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Abstract
Density functional theory (DFT) has been used in many fields of the physical sciences, but none so
successfully as in the solid-state. From its origins in condensed matter physics it has expanded into
materials science, high-pressure physics and mineralogy, solid-state chemistry and more, powering
entire computational sub-disciplines. Modern DFT simulation codes can calculate a vast range of
structural, chemical, optical, spectroscopic, elastic, vibrational and thermodynamic phenomena. The
ability to predict structure-property relationships has revolutionised experimental fields such as
vibrational and solid-state NMR spectroscopy, where it is the primary method to analyse and
interpret experimental spectra. In semiconductor physics great progress has been made in the
electronic structure of bulk and defect states despite the severe challenges presented by the
description of excited states. Studies are no longer restricted to known crystallographic structures.
DFT is increasingly used as an exploratory tool for materials discovery and computational
experiments, culminating in ex nihilo crystal structure prediction, which addresses the long-standing
difficult problem of how to predict crystal structure polymorphs from nothing but a specified
chemical composition. We present an overview of the capabilities of solid-state DFT simulations in
all of these topics, illustrated with recent examples using the CASTEP computer program.
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1. Introduction

It has long been recognised that many materials properties are governed by their electronic structure,
yet only relatively recently has it become possible to simulate this behaviour with predictive
accuracy. Advances in electronic structure theory, improved software and substantial year-on-year
improvement in computing power have combined to make accurate materials simulations not only
possible, but almost routine. Such is the speed and accuracy of these ab initio simulations that they
have become an integral tool in most materials investigations, aiding the interpretation of
experimental data and guiding experimental design.

The unparalleled success of density functional theory (DFT) in explaining materials phenomena has
led to the concept of “materials by design” - the idea that for any given set of properties we can
predict novel materials that outperform any of the known “usual suspects”. Whilst achieving this lofty
goal fully may be some time away, DFT calculations can now predict a significant portion of the
properties for a given material. Given a modest set of elements, it is already possible to predict the
thermodynamically stable crystal structures; not only under ambient conditions, but spanning a vast
pressure range to terapascals and beyond.



Given a crystal structure, it is straightforward to compute its mechanical properties, including
acoustic wave propagation and elastic constants, the band-structure and density of states. It is also
possible to compute a wide range of spectral properties including optical and electron-energy loss
spectra (EELS), nuclear magnetic resonance (NMR), infrared (IR), Raman and inelastic neutron
scattering (INS). By computing the forces on each atom and the stress tensor, and propagating the
atoms and lattice vectors accordingly, it is also possible to simulate the evolution of the material
structure over a few hundred picoseconds. This enables the study of material dynamics and kinetics,
as well as the calculation of thermodynamic properties and ensemble averages.

2. Theoretical Background

A full quantum-mechanical treatment of a material would require the calculation of the system’s
many-nuclei, many-electron wavefunction; however the relatively large mass of the nuclei means that
for the vast majority of simulations their behaviour is decoupled from the electrons and they may be
treated as classical point-like particles (the Born-Oppenheimer approximation). In contrast to the
nuclei, the low mass of electrons means that a full quantum mechanical treatment is required to
understand their behaviour, but the computational complexity of the many-body Schrodinger
equation means that a solution is beyond current or foreseeable technologies for almost all materials
problems. However, density functional theory allows us to sidestep that computational difficulty by
focusing on the electron density, instead of the many-body wavefunction. The underlying principle of
DFT is that the total energy of the system is a unique functional of the electron density [1], hence it is
unnecessary to compute the full many-body wavefunction of the system. However the precise
functional dependence of the energy on the density is not known.

Kohn and Sham [2] transformed this DFT problem of computing the ground-state energy and
particle density of an N-electron system to that of solving a set of independent-particle equations.
These Kohn-Sham equations consist of N single-particle (3-dimensional) Schrodinger-like equations
with a modified effective potential, and are much easier to solve than the original (3N-dimensional)
many-body problem. The modified potential is itself a functional of the total particle density, and
contains a contribution from the quantum-mechanical exchange and correlation of the particles. No
expression for this exchange-correlation (XC) potential is known, but as it is relatively small
compared to the single-particle kinetic and Coulomb terms the fractional error arising from its
approximation is rather small. Nevertheless, the importance of this XC term cannot be
underestimated, as it is central to the success of DFT. The energy differences of chemical reactions,
bonding, etc. are small, so finding XC approximations which yield chemical accuracy presents an
ongoing challenge (see section 10).

The first general approximation for exchange and correlation was the local density approximation
(LDA) [2]. In the LDA the XC energy density at position r depends only on the particle density at
that point, n(r). This density-dependence must be the identical to that of a homogeneous electron
gas of the same density n"F9=n(r) and since this has been calculated accurately [3,4], it provides a
usable approximate density functional. An important property of any density functional is the
exchange-correlation hole, the region around any particle in which the probability of finding another
identical particle is reduced. This hole arises from the Pauli exclusion principle, and the total
reduction of the density of the other particles should equal -1; i.e. exactly one particle should be
excluded. The LDA satisfies this exclusion principle exactly, meaning that whilst the shape of the
LDA exchange-correlation hole is incorrect it has the correct spherical average [5].

