooted
at our source node with the property that:

• a positive integer labels every link of this spanning
tree;

• the integers used to label the links incident with any
given node of this tree are distinct;

• the integer used to label the link joining some (non-
root) node to its parent in this tree is less than any of
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the integers used to label any link from this node to
one of its children; and

• the integers used as labels come from the set {1, 2,
. . . , d}, for some d, with every integer from this set
appearing as a label at least once.

Given some d-labelled tree, we perform a one-to-all broad-
cast in our one-port model, for example, as follows. The
message ε starts at the root node and on the ith tick of the
global clock, where i ∈ {1, 2, . . . , d}, any node u joined to
a child v via a link labelled i sends the message ε, currently
at u, to v. A simple induction yields that if we have a d-
labelled spanning tree then the resulting algorithm is well-
defined; that is, is such that when a node u wishes to send
the message ε, this message does indeed reside at u.

Theorem 6: Define d = Δ(3Torus(m,n)) and let u

be any node of 3Torus(m,n). There exists a d-labelled
spanning tree Tu of depth d that is rooted at u so that for
every node v of 3Torus(m,n), the length of the path from
u to v in Tu is equal to the length of a shortest path from
u to v in 3Torus(m,n).

Proof: By Theorem 1, we may assume that u = (0, 0).
There are two case: when 2m ≤ n; and when 2m > n.
Case (i): 2m ≤ n.
We begin by defining 4 paths, each of which starts at node
(0, 0). These paths can be visualized as in Fig. 10 for
3Torus(2, 4). Note that we work with respect to our
visualization of 3Torus(m,n) as having the source node
(0, 0) at the centre and delimitted by columns 2n and 2n+1
to the right and left, respectively, and rows 2m and 2m+1
to the bottom and top, respectively (of course, there are
wrap-around links).

• Path p1 is built by iterating the following construction
2m times: move one link right, one link down and
one link right. Hence, we obtain a path from (0, 0) to
(2m, 4m).

• We begin building the path p2 by iterating the follow-
ing construction 2m − 1 times: move one link down
and two links to the left. We then extend the resulting
path from (0, 0) to (2m−1, 4n−2(2m−1)) with the
links ((2m−1, 4n−2(2m−1)), (2m, 4n−2(2m−1))
and ((2m, 4n−2(2m−1)), (2m, 4n−2(2m−1)−1)
to obtain a path p2 from (0, 0) to (2m, 4n− 4m+1).

• We begin building the path p3 by iterating the fol-
lowing construction 2m − 1 times: move two links
left and one link up. We then extend this path from
(0, 0) to (2m + 1, 4n − 2(2m − 1)) with the link
((2m+1, 4n−2(2m−1)), (2m+1, 4n−2(2m−1)−1)
to obtain a path p2 from (0, 0) to (2m+1, 4n−4m+1).

• We begin building the path p4 as (0, 0), (0, 1), (0, 2)
and then iterate the following construction 2m − 1
times: move one link right, one link up and one link
right. Thus, we obtain a path p4 from (0, 0) to (2m+
1, 4m) (note that p1 and p4 share a link).

Path p1 has its links labelled by starting at 1 and
thereafter incrementing each label by 1; path p2 has its links
labelled by starting at 2 and thereafter incrementing each
label by 1; path p3 has has its links labelled by starting at
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Fig. 10. The skeleton of our spanning tree in 3Torus(2, 4).

3 and thereafter incrementing each label by 1; and path p4
has its links labelled by starting at 1 so that the next label is
3 and thereafter incrementing each label by 1. Note that so
far the maximum label used is 6m. Paths p1, p2, p3 and p4
partition 3Torus(m,n) into 4 obvious ‘geographic’ zones.
Call these zones ‘top’, ‘bottom’, ‘left’ and ‘right’.

