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Abstract 

An approximate solution for the effects of high strain rates, and gradual strength degradation, on 
the penetration resistance of penetrometers can be obtained by combining the strain-path method 
with the classical upper bound theorem. The stream path calculations require the integration of the 
material constitutive equation along the streamlines. Unless the geometry is simple so that the 
integration can be evaluated analytically, numerical procedures are required to back-track 
streamlines. The strain at any location is calculated by finding the streamline that passes through the 
given point and integrating the strain rate along that streamline from its inlet boundary. Thus, the 
calculations can be complicated and errors can be accumulated during the calculation procedure. 
 
This paper presents an efficient approach for evaluating cumulative strains around penetrometers 
without the need to back-track individual streamlines. In this approach the strain components are 
treated as field variables. The global solution is obtained using the Streamline Upwind Petrov–
Galerkin (SUPG) method. The new method together with an Eulerian-based finite element 
formulation were used to study the cone penetration test (CPT) and evaluate the effect of strain 
softening on the cone resistance. 
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Introduction 

In several geotechnical problems such as full-flow (T-bar and ball) penetrometers, cone 

penetration test, and pile installation, the onset and growth of damage in the surrounding 

geomaterial depends on the rates of deformation and the magnitude of strain (or material 

structure). In such applications, modelling the deformation and stress histories of soil 

particles as they move during the penetration process is important.  

 

A major development of modelling deep penetration problems was provided by Levadoux 

and Baligh [1] and Baligh [2] who introduced the strain-path method as an approximate 

analytical produce for estimating strains and stresses around penetrometers. Using this 

approach, the quasi-static penetration problem is modelled as a steady flow of soil past a 

stationary penetrometer. Soil strains are estimated from an approximate velocity field and 

stresses are obtained by integrating the strain paths of the soil element. This method has been 

applied to cone penetration [3-6]. 

 

Einav and Randolph [7] calculated the penetration resistance of T-bar and ball penetrometers 

by combining the strain-path method with the upper bound theorem, equating the external 

work to the internal plastic work. The strain paths were obtained by generating streamlines 

from the velocity field obtained from an optimal upper bound mechanism. A similar approach 

was adopted by Klar and Osman [8], but instead of using a conventional upper bound 

mechanism they employed mechanisms derived from elastic fields using the Airy stress 

function (or Airy potential). Therefore, their solution does not require any special treatment 

of discontinuity lines (which exist for the cylindrical T-bar geometry, though not for the 

axisymmetric ball). 

 

In the stream path methods, the constitutive equations must be integrated along the 

streamlines. Unless the geometry is simple so that the integration can be evaluated 

analytically, numerical procedures are required to identify streamlines and hence incremental 

plastic work throughout the soil regime. The strain at any location is calculated by finding the 

streamline which passes through that point and integrating the strain rate along that 

streamline from its inlet boundary. Klar and Pinkert [9] developed a numerical procedure for 

evaluating strains where they are treated as spatially continuous parameters. In a finite 

difference grid, the strain at each point of the grid is evaluated from the strains and the 
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velocities of two neighbouring points although the calculations are not straightforward as 

they have to be carried out in certain topological sequences starting from the inlet boundary.  

 

 

The finite element method has been implemented successfully to model history-dependent 

geotechnical problems [10]. The formulations are based either on small deformations or using 

updated Lagrangian theory. In the Lagrangian formulation, an initial value ordinary 

differential equation for material evaluation at each Gauss point is solved by a time 

incremental scheme.  Lagrangian formulations have been applied to many geotechnical 

applications and have proven to be robust and algorithmically easier to implement.  

 

However, when the material deforms severely, elements becomes similarly distorted since 

mesh points are attached to material points in the Lagrangian description. The approximation 

accuracy of the elements then deteriorates, particularly for higher order elements, causing 

numerical instability [11].  This is commonly observed when modelling the penetration 

process, which exhibits very large deformations. Arbitrary Lagrangian–Eulerian (ALE) 

formulations are used in these problems [12].  In the ALE formulations, the mesh motion 

does not necessarily coincide with the material deformation so that severe element distortion 

can be eliminated.  However, this requires an effective algorithm for updating the mesh since 

numerical errors may develop and propagate over time during the analysis. This constitutes a 

hurdle in developing an effective implementation of the ALE description.  