Most extensions to the LDA include a dependence on the local density gradient as in the



generalised-gradient approximations (GGAs) including the PW91 [6] and PBE functionals [7].
These extensions preserve the spherical average of the exchange-correlation hole, often based on
the effect of weak perturbations on the homogeneous electron gas. GGAs systematically improve
the atomisation or cohesive energies of a wide range of molecules and solids [8] and correct the
LDA's severe overbinding of hydrogen-bonded solids [9]. However they are not a universal
improvement over the LDA as in both cases their accuracy relies on some cancellation of error,
which is system dependent. There are several approximations beyond the GGA; some commonly
used approximations include (i) meta-GGAs [10] where the laplacian of the density can be included
(in practical terms, this is expressed in terms of the laplacian of the wavefunction, ie. the kinetic
energy); (i) hybrid functionals where an empirical fraction (often around 20%-25%) of
Hartree-Fock exchange is included to obviate the band gap problem; and (iii) DFT+U where an
on-site Hubbard-U potential is included to enhance localisation of electrons, usually applied to the d
or f shells, which improve on magnetic properties of materials. The latter two of these methods will
be detailed in Section 3.

Once an exchange-correlation potential has been chosen, what remains is the choice of basis for the
single-particle wavefunctions. The inherent periodicity of crystals may be exploited by invoking
Bloch’s theorem to express the wavefunction as a periodic Bloch function multiplied by a complex
phase factor, whose wavevector is drawn from the first Brillouin zone of the reciprocal lattice.
Integrals over the Brillouin zone are approximated numerically, with Bloch functions sampled on a
discrete mesh of wavevectors often referred to as k-points. The smoothly-varying nature of
Kohn-Sham states means that for insulators and semiconductors a well-converged sampling density
can usually be achieved using a modest number of wavevectors. For metals however, the abrupt
change in the occupancy of each state with wavevector means that much denser grids are required.

It is convenient to represent the Bloch functions as an expansion in terms of some set of
mathematical basis functions, where the coefficients of the functions in this basis set are the primary
values used to build a computational representation. Several different families have been developed
for use in periodic solid-state calculations, including plane-waves, augmented plane-waves,
muffin-tin orbitals, numerical and mixed basis sets and a variant of the Gaussian basis sets commonly
encountered in quantum chemical codes with open boundary conditions. A detailed description of
all of these can be found in reference [11]. While many of these have been implemented in the
widely-used solid-state codes referenced in section 2.1, the most popular is the plane-wave basis

set [11,14]. Each Bloch state is expressed as a Fourier series whose basis states are plane-waves
whose wavevector is a reciprocal lattice vector. This has several key advantages over other basis

sets, whose functions are centred on atomic positions (referred to as localised basis sets): it reflects
the periodicity of an ordered material; it allows matrix elements to be computed efficiently and
straightforwardly; it is an orthonormal basis set; and perhaps most importantly its size (and therefore
accuracy) is controlled by a single parameter, the cut-off energy E_, or equivalently wavevector

G, The ground-state energy is variational with respect to G_,, which allows the accuracy to be
systematically improved simply by increasing G_,,. The main disadvantages are, first, that the number
of basis functions required is large compared to localised basis sets, which increases computational
cost, a particularly serious problem for the evaluation of the Fock exchange term as required by
hybrid exchange-correlation functionals. The second is the difficulty of representing sharp peaks in
the Kohn-Sham states, such as occur in the core regions near nuclei.

In the core regions the electron-nuclear Coulomb attraction is singular, and it is this singularity which
gives rise to the high wavevector, sharp peaks in the Kohn-Sham states. The Coulomb interaction
dominates the potential in these core regions, and the form of the Kohn-Sham states near a nucleus



is almost completely independent of the chemical environment. This environmental independence
means the states in the core region have a negligible contribution to the chemical or electronic
properties of a material, and it is not necessary to represent them or the Coulomb potential exactly.
This freedom may be exploited to improve the convergence of the computed Kohn-Sham states
with G_,, without loss of accuracy, by replacing the Coulomb potential in the core regions with a
smoother pseudopotential. This pseudopotential is constructed to reproduce the atomic scattering
properties and Coulombic form outside the core region, but is weaker and smoother inside. Figure 1
shows the Coulombic potential for a carbon atom along with an example pseudopotential, together
with the original s-orbital and the pseudo-s-orbital. Furthermore any core states (those localised
entirely within a core region) may be precomputed (the frozen core approximation), avoiding the
need to include them in the materials simulation explicitly. Further information on pseudopotential
theory may be found in reference [11].

Determining the plane-wave coefficients of the single-particle wavefunctions requires the solution of
the Kohn-Sham equations. These Schrodinger-like equations take the form of eigenvalue equations,
and could be solved in principle by constructing the Hamiltonian explicitly and diagonalising it or by
iterative methods. However the Hamiltonian is a density functional, and the density depends on the
wavefunctions. The Hamiltonian's implicit wavefunction-dependence transforms the Kohn-Sham
equations into non-linear eigenvalue equations. Instead of solving these non-linear eigenvalue
equations directly, the solution may be found efficiently using iterative diagonalisation techniques
[11,13,14]. One common method of solution is the self-consistent field (SCF) method, in which the
non-linearity of the Kohn-Sham eigenvalue equations is removed by solving them for a given,
approximate input Hamiltonian. The resultant Kohn-Sham states yield a particle density which is not,
in general, consistent with the input Hamiltonian but this density may be used to compute an
improved approximate Hamiltonian, and the states recalculated. This procedure may be followed
iteratively until the change to the Hamiltonian is negligible, the computed states and Hamiltonian are
(approximately) self-consistent, and the algorithm has converged to the ground state solution.

