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This paper presents results of computations based on threshold
logic performed by a thin solid film, following the general prin-
ciple of evolution in materio. The electrical conductivity is used
as the physical property manipulated for evolving Boolean func-
tions. The material used consists of a composite of single-wall
carbon nanotubes (SWCNTs) and the polymer poly(methyl me-
thacrylate). The SWCNTs are randomly dispersed in the poly-
mer forming a complex conductive network at the nano-scale.
The training is formulated as an optimisation problem with con-
tinuous and binary constraints and is subsequently solved by two
derivative-free algorithms, the Nelder-Mead (NM) and the Dif-
ferential Evolution (DE) algorithms. This approach has been
used to evolve gates and circuits. The NM fails to converge for all
computational tasks, whereas the DM is always successful. The
computation tasks considered are simple threshold logic gates
and more complicated circuits. The thin film composite is very
stable and its behavior remains the same after the optimal solu-
tion has been achieved.
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1 INTRODUCTION

Unconventional computing methods aim at exploring alternative media and
methods for performing meaningful calculations. The way such a calculation
is performed, i.e. the transformation of a set of inputs to a set of uniquely
defined outputs, depends on the type of material used and the way its phys-
ical properties are exploited. Evolutionary inspired algorithms have found
extensive acceptance and application in the design and implementation of
unconventional computing systems. One important stream of research has
resulted in the concept of evolvable hardware; an evolutionary algorithm is
applied to a hardware platform where a piece of material is “evolved” to a
state where it is able to perform a computation. In [35], a genetic algorithm
was used for evolving a Field Programmable Gate Array (FPGA) to produce
circuits that are able to calculate a specific Boolean function. Much research
on controlling and evolving FPGAs and other types of evolvable hardware is
reported in the literature, see for example [21], [18], [36], [27], [6]. In most
cases, the computation task is focused on making an FPGA form a complex
digital circuit following some specifications [23], [24]. Other devices such
as the Field Programmable Transistor Array (FPTA) [32] and the Field Pro-
grammable Analog Arrays (FPAA) [17] have also been used following similar
principles.

An observation from [34] from this line of work was that the evolution,
i.e. the stochastic search algorithm employed, converged to solutions which
were trying to exploit the physical properties of the material in the FPGA,
rather than use all possible options and (re)wiring available with the same
preference. This comes as no surprise, since the hardware itself is included
in the optimisation loop when the objective (fitness) function is calculated for
every candidate solution. It is only natural that, unless directed otherwise, the
optimisation will try to exploit every possible means available, as reflected
on the impact on the objective function’s values, irrespective of the nature
of the underlying causal relationship between this function and the decision
variables. This observation leads to the Field Programmable Material Array
(FPMA) [21], which allows what is termed evolution in materio, [7], [12],
[22].

The FPMA is a “device” where physically-rich material is subjected to
the application of voltage, and physical changes are induced. Incorporating
such a device within an optimisation loop allows the use of evolutionary algo-
rithms for bringing the material to such a state where a computational prob-
lem is solved [21]. Evolution in materio itself is the whole process of using
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artificial evolution to exploit directly physical properties of the material that
are not normally associated with electronic components. In other words, the
highly structured and highly adaptable FPGA environment is replaced by the
material substrate [31]. Its physical properties are changed by use of selective
stimuli so that the material is configured to perform a computation.

The type of computation induced this way is the result of intrinsic evolu-
tion, as oposed to extrinsic, [28], because it is performed on the material itself.
Candidate solutions are evaluated by direct interaction with it. The evolution
performed on an FPGA is allowed to operate on a search space intentionally
equipped with the capability of rewiring and adjusting following circuit logic,
even if the material of a specific FPGA affects the outcome, [34]. In evolu-
tion in materio, the search space is defined directly by the morphable physi-
cal property selected to altered and shaped by a set of configuration stimuli.
Hence, the work presented here belongs to the field of evolvable hardware
[28], where an evolutionary optimisation algorithm is used to generate con-
figurations on the material that are able to perform a meaningful computation.

The output of the evolved system qualifies as a computation since the in-
put/output behavior of the material is pre-specified. Once the optimal stimuli
are applied on it, the measured outputs can be interpreted in a unique way
according to this input/output relationship. However, there is no such in-
terpretation of the internal state of the material system, since there are no
practical physical theories that would allow the mapping of the internal state
to abstract computation states, [1], [28]. Hence, the interpretation required
by [3] and [14], does not exist for the considered system. The meaning to
computation here is based on the a priori input/output relationship specifica-
tion. This allows for the design of a software and hardware platform largely
independent from the material itself.