Given our skeleton tree T formed by the paths p1, p2, p3
and p4, we extend T to a spanning tree as follows. Consider
the path p1. We build a path from every right-most node on
each row (apart from row 0)along the row until we reach
column 2n (these are paths in the right zone). We label the
links of these paths incrementally starting from the integer
one greater than any currently labelled link incident with the
start node of each path. Our construction can be visualized
in 3Torus(2, 4) as in Fig. 11. We build paths analogously
in the left zone. Finally, in the bottom zone, we include
all pendant links ‘hanging down’ from nodes incident with
two row-links in either the path p1 or p2, and then we zig-
zag downwards to row 2m, just as we did earlier. Links on
these paths are labelled incrementally as were the links in
the left and right zones. We proceed analogously in the top
zone. These paths in 3Torus(2, 4) can also be visualized
in Fig. 11.
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Fig. 11. Our spanning tree in 3Torus(2, 4).

Our analysis from the previous section yields that our
spanning tree is as required.

Case (ii): 2m > n.

We proceed analogously to as in Case (i) except that when
any of our paths p1, p2, p3 and p4 reach column 2m we
halt their construction. The skeleton tree is extended to a
spanning tree in exactly the same way as in Case (i) and
has the required properties.
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B. One-to-all broadcasts

Our spanning tree from Theorem 6 (rooted at u) can
clearly by constructed in a distributed fashion; that is,
upon receipt of some message in which is contained the
name of the message’s source node and the name of its
destination node, any (transit) node can easily calculate
which of its neighbours it is incident with within this tree.
Moreover, the labelling of the spanning tree can also be
similarly calculated by the (transit) node. Consequently, we
immediately obtain the following result from Theorem 6.

Corollary 7: There exists a distributed one-to-all broad-
cast algorithm for 3Torus(m,n) that can be implemented
under our one-port model so as to take Δ(3Torus(m,n))
communication rounds. This algorithm is optimal in terms
of the number of communication rounds.

Note that optimality in Theorem 6 follows from the
fact that the diameter is a lower bound on the number of
communication rounds.

The fact that our spanning tree in Theorem 6 has depth
Δ(3Torus(m,n)) yields the following.

Corollary 8: There exists a distributed one-to-all broad-
cast algorithm for 3Torus(m,n) that can be implemented
under our all-port model so as to take Δ(3Torus(m,n))
communication rounds. This algorithm is optimal in terms
of the number of communication rounds.

C. Personalized one-to-all broadcasts

Our spanning tree from Theorem 6 can also be used in
order to undertake a personalized one-to-all broadcast in
3Torus(m,n). It is easy to prove, via a simple induc-
tion, that in order to undertake a personalized one-to-all
broadcast in our one-port model with any spanning tree,
it suffices to emit the messages from the source so that if
message ε, which is intended for node v, is emitted from
the source before message ε′, which is intended for node
v′, then the length of the path from the source to v is no
less than the length of the path from the source to node v′

(at any node, each message is always emitted along a link
that takes it one link closer to its destination). This simple
induction also yields that the number of communication
rounds is equal to the number of destination nodes which
is 16nm− 1; hence, the resulting algorithm is optimal.

Corollary 9: There exists a distributed personalized one-
to-all broadcast algorithm for 3Torus(m,n) that can be
implemented under our one-port model so as to take
16nm−1 communication rounds. This algorithm is optimal
in terms of the number of communication rounds.

Consider some personalized one-to-all broadcast in our
all-port model. Any personalized one-to-all broadcast in our
all-port model that injects as many messages as possible
from u in any communication round except for perhaps
the last communication round only (so, in every round 3
messages would be injected except for the last round when
there would be 1 or 2, depending upon whether 16nm−1 ≡
1 or 2, respectively), must necessarily be optimal.

