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We present a fast and quasideterministic protocol for the production of single ions and electrons from a

cloud of laser-cooled atoms. The approach is based on a two-step process where first a single Rydberg

atom is photoexcited from a dipole-blockade configuration and subsequently ionized by an electric field

pulse. We theoretically describe these excitation-ionization cycles via dynamical quantum maps and

observe a rich behavior of the ionization dynamics as a function of laser Rabi frequency, pulse duration,

and particle number. Our results show that a fast sequential heralded production of single charged particles

is achievable even from an unstructured and fluctuating atomic ensemble.
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The ability to place single ions into a medium or onto a
surface with high precision opens up exciting possibilities
for new types of nanofabricated devices and processes in
materials science [1–5]. Techniques such as scanning
tunneling microscopy [6] and focused ion beam single
ion implantation [7] have been very successful in accurate
placement of single ions. However, scanning tunneling
microscopy is relatively slow, and focused ion beam
single ion implantation is stochastic and therefore gov-
erned by Poisson statistics. Ideally, one would like fast,
precise, and fully deterministic single ion delivery. A
promising route towards this goal is to use laser cooling
and trapping techniques [8], which allow exquisite control
over neutral atoms, therefore enabling ‘‘atom optics’’ to
become a realistic prospect for nanotechnology applica-
tions [9]. By photoionizing ultracold atoms, one can then
transfer the precision control of neutral atoms onto
charged particle sources. This approach has sparked
research into the development of a new generation of
monochromatic ion and electron beams [10–12].
Because these ‘‘cold’’ beams originate from an extended
source and are demagnified by a factor of many thousand,
the ions can be delivered with nanoscale precision and are
less sensitive to vibrations and instabilities than pointlike
ion sources [13].

Thus far, there have been two main approaches to
making single ion sources based upon laser cooling.
First, laser-cooled ions held in a trap can be ejected on
demand. For example, linear Paul traps can hold strings of
ions which can be emitted deterministically [14,15].
Another approach is to trap a single atom, for example,
in a magneto-optical trap (MOT) [16] or optical trap [17],
and then photoionize it. While these approaches show great
promise, the trap loading remains random and at present
the repetition rate is slow (of the order of hertz).

In this Letter, we propose an approach that bypasses
the relatively slow process of carefully preparing an
initial state. This enables the fast and quasideterministic

sequential production of ions out of a standard sample of
laser-cooled neutral atoms. By analyzing in detail the
quantum dynamics of the ion source, we identify various
dynamical regimes and discuss the temporal ion emission
statistics as a function of experimental parameters and
atom diffusion. We show that the system not only is suited
for technological applications but also provides an inter-
esting platform for the study of nonequilibrium dynamics.
The protocol underlying the envisioned ion source is

based on a two-step process: At first, a tightly focused laser
beam that is resonant with the transition to a high-lying

FIG. 1 (color online). (a) Dipole blockade. Energy level
scheme of a pair of atoms that are resonantly laser-excited
from the ground state jgi to a Rydberg state jri with Rabi
frequency �. Because of strong interactions between Rydberg
atoms, the pair state jr; ri experiences a distance-dependent
energy shift. Below a critical distance Rb—the blockade
radius—this shift becomes larger than the Rabi frequency.
Here jr; ri becomes energetically inaccessible, and only a single
Rydberg atom is excited. (b) Schematic of the ion source.
Ultracold atoms are excited within the shaded volume through
appropriately focused laser beams. The extension of the excita-
tion volume is smaller than the blockade radius Rb. Atoms can
diffuse in and out of the region with rate �in and �out, respec-
tively. An electric field is applied, ionizing the Rydberg atom,
and a single ion and electron are emitted in opposite directions.
The field-generating electrodes (carrying charges �ve) are in-
dicated at the right- and left-hand sides of the atomic cloud.
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Rydberg state is irradiated onto an ensemble of ground
state atoms. The use of Rydberg states ensures that at most
one ion is created in the subsequent step, which consists of
an electric field pulse ionizing the Rydberg atom. The
reason for the excitation of only a single atom is the dipole
blockade [18–23], which is a consequence of strong and
long-range dispersive forces acting among atoms in
Rydberg states. These lead to energy level shifts that
prevent the laser excitation of many-body states containing
more than one Rydberg excitation; cf. Fig. 1(a). An ex-
perimental setup depicting the above scheme is sketched in
Fig. 1(b). Here, an ensemble of ultracold atoms is prepared
between two electrodes. The excitation lasers are focused
such that the overlap of the beams creates an excitation
volume with a characteristic size that is smaller than the
blockade radius Rb. In a steady state MOT, this can, for
instance, be achieved by using a three-step excitation
scheme [24,25], thereby avoiding avalanche ionization
resulting from excitation over an extended region [26].
We assume that the Rabi frequency is uniform over the
excitation region, which can be achieved by using flattop
beams [27]. The application of a small electric field results
in the field ionization of the excited atom, and the resulting
ion and its concomitant electron are ejected from the
ensemble in opposite directions as shown in Fig. 1(b).
The lighter electron can then be detected to ‘‘herald’’ the
creation of the ion.