 

The use of Eulerian reference frames is advantageous in analysing steady-state conditions. 

The solution can be obtained without following the process through its transient phase. This 

can lead to computational efficiency, provided that information concerning the transient state 

is not required, and avoids difficulties that may arise if distortion becomes large. In such 

computations, the nodal points do not correspond to material points but rather the material 

passes through a spatially fixed mesh. Therefore, in an Eulerian frame the time derivative 

terms are transformed to spatial gradient terms. It is therefore necessary to develop 

supplement methods for evaluating the strain or other quantities that evolve with the flow.  

 

Two common techniques are used in the Eulerian formulation to evaluate strains: mixed 

formulation and streamline method. In a mixed formulation, the partial differential equations 

describing material evolution include convection terms, which may result in non-physical 
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oscillations in the solution. The most common method used to handle these convection-

dominated problems is the streamline upwind Petrov–Galerkin (SUPG) method [13–16]. In 

the SUPG method, the weighting function is the interpolation terms plus an additional mesh-

dependent term. The mixed formulation could be computationally expensive because of the 

large number of field variables that need to be determined. For example, the plane-strain 

formulation of Qin and Michaleris [17] for an elasto-plastic material requires finding 

solutions for 11 field variables at each node in a four-node quadrilateral element mesh.  

 

In the streamline method, a sequential iterative approach is used, where the velocity field is 

solved first from the governing equation. Then, streamlines are computed from the velocity 

field along which the constitutive equation is integrated to obtain the stress and strain. 

Agrawal and Dawson [18] obtained strain by integrating the material derivative of the 

deformation gradient tensor over the domain. Large strain measures such as large Green 

Strain is then used to calculate the strain from the deformation gradient F. The Galerkin 

formulation was used to obtain the weighted residual. However, because of the convection 

term, the Galerkin formulation can lead to numerical instability [19]. Furthermore, Agrawal 

and Dawson’s formulation yields a matrix equation for F that is partitioned in such a way that 

the components of F are not all coupled in the case of two and three dimensional flow. This 

can lead to non-zero volumetric strain if applied directly to incompressible materials. In 

geotechnical applications, penetrometer testing in clay under undrained conditions is 

associated with zero volume change.  Therefore, a robust numerical procedure for evaluating 

strain from a velocity field in an incompressible material is required.  

 

This paper presents an efficient technique for calculating cumulative strains around moving 

penetrometers for steady-state conditions. The new technique can be either used in the strain 

path method where the velocity field is assumed or it can be integrated into the finite element 

method where the velocity is treated as a field variable. The authors will present algorithms 

for the finite element analysis of a penetrometer advancing in an elasto-plastic material. The 

proposed numerical procedures can be used to give insight into the flow mechanisms around 

penetrometers and to provide correlation between the penetration resistance and the material 

properties. Although, in this paper the authors demonstrate this approach for a von Mises 

perfectly plastic material, it is relatively straightforward to apply to more advanced 

constitutive models.  
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Governing equation for strain evaluation 

In a flow field described by an Eulerian reference frame, the material derivative of the strain 

tensor ε  can be defined as: 

                                      εv
εε

ε 



  .

tDt

D
                                                               (1) 

where v  is the velocity vector.  

If steady-state conditions are assumed then the partial derivative with time (the local time 

derivative) is eliminated, hence 

                                                      εvε   .                                                                     (2) 

 

A weighted residual W is formed by integrating equation (2) with a set function N
P
 over the 

domain. The residual is then required to vanish:                                    

                               0) .(  


dW εεvN
P                                                           (3) 

If ε  is a continuous function, then an approximation function (shape function) N   can be 

introduced to relate the value of ε  at any location to its nodal values Σ : 

                                                              N.Σε                                                                       (4) 

By substituting equation (4) into equation (3), the integral equation can be written in a matrix 

form as: 