Consider the personalized one-to-all broadcast in our all-
port model obtained using our spanning tree from Theo-
rem 6 as follows. Let T1 be the sub-tree rooted at (0, 1);

let T2 be the sub-tree rooted at (1, 0); and let T3 be the
sub-tree rooted at (0, 4n − 1). Our broadcast algorithm
might inject messages so as to (simultaneously) simulate a
personalized one-to-all broadcast in our one-port model in
each of T1, T2 and T3 (of course, a message is injected into
the sub-tree in which its destination node resides, is moved
one link closer to its destination in each communication
round and messages are injected according to a ‘farthest-
first’ philosophy). The number of nodes in T2, that is, |T2|,
is 4mn; |T3| is 4mn− 1; and |T1| is 8mn. Consequently,
the number of communication rounds in this one-to-all
broadcast algorithm is 8mn.

If we can amend the sub-trees T1, T2 and T3 so that
the numbers of nodes of any two of these sub-trees differ
by at most 1 then (as we argued above) we will obtain an
optimal algorithm. This can be done as we now describe.
Essentially, we will steal nodes from T1 and give them to T2

and T3. Consider the border between T2 and T1, namely the
‘gap’ between columns 0 and 1 (below row 0). Suppose we
wanted to steal a node from T1 and give it to T2. We could
remove the node (2m, 1) from T1 and adjoin it to T2 via
the link ((2m, 0), (2m, 1)). Suppose that we wanted to steal
two nodes from T1. We could, in addition to the amendment
just made, remove the node (2m, 2) from T1 and adjoin it to
T2 via the link ((2m, 1), (2m, 2)). Suppose that we wanted
to steal three nodes from T1. We could, in addition to the
amendments just made, remove the node (2m− 1, 2) from
T1 and adjoin it to T2 via the link ((2m, 2), (2m− 1, 2)).
We can clearly proceed similarly, not only with regard to
the border between T1 and T2 but with regard to the border
between T1 and T3. Also, if we wanted to work along rows
2m and 2m− 1, beyond row 2n, stealing nodes from T1,
it is easy to see how this can be done by working back
from column 2n and removing links from row 2m− 1 and
including links joining nodes in rows 2m and 2m−1. There
are myriad ways in which to steal nodes from one sub-tree
and give adjoin to another.

It is not difficult to see that (no matter what the relative
values of m and n) we can amend T1, T2 and T3 so that
|T3| ≤ |T2| ≤ |T1| and |T1| − |T3| ∈ {0, 1}. Given that
initially |T1| = 8mn, |T2| = 4mn and |T3| = 4mn− 1, it
suffices to steal 
 4mn

3
� nodes from T1 and give them to T3,

and to steal a further � 4mn
3
 nodes from T1 and give them

to T2 so as to obtain ‘balanced’ sub-trees. In consequence,
|T1| = 8mn − 
 4mn

3
� − � 4mn

3
. An amendment of the

sub-trees T1, T2 and T3 (in the above fashion) in the
case of 3Torus(2, 4) can be visualized as in Fig. 12,
where the roots of the sub-trees are grey nodes, where
the dashed lines are the new borders between the amended
sub-trees and where |T1| = 43 and |T2| = |T3| = 42.
Moreover, with more precision, we could clearly develop
an algorithm that every node of 3Torus(m,n) (that is,
processor) could apply locally in order to give its amended
links in the resulting spanning tree (such an algorithm
would be a straightforward, if messy, numeric calculation
with parameters m, n and the row and column of the
node). Hence, by our discussion above (and including that
immediately following Corollary 9), we have the following
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result.

...
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row 1
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...
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...

Fig. 12. Our amended sub-trees in 3Torus(2, 4).

Corollary 10: There exists a distributed personalized
one-to-all broadcast algorithm for 3Torus(m,n) that can
be implemented under our all-port model so as to take
8mn−
 4mn

3
�− � 4mn

3
 communication rounds. This algo-

rithm is optimal in terms of the number of communication
rounds.

D. Gathers

Finally, consider a gather in 3Torus(m,n). In our one-
port model, we can clearly use our spanning-tree from
Theorem 6 in order to undertake a gather that is optimal
(essentially, we just ‘reverse’ the personalized one-to-all
broadcast from Corollary 9; the resulting algorithm still
conforms to our one-port model). As regards our person-
alized one-to-all broadcast in our all-port model, again
by ‘reversing’ it we obtain a gather, with this algorithm
being optimal for the reason detailed immediately after
Corollary 9 (this is immediate given that the algorithm
implicit in Corollary 10 consists of 3 independent ‘one-port
algorithms’). Hence, we have the following results.