Different types of material have the potential to be used within this con-
cept. Liquid crystals have been used to evolve a tone discriminator [11], [7],
a real-time robot controller [8], [9] and logic gates [10]. Randomly generated
stochastic networked structures formed inside a piece of material have been
used for developing memristor networks with neuron-like behavior. Poly-
meric 3D networks of memristors were simulated in [30]; the fabrication of
statistical networks of polymer fibers forming memristor-like junctions is de-
scribed in [5] and learning methods applied to them are discussed in [4].

Other types of materials that have been proposed include electroactive
polymers, voltage-controlled colloids, irradiated silicon, Langmuir-Blodgett
films, nanoparticle suspensions and microbal consortia; these can be used for
solving different types of computatinal tasks, see [26] for an overview.
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The material used in this paper is based on randomly dispersed Single-
Wall Carbon Nanotubes (SWCNTs) forming a complex conductive network.
Nanotubes are finding their way to applications in electronics since they pos-
sess electrical characteristics that compare favourably with existing materials
[19]. For example, they have been used for logic gates and other electronic
components [15], as well as for computers [29]. It is the SWCNT network’s
electrical conductivity, as a physical property, that is exploited and controlled
here in order to bring the material to a state that allows the performance of
some elementary computing tasks. Section 2 provides the details of the ma-
terial used and its electrical properties.

By applying configuration voltages to change the material’s state and sub-
sequently applying a number of input voltages, the system’s response is mea-
sured. Typically, the task of finding the configuration voltages and relevant
quantities is given to an evolutionary algorithm that applies selectively a num-
ber of different inputs and probes the system’s response until an objective
function, modelling the computation efficiency, is minimised.

The optimisation problem developed for the needs of this study is tai-
lored to fit the computing tasks’ requirements, which is to calculate values
of a Boolean function using thresholds. The calculation of AND, OR or XOR
Boolean function values are a typical benchmark problem for evolution in
materio. In addition to these, more complicated circuit structures are consid-
ered, such as the half- and the full-adder. Section 3 describes the principle of
operation based on threshold logic.

The calculation consists of the material having a unique response to each
of the finite possible inputs. The response comes in the form of voltage mea-
surement(s) at selected locations on the material body. Measurements within
specific upper and lower bounds are assigned a unique outcome, either 0 or 1
since Boolean functions are considered. The problem formulation for training
the material for different circuits along with the equipment used is described
in section 4.

The details of the computational tasks and corresponding results obtained
are discussed in section 5. Section 6 concludes with an outline for future
research.

2 MATERIAL DESCRIPTION

2.1 Thin Film Formation
The materials used in this work are based on composites containing SWCNTs
and poly(methyl methacrylate) (PMMA). The concentration of SWCNTs (as
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a percentage of the PMMA) and the viscosity of the PMMA/SWCNT mix-
ture are important properties that determine how the material behaves. The
composites were created following methods widely reported in the literature.
First, SWCNTs were dispersed in Anisole (VWR, analytical reagent grade)
with the aid of an ultrasonic probe at a power of 20% (Cole-Parmer 750W ul-
trasonic homogenizer). The PMMA (Aldrich, Mw = 93,000) was then added
and additional sonication was performed to create a visually uniform mixture.
This material was deposited on suitable gold microelectrode arrays (section
2.2) by a simple drop casting technique. To promote quick drying and a more
uniform coverage, the substrate was heated to 100◦C prior to drop dispensing
the material, and left for 30 minutes to drive off any remaining solvent.

2.2 Micro-electrode Arrays
Micro-electrode arrays were fabricated in gold, on slide glass substrates, us-
ing conventional etch-back lithographic techniques. The arrays were de-
signed with small electrode separations (22 µm) so that high strength elec-
tric fields (5 × 10−5 V/m) could be applied even with the modest voltages
(10.8 V). Figure 1(a) shows a detailed view of the area in contact with the
material being tested. A Scanning Electron Microscope (SEM) image of the
electrodes is shown in Figure 1(b). An optical micrograph of the SWCNT
material deposited on the electrodes is given in Figure 1(c).

2.3 Material Electrical Characterisation
In-plane, two-terminal electrical measurements were undertaken on the SWCNT
/ PMMA composite to help understand how the material responds to electri-
cal signals. Different concentrations of SWCNTs (expressed as a weight per-
centage of the PMMA solid) were investigated, since the number of intercon-
nected SWCNTs plays an important role in defining the material’s electrical
properties.