                                                              RKΣ                                                                  (5) 

where 

 


dNvNK
P  .  
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 


dP
NR  

 

In conventional FE discretization, the Galerkin formulation is widely used where N
P
 is taken 

to be equal to the shape function N. However, this may result in non-physical oscillations in 

the solution if the partial differential equation contains a convection term. The streamline 

upwind Petrov–Galerkin (SUPG) scheme is used here to stabilize the solution [16]. In the 

SUPG scheme, the weighting function comprises the interpolation terms plus an additional 

mesh-dependent term: 

                                         
TT

NvNN
P   .                                                                 (6) 

 

The weighting function in this scheme is designed to include the upwinding effect. It is based 

on the idea of allowing more weight to nodes in the upstream direction and reducing the 

weight for nodes in the downstream direction. The upwinding scheme is motivated by 

examination of the classical advection-diffusion equation. The solution of this equation is 

oscillatory in space when a mesh parameter known as the Peclet number exceeds a critical 

value.  

The Peclet number Pe can be defined as follows: 

                                               
2

v
e

e

h
P                                                                           (7) 

where   is the diffusivity, eh  is the characteristic length of an element and 
p

 is the P-norm 

(for p = 2 we get the Euclidean norm and when p we get the maximum norm). The 

reader should be aware that there are different definitions for the characteristic element length 

he for a 2D element in the literature and here we have taken he as the characteristic distance in 

the direction of the flow. This is based on the argument that the oscillations in the numerical 

solution are generated by the high Peclet number in the streamline direction [13]. For a 

triangular element with a natural local coordinates system (see Appendix I), it can be 

demonstrated that he  is given by: 
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




vζ

v

.
2

eh                                                                        (8) 

where ζ  represents the local coordinates and ζ  is the element mapping matrix. 

 

Based on this definition for the element characteristic length, the parameter  in equation (6) 

can be defined as a function of the element size and the velocity as follows:   

                                               
2

2 v

eh
                                                                           (9) 

where   is strictly non-negative and can be related to the element Peclet number Pe as: 

                                        

                              


















e

e

P

P 2

2
coth                                                                  (10) 

where    is a smoothing parameter controlling the artificial diffusion.  

Substituting equation (10) into (9) gives: 

                                          





v.2 


                                                                         (11) 

 

It should be noted that with 0.1 , equations 6-10 give exact nodal solutions in one-

dimensional analysis (see [11] for example). Existence of an exact solution cannot be proven 

in multi-dimensions. However, as will be demonstrated later 0.1  provides sufficient 

accuracy in 2D analysis unless there is a significant strain tensor gradient normal to the 

direction of the flow. In such cases, judicious choice of   might be required. An alternative 

approach to tackle significant changes in the field variable normal to the direction of the flow 

is proposed by Hughes et al. [16] who modified the SUPG scheme by adding an extra term 

called the “discontinuity-capturing operator” to the weighting function. Hughes et al. [16] 
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called their modified scheme Beyond Streamline Upwind Petrov Galerkin (BSUPG). The 

BSUPG scheme requires the gradient of the field variable to be calculated iteratively hence 

this makes the scheme extremely expensive in terms of CPU time. Even so, there is no 

guarantee that an accurate solution may be achieved, as demonstrated by Hendriana [20]. As 

will be demonstrated later, however, an appropriate choice of   gives a reasonably accurate 

solution without the need to conduct expensive iterative calculations.  

 

Comparison with analytical solutions 

The new SUPG formulation for evaluating strain is compared with existing analytical 

solutions for a number of penetrometer problems. The SUPG formulation is implemented in 

Wolfram MATHEMATICA V9.0.  In the SUPG analysis, the results are obtained assuming 

insignificant diffusivity
1010  (equation 7). Unless stated otherwise, the smoothing 

parameter   is taken to be equal to 1.0.  

 

Simple Pile Problem 

To develop a better understanding of the mechanisms of deep penetration, Baligh [2] derived 

the solid simple pile solution (Figure 1) to investigate deep steady quasi-static undrained 

penetration of an axisymmetric cylindrical object with a rounded tip in saturated 

(incompressible) homogeneous isotropic clay initially subjected to an isotropic state of stress. 