Corollary 11: There exists a distributed gather algorithm
for 3Torus(m,n) that can be implemented under our
one-port model so as to take 16mn − 1 communication
rounds. This algorithm is optimal in terms of the number
of communication rounds.

Corollary 12: There exists a distributed gather algorithm
for 3Torus(m,n) that can be implemented under our all-
port model so as to take 8mn− 
 4mn

3
� − � 4mn

3
 commu-

nication rounds. This algorithm is optimal in terms of the
number of communication rounds.

VII. EVALUATION

Having derived some properties of 3Torus(m,n), we
now compare 3Torus(m,n) with Torus(4m, 4n), which
has the same number of nodes (note that the primary
motivation of the design of 3Torus(m,n) is as a ‘degree-
3’ version of a torus). As we shall see, the comparison is
generally favourable although (as might be expected) there
is a price to be paid by pruning and consequent degree
reduction. Our evaluation comes in two parts: first, we com-
pare 3Torus(m,n) and Torus(4m, 4n) in terms of their
structural (graph-theoretic) properties (that are pertinent
in their usage as interconnection networks); and second,

we undertake a preliminary performance evaluation of
routing algorithms in 3Torus(m,n) and Torus(4m, 4n).
Our performance evaluation is but a prelude to a more
thorough simulation (as we explain in our conclusions in
Section VIII).

A. A structural comparison

First, we note from Theorem 1 that 3Torus(m,n) is
node-symmetric but not link-symmetric. It is well-known
(and easy to see) that Torus(N,N) is both node- and
link-symmetric; however, note that Torus(N1, N2) is no
longer link-symmetric if N1 	= N2. Link-symmetry can be
important in terms of load balancing. However, the lack of
link-symmetry might be ameliorated depending upon the
application, for there is still a degree of link-symmetry in
3Torus(m,n) in that: there is clearly an automorphism
mapping any column-link to any other column-link; and
the row-links partition into two disjoint sets, E4 and E8, so
that there is an automorphism mapping any row-link of E4

(resp. E8) to any other row-link of E4 (resp. E8) (in group-
theoretic terms, there are only three orbits of edges under
the action of the automorphism group of 3Torus(m,n);
the sets E4 and E8 are so named so as to reflect the length
of a shortest cycle in which the row-link lies).

As regards diameters, when we compare 3Torus(m,n)
with Torus(4m, 4n) we can immediately see from
Theorem 2 that Δ(3Torus(m,n)) is identical to
Δ(Torus(4m, 4n)) = 2m + 2n, if n ≥ 2m, and
greater than Δ(Torus(4m, 4n)) by 2m − n, if n <

2m. For the special case where m = n we have that
Δ(Torus(4m, 4m)) = 4m and Δ(3Torus(m,m)) = 5m.
Consequently, depending on m and n, we might be able to
build 3Torus(m,n) so that we lose nothing in comparison
with the diameter of Torus(4m, 4n). Our optimal and
easy-to-implement routing algorithm ensures that we can
efficiently utilize this state of affairs.

As regards the average inter-node distance, that of
Torus(4m, 4n) is better than that of 3Torus(m,n) (as
we might expect). The quality of the average inter-node
distance of 3Torus(m,n) in comparison with that of
Torus(4m, 4n) depends upon the relative values of m and
n with the larger n is in comparison to m, the better. Just
as when we compared the diameters of Torus(4m, 4n) and
3Torus(m,n), it makes sense to try and increase n with
respect to m.