2.1 Simulation Software

The widespread use of DFT for solid-state simulations has only been made possible by the
development of robust, high-performance density functional computer programs. For a materials
simulation to have predictive power, the simulation software itself must be robust enough to provide
accurate results even when the modelled system is under extreme or unusual conditions, and fast
enough to perform simulations with a reasonable amount of computer time. With reasonable
computer power (~500 compute cores) DFT simulations may be performed routinely on systems of
hundreds of atoms, with calculations for thousands of atoms being demanding, but possible. It
should be noted that the methods described in this work require computational time that scales as
the cube of the simulation size for large systems (though see section 10.3).

The success of DFT in the solid-state has led naturally to a proliferation of computer programs able
to perform such simulations. The illustrations in this paper have been drawn from the authors’ own
research with the CASTEP computer program[15], but there exist many other capable, well-used
DFT programs for periodic solid-state simulations, including: ABINIT [16,17], CP2K [18], CPMD
[19], CRYSTAL [20], DMOL [21], FHI-AIMS [22], GPAW [23], Quantum Espresso [24],
SIESTA [25], VASP [26] and WIEN2K [27].

3. Band-gaps, defect levels and quasiparticles



Whilst the LDA and GGAs have been applied successfully to a wide range of materials for structural
and chemical properties, certain electronic properties, in particular the band-gap (or equivalently the
HOMO-LUMO gap) are not predicted reliably. Computing the band-gap from the Kohn-Sham
valence- and conduction-band eigenvalues underestimates band-gaps for most semiconductors,
insulators, and strongly correlated systems, notoriously predicting a metallic ground state for many
transition-metal oxides.

The electronic band-gap of a material may be defined as the difference between the electron affinity
(the energy of adding an electron to the system) and the first ionisation energy (the energy of
removing an electron from the system); each of these may be calculated using conventional DFT,
leading to the so-called delta-SCF method for band-gap calculation. However this is only directly
applicable to finite systems; for extended solids it would be necessary to calculate the effect of
addition or removal of a single electron from the infinite total. It might be thought that an equivalent
approach would be to compute the energy of removal or addition of an infinitesimal fraction of an
electron from a single periodic cell; but this yields exactly the same gap as the difference between
Kohn-Sham eigenvalues for LDA or GGA approximations. One of the deep results of DFT is that
when extended to fractional occupation numbers, the exchange-correlation potential as a function of
the electron count is discontinuous at the Fermi level [28]. This fundamental discontinuity in the
exact Vy. is precisely the difference between the Kohn-Sham and true band gaps, but is not
reproduced in LDA or GGA.

A major contribution to the band-gap error arises from the electrostatic electron-electron
contribution to the Hamiltonian. This energy is usually computed as the Hartree energy E,;, the
classical interaction of the electronic valence charge density n at a point r with that at r’, integrated
over all r and r’.
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Whilst this includes the correct Coulomb repulsion, by using the total density it also includes a
Coulomb repulsion between an electron and its own charge density. This spurious self-interaction
is exactly cancelled by the exchange term in some non-DFT methods such as Hartree-Fock theory
(discussed below), but it is only partially cancelled by LDA (or GGA) exchange. Residual
self-interaction is one of the most significant causes of the underestimation of the band-gap in LDA
(or GGA) based DFT calculations.

In many systems the self-interaction error has only a small effect on properties other than the
band-gap, but it can be a significant problem when simulating systems with localised electrons.
Because the self-interaction energy is always positive, it raises the energy of localised states and
favours delocalisation instead. This erroneous delocalisation is common in simulations with d- and
f-block elements, and can cause spurious metallisation or incorrect magnetic ground states. Many
methods have been proposed to mitigate against the self-interaction problem. The self-interaction
can be corrected directly by ensuring each particle only interacts with the density of the other
particles, usually using the so-called SIC method proposed by Perdew and Zunger [3].
Unfortunately the computational expense and technical difficulties inherent in this form of
self-interaction correction mean that it is used only rarely.

A second approach to removing self-interaction error is to use a method beyond DFT, for example



the GW method [29]. The name “GW” comes from the mathematical formulation of the problem
where “G” is the Greens function G(r,r’,E), W(r,r’,E) is the screened Coulomb interaction, and E is
energy; integrating over the product GW gives the XC interaction. The square of G can be thought
of as the probability of finding a pair of electrons at r and 1’ with energy E whilst W is often given by
an approximation of the inverse dielectric function. In this method the quasiparticle energies of the
material are obtained from a perturbative expansion of the electron self-energies and the dielectric
function. Not only is the GW method free from self-interactions, it also captures the true
non-analytic behaviour of V__ upon addition (or removal) of an electron. GW gives generally reliable
values for the band gaps of semiconductors and insulators, but suffers from major disadvantages. In
principle the GW equations ought to be solved self-consistently, but the calculations are so
computationally demanding that it is often only practical to perform a single iteration, which is known
as the GyW, method. Even this single iteration requires considerable computer power (typically two
to three orders of magnitude more than a DFT calculation), effectively restricting its application to
modest simulation sizes of a few dozen atoms, and as G)W,, only uses a single iteration the result is
dependent on the starting configuration. Furthermore neither forces nor stresses can be computed
straightforwardly within the standard GW approach, so it is not possible in practice to obtain the
atomic structure or crystal lattice of a material.