The streamline locations are given by: 

                                               )cos1(
2

1 22

0

2  Rrr                                              (12) 

where 







 

z

r1tan  

and the radius of the pile rp is given by: 

                                                   )cos1(
2

1 22  Rrp                                                    (13) 
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where R is a constant and the pile tip is located at a depth   2/Rz   

 

The velocity components are given by: 

                                              


sin
4 2

2

0RV
Vr                                                                   (14) 

                                            02

2

0 cos
4

V
RV

Vz  


                                                         (15) 

 

The strain can be found from the integration of the strain rates: 

                                                 
t

ijij dt
0

 
                                                                       (16) 

which can be transformed to spatial integration (See [5]): 

 

                       













 d

VV
dS

V zr

ij

S

ij

ij
sincos




                                       (17) 

Therefore, the strain components are given by: 

                        





 dAr )()1(3cos2  

                        





 dAz )()3cos2(1  

                       




  dA )(2  
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                        





 dArz 2sin)(3                                                          (18) 

where 

                                      
)cosR+2r+4(R

sin R
)(

22

0

2

2




 A  

Figure 2 shows the finite element mesh used in the calculations. The mesh comprises 2000 

6-noded triangular elements. The integration over each element was carried out using 12 

Gaussian points.  Since the basic differential equation (equation 1) is a first order equation, 

only one boundary condition is required. Material entering the region is assumed to be 

undeformed: 0ε  .  A large domain is selected in the SUPG calculations since the analytical 

solution is derived assuming an unbounded domain.  

 

Figures 3 and 4 show the SUPG predictions for strain components compared with the 

analytical solution (equation 18) along two streamlines r0/R  2 and r0/R  10.4. In both 

cases, the SUPG predicts are in excellent agreement with the analytical solution.  

 

T-bar problem 

There is increasing popularity in using full-flow penetrometers such as the cylindrical T-bar 

[21]. One of the reason is that the resistance of the T-bar is not influenced significantly by the 

soil rigidity ratio (Ir = G/su, where G and su are the shear modulus and undrained strength of 

the soil) unlike classical cone penetrometers and the shaft has little effect on the measured 

resistance.   

 

Klar and Osman [8] derived a continuous velocity field for steady-state conditions using Airy 

stress functions.  For smooth contact between the T-bar and the surrounding soil, the velocity 

components are given by  
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where 

R

r
rRrRA 04

0

44

0

4 ln)(2    

with r0 the radius of the T-bar and R the distance to the zero displacement boundary of the 

velocity field. For a smooth interface between the penetrometer and the surrounding soil, R is 

found to be equal to 2.4r0.  

For the case of full-bonding contact: 

R

r
rRrRB

r

R

r
rRrrrRr

B

U
V

r

R

r
rRrrrrR
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U
V

Tbar

Tbar
r

02

0

22

0
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2

2

0

222

0

222

2

2

0

222

0

222

ln)(

sin

ln)(2)3)((

cos

ln)(2))((















                          (20) 

 

At the limiting state, R is found to be equal to 2.85r0.  

 

 

Figure 5 shows the mesh used in the SUPG analysis. The mesh comprises 800 6-node 

elements with 1681 nodes in total. The outer radius R was taken to be equal to 2.4r0 in the 

case of a smooth T-bar and 2.85r0 for a perfectly rough T-bar. The boundary condition is 

defined as: 

 

                                        







 Rrat &

2
0


0ε                                                (21) 
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Figure 6 shows the contours of the cumulative absolute (plastic) shear strain, , which is 

defined as: 
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
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               (22) 

 

Figure 6a shows the analytical solution obtained by integrating along the streamline of the 

velocity field of Klar and Osman [8]. The analytical solution shows that the extreme case of 

full bonding contact between a moving T-bar and the surrounding soil is characterised by a 

high shear strain gradient normal to the direction of flow in the wake-zone behind the 

penetrometer, while there is a more gradual gradient in the case of a smooth contact. Figure 

6b shows the numerical solution obtained without the need to adjust the smoothing parameter 

(i.e. 0.1 ) for the case of smooth contact. However, for the full-bonding case, the solution 

is obtained by using 0.3  in order to get smooth contours.  Figure 6b shows that the SUPG 

formulation is capable of capturing the details of the shear strain contours. Figure 7 shows 

contours of accumulative shear strain obtained using different smoothing parameters ranging 

from 0.1 to 0.10 . As may be seen from this figure, only a very small region behind 

the T-bar needs smoothing. Apart from this region, the solution is not affected by the choice 

of .  