Greater current carrying capacity is observed with a greater loading of
SWCNTs. The linearity of the IV characteristic varies as the concentration
of SWCNTs is increased; this is to be expected as at higher concentrations
the probability of metallic pathways dominating is increased giving the more
linear response. At all concentrations, the current increases monotonically
with voltage. The SWCNTs in use are unsorted, i.e. the material contains a
mixture of semiconducting and metallic varieties so, at higher concentrations,
there are likely to be more metallic percolating pathways, yielding the signif-
icantly higher current. Two types of material were chosen for further study,
with SWCNT concentrations of 0.23% and 0.53% by weight of the polymer
respectively.
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(c)

FIGURE 1
(a) Design of the microelectrode array (b) SEM image of electrode array (c)
SWCNT/PMMA deposited on gold electrode arrays.

3 THRESHOLD LOGIC GATES USING SWCNT

Threshold Logic Gates (TLG), Figure 2, are devices used for computing
Boolean functions [13]. Different implementations and designs exist using
a variety of electronic components and materials, [2]. In its simplest form, a
TLG has n binary inputs xi, i = 1, . . . , n and a single binary output y; it is
characterised by a set of weights wi, i = 1, . . . , n (each associated with input
xi) and a threshold θ ∈ R. The binary output y is calculated by comparing
the outcome of a weighted linear combination of the inputs to the threshold,
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FIGURE 2
A Theshold Logic Gate (TLG) with n binary inputs xi and weights wi, i = 1, . . . , n,
a single output y and threshold θ.

i.e. according to

y =

{
1 if

∑n
i=1 wixi ≥ θ

0 otherwise.
(1)

The operation of a TLG can be generalised by a system with m binary out-
puts using (Lj + 1) ∈ N∗, j = 1, . . . ,m thresholds based on the following
expression

yj = Yj,p if θj,p ≤
n∑

i=1

wixi < θj,p+1 (2)

where Yj,p ∈ {0, 1} and θj,p ∈ R, p = 0, . . . , Lj − 1, are the known thresh-
olds for each output.

The TLG concept concept provides the motivation for choosing logic gates
and circuits for the initial computation tasks considered here. However, TLG
do not provide a good explanatory model of the material’s internal state, since
the mapping between the device’s internal state as given by eqn. (2) is lost
in the material’s response seen from the perspective of (3). Different types of
computational tasks are going to be considered later, see [26].

Instead of designing hardware and circuits with specific electrical elements
and network connections, the randomly dispersed network of carbon nan-
otube material, described in section 2, is used. In other words, instead of de-
signing a circuit and explicitly characterising it with weights and thresholds,
measurements at different locations on the material’s body are used. The
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FIGURE 3
(a) Arrangement of the thin film of SWCNTs over electrode pads. (b) Randomly
dispersed SWCNT network formed over the pads.

ranges of these measurements are partitioned in non-overlapping staggered
bands that allow the implementation of eqn. (2). It is therefore straighfor-
ward to obtain the a priori specification of the desired input/output relation-
ship that allows the material’s response to be considered as a computation.
This relationship is defined by the following expression.

yj = Yj,p if θj,p ≤Mj < θj,p+1, j = 1, . . . ,m, p = 0, . . . , Lj − 1 (3)

where Mj ∈ R is a measurement at location j (a location is a place where the
electrodes enter into the SWCNT material). For the system considered here,
voltage measurements are used. The principle is depicted in Figure 3 (a).
One or more locations are selected to be charged with input voltages (e.g. V1)
and the voltage measurement obtained from another location (e.g. V7) is the
output. Configuration voltages are applied to other locations on the material
in order to control its conductivity properties and effectuate the desired output
for a given input.

From the physical point of view, the material works as a network of ran-
domly dispersed nonlinear resistors, Figure 3 (b). Hence, the material itself
does not undergo any mechanical change and as a result it is very stable; the
results obtained are reproducible over time, as no significant degradation has
been observed. It is its electrical conductance that is changed and morphed in
order to obtain responses whose interpretation using the pre-selected thresh-
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FIGURE 4
Division of output measurement rangeM into bands to be assigned to a possible input
combination implementing eqn. (3).

old scheme complies with the desired input/output relationship.
Input voltages are applied to one or more of the input electrodes with an

input logical 1 represented by a voltage Vb1 and a logical 0 by a voltage Vb0 .
Configuration voltages Vq , q = 1, . . . , r, are applied at r different locations
on the material in order to affect the measured outputs Mj , j = 1, . . . ,m at
m different locations. For each of those m output measurements, the parti-
tioning dictated by eqn. (3) is followed. The outcome of this operation must
be in agreement with the TLG’s or circuit’s truth table Y (A) ∈ {0, 1}m,
where A ∈ {0, 1}n is the circuit’s binary input and Yj (A) is the binary out-
put j. Hence, the computation performed by the material consists of mapping
a particular input combination to the corresponding operating band of eqn.
(3). This mapping takes the general form

Hj = Fj

[
M,Y (A) , θj,0, . . . , θj,Lj

]
∈ {0, 1} (4)

where Fj maps measurement Mj to a band assigned according to (3) and as
illustrated in Figure 4. A different mapping may be applied at the measure-
ments collected at a different location on the material’s body, i.e. Fj1 6= Fj2 .