A third approach to correcting for self-interaction is the LDA+U or DFT+U method [30], which
introduces a repulsion between the localised electrons on a given atom. This repulsion can cause a
breaking of symmetry and lead to the opening of an insulating gap. The repulsive term is akin to that
in a Hubbard model and is usually referred to as the Hubbard U. Computationally, it is a low-cost
method for open shell systems that can also be used self-consistently for structural relaxations. The
inclusion of the Hubbard U term does not fix the self-interaction problem itself, but it can correct for
the resultant under-localisation of particles and incorrect magnetic structure.

DFT+U is a popular method for treating the effects of self-interaction, and it has been applied to a
wide range of materials. One recent application is in the Heusler alloy CoFe, ;Mn, ;Si [31], which is
a half-metal, meaning that the states at the Fermi level are completely spin-polarised. Half-metals are
of great interest for spintronics applications because an applied voltage causes a spin current to flow.
Furthermore half-metal-based heterostructures can be used to create spin valves, devices which can
switch to allow or forbid the transport of a single spin component. The underestimation of the
band-gap with LDA or GGAs causes a complete closing of the computed minority-spin band-gap in
CoFe, ;Mn, ;Si, predicting the material to be an ordinary metal and consequently of no use in
spintronics applications. However the inclusion of a small Hubbard U term (typically around 2 eV)
on the Fe and Mn d-states recovers the localisation, and opens up the minority-spin band-gap whilst
preserving, correctly, the metallic character of the majority spins (see Figure 2).

Many practitioners regard the strength of the Hubbard U term as a parameter of the simulation, and
DFT+U has often been used incorrectly as a method for widening the band-gap for general
semiconductors. Empirically fixing the band-gap for closed shell systems usually requires an
unphysically large Hubbard U, causing over-localisation and a flattening of the valence and
conduction bands. In this sense it might be thought that DFT+U calculations are semi-empirical,
rather than ab initio in nature; however Cococcioni and de Gironcoli [32] showed that the correct
value of the Hubbard U terms could in fact be computed using density functional perturbation
theory. This technique removes the empiricism, and ensures that the values used are physically
reasonable, though it is not straightforward to apply to materials with many different elements.

The final approach we shall discuss is Hartree-Fock and related methods. In Hartree-Fock (HF) the



nonlocal Fock (exact) exchange energy is not a density functional, but depends on the single-particle
states. This exchange exactly cancels the spurious self-interaction, but takes no account of electronic
correlation. The exchange itself is very long ranged, decaying only as 1/r, and is not screened leading
to unrealistically high excitation energies and a large over-estimation of the band-gap. A hybrid XC
functional is a combination of HF and LDA (or GGA) functionals, motivated by the observation that
HF over-estimates the fundamental gap and LDA or GGA functionals underestimate it. These hybrid
functionals yields a result intermediate between HF and DFT and consequently a more realistic gap.
More recent functionals such as the HSE class [33] contain a partitioning between long- and
short-ranged contributions, introducing screening into the HF term itself. All hybrid functionals
introduce at least one empirical parameter, the relative proportions of HF and LDA etc. which is
usually fitted to the properties of a molecular test set. Whilst these mixing parameters may give
reasonable results within the range of physical parameters to which they are fitted (often including
band gaps), the corresponding XC functionals are no longer fully ab initio and have diminishing
predictive power outside this range. Furthermore the optimum value of the mixing parameter
depends strongly on which property is being computed [34].

Whilst the key shortcomings of HF, namely the lack of screening or any correlation, can be
addressed with an ad hoc mixture of HF and LDA (or GGA), there is an alternative approach. In
screened exchange (SX) the screening is included by introducing an exponential damping to the
Fock exchange, with a characteristic screening length. The screening length could be considered a
free parameter, but as it has a physical meaning its value is usually approximated by a simple model
(e.g. the Thomas-Fermi screening length). The lack of correlation in HF may be addressed by
adding in the correlation contribution from an XC functional such as LDA, leading to the SX-LDA
approximation [35]. It should be noted that the computational cost of such HF-like functionals for
plane waves is significantly larger than for semi-local functionals (see section 2). Whilst the
computational time for large simulations scales approximately the same as an ordinary (semi-)local
DFT calculation, the absolute time required is an order of magnitude greater.

Many results of calculations using hybrid functionals have been published recently for solid state
systems. These have been used primarily in areas where excitation energies are important, for
example, in semiconductor science. In the following section we briefly outline a few examples.

4. Semiconductor physics/device technologies

DFT simulations are increasingly important in the field of device technologies, and used to study
everything from conventional CMOS devices to future devices based on half-metals, thermoelectrics
or multiferroics. Obtaining the correct band-gap for the constituent (doped/defect) materials is
essential to describe the functionality of these devices. Currently, within the DFT formalism,
(sometimes empirical) hybrid functionals have become the normal way of obtaining this. There are
various pros and cons involved in using the hybrid functionals, however here we will give some
successful examples and give more details on hybrid functionals, below.

Increasing device performance usually requires decreasing the size of the components, and for
transistors the size has now reached the quantum limit of the constituent materials, in that the
standard SiO, gate dielectric is so small that the electrons can tunnel. To limit this excessive leakage
current higher dielectric constant materials such as HfO, are now being used, but these high-k
materials have a higher defect concentration leading to large electron/hole trapping, lower mobility,
changes in threshold voltages and other sources of instability. Therefore it is crucial to understand the
electronic structure of the defects and the processing conditions required to minimise their
concentration. This requires accurate, predictive electronic structure calculations, including excited



states and semiconductor defect energy levels, for which screened exchange is well-suited [36].