 

The new SUPG formulation can be used as a separate tool for calculating strains once the 

velocity field is obtained (from the strain path method, for example) or it can be integrated 

into finite element analysis where the velocity field is obtained by solving the momentum 

equation, as described below.  

 

 

Analysis of Cone penetration Test in a strain-softening material 

 

The cone penetration test is one of the most widely in-situ tests in geotechnical engineering 

practice for assessing the strength profile in soil. In saturated clay, the test is performed at a 

penetration rate that does not permit drainage during the penetration process, so the test may 
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be interpreted directly as a measure of the undrained strength profile of the clay.  The 

popularity of this in situ testing device has resulted in a great demand for the development of 

accurate correlations between measured cone quantities (e.g., cone resistance and sleeve 

friction ratio) and engineering properties of the soil. Despite extensive research on cone 

penetration test in the last two decades [6, 22-27] the effect of strain softening on the cone 

resistance has not been investigate in detail.  

 

In strain-softening material, the strength of the soil can be expressed as a function of the 

cumulative plastic strain. Einav and Randolph [7] suggested a simple function of the form: 

 

                                 95/3

0 )1(
 

 ess remremuu                                            (23) 

 

where the ratio 95
/   is the ratio of the measure of current accumulative plastic strain 

normalised by a reference value.  Einav and Randolph [7] took the cumulative engineering 

shear strain   (defined in equation (22)) as the measures of cumulative strain for a Tresca 

material, compared with the von Mises model adopted here. 95 is the cumulative shear strain 

required to cause 95% reduction (from peak value to remoulded).  rem represents the fully 

remoulded strength ratio (i.e. su(remolded)/sui )  or the inverse of the sensitivity index, St,  

 

In this paper we will evaluate the effect of strain softening on the cone resistance using two 

approaches:  

(1) an approximate approach analogous to the upper bound strain path method (UBSPM) 

of Einav and Randolph [7] and Klar and Osman [8]. Since there is no existing closed 

form solution for the velocity field around the cone, the velocity field and the strain 

rate were obtained from Eulerian finite element analysis assuming a perfectly plastic 

material.  

(2) By implementing directly a strain-softening constitutive model into a large-strain 

finite element analysis. 

 

The first approach is approximate but it allows exploring different strain-softening 

constitutive relationships from a single velocity field obtained from FE analysis.  
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FE model 

Figure 8 shows the finite element mesh used in the analysis. The mesh consisted of 1701 

nodes and 800 six noded reduced integration triangular elements. The outer boundary was 

fixed in the radial direction. Displacement controlled analysis was performed and the cone is 

taken be stationary. A standard 60
o
 cone with a smooth interface between cone and soil was 

simulated. Soil movement normal to the cone-soil interface was prevented and only sliding 

motion allowed. The radial distance to the outer boundary was chosen to be well outside the 

plastic zone. Based on cavity expansion analysis [28] the ratio of plastic radius to the current 

cavity radius remains constant at rI . The radial distance was taken to be 30R which is 

wide enough for the range of rigidity index between 50 and 500, which was investigated in 

the finite element simulations.  Isotropic initial stress states were assumed.  

 

In all the analysis a linear elastic model with von Mises failure criterion was assumed: 

 

                                                         0 yqf                                                        (24) 

where q is the deviatoric shear strain defined as: 

 

                                                     ijij ssq :
3

2
                                                             (25) 

 

with sij the deviator stress (sij = ij -kk ij/3). The von Mises yield stress (y) is equivalent to 

twice the undrained shear strength of the soil su in triaxial compression test (i.e. y = 2su). 