An important issue regarding the use of thresholds in the way described is
the actual choice of their values. Pre-selected thresholds may be irrelevant to
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the specific material whereas trial–and–error could result in some suitable val-
ues, but this can be time consuming. Instead, in our approach, the thresholds
are incorporated as functions of the configuration voltages. In other words,
for a specific training problem, the thresholds used for measurements from
output location j are calculated from

θj,p = fj,p (Vb0 , Vb1 , V1, . . . , Vr, β) , j = 0, . . . ,m, p = 0, . . . , Lj (5)

where β a scaling parameter. Implicitly, it is the task of the optimisation
algorithm to decide on selecting the configuration voltages for affecting all
Mj concurrently and determining the thresholds, used in eqn. (3) for a fixed
ordering of the θj’s. For a given circuit, the thresholds of each particular
output j are organised in the vector θj .

4 OPTIMISATION PROCEDURE

4.1 Problem Formulation
In this subsection, the optimisation problem that needs to be solved for mak-
ing the material behave as a TLG or a more complicated circuit is formulated.
The objective function and the constraints are expressed in terms of problem’s
decision variables and parameters.

The problem’s parameters are the number of binary inputs n; the number
of configuration voltages r; the number of binary outputs m of the TLG or
circuit; the number of thresholds Lj + 1 used for measurements at output
j = 1, . . . ,m ; the lower and upper bounds of the voltages applied at the
electrodes, Vmin and Vmax, respectively; the truth table of the desired logical
circuit Y(A) ∈ {0, 1}m, where A = [A1 . . . An]

T ∈ {0, 1}n is the binary
input vector; the number of examples K used for training the material; and
the upper bound of the scaling factor β, Bmax.

The decision variables are the voltage levels Vb1 and Vb0 which signify a
logical 1 or a 0, respectively, at the input electrodes (typically Vb0 = 0 V); the
configuration voltages Vq , q = 1, . . . , r used for affecting the measurements
at the material’s output locations; and the scaling factor β ∈ [0, Bmax], with-
out units, used for calculating threshold values. Hence, a candidate solution
is a vector of the form

x = [Vb0Vb1V1 . . . Vrβ]
T
. (6)

Training examples are randomly pre-selected and given as inputs. A train-
ing example with index k = 1, . . . ,K is a pair of the form

(
A(k),Y

(
A(k)

))
,
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e.g. for the AND gate an instant of a training example with index k is
(
(1, 1)(k), 1(k)

)
.

Obviously K > 2n in order to get a sufficient number of training examples
representing equally each possible input in the formed objective function.

The objective function selected is a quadratic expression of the error when
a potential solution x is applied to the material. Let M (k)

j

(
x,A(k)

)
denote

the measured voltage at output electrode j when binary inputs A(k) are ap-
plied and Hj

(
x,A(k)

)
the corresponding binary outcome when eqn. (4) is

applied. Then, the least squares optimisation problem at hand is the following

min
x
J =

K∑
k=1

m∑
j=1

[
Hj

(
x,A(k)

)
− Yj

(
A(k)

)]2
(7)

subject to

b` ≤ x ≤ bu (8)

θj,p (x) = fj,p (x) , j = 1, . . . ,m, p = 0, . . . , Lj (9)

Hj

(
x,A(k)

)
= Fj

[
Mj

(
x,A(k)

)
,θj(x)

]
∈ {0, 1} (10)

j = 1, . . . ,m

where b` = [Vmin, . . . , Vmin, Bmin]
T and bu = [Vmax, . . . , Vmax, Bmax]

T .
Notice there are no ordering constraints for the thresholds θj . The algorithms
used converge to a solution where this ordering holds true.

Different optimisation methods can be used for solving problem (7)–(10).
However, any implementation must have the hardware in the loop for cal-
culating the values of the objective function for any candidate solution x.
Hence, the value of the objective function will always be corrupted with mea-
surement noise because of (10). In addition, the binary nature of H does
not allow the use of derivatives. Therefore, derivative-free population based
algorithms are the first choice for solving problem (7)–(10).

Here, two algorithms are employed chosen for their simplicity of imple-
mentation. The well-known Nelder-Mead (NM) algorithm [25] with random
periodic restart as suggested in [16] and the Differential Evolution (DE) al-
gorithm suggested in [33] with parameters based on the discussion in [20].