In the case of HfO,, screened-exchange calculations showed the oxygen vacancy gives rise to
defect levels near the conduction band edge of silicon (see Figure 3) so it was determined that this
defect was the main charge trap in HfO,:Si interfaces. For HfO, to be used successfully in new
devices, such defects must be passivated using an oxygen rich processing technique.

The accuracy of screened exchange is not limited to high-k dielectrics like HfO,, indeed SX gives
reasonable band gap energies across a range of semiconductors and insulators (see Figure 4). This

is particularly important for determining defect levels, which are crucial to describing electrical
transmission in device materials. The LDA or GGA band-gaps are too small, and defect levels are
incorrectly situated in the gap; this is disastrous when attempting to model defect semiconductors for
device technologies. Furthermore, this incorrect electronic structure can lead to incorrect geometries
of defects. Hybrid XC functionals can correct such errors, for example in the charged defect states
of ZnO (see Figure 5). Whilst hybrid functionals are generally improvements over LDA and GGA:s,
there are significant differences between the different variants with SX and HSE out-performing
other hybrids (particularly B3LYP) for some semiconductor defect states and structures [37].

5. Computational Experiments

With the power to compute the total energy of a particular atomic configuration comes the ability to
experiment computationally with the system. This experimentation allows the exploration not only of
known structures and mechanisms, but also of possible alternatives. For example it was long thought
impossible to grow thick films of polar materials such as magnesium oxide (MgQO) in their polar
direction; each atomic bilayer adds another dipole, raising the electrostatic energy which becomes
arbitrarily large as the film grows. When such growth is attempted experimentally in ultra-high
vacuum, the films are of poor quality with surface reconstructions, dislocations, islands and other 3D
growth phenomena. In contrast, Lazarov ef al. [38] used DFT simulations to show that perfect film
growth is possible in the presence of hydrogen. The hydrogen passivates the oxygen-terminated
MgO (111) surface, leading to a hydroxylated surface, but when another Mg layer is added the
hydroxyl group splits and the hydrogen moves up to the new surface. Furthermore the hydrogen
does not remain over the oxygen atom, but moves across to the next site in the crystallographic
stacking, exactly where it is needed to terminate the next oxygen layer (see Figure 6). Thus a perfect
bilayer of MgO can be added to a seed crystal without any problems with the electrostatic energies.
This finding has been confirmed experimentally by the growth of thick, ordered MgO films whose
X-ray photoelectron spectra (XPS) show a significant OH-peak throughout the growth process.

When modelling the polar oxide growth, the structure of the existing MgO seed layers was well
known and the study focussed on the growth mechanism itself. However such computational
experiments need not be restricted to variations of known structures and growth mechanisms, and
this becomes crucial when studying new materials or even well-known materials under unusual
conditions. The challenge of predicting the atomic structure from first principles is the topic of the
next section.

6. Atomic structure

Understanding how atoms are arranged in a material, and the implications for its properties of that
arrangement, is central to modern science and technology. The discovery and development of new -
stronger, cheaper, lighter, more functional - materials is important to maintain the steady
technological progress to which we have become accustomed. It is increasingly recognised that
theory and computation plays a key role in materials discovery.



The challenge of computational materials discovery is fundamentally combinatorial in nature - there is
no hope of the complete enumeration of the entire chemical, compositional and configurational
materials space. Despite this, the computational exploration of materials space offers advantages

over a purely experimental attack.

Finding the most stable (lowest in energy or free energy) structure of a large assembly of atoms is a
very difficult problem. Whilst many well-established methods exist for optimising a given structure to
find the local energy (or enthalpy, at pressure) minimum, predicting the most stable structure of all
possible structures requires a global optimisation method. Furthermore, only fully quantum
mechanical calculations are sufficiently reliable to deliver the level of accuracy required because of
the wide range of inter-atomic bonding that may be encountered during the searches. First-principles
DFT methods offer a high-level description of the electronic structure at a cost that is affordable for
the many thousands of structures that must be considered in the course of a reliable search.

Many global optimisation strategies for performing first principles crystal structure prediction have
been advocated, ranging from simulated annealing [39] and genetic/evolutionary algorithms [40-43]
to minima hopping [44] and particle swarms [45]. A particularly straightforward, and powerful,
approach is Ab initio random structure searching (AIRSS) [46,47]. In the AIRSS approach

random structures are generated - the type of atoms, and the number of them, may be specified, or
themselves selected at random. These atoms are then placed randomly in a unit cell (if a crystal is
desired) of random shape, but with volume chosen to give approximately the correct starting density.
A large ensemble of such random initial structures is generated, and each one is structurally
optimised (using first-principles DFT) to minimise the atomic forces and cell stresses. Each initially
random structure is therefore moved to a nearby local energy (or enthalpy) minimum. The
calculations may be performed one after each other, but this problem is very well suited to
high-throughput computation - where each random structure is independently optimised on a subset
of the total compute cores. The greatest throughput can be obtained if a single core is used for each
structure, as there is no parallel communication cost. However, this communication cost is small
between compute cores within a single compute node or workstation, so parallelising the
optimisation of each structure over a multicore compute node is reasonable and returns initial results
speedily. Because each initial random structure is uncorrelated with all the others, if the few most
stable (lowest energy/enthalpy) structures are found repeatedly in the searches a degree of
confidence that they represent true global minima is obtained. The number of times a given structure
is found is proportional to the volume its basin of attraction occupies in the configurational
hyperspace. The initial structures need not be entirely random - rejecting candidates where the
atoms are too close to each other (or far apart) improves the stability of the electronic energy
minimisation and encourages the formation of connected structures rather than isolated fragments,
and can space the different species out appropriately. These “random sensible structures” may be
constructed so as to be clusters, defects, surfaces or built from molecular units. The use of symmetry
allows more complex materials to be explored, and experimental constraints can be applied in
combined experimental/computational structure determinations. As shown in Figure 7, if AIRSS is
applied to a range of compositions the thermodynamically stable ones can be predicted through the
convex-hull plot, or Maxwell construction.

