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Abstract 16	  

Hitherto, the Lupa Terrane, SW Tanzania is a poorly understood litho-tectonic terrane comprising the 17	  

Paleoproterozoic Ubendian Belt. Herein we provide new U-Pb zircon ID-TIMS, U-Pb zircon LA-MC-18	  

ICP-MS and Lu-Hf zircon LA-MC-ICP-MS results from the Lupa Terrane and demonstrate that 19	  

previously considered Paleoproterozoic granitoids are in fact Archean (ca. 2.74 Ga). Foliated Archean 20	  

granitoids are in turn intruded by non-foliated and voluminous Paleoproterozoic granitic–gabbroic 21	  

intrusions (1.96–1.88 Ma). Archean and Paleoprotoerozic intrusive phases possess trace element 22	  

characteristics that are typical of volcanic arcs and the latter possess geochemical and field evidence 23	  

for crust-magma interaction. New geochemical results and field relationships suggest that the Lupa 24	  

Terrane was a continental margin during the Paleoproterozoic onto which the other Ubendian litho-25	  

tectonic terranes were accreted. Our model implies at least a 150 km SW extension of the currently 26	  

accepted position of the Tanzanian cratonic margin. U-Pb zircon ages constrain Ubendian tectono-27	  

magmatic models and provide new evidence to support the protracted nature of the 1.9–1.8 Ga 28	  



Ubendian accretionary history. Lu-Hf zircon model ages provide evidence for ≥3.1 Ga crust 29	  

underlying the Lupa Terrane that are consistent with some of the oldest ages reported for the 30	  

Tanzanian Craton and previously reported seismic tomography studies that suggest significant 31	  

portions of the Ubendian Belt represent re-worked Archean lithosphere.                 32	  
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 36	  

1 Introduction 37	  

Archean cratonic margins are complex geologic settings characterized by overprinting 38	  

structural, magmatic, and metamorphic events (e.g., Zhoa et al., 2002; Reddy and Evans, 2009). This 39	  

is particularly apparent in the Paleoproterozoic Ubendian and Usagaran metamorphic Belts which 40	  

border the western and southern margins of the Tanzania Craton, respectively. Existing models for the 41	  

Paleoproterozoic tectonic evolution of the Tanzanian cratonic margin invoke thrust-dominated 42	  

accretion of terranes comprising the Usagaran Belt coupled with lateral accretion of terranes 43	  

comprising the Ubendian Belt (Daly, 1988; Lenoir et al., 1994). However, recent geochronologic 44	  

evidence suggests that the current configuration of the Ubendian Terranes is the product of at least 45	  

three discrete orogenic events that are correlated to the Ubendian, Kibaran and Pan-African orogenic 46	  

episodes (Boniface et al., 2012; Boniface and Schenk, 2012). The Paleoproterozoic tectonic history of 47	  

the Ubendian Belt and the Tanzanian cratonic margin therefore remains poorly understood due, in 48	  

part, to Neoproterozoic and Pan-African cover rocks, Meso- and Neoproterozoic metamorphic 49	  

overprints, and periodic reactivation of geologic structures from the Paleoproterozoic until the present 50	  

day (Theunissen et al., 1996).  51	  

The Lupa Terrane is located adjacent to the Tanzanian Craton and is the least-understood of 52	  

the eight litho-tectonic terranes comprising the Ubendian Belt (Figs. 1–2; Daly, 1988). Voluminous 53	  

granitoids intruding the Lupa Terrane that obscure the southern extent of the Tanzanian cratonic 54	  

margin have, hitherto been attributed to widespread Paleoproterozoic magmatic activity related to the 55	  

Ubendian Orogeny (e.g., Sommer et al., 2005). Herein we characterize and date these and other major 56	  



lithologies in the Lupa Terrane and place constraints on the Paleoproterozoic geodynamic evolution of 57	  

the Ubendian Belt. New U-Pb zircon LA-MC-ICP-MS ages, coupled with Lu-Hf zircon LA-MC-ICP-58	  

MS results, call into question the currently accepted SW extent of the Tanzanian cratonic margin 59	  

(Manya, 2011). Establishing the extent of the Tanzanian Craton places important constraints on the 60	  

prospectivity of SW Tanzania for ore deposits associated with Archean Cratons (e.g., orogenic Au 61	  

deposits; Sango, 1988; Lawley, 2012).  62	  

 63	  

2 Geologic Setting 64	  

2.1 Regional Geology 65	  

The western margin of the Tanzanian Craton is separated from the Congo Craton and the 66	  

Bangweulu Block by the ca. 600 km long and 150 km wide zone of granulite-amphibolite facies meta-67	  

igneous and meta-sedimentary rocks known as the Ubendian Belt (McConnell, 1950; Sutton et al., 68	  

1954; Lenoir et al., 1994). Current tectonic models divide the Ubendian Belt into eight lithologicaly- 69	  

and structurally-defined terranes: Ubende, Wakole, Katuma, Ufipa, Mbozi, Lupa, Upangwa, and 70	  

Nyika (Fig. 1a; Daly, 1988). Mesoproterozoic meta-sedimentary rocks, corresponding to the Muva 71	  

Supergroup, unconformably overlie the Ubendian Belt and have been subsequently metamorphosed 72	  

during the Kibaran Orogeny (Cahen et al., 1984). These rocks are in turn overlain by Neoproterozoic 73	  

clastic sedimentary rocks which correspond to the Bukoban Supergroup (Cahen et al., 1984). Meso- 74	  

and Neoproterozoic cover sequences blanket large areas of the Ubendian basement and obscure its 75	  

northern and southern limits (Hanson, 2003).   76	  

The Ubendian Belt formed through a series of metamorphic and tectonic events that span ca. 77	  

300 Myr (Lenoir et al., 1994). The first tectonic event is constrained by U-Pb zircon and Rb-Sr whole 78	  

rock dating of syntectonic magmatic intrusions at 2093–2048 Ma (Dodson et al., 1975; Lenoir et al., 79	  

1994; Ring et al., 1997). The 2.1–2.0 Ga Ubendian tectonic phase corresponds with a period of 80	  

eclogite and granulite facies metamorphism, the development of a ductile E-W trending tectonic 81	  

fabric and is concomitant with metamorphism in the adjacent Usagaran Belt (Lenoir et al., 1994; 82	  

Collins et al., 2004). Eclogitic rocks with MORB-like chemistry from the Usagaran, dated at ca. 2.0 83	  

Ga, suggest that metamorphism and tectonism resulted from subduction zone processes analogous to 84	  



modern-day accretionary margins and may have resulted from the collision between the Tanzanian 85	  

and Congo Cratons and the Bangweulu Block (Möller et al., 1995).  Structural evidence associated 86	  

with the 2.1–2.0 Ga Ubendian tectonic phase has largely been overprinted by later deformation, with 87	  

the exception of the Mbozi Terrane (Theunissen et al., 1996).  88	  

The 2.1–2.0 Ga Ubendian tectonic phase is overprinted by a 1.9–1.8 Ga tectonic phase that 89	  

produced the characteristic Terrane-bounding NW-SE trending shear zones and amphibolite facies 90	  

metamorphism (Lenoir et al., 1994). The exact timing of this deformation event is poorly constrained 91	  

and is thought to have occurred at 1860 ± 23 Ma based on a weighted average age of U-Pb and whole 92	  

rock Rb-Sr ages of late-kinematic granitoids (Lenoir et al., 1994; Fig. 2). This age overlaps within 93	  

analytical uncertainty with a weighted average Ar-Ar barroisite cooling age of 1848 ± 6 Ma from a 94	  

mafic tectonite that is also interpreted to record the 1.9–1.8 Ga Ubendian tectonic phase (Boven et al., 95	  

1999), whereas the Kate Granite post-dates the second Ubendian tectonic phase and provides a 96	  

possible maximum age for deformation at ca. 1825 Ma (Rb-Sr whole rock; Schandelmeier, 1983). 97	  

These Rb-Sr and Ar-Ar ages are younger than recent U-Pb (SIMS) zircon dating of eclogites with 98	  

MORB-like chemistry that suggest high-pressure and low-temperature metamorphism, analogous to 99	  

modern-day subduction zones, occurred within the Ubende Terrane at 1886 ± 16 and 1866 ± 14 Ma 100	  

(Boniface et al., 2012). Paleoproterozoic granites and tectonites are in turn overprinted during the 101	  

Meso- and Neoproterozoic orogenic episodes (Theunissen et al., 1992; Ring et al., 1993; Ring et al., 102	  

1997; Theunissen et al., 1996). In particular, Paleo- and Neoproterozoic-aged eclogites with MORB-103	  

like chemistry represent paleo-sutures and suggest the current configuration of Ubendian Terranes is 104	  

the result of at least three discrete orogenic cycles (Boniface, 2009; Boniface and Schenk, 2012). Our 105	  

U-Pb ages place new geochronologic constraints on the timing of metamorphism, tectonism, and 106	  

magmatism in the Lupa Terrane and provide new evidence to support the Ubendian Belt’s protracted 107	  

Paleoproterozoic tectonic evolution.  108	  

2.2 Local Geology 109	  

The geology of the Lupa Terrane has been variably described as comprising high-grade 110	  

gneissic, high-grade schistose rocks, and granitic gneisses (e.g., Grantham, 1931, 1932, 1933; Teale et 111	  

al., 1935; Gallagher, 1939; Harris, 1961; Van Straaten, 1984; Daly, 1988; Sango, 1988; Lenoir et al., 112	  



1994). The extent of the Lupa Terrane is also unclear from the literature (e.g., Kimambo, 1984; Daly, 113	  

1988). For the purposes of this study the Lupa Terrane is assumed to be coincident with the extent of 114	  

the Lupa goldfield which is defined as the triangular shaped block bounded by the Rukwa Rift 115	  

Escarpment (or Lupa Border Fault; Kilembe and Rosendahl, 1992) to the west, the Mkondo Magnetic 116	  

Lineament to the north (Marobhe, 1989), and the Usangu Escarpment to the east. The Rukwa and 117	  

Usangu Escarpments represent Tertiary faults that are related to the East African Rift, whereas the 118	  

nature of the Mkondo Magnetic Lineament is more cryptic (Marobhe, 1989). The field area for the 119	  

current study is located in the northern portion of the Lupa Terrane and corresponds with the mineral 120	  

exploration licenses currently controlled by Helio Resource Corp. (Fig. 3). These mineral exploration 121	  

licenses contain a number of orogenic gold systems and include the Kenge and Porcupine exploration 122	  

targets (e.g., Lawley, 2012; Lawley et al., in press). 123	  

Hitherto geochronology of the Lupa Terrane has been limited to a K-Ar ages from a greisen 124	  

and granite at 1802 ± 70 Ma and 1827 ± 70 (Cahen et al., 1984), respectively, and two poorly 125	  

constrained U-Pb zircon ages of the Ilunga Granite (1931 ± 44 Ma; MSWD = 110; n = 4) and Saza 126	  