4.2 Hardware Implementation
The general system concept using any optimisation search algorithm for train-
ing the material is shown in Figure 5(a). The case with eight electrodes con-
nected to the material, shown as the hatched area, is illustrated. Voltage V0 is
the ground and all the other voltages are set and measured with respect to it.
There is only one output measured, voltage V7, and it is to this measurement

11



(a) (b)

FIGURE 5
Optimisation with hardware in the loop for material training. (a) System structure. (b)
Hardware implementation.

that eqn. (10) is applied, i.e. V7 = M1. Assuming there are n = 2 inputs to
the logic circuit, e.g V1 and V2, the four configuration voltages available are
V3–V6. The values of V1 and V2 can only be Vb0 or Vb1 . Vb0 , Vb1 and V3–V6
can take any real value from the interval [Vmin, Vmax] according to (8).

The optimisation search algorithm runs on a PC connected with the ele-
crtronics using a virtual serial connection over a USB port, as shown in Fig-
ure 5(b). At each iteration, the search algorithm needs to evaluate the fitness
function (7) for a number of candidate solutions in the form of (6). This is
done by setting the values of the configuration voltages V3–V6 and keeping
them constant as sequence of K known but randomly selected binary pairs
is sent to the two inputs V1 and V2. For each of these training input pairs,
a number of measurements are taken at V7 and their average is used in eqn.
(10). The outcome of the application of (10) contributes the corresponding
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term in the total summation of the fitness function (7). The calcualtion of the
total fitness function is performed on the board (the mbed microcontroller)
and the value is sent back to the PC and the optimisation algorithm over the
USB serial port.

The microcontroller (mbed) is based on the NXP LPC1768 system and
is used to drive the various inputs to the material and monitor the outputs.
The optimisation algorithm sends to the board real values for the elements
of vectors x whose fitness is evaluated on the board, which are applied to
material through digital to analogue converters with a sample size equal to
1 mVolt. The digital to analogue outputs and analogue to digital inputs are
all buffered with suitable op-amps so as to isolate the electronics from the
material under test. A schematic of the system is shown in Figure 5(b). This
equipment allows DC voltage in the range of 0–11.2 V to be applied to the
material on up to 10 outputs; as many as 4 inputs can be monitored if required.

5 RESULTS AND DISCUSSION

5.1 Training TLG
The general optimisation problem described in the previous section can be
formulated for particular TLGs, i.e. make the material behave as a stand
alone gate. The AND, OR and XOR gates are considered here. For these three
gates and for the binary input pair A the output is given by (omitting the index
of outputs j, since j = 1)

H (x,A) =

{
1 if M (x,A) ≥ θ
0 if M (x,A) < θ.

(11)

This rule applies for the logic gates OR and AND, as shown in Figure 6
(a) and (b), respectively. Assuming the same configuration voltages and pair
of Vb1 and Vb0 , the threshold of the OR gate is smaller than that of the AND
gate, due to the monotonically increasing output voltage (the threshold value
θ is not necessarily equal to the input logic 1 voltage Vb1 , although in some
cases this can be imposed as a constraint). For AND and OR a single threshold
is enough to distinguish the different binary input pairs. The threshold for
AND should be high enough to cover the cases when only one of the inputs is
zero; the OR’s threshold should be lower, since only one input with value 1 is
sufficient to achieve a binary output equal to 1. However, the single thresh-
old scheme cannot always work, e.g. for the XOR gate or more complicated
circuits.
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(a) (b)

(c)

FIGURE 6
Threshold operation for (a) OR, (b) AND and (c) XOR gates.

In the case of XOR, the last entry of the truth table is problematic when only
one threshold is used, since a low value is sought when the input is strongest,
i.e. A = (1, 1). This requires the use of two, instead of one, thresholds as
shown in Figure 6(c). Following the rationale of eqn. (3), an output voltage
value within the range [θ1, θ2) is assigned a 1, otherwise it is assigned a 0. In
other words, the following rule is applied

H (x,A) =


0 if M (x,A) ≥ θ2
1 if θ1 ≤M (x,A) < θ2
0 if M (x,A) < θ1.

(12)

The AND and OR gate are easy to resolve, since it takes just one configura-
tion voltage to achieve that even when

θ = f (x) = Vb1 (13)

i.e. the same voltage is used to denote a logic 1 in the input and the output in
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A B AND OR XOR

0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 1 0

TABLE 1
Truth tables for gates AND, OR and XOR (SWCNT concentration 0.23%).

view of eqn. (11). For the XOR gate, the following thresholds are used.

θ1 = f1,1 (x) = Vb1 (14)

θ2 = f1,2 (x) = V1. (15)

Table 2 provides the optimal solutions for AND, OR and XOR when n = 1

and n = 2 configuration voltages are used on the thin film with 0.23%
SWCNT concentration. The number of function evaluations (f.e.) required
by the NM algorithm to reach a solution is also given, but this is only indica-
tive, since convergence is affected by the initial simplex selected. Generally,
when n = 2, the desired behavior is obtained at the very early steps of the
NM algorithm. The DE algorithm performs similarly but results to different
solutions, i.e. there are local minima to the problem, as should be expected.