From [23], the wide-diameter of Torus(4m, 4n) is
Δ(Torus(4m, 4n))+1, if both m and n are greater than 1,
and Δ(Torus(4m, 4n)) + 2, if either m or n is equal to 1
and the other component is at least 3. From Theorem 4, the
wide-diameter of 3Torus(m,n) is Δ(3Torus(m,n)) + 8
which is still relatively good in comparison (in that it is
different from the diameter by a small constant value). Of
course, the lower degree of 3Torus(m,n) in comparison
with Torus(4m, 4n) means that we have less connectivity
(and so less path diversity and capacity to tolerant faults);
nevertheless, the connectivity of 3Torus(m,n) is equal to
its degree (which is all that we can hope for). As regards
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Hamiltonicity, by Theorem 5 3Torus(m,n) is Hamilto-
nian, just like Torus(4m, 4n). However, there cannot exist
edge-disjoint Hamiltonian cycles in 3Torus(m,n) (as the
degree is 3) whereas it is well-known that Torus(4m, 4n)
does have edge-disjoint Hamiltonian cycles (see, for exam-
ple, [5]).

In [2], optimal one-to-all and personalized one-to-all
broadcast algorithms for tori were given for the one-
port model of computation; in [7], [19] optimal one-to-all
broadcast algorithms for tori were given for the all-port
model of computation; and in [19] optimal personalized
one-to-all broadcast algorithms for tori were given for the
all-port model of computation. Given our comments above
as regards the relative diameters of 3Torus(m,n) and
Torus(4m, 4n), along with Corollaries 7, 8, 9 and 10,
3Torus(m,n) behaves comparably to Torus(4m, 4n) in
terms of one-to-all broadcasts.

B. Simulating routing algorithms

Our performance evaluation compares our routing al-
gorithm for 3Torus(m,n) with the XY-routing algorithm
for Torus(4m, 4n). Recall, the XY-routing algorithm in
a torus is simply to route along a row until the message
reaches a node in the same column as the destination, and
then to route along the column, with both the X-route and
the Y-route being the shortest from the two possibilities.
Given that we have a precise closed form of the length of
any route obtained within 3Torus(m,n) (via our routing
algorithm), we focus on loads arising (or, more precisely,
on the distribution of generated paths over each link) in our
chosen traffic pattern.

As regards the preliminary nature of our performance
evaluation, the primary purpose of the research in this
paper is the introduction of the interconnection network
3Torus(m,n), together with a structural analysis of its
viability as a replacement network for a torus in a ‘degree-
3’ context; that is, a full and proper performance evaluation
is beyond our scope and requires additional research as
regards more sophisticated (adaptive) routing algorithms
and also all-to-all broadcasts (we have more to say in Sec-
tion VIII). Nevertheless, we are in a position to undertake
a preliminary experimental analysis. Of particular interest
to us is how the relative sizes of the parameters m and
n in 3Torus(m,n) impact upon routing performance (in
terms of loads arising and the balance of these loads),
and of how the routing performance in 3Torus(m,n) and
Torus(4m, 4n) (its natural counterpart) differ.

We assume the random traffic pattern where every node
of a network (simultaneously) sends a message to some
uniformly randomly chosen node (possibly itself). Our
analysis consists of undertaking numerous trials of random
traffic messaging (actually, 1000 trials), with respect to our
routing algorithms, so as to acquire data as regards the
cumulative loads on (that is, number of generated paths
using) each individual link in the network. We vary the
parameters m and n in 3Torus(m,n) and compare the re-
sulting loads with the loads obtained (using XY-routing) in

Torus(4m, 4n). Given the structure of 3Torus(m,n) and
Torus(4m, 4n), we also consider row-links and column-
links separately; indeed, for 3Torus(m,n) we partition
row-links into those that are contained within a cycle of
length 4, which we call row4-links, and those that aren’t,
which we call row8-links (cf. our comments above on link-
symmetry).

From our structural analysis, we have seen that the
situation when n = 2m− 1 would appear to be a cusp at
which the behaviour of 3Torus(m,n) changes. One aim of
our experiments is to investigate around this threshold. To
this end, for a fixed m ranging from 2 to 12, we allow n to
vary at intervals of (the integer part of) m

2
from m

2
through

m and 2m up to 7m
2

(which we deem sufficiently large).
For each scenario, we collect the load on each link (as
described above and with data from 1000 trials) so that we
might calculate the average link load and also the standard
deviation of the link load, so that we might obtain some
appreciation of the balance of loads across all links.