Granite (1936 ± 47 Ma; MSWD = 230; n = 4; Mnali, 1999). Two SIMS U-Pb zircon ages of the Saza 127	  

granite and a cross cutting mafic dike were also dated at 1924 ± 13 (MSWD = 2.6) and 1758 ± 33 Ma 128	  

(MSWD = 0.9), receptively (Manya, 2012). The Ilunga and Saza granites intruded into what has been 129	  

previously mapped as a “highly-deformed acid schist” (e.g., Kimambo, 1984) and “gneiss” (e.g., 130	  

Grantham, 1932; Teale, 1935; van Straaten, 1984). We provide new geologic, geochemical evidence 131	  

and geochronologic evidence to re-classify these rocks and propose a geodynamic setting to explain 132	  

their occurrence.  133	  

    134	  

3 Analytical Methods 135	  

3.1 U-Pb Zircon ID-TIMS 136	  

The detailed analytical methodology is presented in an electronic supplement, but is briefly 137	  

summarized here. All of the analyzed zircon crystals have undergone the “chemical abrasion” 138	  

(thermal annealing and subsequent leaching) pre-treatment technique (Mattinson, 2005) for the 139	  



effective elimination of Pb-loss. Isotope ratios were measured at the NERC Isotope Geosciences 140	  

Laboratory (NIGL), UK, using a Thermo-Electron Triton Thermal Ionisation Mass-Spectrometer 141	  

(TIMS). Pb isotopes were measured by peak-hopping on a single SEM detector. U isotopic 142	  

measurements were made in static Faraday mode. Age calculations and uncertainty estimation were 143	  

based upon the algorithms of Schmitz and Schoene (2007). 144	  

3.2 U-Pb Zircon LA-MC-ICP-MS 145	  

This analytical methodology is also presented in detail in the electronic supplement but is 146	  

briefly described here. Laser Ablation Multi-Collector Inductively Coupled Mass Spectrometry (LA-147	  

MC-ICP-MS) was completed at the NERC Isotope Geoscience Laboratory (NIGL). Zircon mineral 148	  

separates were mounted in epoxy, polished, and imaged using cathodluminesence (CL) on a scanning 149	  

electron microscope (SEM) at the British Geological Survey (BGS; except for CL098 which was 150	  

prepared at the School of Natural Sciences, Trinity College Dublin). Zircon crystals were ablated 151	  

using a New Wave Research Nd:YAG laser ablation system and isotopes ratios measured using a Nu 152	  

Plasma MC-ICP-MS equipped with a multi-ion-counting array. The internationally recognized 91500 153	  

zircon standard (Weidenbeck et al., 1995) was used as the primary standard, whereas Plešovice 154	  

(Sláma et al., 2008) and GJ-1 (Jackson et al., 2004) were used as secondary standards. All 206Pb/238U 155	  

dates (ID-TIMS and LA-MC-ICP-MS) are calculated using the 238U and 235U decay constants of 156	  

Jaffey et al. (Jaffey et al., 1971).  The consensus value of 238U/235U = 137.818 ± 0.045 (Hiess et al., 157	  

2012) was used in the data reduction calculations for ID-TIMS and LA-MC-ICP-MS dates. Using this 158	  

more accurate value with its associated uncertainty estimate has the effect of lowering 207Pb/206Pb 159	  

dates at ca. 2 Ga by 0.8 ± 0.6 Myr, compared to 207Pb/206Pb dates calculated using the consensus value 160	  

of 238U/235U = 137.88.  161	  

3.3 Lu-Hf Zircon LA-MC-ICP-MS 162	  

Near concordant (>95% concordance) U-Pb zircon ablation sites from samples CL098, 163	  

CL109, and CL1020 were re-analyzed to measure their respective Lu-Hf isotopic compositions. 164	  

Isotope analyses were carried out at the NIGL using a Thermo Scientific Neptune Plus MC-ICP-MS 165	  

coupled to a New Wave Research UP193FX excimer laser ablation system and low-volume ablation 166	  

cell. Helium was used as the carrier gas through the ablation cell with Ar make-up gas being 167	  



connected via a T-piece and sourced from a Cetac Aridus II desolvating nebulizer. After initial set-up 168	  

and tuning a 2% HNO3 solution was aspirated during the ablation analyses. Lutetium (175Lu), 169	  

ytterbium (172Yb, 173Yb), and hafnium (177Hf, 178Hf, 179Hf, and 180Hf) isotopes were measured 170	  

simultaneously during static 30s ablation analyses (50 µm; fluence = 8–10 J/cm2). A standard–171	  

sample–standard bracketing technique, using reference zircon 91500, was used to monitor accuracy of 172	  

internally corrected Hf isotope ratios and instrumental drift with respect to the Lu/Hf ratio. Hf 173	  

reference solution JMC475 was analyzed during the analytical session to allow normalisation of the 174	  

laser ablation Hf isotope data.  Correction for 176Yb on the 176Hf peak was made using reverse-mass-175	  

bias correction of the 176Yb/173Yb ratio (0.7941) empirically derived using Hf mass bias corrected Yb-176	  

doped JMC475 solutions (cf. Nowell & Parrish, 2001). 176Lu interference on the 176Hf peak was 177	  

corrected by using the measured 175Lu and assuming 176Lu/175Lu = 0.02653.  178	  

3.4 Lithogeochemistry 179	  

A representative suite (23 samples) of magmatic phases were analyzed for major and trace 180	  

elements using a combination of fusion inductively coupled plasma-mass spectrometry (ICP-MS) and 181	  

instrumental neutron activation analysis (INAA) by Actlabs (Ancaster, Ontario; method 4E-182	  

Research). Sample aliquants for ICP-MS analysis were first mixed with a lithium metaborate-183	  

tetraborate flux and fused in order to ensure complete digestion of refractory minerals (e.g., zircon). 184	  

As a result, fusion ICP-MS results are considered most representative and are used for plotting 185	  

purposes. Detection limits for this assay package are in the low ppm and ppb range for most trace 186	  

elements. Standards, duplicates and blanks were used as a means of quality control and the difference 187	  

between duplicate analyses were generally within a few ppm for most trace elements.    188	  

 189	  

4 Results and Data Interpretation 190	  

4.1 Lithologies 191	  

All rocks within the field area have undergone hydrothermal alteration and greenschist facies 192	  

metamorphism. Thus, all rock names are metamorphic and for the remaining discussion all rock 193	  

names should have the prefix “meta-” (Figs. 4–6). Non-foliated felsic-mafic magmatic rocks intrude 194	  



into a pervasively deformed granitic unit (Figs. 4a, b, and c). Rocks lacking this pervasive tectonic 195	  

fabric have been classified according to the IUGS classification scheme (LeMaitre, 2002). Two 196	  

granitoids, the Saza Granodiorite and Ilunga Syenogranite (named after their outcrop localities 197	  

adjacent to the town of Saza and the Ilunga Hills, respectively), are exceptions and their IUGS names 198	  

are accompanied by the prefix Saza and Ilunga, respectively as a result of their regional significance 199	  

(Fig. 3). Intermediate and mafic rocks are difficult to classify using the IUGS scheme because the 200	  

primary mineralogy has been partially to completely replaced by amphibole (± relict pyroxene) and 201	  

plagioclase (Fig. 6c). The large range of amphibole content (modes 15–60%) coupled with the large 202	  

range of SiO2 (50–60% SiO2; see below) and Mg# (44–73; see below) suggests these rocks represent a 203	  

compositional spectrum of protoliths (discussed further below). As a result, amphibole-plagioclase 204	  

rocks are termed the diorite-gabbro suite in the following lithogeochemistry discussion (Mnali, 2002). 205	  

Sample locations, descriptions, and modal mineralogy are presented in Table 1.   206	  

Foliated granitoids crop out in the southern portion of the field area (Fig. 3). K feldspar, 207	  

quartz and plagioclase are the dominant mineral assemblage with lesser amounts of chlorite ± calcite 208	  

± titanite ± epidote. However, foliated granitoids exhibit a wide range of modal mineralogy (e.g., the 209	  

modal mineralogy of foliated granitoids ranges from syenogranite to monzogranite) and likely 210	  

represent several different lithologies, but have been grouped based on a distinct deformation fabric 211	  

that is absent in the other identified granitoids. This characteristic foliation is defined by alternating 212	  

quartz-feldspar and chlorite rich bands, which gives the rock a banded to “gneissic” appearance (Fig. 213	  

4b). Compositional banding is accompanied by crystal plastic deformation of quartz (Lawley et al., in 214	  

press) and both characteristics are dissimilar to the mineralogy and deformation processes that are 215	  

typical of gneissic rocks comprising the other Ubendian Terranes (Lenoir et al., 1994). Non-foliated 216	  

granitoids, dioritic-gabbroic intrusions/dikes and aplitic dikes are all observed cross cutting foliated 217	  

granitoids and suggest that fabric development occurred prior to widespread magmatism in the field 218	  

area (Fig. 4c; Lawley et al., in press).  219	  

The Ilunga Syenogranite represents the dominant lithology in the northern portion of the field 220	  

area and corresponds with a topographic high referred to as the Ilunga Hills (Fig. 3). K feldspar, 221	  



quartz and plagioclase comprise the primary mineral assemblage with lesser amounts of chloritized 222	  

biotite (typically less than 10% modal abundance). The Ilunga Syenogranite is typically equigranular 223	  

and coarse grained, but locally grades into finer grained and more K feldspar rich zones with aplitic 224	  

texture. The finer grain size and change in modal mineralogy is also accompanied with quartz-225	  

feldspar intergrowths in thin section (Fig. 6f). K feldspar-plagioclase intergrowths are also locally 226	  

observed in thin section and are unique to the Ilunga Syenogranite within the field area. Very few 227	  

igneous contacts between the Ilunga Syenogranite and other lithologies were observed aside from 228	  

cross cutting diorite-gabbroic intrusions at the top of the Ilunga Hills, which coupled with mafic 229	  

enclaves suggests diorite-gabbroic intrusions/dikes pre- and post-date the Ilunga Syenogranite.  230	  