More complicated logic circuits, are discussed next.

5.2 Training Threshold Logic Circuits
Section 5.1 was concerned with the problem of identifying one or two config-
uration voltages (along with a scaling parameter in the XOR case) for making
the material behave as an elementary TLG. This is done by measuring the
output voltage at a single point on the material. A logic circuit, representing
a Boolean function, with n binary inputs and m outputs is a more compli-
cated task as it requires voltage measurements at m locations. A number of
different circuits are considered, two two-input-two-output, one three-input-
single-output and one three-input-two-output (full adder). Figure 7 depicts
them and Table 3 provides their truth tables.

The principle of how the material system operates is illustrated in Figure
8 for the circuit shown in Figure 7(a). The two connections charged with
voltages V1 and V2 are where the inputs A and B, respectively, are applied;
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gate n optimal solution f.e.
AND 1 V ∗

b1
= 0.291

V ∗
1 = 4.105 1461

2 V ∗
b1

= 1.172

V ∗
1 = 3.692

V ∗
2 = 3.692 7

OR 1 V ∗
b1

= 0.731

V ∗
1 = 1.984 1,599

2 V ∗
b1

= 1.172

V ∗
1 = 3.692

V ∗
2 = 5.600 7

XOR 1 V ∗
b1

= 2.445

V ∗
1 = 4.780 110

β∗ = 0.216432

2 V ∗
b1

= 1.862

V ∗
1 = 1.372

V ∗
2 = 1.834 121

β∗ = 0.506318

TABLE 2
AND, OR and XOR stand alone gates optimal solutions and number of function evalu-
ations needed (SWCNT concentration 0.23%).
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Circuit (#) Inputs Outputs
(a) A B – AB A+B

0 0 – 0 0

0 1 – 0 1

1 0 – 0 1

1 1 – 1 1

(b) A B – carry sum
(half-adder) AB A⊕B

0 0 – 0 0

0 1 – 0 1

1 0 – 0 1

1 1 – 1 0

(c) A B C AB +BC –
0 0 0 0 –
0 0 1 0 –
0 1 0 0 –
0 1 1 1 –
1 0 0 0 –
1 0 1 0 –
1 1 0 1 –
1 1 1 1 –

(d) A B C carry sum
(full adder) AB + C(A⊕B) A⊕B ⊕ C

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

TABLE 3
Logic circuits’ truth tables.
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(a) (b) (half-adder)

(c) (d) (full-adder)

FIGURE 7
Logic circuits.

hence V1 and V2 can only take values Vb0 or Vb1 . The two circuit outputs
are measured at two distincive locations on the material and the voltage mea-
surements M1 = V7 and M2 = V6 are used in eqn. (10). The configuration
voltages are V3–V5 for the depicted system.

It should be noted that a test took place where the material was replaced
by a random network of fixed resistors and the optimisation algorithms were
applied to it, without success. In other words, it was not possible to obtain a
circuit (half-adder) from resistors randomly wired on the board. The complex
network, interconnectivity and nonlinear electrical behavior of the SWCNT
thin film appear to facilitate the optimisation of TLG circuity.

Only two material compositions were studied as part of this work: one
with a SWCNT concentration of 0.23% and the other 0.53%. The link be-
tween the material formulation and the effectiveness of the materials’ ability
to behave as TLG circuits remains inconclusive, although the results in this
section focused on the formulation with the higher SWCNT concentration.
Work is ongoing to understand and relate the materials’ electrical/physical
properties to the mechanisms involved with optimising TLG using the DE
and NM algorithms.

5.3 Logic Circuit (AB,A+B)

The first circuit has two binary inputs, A and B, and two binary outputs, AB
and A+B. The optimisation algorithm was able to locate a minimum at the
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FIGURE 8
Material acting as logic circuit.

point shown in Table 4. This solution provides a voltage Vb1 used to denote
1 at the input and also use the same value as threshold at the output. In other
words, for both outputs, the threshold θ is the same and it is θ = f (x) =

V ∗
b1

= 3.279 V. Figure 9 depicts the measured voltages at the two outputs.
The x-axis represents the order over time of binary inputs (A,B) given to
the two input locations. The y-axis shows the voltage levels measured at
both output locations. On the left side the binary inputs corresponding to the
AND gate are given and on the right side those of the OR gate. The solid line
running through the diagram is the threshold θ = 3.279 V. It can be seen
that for both output locations the voltages measured tend to take values from
specific bands and are different for each output.