AIRSS has been applied extensively to the study of matter at high pressure, where the ability to
predict structure in an unbiased manner is particularly valuable given the challenges that experiments
face, and the deficiency of standard chemical intuition. Early predictions of the structure of silane
(SiH,) [46] and alane (AlH;) [51] were rapidly confirmed by experiment. The mixed phases of



dense hydrogen (computationally) discovered as part of a study of the phase III of hydrogen [52]
have also been recognised recently [53-55] to be an excellent structural model of the room
temperature phase IV of hydrogen [56]. Further predictions remain to be confirmed, or otherwise,
such as an 1onic form of ammonia (NH,) at megabar pressures [57]. There is no reason to expect
that DFT is inaccurate at extremely high pressures, and so first principles structural searches can be
used to explore the nature of matter at densities well beyond those routinely studied experimentally,
but relevant to planetary science and within range of the latest generation of shock experiments.
Through the application of AIRSS, unexpected phase transitions have been predicted in iron [58],
carbon [59] and oxygen [60] at pressures up to 1 PPa. Aluminium was predicted to undergo a
transition to a complex, incommensurate, host guest phase at around 3 TPa [61]. This
simultaneously led to a significant revision of the equation of state of aluminium (which is an
important reference material for shock experiments) and revealed an unexpected richness of
structure at extreme densities, stimulating considerable experimental activity. The complex structure
of aluminium was rationalised in terms of a transition to an electride phase which, as described in
Figure 8, led to the successful search for new kinds of elemental magnetism [61,62].

7. Phonons and Vibrational Spectroscopy

The study of the dynamical properties of atoms in the solid state is founded on the theory of lattice
dynamics. In contrast with the liquid state, atomic motion is primarily vibrational in character and
well described as collective oscillations about the equilibrium crystal structure. The theory of lattice
dynamics in various refinements has been amply demonstrated to quantitatively describe the thermal
properties of solids including specific heat, elasticity, thermal expansion and other thermoelastic
properties. It extends to the description of solid-solid phase transitions, for the thermal entropy term
in calculations of phase equilibrium at first-order transitions, and it forms the core of the theory of
soft mode behaviour in second-order, displacive phase transitions. The lattice dynamical description
captures much of the essential thermal physics across a very broad range of crystalline solid-state
materials.

The excitations which appear in the quantum theory of lattice vibrations - phonons - typically have
an energy scale of 1-500 meV (8-4000 cm™). and a variety of low-energy spectroscopy techniques
have been developed and refined for their study. This includes not only the optical probes of infrared
and Raman spectroscopies, but also inelastic neutron and more recently inelastic X-Ray techniques
which couple to short-wavelength phonons and are thereby able to reveal the dispersion within the
Brillouin zone characteristic of crystalline solids.

Lattice Dynamics theory is an ideal match to DFT methods developed for the solid state. Both
formulate their respective Hamiltonians using Born von Karman periodic boundary conditions based
on the crystal unit cell. In its quantum formulation, lattice dynamics uses the Born-Oppenheimer
approximation as does DFT, and the quantum nuclear problem elegantly maps onto a classical
description of nuclear vibration (at least within the harmonic approximation). Most significantly, a
system-specific set of force constants can be determined using DFT calculations of the response of
that system to a perturbation from its equilibrium structure. Solid-state DFT calculations can thereby
be used to parametrise the lattice dynamics description of a specific crystalline material by
calculating the matrix of force constants from an LDA or other DFT Hamiltonian.

Ab initio lattice dynamics (AILD) was conceived and implemented early in the history of solid-state
DFT [63,64] and has subsequently developed into a powerful, general and mature computational
technique. Since the 1990s, AILD has been used in many thousands of studies across the solid state
sciences. It is not the purpose of this article to review either the technical details of the methods or



the wide scientific literature of applications. For that we refer the reader to the book of Richard
Martin [11] and the review article by Stefano Baroni ez al. [65]

More recently, AILD has become an indispensable adjunct of experimental studies using inelastic
neutron scattering (INS), inelastic x-ray scattering (IXS), infra-red (IR) spectroscopy and Raman
spectroscopy to probe vibrational spectroscopy. Most spectroscopy experiments yield a cross
section as a function of frequency, such as ir absorptivity, with peaks corresponding to the
fundamentals and overtones (one and higher-order phonon processes). The magnitude of this cross
section is a property of the response of the electrons in the system to the incoming radiation (except
for neutrons where the interaction is entirely nuclear) and can also be calculated using DFT-based
methods[65]. But experiments with powder samples (by far the most common case) yield no
information on the atomic displacements associated with a peak, making identification and
assignment of the modes a difficult and error-prone process. Even with single crystal samples it is
only in rare cases that any information on the mode eigenvectors is obtained. By matching a
calculated spectrum against the experimental one, the atomic displacements and symmetry
associated with each peak can be identified. While non-periodic DFT is also used with gas- and
liquid- state spectroscopy, it has become particularly indispensable for solid-state studies due to the
greater difficulty of mode assignment. The variety of chemical bonding and co-ordination
environments found in many crystal structures, and the more comprehensive sampling of the periodic
table in systems of interest to solid-state physicists, mean that simple models for assignment based
on known structural motifs are simply not available or are unreliable. Indeed there are many
instances in the literature of incorrect assignment which has only been corrected with the aid of an
AILD calculation [66].