The regionally significant Saza Granodiorite crops out in the southern portion of the field area 231	  

as a coarse grained and equigranular intrusion (Fig. 3). Quartz, plagioclase and K feldspar comprise 232	  

the dominant mineral assemblage with lesser amounts of chloritized biotite and hornblende (Fe-Mg 233	  

minerals generally constitute less than 5% modal abundance). Sericite, calcite and epidote are also 234	  

observed overprinting the primary mineral assemblage. Abundant diorite-gabbroic enclaves/xenoliths, 235	  

coupled with cross cutting dioritic-gabbroic dikes/intrusions, suggests that the Saza Granodiorite was 236	  

pre- and post-dated by dioritic-gabbroic magmatism (Fig. 5e). The Saza Granodiorite is also cross cut 237	  

by auriferous mylonitic shear zones and aplite dikes (Fig. 3).  238	  

Dioritic-gabbroic dikes and intrusions represent a significant proportion of the rocks exposed 239	  

in the field area and are typically observed cross cutting and intruding granitoids (Fig. 3). Amphibole 240	  

and plagioclase are the dominant minerals, whereas chlorite, epidote, titanite and calcite are typically 241	  

present as accessory phases (Fig. 6c). Rare relict pyroxene crystals are also observed and are variably 242	  

altered by a chlorite ± epidote ± titanite ± calcite alteration assemblage. The presence of diorite-243	  

gabbroic enclaves/xenoliths in all of the identified and temporally distinct granitoids (discussed 244	  

further below) is consistent with multiple dioritic-gabbroic intrusive events.  245	  

A variety of other granitoids, ranging from syenogranite to tonalite in modal mineralogy, 246	  

were also observed in the field area and occur as dikes and small intrusions (Fig. 3). These additional 247	  

non-foliated magmatic phases are observed cross cutting foliated granitoids, but are in turn cross cut 248	  



by auriferous shear zones. Several of these magmatic phases remain undated (e.g., syenogranite; Fig. 249	  

3), however we expect that the majority of igneous activity occurred prior to mylonitization that is 250	  

constrained by Re-Os sulphide ages at 1.88 Ga (Lawley et al., in press).     251	  

   252	  

4.2 U-Pb Zircon ID-TIMS Results 253	  

For the detailed U-Pb zircon results see the Online Supplementary Table S1 and Fig. 7. Our 254	  

interpreted crystallization ages are reported in Table 2 and were calculated using Isoplot v. 4.15 255	  

(Ludwig, 2008). The preferred crystallization age for each of the three samples is a weighted average 256	  

207Pb/206Pb age of concordant analyses because these zircon crystals exhibit the least evidence of 257	  

disturbance and are the most likely to record crystallization ages. Sample CL0972 is a zircon mineral 258	  

separate from the Ilunga Syenogranite that hosts the Porcupine ore body. Concordant zircon crystals 259	  

from CL0972 yield a weighted average 207Pb/206Pb age of 1959.6 ± 1.0 (MSWD = 1.4; n = 5). Sample 260	  

CL0975 is a zircon mineral separate from the Saza Granodiorite. Concordant zircon crystals from this 261	  

sample yield a weighted average 207Pb/206Pb age of 1934.5 ± 1.0 (MSWD = 1.7; n = 5). Sample 262	  

CL0911 is a zircon mineral separate from a non-foliated granodiorite dike that is observed cross 263	  

cutting the foliated granitoid at the Kenge ore body (CL098 dated by LA-MC-ICP-MS; Fig. 4c). 264	  

Concordant zircon crystals from sample CL0911 yield a weighted average 207Pb/206Pb age of 1958.5 ± 265	  

1.3 (MSWD = 0.41; n = 2), consistent with the less precise upper intercept date of 1964.6 ± 5.4 266	  

(MSWD = 3.6; n = 5). The lower intercept age of 1126 ± 150 Ma (MSWD = 3.6; n = 5) could 267	  

represent a Pb-loss event during the Mesoproterozoic that is consistent with the timing of the Kibaran 268	  

Orogeny (Boniface et al., 2012). In addition to determining the crystallization age of CL0911, U-Pb 269	  

ages also constrain the maximum age of deformation for CL098 (see section 4.5).       270	  

4.3 U-Pb Zircon LA-MC-ICP-MS Results 271	  

All Cathodoluminesence (CL) images and ablation spot locations are provided as Online 272	  

Supplementary Figures (see Online Supplementary Figs. S1–S6). Reference material analyses and 273	  

sample results are provided as Online Supplementary Tables (see Online Supplementary Tables S2–274	  

S7). Data are presented on Concordia plots in Figures 9 and 10. Our preferred crystallization ages are 275	  

reported in Table 2 and were calculated using Isoplot v. 4.15 (Ludwig, 2008). All zircon grains 276	  



possess euhedral crystal shapes and complex magmatic oscillatory zoning characterized by truncated 277	  

and resorbed growth phases. Zircon recrystallization is also suspected in weakly luminescent zircon 278	  

zones that lack oscillatory zoning (Fig. 8).  279	  

Sample CL098 is a foliated granitoid that hosts the Kenge Au ore body. Twenty-six ablation 280	  

analyses were measured from seventeen zircon crystals. Two of these analyses (zircon crystals 12-1 281	  

and 18-2) possessed significant common lead (1.7–3.8% f206Pbc) and are therefore not shown in Figs. 282	  

9a, b. We consider the fifteen concordant (100 ± 2% concordance) analyses to reflect the best 283	  

determination of the actual crystallization age of the sample and yield a weighted average 207Pb/206Pb 284	  

age of 2723 ± 10 Ma (± 40 2 SD; MSWD = 5.8; n = 17). The large MSWD implies the assigned 285	  

analytical uncertainties do not account for the observed U-Pb age range. Therefore, our dataset likely 286	  

contains multiple zircon populations that possess similar but distinct ages that partially overlap within 287	  

analytical uncertainty of individual analyses.  288	  

Sample CL109 is a foliated granitoid with a well-developed S- and L-fabric. Thirty-seven 289	  

ablation spots from seventeen zircon crystals were analyzed. The majority of imaged zircon crystals 290	  

from CL109 possess a bright and very-narrow rim that was not possible to analyse with a 25 µm spot 291	  

size (Fig. 9a).  Three of these zircon crystals (zircon crystals C5-1, C6-1, and H1-2) possess 292	  

significant common lead (1.5–1.8% f206Pbc) and are not shown in Figs. 9a, b. The remaining zircon 293	  

crystals constrain a Model-2 York fit regression with an upper intercept age of 2754 ±14 Ma and 294	  

lower intercept age at 512 ± 140 Ma (MSWD = 16; n = 34). The large MSWD reflects considerable 295	  

scatter along the discordia curve and is indicative of complex and non-zero Pb-loss. The youngest 296	  

207Pb/206Pb ages correspond to what appear from CL images to be recrystallized zircon crystals; 297	  

however several of the younger 207Pb/206Pb ages correspond with magmatically zoned and pristine 298	  

portions of the zircon crystals. One of these analyses (J2-1) overlaps multiple growth zones, 299	  

corresponds to a brightly-luminescent margin of the zircon, and possesses an anomalously low 300	  

207Pb/206Pb age at 2620 ± 17 Ma. If this analysis is excluded, a weighted average 207Pb/206Pb age for 301	  

the remaining most concordant zircon crystals (>98% concordance) is 2758 ± 9 Ma (± 28 2SD; 302	  

MSWD = 2.8; n = 11). The weighted average possesses a MSWD >1 and we interpret this to reflect 303	  

multiple zircon populations included within the weighted average calculation.  304	  



Sample CL1020 is a foliated granitoid with a weakly developed tectonic fabric. Fifty-two 305	  

ablation analyses were measured from eighteen zircon crystals. Seven of these analyses (G2-1, G2-2, 306	  

C5-1, H9-1, I1-2, Z4-1, and Z7 2) possessed significant common lead (1.5–4.6% f206Pbc) and are not 307	  

shown in Figs. 9a, b. Concordant 207Pb/206Pb ages (>95% concordance) possess a 150 Myr age range 308	  

that likely reflects at least two disparate age components and each has likely undergone non-zero Pb-309	  

loss. CL imaging provides textural support for an inherited zircon component with the oldest zircon 310	  

crystals corresponding to highly luminescent and resorbed zircon cores (Fig. 8c). The age of this older 311	  

population is unclear as inherited zircon crystals are suspected to have undergone non-zero Pb-loss, 312	  

however a weighted average 207Pb/206Pb age of the five oldest and most concordant (100 ± 2% 313	  

concordance) zircon crystals that correspond to texturally distinct zircon zones represents a minimum 314	  

age estimate of inherited zircon crystals at 2846 ± 7 (± 9 2SD; MSWD = 0.31; n = 5). The 315	  

crystallization age of CL1020 is similarly open to interpretation as the younger age population likely 316	  

includes inherited zircon crystals that have undergone non-zero Pb-loss; however a weighted average 317	  

207Pb/206Pb age of the fourteen most concordant (100 ± 2% concordance) zircon crystals 318	  

corresponding to magmatically zoned zircon crystals provides our best estimate for the crystallization 319	  

age of CL1020 at 2739 ± 10 (± 35 2SD; MSWD = 4.6; n = 14).              320	  

Sample CL1019 is a porphyritic monzogranite and possesses K-feldspar megacrysts (locally 321	  

several cm in diameter) that distinguish this lithology from the other granitic phases in the field. 322	  

Thirty-two ablations from sixteen zircon crystals were analyzed. Seven of these analyses (A10-1; B3-323	  

1; B10-1; C1-1; C4-1; E2-1; G10-1) contained significant concentrations of common Pb (1.9–2.7% 324	  

f206Pbc) and are not included in Figs. 10a, b. Two of the remaining twenty-five analyses are from 325	  

zircon G1 and possess significantly older U-Pb ages (ca. 700 Myr). One of these analyses is near-326	  

concordant (96% concordance) and provides a 207Pb/206Pb age of 2671 ± 17 Ma. This zircon possesses 327	  

a resorbed and highly luminescent centre and weakly luminescent margin. The textural and isotopic 328	  

evidence suggest that this zircon is consistent with an inherited zircon component that was derived 329	  

from Archean basement (e.g., CL098, CL109, and CL1020). All other CL1019 zircon analyses 330	  

possess Proterozoic U-Pb ages and constrain a Model-2 York fit regression with an upper intercept 331	  

age of 1948 ± 16 Ma and lower intercept age of 87 ± 150 Ma (MSWD = 13; n = 23). The high 332	  



MSWD reflects significant scatter about the discordia curve that is likely related to Pb-loss and a 333	  

range of concordant U-Pb ages that may suggest multiple zircon populations were included in the 334	  

regression. Concordant analyses are most likely to reflect the true crystallization age of the sample, 335	  

and a weighted average 207Pb/206Pb age of the most concordant (>98% concordance) and Proterozoic 336	  

zircon crystals is 1942 ± 14 Ma (± 35 2SD; MSWD = 3.3; n = 8). 337	  

Sample CL1021 is a quartz diorite intrusion adjacent to the Saza granodiorite (CL0975). 338	  