Hence, for the (0, 0) input which is first in the sequence of test binary
inputs (x-axis), the measurement for the AND is 3.055 V and for the OR is
3.248 V. Since both are less than θ = 3.279 V, the corresponding output in
both is a 0. The next two inputs are the same pair (0, 1) and the measured
voltage at the AND is 3.138 V and at the OR is 3.338 V. For the AND gate
this is below the threshold, whereas for the OR it is above, hence a (0, 1)

19



V ∗
b1

= 3.279 V ∗
1 = 11.200 V ∗

2 = 2.447 V ∗
3 = 3.200

V ∗
4 = 11.200 V ∗

5 = 5.054 V ∗
6 = 7.588 V ∗

7 = 9.556

TABLE 4
Optimal solution for the half-adder circuit (AB,A+B) in V, (SWCNT concentration
0.53%).

output is registered. Next is a (0, 0) input and after that a (1, 1), where the
measurement at the AND is 3.318 V and at the OR is 3.442, both larger than θ,
hence a (1, 1) is registered.

Both outputs display a consistent behavior for the different test inputs and
they map uniquely to the corresponding levels. For the AND gate, the output
voltages for the (0, 1) and (1, 0) inputs are quite far away, whereas the for OR
they are closer. This kind of spreading along with the threshold, are decided
by the optimisation and the material’s properties, which are the result of the
specific conductive network formed by the carbon nanotubes.

5.4 Half-Adder
The half-adder circuit, Figure 7(b) is a more difficult case due to the require-
ment the XOR gate imposes on the output voltage when it is to be translated
into a 0 for a binary input (1, 1).

Table 5 gives the optimal solution when the threshold for the AND output
is

θAND = θ1,1 = f1,1 (x) = βV1 (16)

and the two thresholds for the XOR are

θXOR,1 = θ2,1 = f2,1 (x) = βV2 (17)

θXOR,2 = θ2,2 = f2,2 (x) = βV3. (18)

The measured voltages at the two output locations can be seen in Figure
10. The AND terminal operates at much higher range than the XOR. There is
a clear gap between the output voltages for the two locations. The threshold
value of the AND gate θ∗AND is placed at a level where there is clear distinc-
tion between the (1, 1) input and the rest possible inputs. The (1, 0) and (0, 1)

inputs are barely distinguishable in this case. On the contrary, in the XOR out-
put, all the possible inputs are clearly distinguishable, but the thresholds are
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FIGURE 9
Output voltage measurements for arbitrary binary inputs for circuit (AB,A + B)
(SWCNT concentration 0.53%).

tighter. This is particularly true for the threshold distinguishing the (1, 1) in-
put, where the θ∗XOR,2

is placed at a distance of a few mV below the measured
output.

5.5 Logic CircuitAB +BC

The logic circuit AB + BC has three inputs and a single output, hence
only one threshold is enough to calculate it. The threshold is calculated by
θ = f (x) = V1β. The maximum voltage was set to Vmax = 11.2 V and
Bmax = 4 as well. Both the NM and the DE algorithms were able to idenify
a solution. Table 6 provides the DE optimal solution and Figure 11 shows the
corresponding measured output for an arbitrary string of 100 binary triplets.
The difficulty in identifying an optimal solution lies to the fact that the binary
triplets (0, 1, 1) and (1, 1, 0) result to a 1 at the output, whereas the triplet
(1, 0, 1) is mapped to a 0. Hence, the solution must be able to differentiate
between input signals with similar strength at the input. This is done so, but
only by a very small margin, separating (1, 0, 1) from the other two. The
measured output when (1, 1, 0) is given as input is 3.650 V, for (0, 1, 1) is
3.598 V and for (1, 0, 1) is 3.571 V. It is only 1 mV that makes the differ-
ence for (0, 1, 1) and allows it to map to 1 following the threshold rule with
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V ∗
b1

= 3.965 V ∗
1 = 4.861 V ∗

2 = 2.794 V ∗
3 = 3.158

V ∗
4 = 2.733 V ∗

5 = 3.654 V ∗
6 = 5.116 V ∗

7 = 1.114

β∗ = 0.621 (no units)
θ∗AND = 3.0187 θ∗XOR,1

= 1.7354 θ∗XOR,2
= 1.9614

TABLE 5
Optimal solution for circuit (AB,A⊕B) in V, material used is (SWCNT concentra-
tion 0.53%).

V ∗
1 = 8.859 V ∗

2 = 3.693 V ∗
3 = 0.000

V ∗
4 = 0.172 V ∗

5 = 7.462 V ∗
6 = 7.577

V ∗
b1

= 8.672 β∗ = 0.406 θ∗ = 3.597

TABLE 6
Optimal solution for circuit AB + BC in V (except for β∗) (SWCNT concentration
0.53%).