In what follows, we describe a simple model that cap-
tures the essential dynamical processes of such an ion
source and which permits a detailed study of the statistics
of the ion emission. An excitation-ionization cycle consists
of a resonant laser pulse of duration �ex followed by an
electric field pulse of duration �ion. The Hamiltonian
describing the excitation step is given byH ¼ �=2ðaybþ
byaÞ, where � denotes the single-atom Rabi frequency,
ay (a) a bosonic operator that creates (annihilates) a par-
ticle in the electronic ground state, and by (b) an operator
that creates (annihilates) a Rydberg atom. In order to take
the Rydberg blockade into account in a simple way, we
impose fermionic anticommutator relations fb;byg¼1 and
fb; bg ¼ fby; byg ¼ 0 on the b operators, so that b2 ¼ 0.
This accounts for the fact that a double Rydberg excitation
within the blockade volume is highly suppressed [28].

The dynamics of the incoherent ionization step is
governed by a Markovian master equation for the density
matrix � of the (un-ionized) atoms contained in the
excitation volume. In order to explicitly resolve the number
of ions, we project � onto the subspace in which m � 0

ions have already been created. If �ðmÞ denotes the pro-

jected density matrix, then � ¼ P
m�

ðmÞ, and the master
equation governing its dynamics is [29]
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with ionization rate �.

Since coherent laser excitation and incoherent ionization
happen in sequence, we can efficiently describe the
dynamics of a whole excitation-ionization cycle within
the framework of dynamical quantum maps [30]. The
time evolution during the kth excitation-ionization cycle
is given as follows: Starting at time tk�1, the laser pulse
coherently excites an atom in the excitation volume;
i.e., the density matrix �k�1 undergoes a unitary evolution
�0 ¼ U�k�1U

y with Uð�exÞ ¼ expð�iH�exÞ. Since the
laser excitation does not change the number of particles
in the volume, U is block diagonal in particle number
space, and the coherent dynamics for an ensemble of n
atoms takes place in the subspace spanned by the states

jgi�n and S½jgi�ðn�1Þ � jri�= ffiffiffi
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, where S is the symmet-

rization operator. The corresponding time evolution opera-
tor for the n particle block is
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showing explicitly the
ffiffiffi
n

p
enhancement of the atom-field

coupling due to the blockade effect [23]. The subsequent

ionization pulse maps the density matrix �0 to �k ¼
M1�

0My
1 þM2�

0My
2 , where
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e���ion
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are Kraus operators.M1 describes the dynamics induced by
the anticommutator term of the master equation (1), while
M2 captures the quantum jump processes induced by the
first term on the right-hand side of Eq. (1).
The density matrix of the subspace, where exactly m

ions have been produced after the kth excitation-ionization
cycle, can now be obtained iteratively:

�ð0Þ
k ¼ Kð0Þ

1 �ð0Þ
k�1;

�ðmÞ
k ¼ ½KðmÞ

1 �ðmÞ
k�1ð1� �kmÞ þKðmÞ

2 �ðm�1Þ
k�1 ��ðk�mÞ

(4)

with KðmÞ
1 �ðmÞ

k�1 ¼ M1UN�m�
ðmÞ
k�1U

y
N�mM

y
1 and

KðmÞ
2 �ðm�1Þ

k�1 ¼M2UN�mþ1�
ðm�1Þ
k�1 Uy

N�mþ1M
y
2 . Here, N de-

notes the number of atoms in the focal volume at t¼0, and
�ðxÞ is the Heaviside step function.
Let us now apply this theoretical framework to analyze

the dynamics of the ion source in different operational
regimes.
(i) Quasideterministic regime in a microtrap.—Here we

consider an atomic ensemble which is confined within a
trap volume which is much smaller than the blockade
radius. We start initially from a fixed number of trapped
atoms N, and the successive application of the excitation-
ionization cycle will lead eventually to a depletion of the
trap. For our numerical example, we consider an initial
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atom number of N ¼ 500—a situation which can be
achieved, for example, in the case of an atomic Bose-
Einstein condensate held in a tight optical trap. The
Rydberg excitation is carried out with a � pulse, with