Thirty ablation spots were analysed from 14 zircon grains. Three of these analyses (J1-23, J1-24, and 339	  

D9-16) possessed large counts of common lead (1.5–2.1% f206Pbc) and are not presented in the 340	  

concordia plots (Figs. 10a, b) or discussed further. The remaining zircon crystals constrain a Model-2 341	  

York fit regression with an upper intercept age of 1907 ± 27 Ma and lower intercept age of 524 ± 140 342	  

Ma (MSWD = 5.8; n = 27). The dataset likely contains multiple zircon populations that are 343	  

unresolvable within the assigned analytical uncertainties based on the 107 Myr range of near-344	  

concordant (>95% concordance) 206Pb/238U ages coupled with the high MSWD of the upper intercept 345	  

age (Fig. 10b). Our best approximation to the crystallization of CL1021 is the upper intercept age of 346	  

all the analyzed zircon crystals (except for those with excessive common lead and analysis J1-25 347	  

which plots significantly below discordia) at 1891 ± 17 (2SD = ?, MSWD = 4.8; n = 26).          348	  

Sample CL1022 is a massive gabbroic dike that is observed cross cutting a foliated granitoid 349	  

(CL109). Twenty-one ablation spots from ten zircon crystals were analyzed and constrain a Model-2 350	  

York fit regression with an upper intercept age at 1880 ± 17 Ma and lower intercept at age 469 ± 81 351	  

Ma (MSWD = 4.9; n = 21). Near-concordant (>95% concordant) zircon crystals possess a 160 Myr 352	  

range of 206Pb/238U ages and imply our dataset contain multiple zircon populations (Fig. 10b). Our 353	  

best approximation of the crystallization age of CL1022 is the upper intercept age of all analyzed 354	  

zircon crystals at 1880 ± 17 Ma (2SD = X, MSWD = 4.9; n = 21). Our interpreted crystallization age 355	  

also constrains the timing of crystallization and provides a maximum possible age for deformation 356	  

within the foliated granitoid (CL109).     357	  

4.4 LA-MC-ICP-MS Lu-Hf Zircon Results 358	  

 Three Archean foliated granitoid samples (CL098, CL109 and CL1020) were selected for 359	  

LA-MC-ICP-MS Lu-Hf isotopic analysis. These samples were chosen because of their unexpected 360	  



Archean age and their poorly constrained petrogenetic history. Only near-concordant (>95% 361	  

concordance) zircon analyses were selected for Lu-Hf analysis and, in the majority of cases, the Lu-362	  

Hf ablation sites were centred over top of the pre-existing U-Pb ablation site (e.g., Fig. 8c). For zircon 363	  

crystals where this was not possible (e.g., zircon growth zones were too thin), the Lu-Hf ablation site 364	  

was repositioned adjacent to the U-Pb ablation site in what is assumed to be a coeval growth zone of 365	  

the zircon. For ablation sites and CL images see Online Supplementary Figs. S1, S2 and S4. 366	  

Reference material analyses and sample results are provided as Online Supplementary Table S8. 367	  

Zircon crystals incorporate a small amount of 176Lu during crystallization which decays to 368	  

176Hf. As a result, each measured 176Hf/177Hf ratio needs to be corrected for the interpreted 369	  

crystallization age of the sample (176Hf/177Hfinitial). We approached this problem by using the 370	  

207Pb/206Pb age of the ablation site and the measured 176Lu/177Hf ratios to correct for the corresponding 371	  

176Hf/177Hf analysis. Normalizing 176Hf/177Hfinitial ratios to the 176Hf/177Hf value of the present-day bulk 372	  

earth (176Hf/177Hfp = 0.28295; Patchett and Tatsumoto, 1980) allows the calculation of εHf 373	  

[(176Hf/177Hfinitial / 176Hf/177Hfpresent day earth) x 104]. Crustal residence ages were calculated following a 2-374	  

stage model age approach. The calculated 176Hf/177Hfinitial ratio of the zircon at the time of growth 375	  

(207Pb/206Pb zircon age), and an average crustal 176Lu/177Hf ratio of 0.012 (Vervoort et al., 1999) were 376	  

used to project back to the time of intersection with depleted mantle (with 176Lu/177Hf = 0.0384, 377	  

176Hf/177Hf = 0.28325: Chauvel and Blichert-Toft, 2001). 378	  

Forty-two Lu-Hf analyses were performed on fourteen zircon crystals from sample CL1020 379	  

(Fig. 11a). The 176Hf/177Hf analyses possess an approximately normal distribution and overlap within 380	  

analytical uncertainty at the 2σ uncertainty level. Inherited zircon crystals possess identical 381	  

176Hf/177Hfinitial values (arithmetic average = 0.281010 ± 0.000045 at 2SD, n =26) within uncertainty 382	  

but are generally lower than zircon crystals that are thought to represent crystallization of CL1020 at 383	  

ca. 2.74 Ga (arithmetic average = 0.281032 ± 0.000029 at 2SD, n = 16).  384	  

Nineteen Lu-Hf analyses were performed on twelve concordant zircon crystals from CL098. 385	  

176Hf/177Hf analyses possess an approximately normal distribution and largely overlap within 386	  



analytical uncertainty at the 2σ uncertainty level (Fig. 11a). An arithmetic average of 176Hf/177Hfinitial 387	  

for this sample is 0.281048 ± 0.000046 (2SD, n =19).  388	  

Fifteen Lu-Hf analyses were performed on ten concordant zircon crystals from CL109. One 389	  

Lu-Hf analysis (H1-2) possesses an anomalously low 176Hf/177Hf. The significance of this value is 390	  

unclear and is not included in the following discussion, but is include on Figure 11. The remaining 391	  

176Hf/177Hf analyses possess a weakly bi-modal distribution (Fig. 11a). 176Hf/177Hfinitial values are 392	  

largely within analytical uncertainty of each other (arithmetic average = 0.281047 ± 0.000025 at 2SD, 393	  

n = 14) and the 176Hf/177Hfinitial values of CL098 (i.e., 0.281048) and CL1020 (i.e., 0.281032). The four 394	  

oldest U-Pb analyses possess the highest 176Hf/177Hfinitial values and overlap with 176Hf/177Hfinitial values 395	  

of interpreted inherited zircon cores from CL1020 at the 2σ uncertainty level.  396	  

4.5 Interpretation of complex inheritance, recrystallization, and Pb-loss systematics    397	  

Concordant LA-MC-ICP-MS U-Pb zircon analyses possess age ranges that exceed the 398	  

analytical uncertainty of the individual measurements (e.g., near-concordant zircon crystals from 399	  

CL1022 possess a 160 Myr range; Figs. 9 and 10). Reference material analyses, run as part of our 400	  

standard-sample-standard bracketing protocol, overlap within analytical uncertainty and suggest that 401	  

our analytical methodology cannot explain this age range and that real geologic scatter exists in our 402	  

samples. The cause of the concordant U-Pb zircon age range can be constrained by integrating the U-403	  

Pb and Lu-Hf analyses with CL imaging for the same ablation pits. Previous studies provide empirical 404	  

evidence to suggest that the U-Pb and Lu-Hf isotopic systems are decoupled during metamorphism 405	  

(e.g., Gerdes and Zeh, 2009; Kemp et al., 2009; Whitehouse and Kemp, 2010). As a result, the 406	  

176Hf/177Hfinitial remains unchanged even for zircon crystals that exhibit U-Pb evidence for Pb-loss. The 407	  

oldest 207Pb/206Pb ages from CL1020 correspond to highly luminescent and resorbed zircon cores that 408	  

are interpreted to be inherited xenocrysts. Lu-Hf isotopic data supports this interpretation as 409	  

207Pb/206Pb ages <2.74 Ga possesses 176Hf/177Hfinitial ratios identical to zircon crystals with 207Pb/206Pb 410	  

ages at ca. 2740 Ma, whereas inherited zircon crystals with 207Pb/206Pb ages >2.74 Ga possess 411	  

generally less radiogenic 176Hf/177Hfinitital ratios. Our results possess considerable overlap, but generally 412	  

less radiogenic, 176Hf/177Hfinitial values of inherited and magmatic zircon crystals suggest the source of 413	  

inherited zircon crystals may have had a dissimilar Lu-Hf composition compared to the source of 414	  



magmatic zircon crystals. Conversely, younger zircon crystals that possess identical 176Hf/177Hfinitial 415	  

ratios have likely undergone non-zero Pb-loss.   416	  

4.6 Lithogeochemistry Results 417	  

For lithogeochemical results see Online Supplementary Table S9 and Figures 13–15. Several 418	  

samples (e.g., CL0956, CL0922) possess major element concentrations that total to less than 100%, 419	  

which suggests some element(s) are not accounted for in the total calculations. Part of this 420	  

discrepancy is explained by sulphur bearing phases (e.g., pyrite) that are not included in the major 421	  

element total calculations and/or suggests that unanalysed elements (e.g., C) may also be present as 422	  

minor components within several samples. Hydrothermal alteration and greenschist facies 423	  

metamorphism are ubiquitous features of Lupa Terrane lithologies. Petrographic evidence such as 424	  

partial to complete replacement of feldspars with sericite (± calcite) and partial to complete 425	  

replacement of Fe-Mg minerals with amphibole (± chlorite, ± epidote, ± clinozoisite, ± titanite, ± 426	  

calcite, ± opaques) are indicative of pervasive hydrothermal circulation (Fig. 6c). Chemical alteration 427	  

is also inferred from large variations in certain major elements and Large Ion Lithophile Elements 428	  

(LILE) which are considered to be mobile during hydrothermal alteration and metamorphism (e.g., 429	  

Cs, Rb, Ba, Sr, and Pb; Grant, 2005). High Field Strength Elements (HFSE; e.g., Ti, Zr, Y, Nb, Hf, 430	  

Ta, U, and Th), transitional elements (e.g., Ni, Cr, V, and Sc), and Rare Earth Elements (REE; e.g., 431	  

La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) are least disturbed by hydrothermal 432	  

processes (Floyd and Winchester, 1975; Winchester and Floyd, 1977). Thus, the following discussion 433	  

is focused on trace elements that are considered to be more representative of protolith composition.      434	  

The trace element composition of the felsic lithologies can be qualitatively divided into three 435	  

REE patterns and all phases share similar trace element patterns normalized to primitive mantle (Fig. 436	  

13a). Saza Granodiorite (CL1030; CL0975), granodiorite samples (CL0911; CL0921; CL0958), and 437	  

porphyritic monzogranite (CL1029) possess Light Rare Earth Element (LREE) enrichment (La/SmCN 438	  