θ∗ = 3.597 V. The same behavior is also exhibited in the solution of the NM
algorithm.

5.6 Full-Adder

The full-adder circuit is a three-input two-output system. From its truth table
shown in Table 3, it can be seen that the carry requires only one threshold that
is able to differentiate between inputs that have at least two binary 1s in the
input triplet. The carry threshold θc is calculated by

θc = θ1,1 = f1,1 (x) = V4. (19)

However, the sum has a different behavior. When there is a single 1 in the
input triplet, the result is a 1, but when there are two 1s the result is a 0 and
when there are three 1s in the triplet, the result is again 1. Hence, there is a
need for a three threshold rule for classifying the measured output voltage.
This leads to the introduction of the thresholds θs,1, θs,2 and θs,3 calculated
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FIGURE 10
Output voltage measurements for random binary inputs for the half-adder circuit
(AB,A⊕B) (SWCNT concentration 0.53%).

as follows.

θs,1 = θ2,1 = f2,1 (x) = V1β (20)

θs,2 = θ2,2 = f2,2 (x) = V2 (21)

θs,3 = θ2,3 = f2,3 (x) = V3. (22)

The threshold function mapping the measured voltages to the binary outputs
when binary triplet A = (x1, x2, x3) is given as input for the carry is

H1(A) =

{
1 if M1 ≥ θc
0 otherwise

(23)

and for the sum is

H2(A) =


1 if M2 ≥ θs,1
0 if θs,2 ≤M2 < θs,1
1 if θs,3 ≤M2 < θs,2
0 if M2 < θs,3.

(24)

The NM algorithm fails to find a solution in this case. However, the DE
algorithm found the solution given in Table 7. Figure 12 shows that the thresh-
olds are well separated and provide clear cut areas for classifying the input
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FIGURE 11
Output voltage measurements for random binary inputs for circuitAB+BC (SWCNT
concentration 0.53%).

triplet. It is interesting to note the variance of the measured voltage for the
two outputs. The carry has significantly less variance, since only one thresh-
old is necessary to differentiate between inputs with at least two 1s. The
requirement of three thresholds for the sum results to a wider spread in order
to differentiate the inputs with one 1 from two or three 1s.

6 CONCLUSION AND FUTURE WORK

This paper has presented results of computations based on threshold logic
performed by a piece of material that consists of SWCNTs and poly(methyl
methacrylate). Following the general principle of evolution in materio, the
material’s conductivity was used as the physical property manipulated for
evolving Boolean functions, whose evaluation is based on threshold logic.

The material training problem is formulated as an optimisation problem
with continuous and binary constraints. This formulation has been used to
evolve gates and circuits on a piece of material placed on a board. By se-
lectively applying and holding the optimal configuration voltages on certain
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V ∗
1 = 2.447 V ∗

2 = 3.710 V ∗
3 = 3.161

V ∗
4 = 2.968 V ∗

5 = 10.718 V ∗
6 = 5.060

V ∗
b1

= 7.717 β∗ = 1.7 θ∗c = 2.968

θ∗s,1 = 4.160 θ∗s,2 = 3.710 θ∗s,3 = 3.161

TABLE 7
Optimal solution for circuit AB + BC in V (except for β∗) (SWCNT concentration
0.53%).

locations, a one-to-one mapping between set inputs and measured outputs is
established. The material is very stable and this mapping is preserved over
time, as no significant degradation was observed.

In this study, two different concentrations of SWCNT, 0.23% and 0.53%
of the polymer’s weight, were used. Both were able to be tuned to behave
as TLGs, but the material with 0.53% was the only one that succeeded in
behaving as a logic circuit for all cases considered. A possible factor con-
tributing to this behavior may be the more uniform dispersion of nanotubes.
A definite factor is the optimisation algorithm used for solving the training
problem. From this perspective, the Differential Evolution is superior to the
Nelder-Mead algorithm. The NM algorithm was not that efficient when called
to address more complex Boolean functions than simple gates, whereas the
DE has shown consistenly better results.

Currently, one line of our work is directed towards developing and cus-
tomising optimisation algorithms for training different types of material to
perform computational tasks.

Another line of investigation is directed towards the identification of suit-
able computational material and matching them with computational tasks.
The SWCNT mix used here was suitable for the particular task of evolving
Boolean circuits, but more complex computational task may require different
properties of a material to be subjected to evolution.

Hence, there is a three dimensional space outlined by (a) computation ma-
terial (b) computational task, and (c) optimisation method used for evolving
the material. Future research aims at exploring this space and provide new
paradigms of computation.
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FIGURE 12
Output voltage measurements for random binary inputs for the full-adder (SWCNT
concentration 0.53%).
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