Buckminsterfullerene - C, - was the first of the "new" polymorphs of carbon to be discovered,
before nanotubes and graphene and its rich set of physical and chemical properties have inspired a
multitude of experimental and theoretical investigations. However a definitive analysis of the
vibrational spectrum of either the molecule or the solid was lacking until very recently, with
uncertainties remaining over the mode assignment even for the molecule. One of the main reasons for
the incomplete success of the previous studies was the attempt to compare gas-phase DFT
calculations with experiments on solid-state samples. Using the DFPT implementation of AILD in
the CASTEP code [67] a series of calculations was performed in close collaboration with an
experimental programme of infrared, Raman and inelastic neutron scattering (INS) experiments
resulting in a definitive account of the entire vibrational spectrum of the low-temperature Pa3
structure and almost all of the observed spectrum of the high-temperature phase [68]. The most
powerful of these spectroscopic experiments was inelastic neutron scattering, because there are no
silent modes due to selection rules unlike infrared and Raman scattering.

The low-temperature ordered Pa3 phase (T<260K) contains 4 C, units - 240 atoms - in the unit

cell which means that a complete AILD calculation was only feasible by using massive parallelism in
order to exploit the large amount of CPU power available on national high-performance computing
facilities. A librational mode (ie a molecular rotation) of frequency 31.7 cm™ at a wavevector of
(1/3,1/3,1/3) is illustrated in Figure 9. The content of the periodic solid-state calculation is richer
than the gas-phase calculation not only by the inclusion of dispersion and external molecular modes,
but also the shifts and factor-group splitting of the molecular-like modes by the crystalline
environment. These advantages resulted in a prediction of the INS spectrum in remarkable
agreement with experiment (Figure 10) including a quantitative match of the peak intensities as well
as positions. Consequently it was possible to definitively assign the entire spectrum, resolving all
ambiguities in previous studies.



Above 260 K buckminsterfullerene undergoes a phase transition to a Fm3m structure containing just
one C, per unit cell. The higher symmetry arises from complete rotational disorder of the molecules,
which is dynamic in nature. While this disorder can not be modelled in directly in the periodic AILD
framework, it proved an excellent approximation to impose an artificial orientational order and to
model the system in a Fm-3 ordered structure containing one C,, unit. Consequently it was possible
to compute the Raman spectrum in the internal molecular energy range including the electronic
contribution to the scattering cross section. The comparison with the experiment is shown in Figure
11, which demonstrates excellent agreement of frequencies and rather good agreement of peak
intensities. This calculation correctly predicted a triply degenerate librational mode of imaginary
frequency, indicating a structural instability which is clearly the origin of the nearly-free molecular
rotation observed above 260K. The limitations of the artificial Fm-3 model were more evident in the
comparison with the infrared absorption spectrum where additional, small, peaks not predicted by
the calculation were present. It is likely that their origin lies in the orientational disorder, which
breaks the periodic lattice symmetry, lifting the selection-rule absence of what are zone-boundary
modes in the Fm-3 model.

8. Molecular Dynamics

While many of the thermodynamic and thermoelastic properties of crystalline solids are very well
described by ab initio lattice dynamics, this approach is limited to ordered systems with
predominantly vibrational motion. In particular glasses and high-temperature behaviour involving
transport such as fast-ion conductors and orientationally disordered molecular crystals lie beyond its
scope. Nor is the treatment of anharmonic effects straightforward where quantum nuclear dynamics
is manifest. In these circumstances the natural route is to exploit the power of molecular dynamics
(MD) and the ergodic theorem.

Within the CASTEP computer program, there are two fundamentally different approaches to MD:
Born-Oppenheimer MD using classical equation of motion and Path-Integral MD using the Feynman
path-integral approach to quantum mechanics. A full explanation of these and other related ideas,
such as Car-Parrinello MD, can be found in the textbook by Marx and Hutter [69].

In the Born-Oppenheimer approach the electronic energy is minimised at each new MD
configuration, so that the system evolves along the Born-Oppenheimer potential energy surface with
ab initio forces derived within DFT. It is an advantage of this approach over Car-Parrinello MD,
that the same approach works equally well for metals and insulators.

The Feynman path-integral approach (PIMD) is used to include a quantum treatment of the nuclei in
addition to the DFT treatment of the electrons. This approach is based upon the isomorphism
between finite temperature quantum mechanics and statistical mechanics where each quantum
particle is replaced by a classical ring polymer. We can then use PIMD to sample configurations of
this system of ring polymers and hence calculate finite temperature quantum expectation values, so
that effects such as quantum delocalisation, zero point motion and tunnelling are accurately included.
Recent developments such as centroid-PIMD and ring-polymer PIMD go beyond this to do true
quantum dynamics.