= 5.2–11.7) and concave-up trends in the Medium and Heavy Rare Earth Elements (MREE and 439	  

HREE, respectively). This pattern is in contrast to the REE pattern of foliated granite samples 440	  

(CL098; CL0925; CL0947) which possess LREE enrichment (La/SmCN = 3.8–8.1), steeply dipping 441	  

patterns towards the HREE (La/YbCN = 20.9–64.6), and minor negative Eu anomalies (Eu/Eu* = 0.7–442	  



0.9). The third qualitatively distinct REE pattern is shown by the Ilunga Syenogranite (CL0931; 443	  

CL0932; CL0934; CL0959) which exhibits LREE enrichment (La/SmCN = 2.9–5.3), deep negative Eu 444	  

anomalies (Eu/Eu* = 0.08–0.36), and flat MREE and HREE patterns (Gd/YbCN = 0.9–1.3). On trace 445	  

element plots normalized to primitive mantle, all felsic phases possess LILE enrichment, gently-446	  

dipping patterns towards the REE, and are characterized by large negative Nb and Ti anomalies 447	  

(Nb/ThCN = 0.1–0.6; Ti/SmCN = 0.0–0.3; Fig. 13b).   448	  

 The trace element compositions of the intermediate and mafic magmatic phases can be 449	  

qualitatively divided into two trace element groups (Figs. 13c and d). The diorite-gabbro suite 450	  

(CL1021; CL1022; CL0913; CL0923; CL0928; CL0957; CL0981; CL0984) possess LREE 451	  

enrichment (La/SmCN = 2.1–4.0) and gently-dipping slopes towards the HREE (La/YbCN = 3.0–19.9) 452	  

and minor positive Eu (i.e., Eu/Eu* = 1.5–1.1) anomalies. This distinctive REE profile is 453	  

complimented by LILE enrichment relative to HFSE, large negative Nb anomalies (Nb/ThCN = 0.1–454	  

0.2), and small negative Ti anomalies (Ti/SmCN = 0.2–1.2; only CL1022 has a positive Ti anomaly). 455	  

Two samples, CL0956 and CL0996, are dikes that cross cut foliated granitoids and the diorite-gabbro 456	  

suite, respectively and preserve their original clinopyroxene and orthopyroxene mineralogy. This 457	  

suggests that these two dikes post-date greenschist facies metamorphism and are potentially the 458	  

youngest rocks in the field area. These samples do not possess negative Nb or Ti anomalies which is a 459	  

consistent pattern shown by all other igneous phases in the sample suite. In addition, sample CL0956 460	  

possess an alkaline major element chemistry (K2O wt. % + Na2O wt. % = 6 % at 50 wt. % SiO2), 461	  

which contrasts with the calc-alkaline nature of all the other magmatic phases. The timing and 462	  

petrogenetic significance of these late dikes is unclear. 463	  

4.7 REE Modelling 464	  

Our REE modelling used the non-modal melting equation of Shaw (1970) to assess whether 465	  

the diorite-gabbro suite could have formed from mantle sources with compositions typical of volcanic 466	  

arcs (following the approach of Dampare et al., 2008; Fig. 14). We chose primitive mantle (PM; Sun 467	  

and McDonough, 1989) and the depleted mid-ocean ridge basalt (DMM; McKenzie and O’Nions, 468	  

1991) as starting compositions and then calculated the REE concentrations of melts at increasing 469	  

degrees of partial melting. N-MORB and E-MORB (Sun and McDonough, 1989) are also plotted for 470	  



reference. Mineral/matrix partition coefficients are from McKenzie and O’Nions (1991); whereas 471	  

mineral modes and melt-modes for garnet lherzolite and spinel lherzolite are from Walter (1998) and 472	  

Kinzler, (1997), respectively.        473	  

Our results suggest that, even at low degrees of partial melting (i.e., <1%), the LREE 474	  

composition of the diorite gabbro suite cannot be explained by non-modal melting (Shaw, 1970) of 475	  

depleted mid-ocean ridge basalt or primitive mantle sources (Fig. 14a). Partial melting of spinel 476	  

lherzolite sources produce magmas with Sm/Yb ratios similar to the source, whereas partial melting of 477	  

a garnet lhzerolite with residual garnet produces melts with higher Sm/Yb ratios than the DMM-PM 478	  

“mantle” array (Fig. 14b). The diorite-gabbro suite of this study possesses Sm/Yb ratios greater than 479	  

even small degrees of partial melting of these potential mantle sources and is displaced from the 480	  

mantle array (Fig. 14b). Thus, the diorite-gabbro suite requires a REE enriched source (e.g., a more 481	  

differentiated source) and/or REE enrichment during magma-crust interaction. Furthermore, depleted 482	  

Nb/Ta (18–5) and enriched Zr/Hf ratios (50–39) relative to chondritic values (Nb/Ta = 17.6; Zr/Hf = 483	  

36.3) suggest these rocks are not mantle-derived magmas (Green, 2006). Volcanic arcs are thought to 484	  

possess depleted mantle sources that may be enriched in LILE and REE by a subduction component 485	  

and/or interaction with the crust (Pearce, 1996b), whereas continental arcs are known to have sources 486	  

that vary in composition from the upper mantle (i.e, fertile MORB mantle) to more enriched mantle 487	  

(Pearce and Parkinson, 1993). Alternatively, REE enrichment within the diorite-gabbro suite may be 488	  

due to melting a differentiated source in the lower crust. The exact source of the diorite-gabbro suite 489	  

is unclear because of a lack of petrogenetic constraints on melting processes, however our REE 490	  

modelling results are consistent with the trace element evidence (discussed in more detail below) that 491	  

supports the involvement of crust-magma interaction. 492	  

 493	  

5 Discussion 494	  

5.1 Archean granitoid petrogenesis 495	  

Here we show that previously considered Proterozoic granites are in fact Archean (ca. 2.74 496	  

Ga). Furthermore, inherited zircon ages from sample CL1020 provide evidence for >2.74 Ga crust 497	  

beneath the Lupa Terrane. Other metamorphic belts surrounding the southern and eastern margins of 498	  



the Tanzanian Craton (e.g., Mozambique and Usagaran) also contain Archean crust (Muhongo et al., 499	  

2001; Reddy et al., 2003; Sommer et al., 2003). These studies proposed that large portions of 500	  

metamorphic belts enveloping the Tanzanian Craton represent re-worked Archean crust and are 501	  

consistent with a growing number of deep seismic studies that demonstrate laterally extensive 502	  

Archean lithosphere underlying many Proterozoic accretionary orogens (Snyder, 2002). Alternatively, 503	  

Archean rocks may be unrelated to the Tanzanian Craton and may have been incorporated within 504	  

these metamorphic belts during accretion (Muhongo et al., 2001).  505	  

The SW extent of the Tanzanian cratonic margin is a subject of debate (e.g., Coolen, 1980; 506	  

Pinna et al., 2008). Manya (2011) proposed a possible location for the Tanzanian cratonic margin 507	  

based on Sm-Nd isotopic evidence. However, a sample from Manya (2011) was taken from an 508	  

outcrop in the Lupa Terrane and possessed an Archean Nd model age (i.e., 2688 Ma). That Archean 509	  

sample is ca. 150 km away from the newly proposed Tanzanian cratonic margin and Manya (2011) 510	  

interpreted the anomalous age as either a sliver of tectonically interleaved Archean material or re-511	  

melting of Archean crust. Archean foliated granites in the Lupa Terrane are older (ca. 2740 Ma) than 512	  

Rb-Sr and K-Ar ages for the Tanzanian craton (2.4–2.6 Ga; Cahen et al., 1984) but are in good 513	  

agreement with re-worked Archean rocks in the Usagaran (ca. 2700 Ma; Reddy et al., 2003) and 514	  

Mozambique Belts [2740–2608 (Muhongo et al., 2001); 2970–2500 Ma (Sommer et al., 2003)] and 515	  

recent U-Pb zircon SIMS ages for the Tanzanian Craton (>3.6–2.6 Ga; Kabete et al., 2012a, b).  516	  

U-Pb and Lu-Hf isotopic evidence provides petrogenetic evidence that constrains the geologic 517	  

setting of the Archean granitoids. U-Pb zircon ages from CL098, CL109, and CL1020 record multiple 518	  

zircon populations that have undergone non-zero Pb-loss, nevertheless interpreted crystallization ages 519	  

are broadly within analytical uncertainty at ca. 2.74 Ga. The 176Hf/177Hfinitial ratios for interpreted 520	  

magmatic zircon crystals from all three samples are also largely within analytical uncertainty (2σ) and 521	  

suggests that all three foliated granitoid samples possess a homogeneous 176Hf/177Hf source. 522	  

Calculated εHf values (-2.2–2.8) plot lower than the depleted mantle (Griffin et al., 2000) and the 523	  

Neo-Mesoarchean mantle (Shirey et al., 2008) evolution curve (Fig. 11c). Juvenile melts (i.e., mantle 524	  

melts) are expected to possess 176Hf/177Hfinitial compositions that overlap with the 176Hf/177Hf 525	  

composition of the mantle source and our results imply that foliated granitoids are not juvenile mantle 526	  



melts but likely formed from melting > 2.74 Ga crust (Fig. 11c). Melting was likely related to an 527	  

Archean volcanic-arc that is consistent with the subduction signature suggested by the Archean 528	  

granitoids trace element compositions (e.g., LREE enrichment; steeply dipping REE patterns; 529	  

negative Nb and Ti anomalies; Figs. 13e, f). 530	  

Crustal residence ages (CR) can be estimated from the calculated 176Hf/177Hfinitial values and 531	  

assuming a Lu-Hf composition of the mantle source (e.g., Shirey et al., 2008 and references therein). 532	  

Our two-stage Lu-Hf model ages are subject to large uncertainties because of 176Lu decay constant 533	  

uncertainty, the poorly constrained Lu-Hf isotopic composition of the source, uncertainty regarding 534	  

the 207Pb/206Pb crystallization age of the samples and uncertainties on individual Lu-Hf measurements 535	  

(e.g., Davis et al., 2005). As a result, a range of model ages can be calculated from a single zircon 536	  

crystal (e.g., Whitehouse and Kemp, 2010). The arithmetic average CR age for samples CL098, 537	  

CL109, and CL1020 (not including inherited zircon crystals) is 3.1 Ga (± 0.9 Ga 2SD; n = 46). The 538	  

significance of this age is unclear because of the limitations described above, however depleted 539	  

mantle ages provide the first evidence for ≥ 3.1 Ga basement underlying the Lupa Terrane. The age of 540	  

this basement is consistent with Nd model ages (2.8–3.1 Ga) from the Tanzanian Craton, Usagaran 541	  