respect to the collective Rabi frequency
ffiffiffiffi
N

p
� [23,31]. In

the regime of a relatively large initial number of atoms, i.e.,
N � 1, this collective Rabi frequency changes negligibly
with the emission of each ion. Thus, each excitation cycle

of length �ex ¼ �=
ffiffiffiffi
N

p
� will—with probability close to

unity—excite a single Rydberg atom, and this excitation
process will remain efficient even after many ions have
been emitted. This is indeed illustrated in Fig. 2, which
shows the probability of having ionized exactly k atoms
after k excitation-ionization cycles. In addition, the inset

shows the probability distribution pðmÞ
k of having ionizedm

atoms after k cycles. Hence, for a fully deterministic single
ion source, this quantity is 1 for m ¼ k and 0 elsewhere.
The data indeed reflect that a single ion is produced in each
cycle until the depletion of the trap begins to alter the
collective Rabi frequency significantly. In principle, the
Rabi frequency could be adapted dynamically in order to
account for atom loss. However, we can see that, even in
the static case, many atoms can be rapidly extracted from
the sample with high probability. By using typical experi-
mental parameters, i.e., an excitation time �ex � 10 ns and
an ionization rate �� 100 kHz, an ion production rate up
to 100 kHz appears feasible.

(ii) Trapped states in a microtrap.—We are now inter-
ested in the ion emission dynamics for the case when the
excitation pulse length is chosen independent of the parti-
cle number in the excitation volume, i.e., without taking
the collective laser coupling induced by the dipole block-
ade into account. Let us first consider the situation in which
Rydberg atoms are excited with a single-atom � pulse, i.e.,

�ex ¼ ���1. The evolution of the corresponding proba-
bility density is shown in Fig. 3(a). We find that initially the
mean number of emitted ions m grows with the number of
cycles k. However, in this example with 500 initial atoms,
the probability of emitting ions beyond the 250th cycle is
strongly suppressed. In fact, the data show that no more
than 16 ions will be emitted in total even if the number of
cycles is increased. The reason for that is the emergence of

trapped states which occur when
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N �m

p
��ex=2 becomes

an integer multiple of �. Here the time evolution operator
(2) becomes the identity (up to a phase factor of �1), and
consequently the excitation step does not generate Rydberg
atoms. This effect is analogous to the occurrence of trapped
states in micromasers. These are photonic number states
such that atoms transiting the cavity undergo a 2� pulse
(or an integer multiple of it) [32,33]. A further interesting
dynamical regime is reached when the Rydberg excitation
pulse is close to a �� pulse with � ¼ 1; 3; 5; . . . . In this
case, quasitrapped states can occur that have a striking
effect on the ionization dynamics. The corresponding
probability distribution for an excitation pulse length of
�ex ¼ 7:1�=� is depicted in Fig. 3(b). As in the previous
example, a trapped state is reached after a few initial cycles.
However, since

ffiffiffi
n

p
��ex=2 can never be a strict multiple of

�, the trapping is not perfect and we observe a slow leakage
into other quasitrapped states. Eventually, this leads to a
multimodal ion distribution that peaks at ion numbers m

where
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N �m

p
��ex=2 is close to a multiple integer of �.

This shows that, in order to avoid trapping effects and to use
the proposed device as a single-ion source, the excitation
pulse should be chosen to be a � pulse with respect to the
collective Rabi frequency.
(iii) Excitation from an extended atomic cloud.—So far,

we have considered a fully blockaded dense atomic sample
in a microtrap with a radius much smaller than Rb. Let us
now discuss the situation usually encountered in extended
systems like standard MOTs. Here the atom density is
relatively small, and, moreover, atoms can diffuse in and
out of the excitation volume as depicted in Fig. 1(b). In

0 10 20 30 40 50
0.90

0.92

0.94

0.96

0.98

1.00

k

p
k

k

0 10 20 30 40 50

0

10

20

30

40

50

m

k

FIG. 2 (color online). Quasideterministic ion production.