 

Figure 9 shows the load displacement curve obtained from the enhanced Eulerian FE analysis 

compared with that obtained from small strain Lagrangian analysis using the same boundary 

conditions.  The results are shown for Ir = 100. In the large-strain Eulerian FE analysis, the 

thin-plate spline technique [29, 30] was used to calculate the gradient of the stress. The 

accuracy of the small-strain analysis becomes doubtful for displacements beyond 0.5D, 

because of the gross distortion of the mesh, as indicated by the divergence of the two curves. 

With the small strain assumption it is not possible to reach the limiting resistance of the cone 

tip. In large-strain analysis, the limiting resistance is not achieved until a penetration of 
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approximately 7D, beyond which the normalised penetration resistance is reasonably constant 

at about 10.5.  

 

It is well established that the rigidity index of the soil has a significant influence on the cone 

factor. This effect has been quantified by carrying out a series of analyses for different values 

of rigidity indices as shown in Figure 10. The Eulerian FE results are compared with 

published correlation formulae as detailed in Table 1 (for conditions of a smooth cone-soil 

interface and originally isotropic stress state). These results illustrate that the current Eulerian 

analysis, enhanced with the thin-plate spline technique, gave results that are consistent with 

the ‘remeshing and interpolation technique combined with small strain’ (RITSS) analysis of 

Lu et al. [25] and the Arbitrary Lagrangian Eulerian  ALE analysis of Nazem et al. [27]. 

 

 

Figure 11a shows the streamlines around the cone. It should be noted that in this analysis the 

cone is treated as stationary while the soil flows around it. Figure 11b shows the magnitude 

of the velocity under steady-state conditions normalised by the inlet velocity. As can be seen 

from this figure, the change of velocity field is localised around the cone tip. Figure 12 shows 

contours of the rate of the plastic deviatoric strain (normalised by v0/D).   

 

An approximate approach for evaluating the effect of the strain softening 

 

As demonstrated earlier in the paper, the SUPG approach allows calculation of the 

cumulative strain once the strain rate is known. The cumulative strain can be evaluated from 

the strain rate shown in Figure 12 by applying equation (5): 

                             


























 



dd p

q

p

q PP
NΣNvN  .                                          (26) 

where 
p

qΣ  is the accumulative  plastic deviatoric strain at the element nodal points. 

 

Figure 13 shows contours of cumulative plastic strain at steady state conditions for Ir = 100 

and Ir = 300.  If the degradation of the undrained shear strength is taken to be governed by 
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equation (23) and the internal variable   is taken equivalent to the plastic deviatoric strain 

(i.e. 
p

q  ), then the strength distribution in space can be mapped using the contours of 

accumulated strain shown in Figure 13. The penetration resistance can then be estimated, as 

in the conventional upper bound approach, by integrating the internal work within the 

domain, and balancing external work and total internal plastic work: 

                                                 

                                            0)(  t

p

q

p

qy Fd 


                                                       (27) 

 

 

where Ft is the tip resistance and v0 is the inlet velocity.  

 

 

Figures 14 shows the effect of strain-softening expressed as the cone resistance normalised 

by its value when there is no softening and plotted against different reference plastic strain 

95  for remoulding ratios rem of 0.2 and 0.5. Figure 14a shows the results for Ir = 100 while 

the results for Ir = 300 are shown in Figure 14b. Comparing 14a and 14b indicates that the 

rigidity index has little influence on the pattern and the magnitude of the degradation of cone 

resistance due to strain softening. A typical range of reference plastic strain 95 in clay is 

between 10 and 50 (see [7]). The results of Figure 14 indicate that even with a soil of high 

sensitivity ratio rem = 0.2, the maximum reduction in the cone resistance due to strain 

softening is less than 10%. This is significantly less than for a full-flow penetrometer [31]. 