Belt, and the Mozambique Belt (Maboko, 1995; Maboko and Nakamura, 1996; Möller et al., 1998; 542	  

Kabete et al., 2012a).   543	  

CL1020 includes inherited zircon crystals with 207Pb/206Pb ages ca. 100 Myr older than the 544	  

interpreted crystallization age at ca. 2.74 Ga. The 176Hf/177Hfinitial values for suspected inherited zircon 545	  

crystals are generally lower (arithmetic average = 0.281010 ± 0.000045 at 2SD, n =26) but possess 546	  

significant overlap with zircon crystals that are thought to represent crystallization of CL1020 at ca. 547	  

2.74 Ga (arithmetic average = 0.281032 ± 0.000029 at 2SD, n = 16). Therefore, in addition to older 548	  

207Pb/206Pb ages the suspected inherited zircon crystals appear to have a different 176Hf/177Hf source 549	  

than the magmatic zircon crystals. We propose that ca. >2.74 Ga zircon crystals represent an inherited 550	  

zircon component that may have been sourced from several protoliths of different ages or a single 551	  

protolith that crystallized at ca. 2.85 Ga and subsequently underwent non-zero Pb-loss to produce a 552	  

range of 207Pb/206Pb ages (Friend and Kinny, 1995). We favour the latter interpretation because the 553	  



177Hf/176Hfinitial ratios of inherited zircon crystals are largely within analytical uncertainty of each other 554	  

and suggest a common 176Hf/177Hfinitial source. 555	  

Previous workers have suggested that Archean rocks within the Ubendian and Usagaran Belts 556	  

were tectonically interleaved during accretion (Muhongo et al., 2001; Manya, 2011). This hypothesis 557	  

seems unlikely in the Lupa Terrane where magmatic contacts are clearly observed between the 558	  

Archean and Paleoproterozoic granitoids (e.g., Fig. 4c). Seismic tomography models provide evidence 559	  

for re-worked Archean crust and upper lithosphere extending SW from the Tanzanian Craton to the 560	  

Bangweulu Block (see Fig. 2 of Begg et al., 2009). If correct, significant portions of the Ubendian 561	  

Belt may represent re-worked Archean crust. Our U-Pb and Lu-Hf support this hypothesis and we 562	  

propose that the Tanzanian cratonic margin is located at least 150 km SW from its currently accepted 563	  

position (Manya, 2011; Figs. 1). Our proposed model implies that Archean granitoids are present 564	  

between Lake Rukwa and currently known exposures of the Tanzanian Craton near the town of 565	  

Rungwa, but may be difficult to identify in the field as a result of reworking and/or the intrusion of 566	  

voluminous Paleoproterozoic granitoids. 567	  

 568	  

5.2 Paleoproterozoic Granitoid and Diorite-Gabbro Petrogenesis 569	  

Ratios of highly incompatible elements have been shown to remain unchanged during large 570	  

degrees of partial melting or crystal fractionation (e.g., Pearce and Peate, 1995). Thus incompatible 571	  

elements can be used as tracers for magmatic processes. One important element for tracing subduction 572	  

zone processes is Nb, which is preferentially retained in the down-going slab within mineral phases 573	  

(e.g., rutile; Pearce and Peate, 1995). Nb depletions, such as those exhibited by Lupa Terrane intrusive 574	  

phases, are therefore characteristic of melts generated in volcanic arcs (Figs. 13d). The diorite-gabbro 575	  

suite also displays other trace element compositions that are typical of volcanic rocks erupting at 576	  

modern day volcanic-arcs. LREE enrichment (Hildreth and Moorbath, 1988), low TiO2 contents (i.e., 577	  

<2.0 wt. %; Pearce and Cann, 1973), large Ba/Ta and Ba/Nb ratios (i.e., >450, and >28, respectively; 578	  

Gill, 1981), low Y/Cr ratios (Pearce, 1982), high Th/Nb and Ce/Nb ratios (Saunders et al., 1988) all 579	  

suggest the diorite-gabbro suite are typical of calc-alkaline subduction-related (i.e., volcanic-arc) 580	  

magmas (Fig. 15). The diorite-gabbro suite also plots in the island-arc field of La-Sm-Th-Yb-Nb log-581	  



transformed discrimination diagrams (Agrawal et al., 2008; Figs. 15e, f). Paleoproterozoic granitoids 582	  

also possess trace element characteristics typical of volcanic arcs (e.g., Nb and Ti depletions, high 583	  

Hf/Ta ratios range from 2–9; Pearce et al., 1984; Harris et al., 1986). Furthermore, the concave-up 584	  

pattern of the granodiorite samples (CL0975; CL0911; CL0921; CL0958) are typical of volcanic-arc 585	  

granites in which MREE strongly partition into hydrous phases, such as amphibole, during 586	  

crystallization (Pearce, 1996b; Fig. 13).   587	  

Volcanic-arc melts, oceanic or continental, typically originate as a result of partial melting of 588	  

depleted asthenosphere. Subduction processes (e.g., metasomatism in mantle wedge) and crust-589	  

magma interaction (e.g., Melting-Assimilation-Segregation-Homogenization; Hildreth and Moorbath, 590	  

1988) can then modify the trace element composition of melt products (e.g., LILE and LREE 591	  

enrichment).  Therefore, distinguishing source characteristics from crust-magma interaction is 592	  

difficult using trace element compositions alone (e.g., Davidson, 2005). Paleoproterozoic granitoids 593	  

and the diorite-gabbro suite are observed cross cutting Archean granitoids. Field observations and 594	  

inherited zircon crystals (e.g., CL1019) suggest that Paleoproterozoic magmatic phases likely 595	  

interacted with this evolved Archean crust (e.g., La/Ybcn = 28.8–64.6) during emplacement. Crust-596	  

magma interaction is typical of continental arcs and can explain the enriched LREE signature of Lupa 597	  

Terrane lithologies (REE modelling; Fig. 14). Large variations in LILE/HFSE ratios (e.g., Ba/La) 598	  

between broadly contemporaneous and spatially overlapping magmatic phases are more readily 599	  

explained by varying degrees of crustal-magma interaction and magmatic processes rather than 600	  

variability within melt sources (Hildreth and Moorbath, 1998). We therefore propose that trace 601	  

element compositions of Paleoproterozoic magmatic phases are typical of continental arcs that exhibit 602	  

evidence for crust-magma interaction, and that low Ti-Nb-Ta values argue against an intraplate 603	  

tectonic setting.            604	  

 605	  

5.3 Geochronologic Constraints on Deformation and Metamorphism 606	  

The U-Pb geochronologic data from the current study constrains the absolute timing of 607	  

deformation events within the Lupa Terrane. At least three, temporally distinct, deformation events 608	  

(D1, D2, D3) are recognized in the field. The first deformation event (D1) is only developed within 609	  



the Archean granitoids. Undulating chlorite-rich bands separated by bands of K-feldspar, plagioclase, 610	  

and quartz give Archean granitoids a banded appearance. This tectonic fabric varies in intensity from 611	  

outcrop to outcrop but is consistently present across the field area. Archean foliated granitoids are 612	  

cross cut by non-foliated Paleoproterozoic granites, granodiorites, diorites, and gabbros. Our U-Pb 613	  

data broadly constrains the timing of D1 to between 2.72 and 1.96 Ga. Brittle-ductile mylonititc shear 614	  

zones (D2) crosscut all of the dated magmatic phases. This deformation event is economically 615	  

important as these structures are the primary host for Au mineralization (Lawley et al., in press). Our 616	  

U-Pb data constrains the timing of D2 to <1.89 Ga and is consistent with Re-Os dating of syn-617	  

deformational pyrite at ca. 1.88 Ga (Lawley et al., in press). Greenschist facies metamorphism is 618	  

characteristic of the Au bearing shear zones and overprints all of the dated igneous phases. The timing 619	  

of greenschist facies metamorphism is therefore <1.89 Ga but likely related to D2 at ca. 1.88 Ga. 620	  

Gold- and pyrite-bearing quartz veins (D2) are locally crosscut by discrete brittle faults (D3). The 621	  

timing of D3 is not constrained, however the brittle nature of the faults is in contrast to the ductile 622	  

nature of deformation during D1 and D2 and suggests that D3 deformation may have occurred at 623	  

significantly shallower depths within the crust (Lawley et al., in press). The proposed temporally 624	  

distinct deformation events are only those that are readily distinguished in the field and it is expected 625	  

that Paleoproterozoic structures have been reactivated during tectonism that has continued to the 626	  

present day (Theunissen et al., 1996).  627	  

The U-Pb lower intercept ages reported as part of this study potentially provide evidence for 628	  

younger metamorphic overprints that broadly overlap with orogenic cycles recorded in the other 629	  

Ubendian Terranes (Boniface et al., 2012; Boniface and Schenk, 2012). For example, an imprecise U-630	  

Pb lower intercept age for sample CL0911 (1126 ± 150 Ma) provides evidence for a Mesoproterozoic 631	  

Pb-loss event that is broadly equivalent to the Kibaran and/or Irumide orogenic cycles (de Waele et 632	  

al., 2009), whereas imprecise U-Pb lower intercept ages for samples CL109 (512 ± 140 Ma), CL1021 633	  

(524 ± 140 Ma) and CL1022 (469 ± 89 Ma), are broadly contemporaneous with the Pan African 634	  

Orogeny (Hanson, 2003). New U-Pb geochronology thus provides evidence for three orogenic cycles 635	  

that hitherto are unreported for the Lupa Terrane, but additional geochronology is required before 636	  

determine the significance and distribution of these younger metamorphic overprints.       637	  



 638	  

5.4 Geodynamic Model 639	  

Paleoproterozoic magmatic rocks in the Lupa Terrane possess trace element compositions that 640	  

are typical of continental volcanic-arcs. Based on the geologic, geochronologic, and geochemical 641	  

evidence presented above we propose that the Lupa Terrane was a continental-arc during the 642	  

Paleoproterozoic. In our model, the Lupa Terrane represents the continental margin (i.e., the 643	  

Tanzanian cratonic margin) to which allochthonous terranes (i.e., other Ubendian Terranes) were 644	  

accreted. The 1.96–1.88 Ga magmatic events in the Lupa Terrane are younger than the 2.1–2.0 Ga 645	  

Ubendian tectonic phase but are in good agreement with the second Ubendian Tectonic phase at 1.9–646	  

1.8 Ga. Current geochronologic constraints suggest that the Katuma-Ufipa-Lupa Terranes possess the 647	  

oldest ages (i.e., >1900 Ma) and are separated by the disparately younger Ubende-Mbozi Terrane (i.e., 648	  