Probability pðkÞ
k of having produced k ions after k cycles for

initial particle number N ¼ 500 and excitation time �ex ¼
�=ð ffiffiffiffi

N
p

�Þ (the other parameters are Rabi frequency � ¼ 4�
and ionization pulse length �ion ¼ 16��1). Inset: Probability

distribution pðmÞ
k of having produced m ions after k cycles. The

color map is chosen such that white (black) corresponds to 0 (1).
The data show that a single ion is created with nearly unit
probability after each excitation-ionization cycle.
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FIG. 3. Trapped states. Probability distribution pðmÞ
k of having

produced m ions after k excitation-ionization cycles for a fully
blockaded sample initially prepared with N ¼ 500 atoms.
(a) The Rydberg excitation is performed by using a single-
atom � pulse, i.e., �ex ¼ �=�. (b) The Rydberg excitation pulse
length is �ex ¼ 7:1�=�. The values of the other parameters are
� ¼ 4� and �ion ¼ 4��1. The color map is chosen such that
white (black) corresponds to 0 (1).
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order to account for the effects of diffusion, we use a
simple rate model: Atoms can enter the excitation volume
at a constant rate �in and leave it at a rate �out ¼ �n, where
n is the number of atoms in the volume and � is the
diffusion rate. In an equilibrium gas cloud we have
�in ¼ �out and hence �in ¼ � �n, where �n is the mean num-
ber of atoms in the excitation volume. This simple model
yields a Poissonian atom distribution with mean �n for
finding n atoms in the excitation region.

To describe the influence of diffusion on the ion source
dynamics, we exploit the fact that the excitation cycle
(�ex � 10 ns) is typically much shorter than the ionization
step (�ion � 10 �s). Thus we assume that diffusion is
relevant only during the latter. This is consistent with the
frozen gas approximation [34] usually employed in the
description of the laser excitation of cold Rydberg gases.
Moreover, we consider the limit of slow diffusion; i.e.,
we assume ��ion � 1=ð2 �nÞ, which means that during the
ionization cycle only one atom will enter or leave the
excitation volume at a time. Effectively, this amounts to
solving the diffusion equation up to first order. Within
these approximations we can again use the above-
employed theoretical framework of dynamical quantum
maps and arrive at dynamical equations analogous to (4)
(see Supplemental Material [35]).

Let us now investigate the excitation dynamics. We
assume that the initial mean number of atoms in the
excitation volume is �n ¼ 10:2. With a realistic blockade
radius of 5 �m, this would correspond to typical MOT
densities of 1010 atoms=cm3. In Figs. 4(a) and 4(b), we

show the corresponding probability distributions pðmÞ
k for

the case without diffusion and for a diffusion rate of
� ¼ 10�3�, respectively. The data are averaged over the
distribution of the initial number of particles in the volume,

and the excitation pulse length is fixed at �ex ¼ �=
ffiffiffi
�n

p
�.

This choice therefore corresponds to a� pulse with respect

to the collective Rabi frequency
ffiffiffi
�n

p
�. Comparing

Figs. 4(a) and 4(b), we see that diffusion leads to a slow
drift of the ion number distribution to larger mean values
with an increasing number of excitation-ionization cycles.
This drift stems from the fact that the excitation volume is
quickly depleted due to the ionization process, which is
much faster than the diffusion. At long times (large k),
further ions can be produced only when particles diffuse
into the empty excitation volume leading to a slow increase
of the total number of emitted ions.
More interestingly, however, for the first few cycles the

ion source produces one ion per cycle with a high proba-
bility and is therefore quasideterministic. Note that this is
despite averaging over the initial atom number distribution.
Therefore, even when operated in an extended atomic
cloud, the behavior of the ion source is very similar to
that in a fully blockaded sample discussed in (i). This is
further corroborated by Fig. 4(c), where we show the
probability of having emitted k ions after k excitation-
ionization cycles. For comparison we also show the proba-
bility for the case in which the Rydberg excitation is
performed with a � pulse with respect to the single-atom
Rabi frequency �. The data show that the performance of
the ion source is indeed significantly improved when the
excitation pulse is chosen as a � pulse with respect to the

collective Rabi frequency
ffiffiffi
�n

p
�. Note that the performance

of the ion source can be enhanced further by resetting the
ion source after the few cycles during which quasideter-
ministic ion emission is taking place. This could be done
by refocusing the excitation laser to a different part of the
gas cloud, thereby avoiding the depletion of the excitation
volume and the broadening of the ion distribution visible in
Figs. 4(a) and 4(b). The movement of the source can easily
be compensated by ion optics to ensure that the ion is
imaged onto the correct position. The fidelity of the single
ion emission can be tested by performing number-resolved
coincidence measurements [36].
In conclusion, we have presented and analyzed theoreti-

cally a fast and heralded single ion source based on a
dipole-blockaded atomic ensemble. The source can be
operated in a variety of dynamical regimes and permits
the quasicontinuous and quasideterministic production of
single ions even from an extended gas cloud. The statistics
of the ion emission shows some interesting dynamical
features such as the emergence of ‘‘trapped’’ states,
reminiscent of micromaser physics. We expect that the
presented scheme can be of practical relevance for
applications in materials science.
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