 

It should be noted that the velocity field used to derive the limiting resistance in strain-

softening materials is not optimised for the lowest upper bound solution (i.e. lowest limiting 

cone resistance). Furthermore, the area of plastic zone is approximated. In this calculation, 6 

node triangular elements with reduced integration points are used. Thus, if a single Gaussian 

point in a certain element becomes plastic, it is then assumed that the plastic region represents 

one third of that element.    

 Nevertheless, the upper bound calculations may be used as a first estimate of softening 

effects. More accurate evaluation of the strain-softening effect can be obtained by 

implementing a strain-softening model in the FE analysis.  
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Eulerian FE analysis of a cone in a strain softening material 

Von Mises material with strain softening given by equation (23) can be implemented in the 

FE analysis. However, the internal variable   needs to be tracked and updated in each time 

increment during the analysis. The material derivative of   can be written as: 

                                                   



 kkv

t
,


                                                  (28) 

where   is evaluated from the constitutive relations and the consistency condition.  

 

The operator splitting technique [32] can be used to solve the above equation. Equation (28) 

can be decomposed into sets of simple partial differential equation operators, which can be 

solved sequentially as follows: 

 

                                                     0, 






kkv
t






                                                     (29) 

 

The first set can be solved without considering the convective effect thus it can be evaluated 

in the same manner as in an updated Lagrangian analysis.  

 

The consistency condition requires that: 

                                         0:: 








 


 ff

f σ
σ

                                                 (30) 

 

where f is the yield function  and the stress increment is given by: 

                                           
σ

σ





g
DD ee   ::                                                  (31) 
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where eD  is the elastic stiffness matrix, g is the plastic potential and   is the Lagrangian 

plastic multiplier. In a von Mises material  can be taken to be equal to the plastic deviatoric 

strain rate (i.e. 
p

q   ) 

For a von Mises material with associated flow rule and strength softening according to 

equation (23), equations (29) and (30) can be re-written as: 

            0)1(
3

3 95/3

95

0 



 




 e

t
tGq remyy

tr



                                (31) 

 

 where q
tr
 is the trial elastic deviatoric stress lying outside the yield surface (i.e. plastically 

inadmissible stress) and  

                    G
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




                      (32) 

We can derive the above approximation by noting that 95  t  for small displacement 

increment (i.e. Dtv  0 ). Therefore,   is updated by: 

 

                             kk tvtttt ,)()(   
                                             (33) 

Figure 15 shows the results of the Eulerian Finite element analysis with strain softening yield 

criteria. The FE results are in good agreement with the upper bound solution. This 

demonstrates the consistency of the strain-softening formulation given by equations (28-33).  

 

 

Comparison with T-bar  

The upper bound based strain path method of Einav and Randolph [7] and the large-strain 

finite element analysis of Zhou and Randolph [31] show that the reduction in the limiting 

resistance of a T-bar embedded in a rate-independent material can be expressed as: 
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95/5.1

0

)1(
 Te

N

N
remrem

c

c 
                                            (34) 

where 0cN is the bearing capacity factor calculated for an ideal rigid plastic material. The 

parameter T
 reflects the average magnitude of shear strain undergone by soil elements 

passing through the velocity field around the T-bar. Zhou and Randolph [31] evaluated this 

parameter as 3.85.  

Figure 16 shows the effect of strain softening for the T-bar. The FE results were obtained 

using the mesh shown in Figure 5 with an outer radius R = 60r0. The stress integration was 

carried out using three Gaussian points per element. The FE results are reasonably consistent 

with Zhou and Randolph [31]. However, it should be borne in mind that the FE results were 

obtained here using the von Mises failure criterion and the softening parameter  is taken to 

be equivalent to the plastic deviatoric strain, while in Zhou and Randolph [31] the Tresca 

model was used and was taken as the plastic engineering shear strain.  

Figure 17 compares the effect of strain softening in the cone penetration test and in the T-bar 

as given by equation 34. The figure shows that the effect of softening in the CPT is much 

lower than for the T-bar. The reduction in cone-resistance is about 20 % of the reduction in 

T-bar resistance for the case of rem = 0.5.  

 

Conclusions  

A methodology for evaluating strains around steady-state penetrometers has been proposed. 