<1900 Ma). Our U-Pb crystallization ages (1960–1880 Ma) overlap with ages reported from each of 649	  

the lithotectonic terranes; however no ages reported in this study are comparable to the ca. 1860 Ma 650	  

eclogites in the Ubende Terrane (Boniface et al., 2012). The Katuma Terrane (1977–1900 Ma; 651	  

Boniface, 2009) lies along strike of the northwest trending Lupa Terrane and possess a similar 652	  

magmatic history that suggests both Terranes may have shared a similar tectono-magmatic evolution.          653	  

Recent ages constraining the temporal evolution of the Ubendian Belt are incompatible with 654	  

the existing tectonic model (Fig. 1b; Daly, 1988). For example, any geodynamic model must explain 655	  

the juxtaposition of greenschist facies metamorphism in the Lupa Terrane and contemporaneous 656	  

amphibolite-granulite facies metamorphism in the other Ubendian Terranes. The existing model of 657	  

wrench-dominated tectonics would require several hundred kilometres of lateral displacement to 658	  

explain this juxtaposition (Fig. 1b; Daly, 1988). Alternatively, subduction-related thrusting could have 659	  

brought high-grade metamorphic rocks in adjacent Ubendian Terranes to the same structural level as 660	  

the contemporaneous greenschist facies rocks comprising the Lupa Terrane. Our model would imply 661	  

that sub-horizontal lineations on the terrane-bounding shear zones may be related to strike-slip 662	  

reactivation of terrane sutures rather than Paleoproterozoic lateral accretion. The timing of this 663	  

juxtaposition is unclear as Mesoproterozoic, Neoproterozoic and Tertiary Rifting all likely contributed 664	  

to the current configuration of Ubendian Terranes (Boniface, 2009; Boniface et al., 2012; Boniface 665	  



and Schenk, 2012). The exact geodynamic evolution of the Ubendian Belt remains enigmatic and 666	  

requires additional constraints. Our results are however consistent with a protracted accretion history 667	  

during the 1.9–1.8 Ubendian tectonic phase (Boniface et al., 2009).      668	  

 669	  

6 Summary and Conclusions 670	  

The magmatic history of the Lupa Terrane began in the Archean (ca. 2.74 Ga) with the 671	  

intrusion of evolved, calc-alkaline, and arc-type granites. Inherited U-Pb zircon ages and Lu-Hf zircon 672	  

isotopic evidence imply that these granites are the products of partial melting and incorporation of 673	  

substantially older crust (ca. 3.1 Ga). Archean granitoids were structurally deformed to produce a 674	  

weakly developed schistosity (D1; 2.74–1.96 Ga) and were then intruded by Paleoproterozoic (1.96–675	  

1.88 Ga) calc-alkaline granitoids (syenogranites, monzogranites, and granodiorites) and dioritic-676	  

gabbroic intrusions. Paleoproterozoic igneous lithologies are crosscut by Au-bearing and greenschist 677	  

facies shear zones (D2) that host the orogenic gold deposits of the Lupa Terrane. Based on the U-Pb, 678	  

Lu-Hf, trace element and field evidence presented above we propose: 679	  

• At least a 150km SW extension of the Tanzanian cratonic margin to the Rukwa escarpment. 680	  

Our results are consistent with seismic tomography studies that provide evidence for Archean 681	  

upper lithosphere extending SW from the Tanzanian Craton to the Bangweulu Block (Begg et 682	  

al., 2009).    683	  

• That Paleoproterozoic magmatic activity possesses trace element characteristics that are 684	  

analogous to modern-day continental arcs.  685	  

• That the Lupa Terrane acted as the continental margin onto which the other Ubendian 686	  

Terranes were accreted during the Paleoproterozoic. Inherited zircon crystals, trace elements 687	  

and REE modelling suggest the diorite-gabbro suite underwent magma-crust interaction, 688	  

which is consistent with a continental arc setting.      689	  

• That Paleoproterozoic eclogites with MORB-like chemistry (Boniface et al., 2012) imply 690	  

subduction and thrusting were important accretion processes in contrast to the wrench-691	  

dominated tectonics proposed by Daly (1988). Thrusting could also explain the juxtaposition 692	  



of contemporaneous greenschist facies metamorphism in the Lupa with amphibolite-granulite 693	  

facies metamorphism characteristic of the other Ubendian Terranes.  694	  
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 702	  

Electronic Supplement: Analytical Methods 703	  

Zircon Mineral Separation 704	  

Zircon crystals were separated from their host rock by crushing ~5 kg of rock in a jaw crusher 705	  

and pulverizing in a disc mill before passing the sample through a 355 µm sieve. Samples were then 706	  

placed on a Rogers shaking table and the heavy fraction dried (at 60ºC) before passing through a 707	  

Frantz isodynamic magnetic separator. The non-magnetic fractions of each sample were then density 708	  

separated using methylene iodide before handpicking, under ethanol, of the most crack- and inclusion-709	  

free grains. 710	  

U-Pb Zircon ID-TIMS 711	  

All the analyzed zircon crystals have undergone the “chemical abrasion” (thermal annealing 712	  

and subsequent leaching) pre-treatment technique (Mattinson, 2005) for the effective elimination of 713	  

Pb-loss. This involved placing zircon crystals in a muffle furnace at 900 ± 20°C for ~60 hours in 714	  

quartz beakers before being transferred to 3ml Hex Savillex beakers, placed in a Parr vessel, and 715	  

leached in a ~5:1 mix of 29M HF + 30% HNO3 for 12 hours at ~180°C. The acid solution was 716	  

removed, and fractions were rinsed in ultrapure H2O, fluxed on a hotplate at ~80°C for an hour in 6 717	  

M HCl, ultrasonically cleaned for an hour, and then placed back on the hotplate for an additional 30 718	  

min. The HCl solution was removed and the fractions (single zircon crystals or fragments) were 719	  

selected, photographed (in transmitted light) and again rinsed (in ultrapure acetone) prior to being 720	  



transferred to 300 µl Teflon FEP microcapsules and spiked with a mixed 233U–235U–205Pb tracer. 721	  

Zircon was dissolved in ~120 µl of 29 M HF with a trace amount of 30% HNO3 with microcapsules 722	  

placed in Parr vessels at ~220°C for 48 hours, dried to fluorides, and then converted to chlorides at 723	  

~180°C overnight. U and Pb for all minerals were separated using standard HCl-based anion-724	  

exchange chromatographic procedures.  725	  

Isotope ratios were measured at the NERC Isotope Geosciences Laboratory (NIGL), UK, 726	  

using a Thermo-Electron Triton Thermal Ionisation Mass-Spectrometer (TIMS). Pb and U were 727	  

loaded together on a single Re filament in a silica-gel/phosphoric acid mixture. Pb was measured by 728	  

peak-hopping on a single SEM detector. U isotopic measurements were made in static Faraday mode. 729	  

Age calculations and uncertainty estimation (including U/Th disequilibrium) was based upon the 730	  

algorithms of Schmitz and Schoene (Schmitz and Schoene, 2007). 731	  

U-Pb Zircon LA-MC-ICP-MS 732	  

Laser Ablation Multi-Collector Inductively Coupled Plasma Mass Spectrometry (LA-MC-733	  

ICP-MS) was conducted at the NERC Isotope Geoscience Laboratory (NIGL). Zircon mineral 734	  

separates were mounted in epoxy, polished, and imaged using cathodoluminesence (CL) on a 735	  

scanning electron microscope (SEM) at the British Geological Survey (with the exception of CL098 736	  

which was prepared at the School of Natural Sciences, Trinity College Dublin). CL imaging provided 737	  

textural information that assisted zircon targeting. Zircon crystals were ablated using a New Wave 738	  

Research UP193SS Nd:YAG laser ablation system and an in-house built low-volume rapid washout 739	  

ablation cell. Ablated material was transported from the ablation cell using a continuous flow of He 740	  

gas to a Nu Plasma MC-ICP-MS equipped with a multi-ion-counting array. 207Pb, 206Pb and 204Pb+Hg 741	  

isotopes were measured on ion counters whereas U and Tl isotopes and 202Hg were measured using 742	  

faraday cups. Data were collected using the Nu Instruments time resolved analysis software. Prior to 743	  

analysis, the MC-ICP-MS was tuned and gains were measured using a Tl-235U solution co-aspirated 744	  

using a Nu Instruments DSN-100 desolvating nebuliser. At the start of each run an instrument zero 745	  

was measured for 30s and was followed by three 30s ablations of three reference materials. The 746	  

internationally recognized 91500 reference zircon (Weidenbeck et al., 1995) was used as the primary 747	  

reference material, whereas Plešovice (Sláma et al., 2008) and GJ-1 (Jackson et al., 2004) were used 748	  



as validation materials. All three matrix matched materials were used to monitor instrumental drift 749	  

and 91500 was used to correct for instrumental drift. The nine standard ablations were followed by ca. 750	  

twelve 30s sample ablations. Once data stability had been established replicates were dropped to one 751	  

to two for each reference materials. All ablations used a 25–30 µm static spot at 5 Hz, and a fluence of 752	  

2.7 J/cm2. During each analysis the co-aspirated Tl-235U solution was used to correct for instrumental 753	  

mass bias and plasma induced elemental fractionation. The interference of 204Hg on 204Pb was 754	  

monitored and corrected for by simultaneously measuring 202Hg and assuming a 204Hg/202Hg = 755	  

0.229887. U-Pb data were processed using an in-house spread sheet at NIGL.   756	  

All presented 206Pb/238U dates (ID-TIMS and LA-ICP-MS) are calculated using the 238U and 757	  

235U decay constants of Jaffey et al. (Jaffey et al., 1971).  The consensus value of 238U/235U = 137.818 758	  

± 0.045 (Hiess et al., 2012) was used in the data reduction calculations.  Using this more accurate 759	  

value with its associated uncertainty estimate has the effect of lowering 207Pb/206Pb dates at c. 2 Ga by 760	  

0.8 ± 0.6 Myr, compared to 207Pb/206Pb dates calculated using the consensus value of 238U/235U = 761	  

137.88.  For U–Pb dates of this age the 206Pb/238U dates are the most precise and robust. In contrast, 762	  

the 207Pb-based dates (207Pb/235U and 206Pb/207Pb) are considerably less precise and hence are only 763	  

used to assess concordance of the U–Pb (zircon) systematics. 764	  
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Figure Captions 1161	  

Figure 1 1162	  

(a) Regional geology map of SW Tanzania showing Ubendian Terranes (modified from Daly, 1988); 1163	  

(b) existing tectonic model for Paleoproterozoic accretion of Ubendian Terranes (Daly, 1988). 1164	  