We have included graphs depicting our experimental
results for the largest m and n we worked with, namely
m = 12 with n ranging from 6 up to 42 (the trends when
the parameters were smaller are almost identical).
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We make the following observations on the basis of our
experiments.
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• The suspected ‘cusp’ scenario, when n = 2m − 1,
is indeed such with the mean load for row-links in
3Torus(m, 2m−1) being almost identical to the mean
load for column-links, as well as the mean load for
row-links in Torus(4m, 8m − 4); though the mean
load for column-links in Torus(4m, 8m−4) is around
half this value (see Fig. 13). The balance (that is,
standard deviation) of row-link and column-link loads
is similar in both 3Torus(m, 2m−1) with this balance
around twice that of link loads in Torus(4m, 8m−4)
(see Fig. 14).

• The mean load for column-links in both 3Torus(m,n)
and Torus(4m, 4n) is pretty much stable with this
load in 3Torus(m,n) being around twice that in
Torus(m,n). However, the mean load for row-links
in 3Torus(m,n) is only slightly greater than that
in Torus(4m, 4n), with both values increasing as n

increases (see Fig. 13). The balance of row-link and
column-link loads is similar in both 3Torus(m,n) and
Torus(4m, 4n) with the loads in Torus(4m, 4n) be-
ing better balanced (see Fig. 14). However, it is unclear
as to whether row-link and column-link balances will
remain comparable for larger values of n.

• As regards the two different types of row-link in
3Torus(m,n), for some fixed m and for smaller
values of n, there is certainly a difference in the

relative mean loads as well as their balances (see
Figs. 15 and 16). However, as n increases, the loads
and the balances converge although they are increas-
ing.

In conclusion (and in the contexts described above), both
our structural analysis and our experimental analysis show
that the interconnection network 3Torus(m,n) can have a
good performance in comparison with Torus(4m, 4n) and
in some scenarios where the degree of a node is crucial,
the potential for 3Torus(m,n) as a viable interconnection
network has clearly been established.

VIII. CONCLUSIONS

We have shown that the network 3Torus(m,n) has sig-
nificant potential as an interconnection network of degree
3 but where properties comparable with those of a torus
are retained. However, our results form but a preliminary
investigation into the network 3Torus(m,n) and we advo-
cate some directions for further research. These directions
fall within four strands.

First, we need to study the important (and considerably
more complicated) all-to-all broadcasts (where every node
wishes to send the same message to every other node si-
multaneously) and personalized all-to-all broadcasts (where
every node wishes to send a different message to every
other node simultaneously) in 3Torus(m,n). We envisage
that such a study will be far more straightforward for the
one-port model than for the all-port model.

Second, we need to study broadcast algorithms (in-
cluding the ones studied in this paper as well as those
in the preceding paragraph) in 3Torus(m,n) under al-
ternative switching models such as wormhole switching
models (which are distance-insensitive and reflect modern
switching methods in many environments).

Third, we need to undertake a thorough, practically-
oriented performance evaluation of 3Torus(m,n) using
proper simulation tools so that we can better understand
performance when our networks are deployed under spe-
cific and more realistic conditions in which different rout-
ing, flow control and switching mechanisms are deployed.
We fully recognise that our performance evaluation pre-
sented here is somewhat basic; nevertheless, it has pro-
vided some additional evidence that 3Torus(m,n) might
perform well in comparison with tori especially when the
parameters m and n are chosen preferentially. Of course,
it has long been recognised that structural interconnection
network properties such as the ones studied in this paper
do often translate into good practical performance.

Finally and more speculatively (and after the above
directions of additional research have been investigated),
we would like to ascertain whether higher dimensional tori
might be susceptible to degree reduction using pruning
techniques derived from the approach studied here.
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