The key advantage of the proposed formulation is that the strain components can be 

calculated directly from the strain rate defined in terms of small strain theory.  Rather than 

building streamlines for back integration, as in the conventional strain path method, the new 

technique treats the domain as continuous with the associated field equations. There is no 

need to carry out the calculations in any topological order. All that is needed is to assemble 

the two matrices K and R given by equation (5). Another advantage of the proposed 

technique is that it can be integrated into the finite element calculations. 

 

The effect of strain-softening in the cone penetration test has been evaluated using two 

methods: (i) An approximate approach analogous to a classical upper bound solution, but 

with the velocity field obtained from a large-strain finite element formulation assuming a 
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perfectly plastic model. The reduction of soil strength is then estimated by mapping the 

contours of cumulative plastic strain. (ii) A large-strain formulation with strain-softening 

constitutive model. Both approaches give consistent results and show that the effect of 

softening is much less significant for the cone penetration test compared to T-bar penetration. 

The reduction in cone resistance due to strain-softening is about 20 % of the reduction in 

T-bar resistance for the case of a sensitivity index of 2.  
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Appendix I: Triangular elements 

The triangular local coordinates are denoted by 1 , 2 and 3 which satisfies 1321     

 (see Figure 18).   

 

The element mapping matrix ζ  is defined as: 
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which can be evaluated from the following system of linear equations: 
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where N is the shape function and 1iN . 
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Fig 1 ‘Simple pile’ geometry [5] 
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Fig. 2 Finite element mesh for simple pile problem (not to scale) 
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Fig. 3 Simple Pile: Comparison with analytical solution (r0/R = 2.00) 
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Fig. 4 Simple pile: Comparison with analytical solution (r0/R = 10.36) 
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Fig. 5 Mesh used for the SUPG formulation in the T-bar problem 
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(a) 

                          

  (b)                

Fig. 6 Contour of accumulative shear strain (a) analytical solution (Klar and Osman 2008) 

(b) SUPG formulation.  

Smooth contact Full bonding contact 
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(a)  = 1.0                                    (b)  = 2.0                             (c)  = 3.0 

 

        

(d)  = 5.0                                    (e)  = 10.0                                      (f) Exact solution  

Fig. 7 Effect of the smoothing parameter on the accumulative shear strain contours around 

a fully bonded T-bar.  
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Fig. 8 Finite element mesh for CPT analysis.  
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Fig. 9 Comparison between Eulerian and Lagrangian FE analysis of the CPT (Ir = 100). 
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Fig. 10 Effect of rigidity index on the cone resistance. 
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(a)                                                                         (b) 

Fig 11. Velocity field at steady state (Ir = 100) (a) streamlines (b) magnitude of velocity 
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Fig 12. Contours of the rate of plastic deviatoric strain normalised by v0/D (Ir = 100) 
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Fig. 13 Contours of the cumulative plastic deviatoric strain (Ir = 100) 
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Fig. 14 Upper bound solution for the effect of strain softening on cone resistance (a) Ir = 100 

(b) Ir = 300 
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Fig. 15 Effect of strain softening on cone test: comparison between FE and UB (Ir = 100)  
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Fig. 16 Effect of strain softening on T-bar test 
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Fig. 17 Effect of strain softening on cone test: comparison between CPT and T-bar 
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Fig.18 Triangular coordinates 
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Source Correlation between Ir 

and bearing capacity 

Numerical method used for deriving 

the correlation 

Nazem et. al  (2012) 2.32+1.69 ln(Ir) ALE 

Liyanapathirana (2009) 1.0+1.825ln(Ir) ALE 

Lu et al. (2004) 3.4 + 1.6 ln(Ir) RITSS 

Yu et. al (2000) 0.33+2.0 ln(Ir) Steady-state FE analysis 

van den Berg (1994)  Eulerian FE  

Whittle (1992) 1.51+2.0 ln(Ir) Strain path finite element 

(approximate geometry) 

Teh and Houlsby (1991) 1.25+1.84 ln(Ir) Strain path finite element  
 

 

Table 1: Effect of Soil rigidity index on the cone resistance 
 