 1165	  

Figure 2 1166	  

Regional geologic map showing Ubendian Terranes and previously reported geochronology sample 1167	  

locations (modified from Smirnov et al., 1973). 1168	  

 1169	  

Figure 3 1170	  

Local geology map showing the location of geochronology and lithogeochemistry samples. Inferred 1171	  

lithologic contacts are based on a series of river traverses by the first author and are integrated with 1172	  

unpublished aeromagnetic and radiometric surveys, acquired from Helio Resource Corp. Shear zone 1173	  

locations are based, in part, on mapping and correspond to negative magnetic anomalies, whereas 1174	  

dikes are buried and interpreted from linear magnetic highs. Contour lines are based on an 1175	  

unpublished digital elevation model by Helio Resource Corp. and are shown at 5 m intervals.       1176	  

 1177	  

Figure 4 1178	  

(a) Folded banding in Archean granite in sharp contact with massive gabbroic dike; (b) well 1179	  

developed banding in foliated granite; (c) foliated Archean granitoid (CL098) cross cut by massive 1180	  

granodiorite dike (CL0911); (d) weathered surface of Ilunga Syenogranite that gives surface 1181	  



expposures a grey appearance. When fresh, modally dominant pink K feldspar crystals are visible. 1182	  

Narrow aplitic dike observed crosscutting the Ilunga Syenogranite; (e) Ilunga Syenogranite in drill 1183	  

core from Porcupine ore body; (f) gold- and pyrite-bearing quartz vein cross cutting Ilunga 1184	  

Syenogranite; (g) mafic enclave suggesting the Ilunga Syenogranite is pre-dated by mafic intrusions; 1185	  

(h) porphyritic monzogranite showing characteristic K feldspar phenocrysts; (i) Saza Granodiorite 1186	  

cross cut by aplite dike. The pitted weathered profile is typical of Saza Granodiorite outcrops; (j) Saza 1187	  

Granodiorite in drill core (CL1030). 1188	  

      1189	  

Figure 5 1190	  

(a) Typical example of the diorite-gabbro suite in core; (b) finer grained example of diorite-gabbro 1191	  

suite with more felsic enclaves; (c) plagioclase-amphibole intergrowths in diorite; (d) core photo of an 1192	  

example of the undifferentiated diorite-gabbro-granodiorite unit (Fig. 3) showing variable grain-size 1193	  

and modal mineralogy at hand sample scale; (e) complex and poly-phase mafic enclave hosted by 1194	  

granodiorite. Note ductile flow evidence around the enclave; (f) late fine-grained and alkaline dike 1195	  

(CL0956) cross cutting foliated Archean granitoid. 1196	  

 1197	  

Figure 6 1198	  

(a) Transmitted light photomicrograph of primary Fe-Mg minerals in foliated Archean granite that 1199	  

have been replaced by chlorite, titanite, epidote, and opaques; (b) transmitted light photomicrograph 1200	  

of rare relict amphibole in a granodiorite dike that has been overprinted by chlorite and epidote; (c) 1201	  

transmitted light photomicrograph of diorite dike showing characteristic mineral assemblage of 1202	  

amphibole, plagioclase, quartz, titanite, and epidote; (d) crossed nicols transmitted light 1203	  

photomicrograph of recrystallized quartz grain boundaries in foliated Archean granitoid. Quartz 1204	  

crystals also locally possess undulatory extinction and subgrain development; (e) crossed nicols 1205	  

transmitted light photomicrograph of sericitized plagioclase; (f) crossed nicols transmitted light 1206	  

photomicrograph of micrographic texture in Ilunga Syenogranite. Locally, Ilunga Syenogranite 1207	  

samples possess gradational contacts with aplite dikes and are characterized by abundant feldspar 1208	  

intergrowth textures.  1209	  



 1210	  

Figure 7 1211	  

Concordia plots for CL0911, CL0972, and CL0975, respectively. See text for discussion. 1212	  

 1213	  

Figure 8 1214	  

(a) Cathodoluminesence image of zircon F1 from CL109 showing ablation spots and concordant 1215	  

207Pb/206Pb ages; (b) cathodoluminesence image of zircon H1 from CL1019 showing ablation spots 1216	  

and concordant 207Pb/206Pb ages; (c) cathodoluminesence image of zircon J8 from CL1020 showing 1217	  

U-Pb and Lu-HF ablation spots and concordant 207Pb/206Pb ages; (e) cathodoluminesence image of 1218	  

zircon B1 from CL1022 showing ablation spots and concordant 207Pb/206Pb ages. 1219	  

 1220	  

Figure 9 1221	  

(a, b) Concordia plots of all Archean LA-MC-ICP-MS zircon analyses and concordant (>95% 1222	  

concordance) analyses, respectively. See text for discussion. 1223	  

 1224	  

Figure 10 1225	  

(a, heb) Concordia plots of all Proterozoic LA-MC-ICP-MS zircon analyses and concordant (>95% 1226	  

concordance) analyses, respectively. See text for discussion. 1227	  

 1228	  

Figure 11 1229	  

(a) Measured 176Hf/177Hf ratios from CL098, CL109, and CL1020. Overlying individual analyses are 1230	  

the probability distributions for each sample. Samples CL098 and CL1020 possess approximately 1231	  

normal 176Hf/177Hf ratios distributions, whereas CL109 possesses a weakly bi-modal distribution. (b) 1232	  

Calculated 176Hf/177Hfinitial ratios for sample CL098, CL109, and CL1020 plotted against each analyses 1233	  

corresponding 207Pb/206Pb age. The CHUR evolution line and typical 2σ uncertainty for an individual 1234	  

analysis are also shown. (c) Calculated εHf for samples CL098, CL109, and CL1020 plotted against 1235	  

the corresponding 207Pb/206Pb age for each analysis. DM (MORB source depleted mantle, Griffin et 1236	  

al., 2000), Slave Craton mantle (Pietranik et al., 2008), and Neo-Mesoarchean mantle (Shirey et al., 1237	  



2008) are also plotted. The typical 2σ uncertainty on individual 207Pb/206Pb ages and εHf values are 1238	  

also shown.          1239	  

 1240	  

Figure 12 1241	  

Trace element rock classification diagram (modified from Pearce, 1996a). See text for discussion.  1242	  

 1243	  

Figure 13 1244	  

(a) REE plot of felsic phases normalized to CL chondrite (Sun and McDonough, 1989); (b) trace 1245	  

element plot of felsic phases normalized to primitive mantle (Sun and McDonough, 1989); (c) REE 1246	  

plot of intermediate-mafic phases normalized to CL chondrite (Sun and McDonough, 1989); (d) trace 1247	  

element plot of intermediate-mafic phases normalized to primitive mantle (Sun and McDonough, 1248	  

1989); (e) REE plot of foliated Archean granitoids plotted with Tanzania Craton REE sample range 1249	  

from Manya (2011). REE are normalized to CI chondrite (Sun and McDonough, 1989). (f) trace 1250	  

element plot of foliated Archean granitoids plotted with Tanzania Craton REE sample range from 1251	  

Manya (2011). Trace elements are normalized to primitive mantle (Sun and McDonough, 1989). 1252	  

Sample symbols are the same as Fig. 12.  1253	  

 1254	  

Figure 14 1255	  

(a) La vs. La/Sm plot of diorite-gabbro suite. (b) Sm vs. Sm/Yb plot of diorite gabbro suite. Melting 1256	  

curves are from the non-modal batch melting equations of Shaw (1970). The modelling used spinel 1257	  

lherzolite (with mode = olivine53 + orthopyroxene27 + clinopyroxene17 + spinel3; melt mode = olivine6 1258	  

+ orthopyroxene28 + clinopyroxene67 + spinel11; Kinzler, 1997) and garnet lherzolite (with mode = 1259	  

olivine60 + orthopyroxene20 + clinopyroxene10 + garnet10; melt mode = olivine3 + orthopyroxene16 + 1260	  

clinopyroxene88 + garnet9; Walter, 1998) sources with depleted mantle (DMM; McKenzie and 1261	  

O’Nions, 1991) and primitive mantle (PM; Sun and McDonough, 1989) compositions. Mineral/matrix 1262	  

partition coefficients are from McKenzie and O’Nions (1991). N-MORB and E-MORB compositions 1263	  

were taken from Sun and McDonough (1989). The solid line represents the mantle array and is 1264	  

defined using the DMM and PM compositions. Lithology sample symbols are the same as Fig. 12.        1265	  



 1266	  

Figure 15 1267	  

(a) Basaltoid tectonic discrimination diagram modified from Shervais (1982). VAB = volcanic arc 1268	  

basalt, MORB = mid-ocean ridge basalt, BAB = back-arc basin basalt, OIB = ocean island basalt, 1269	  

CAB = continental arc basalt; (b) basaltoid tectonic discrimination diagram modified from Wood 1270	  

(1980). N-MORB = normal-mid ocean ridge basalt; (c) basaltoid tectonic discrimination diagram 1271	  

modified from Meschede (1986). WPT = within-plate tholeitic basalt, WPA = within-plate alkalic 1272	  

basalt, P-type MORB = primitive mid-ocean ridge basalt, N-type MORB = normal-type mid-ocean 1273	  

ridge basalt; (d) basaltoid tectonic discrimination diagram modified from Pearce (1983). S = 1274	  

subduction zone enrichment trend, C = crustal contamination trend, F = fractional crystallization trend 1275	  

(F = 0.5); (e) log-transformed basaltoid discrimination diagram modified from Agrawal et al. (2008). 1276	  

DF1=0.3518 Log(La/Th)+0.6013 Log(Sm/Th)−1.3450 Log(Yb/Th)+2.1056 Log(Nb/Th)−5.4763; and 1277	  

DF2 = −0.3050 Log(La/Th) − 1.1801 Log(Sm/Th) + 1.6189 Log(Yb/Th) + 1.2260 Log(Nb/Th) − 1278	  

0.9944. MORB = mid-ocean ridge basalts, IAB = island arc basalt, CRB = continental rift basalt, OIB 1279	  

= ocean island basalt; (f) log-transformed basaltoid discrimination diagrams modified from Agrawal 1280	  

et al. (2008). DF1 = 0.5533 Log(La/Th) + 0.2173 Log(Sm/Th) − 0.0969 Log(Yb/Th) + 2.0454 1281	  

Log(Nb/Th) − 5.6305 and DF2 = −2.4498 Log(La/Th) + 4.8562 Log(Sm/Th) − 2.1240 Log(Yb/Th) − 1282	  

0.1567 Log(Nb/Th) + 0.94. IAB = island arc basalt, OIB = ocean island basalt, CRB = continental rift 1283	  

basalt. Lithology symbols are the same as Fig. 12.     1284	  
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