With either MD approach, we need to choose which statistical mechanical ensemble to work in, as
that dictates the equation of motion to use, and the range of physical observables that can be
measured over the trajectory. Within CASTEP, the available ensembles are: NVE (the
microcanonical ensemble); NVT (the canonical ensemble); NPH (iso-enthalpic calculation - not a



true ensemble but useful for doing 2-phase coexistence studies); and NPT (isothermal-isobaric
ensemble).

In general, PIMD requires considerably more computer power than conventional ab initio MD, and
so its major uses so far have been on systems for which quantum properties of the ions (not just the
electrons) are expected to be important, e.g. those containing hydrogen. Recent studies have looked
at the wetting of metal surfaces [70] and the phase diagram of cold solid hydrogen [71].

In the case of cold solid hydrogen, earlier work using the AIRSS approach with CASTEP [52] had
suggested some interesting new candidate structures for the high-pressure phases. Obviously, the
quantum effects of the hydrogen nuclei are expected to be important, so in this early work the basic
enthalpy of each structure was calculated for each geometry-optimised structure and then a
quasi-harmonic zero-point energy was calculated, and the combined energy was then used to
evaluate the stability of the different structures with pressure. In the more recent work of Li et al.
[71], the PIMD technique was used with the AIRSS candidate structures to include the thermal and
quantum effects rigorously. In addition to calculating the structure and energies, GW theory was
used to calculate the optical response, in order to determine at which pressure the different
candidates went transparent (300 GPa according to experiment). The variation of IR and phonon
modes with pressure was also calculated and compared to experiment. The conclusion was that the
P2, /c-24 structure, which is a rotationally restricted phase based upon a large hcp-type unit cell
(with 24 atoms in the primitive cell) is the best candidate so far for Phase II, and a layered structure
with C2/c symmetry is most plausible for Phase III. Figure 12 shows the representative centroid
configurations of the P2, /c-24 structure at 80 GPa (phase II) using both conventional ab initio MD
and also PIMD. The comparison of hydrogen and deuterium illustrates the relative importance of the
quantum and thermal effects. Deuterium at 50 K (either with or without PIMD) has restricted
rotational motion, whereas hydrogen at 50 K (with PIMD) and deuterium at 150 K (with PIMD)
rotate freely.

9. Other spectroscopies

Solid-state Nuclear-Magnetic Resonance (NMR) is a powerful probe of structure and dynamics on
the atomic scale. The past decade has seen significant advances in this technique both in terms of
hardware and methodology, for example the availability of high-field magnets with field strengths up
to 23.5 T, rotors for performing magic-angle spinning up to 70 kHz, and sophisticated
radio-frequency pulse sequences to extract correlated spectra. While NMR is a spectroscopy of the
nuclear spins, the observed spectrum is influenced by a number of interactions mediated by the
electronic structure of the material, i.e. the chemical shift, indirect spin-spin (or J) coupling and, for
quadrupolar nuclei (eg *H, '’0), the electric field gradient. All of these interactions can be computed
for solid materials using DFT and such calculations are now widely used in the solid-state NMR
community for the assignment and interpretation of experimental spectra [72]. Calculations play a
further role in guiding the design and optimisation of new experiments.

NMR often provides complementary information to diffraction based studies; NMR is a probe of
short-range order whilst diffraction relies on longer range order. NMR is hence of particular
importance when a material is amorphous, or exhibits some degree of disorder. NMR can also be a
sensitive probe of dynamics in a material. For these reasons there is increasing use of the
combination of both solid-state NMR and diffraction experiments together with first-principles
calculations for materials characterisation.

An interesting illustration is given by the simple sugar galactose [73]. Three crystal structures can be



found in the literature, each one has the same crystal symmetry but a different arrangement of atoms.
After an initial optimisation of the atomic positions in which the total energy and forces on the atoms
are minimised, it was found that two of the structures had relaxed to the same final structure and
were thus equivalent. This equivalence leaves only two distinct structures each with a different
hydrogen-bonding network. By comparing the computed proton NMR spectra with that measured
experimentally it is clear that only one of the two possible structure is consistent with experiment.
Hence it was only with combination of diffraction, NMR spectroscopy and first-principles
simulations that the correct crystal structure could be identified (Figure 13). One area of application
is in the area of pharmaceuticals in which there are commercial and regulatory requirements to
identify all possible polymorphs, salts, and hydrated forms of a given drug molecule. Often such
compounds do not form sufficiently large crystals for single-crystal diffraction to provide a complete
characterisation of the crystal structure and the combined approach is vital.

Simulations have an important role to play in the interpretation of NMR experiments on materials
that are not fully ordered. A recent example is the study of layered double hydroxides (LDH), a
family of anionic clays of considerable interest as host structures for drug delivery systems,
nanocomposite materials, or for catalysis [74]. The physicochemical properties of a particular LDH
are believed to be determined by the nature of its cationic ordering. Cadars et al. [74] studied the
nature of the Al/Mg ordering in LDHs. In these materials X-ray diffraction provides no information
on the local ordering of the cations. However, using high-field magnetics and very fast magic angle
spinning it was possible to record 'H and ?’Al NMR spectra with clear spectral features.
First-principles calculations were then used to assign these features and hence provide a quantitative
description of the various defect moieties present in the samples (Figure 14).

Turning briefly to other spectroscopic techniques, first-principles calculations have been applied to
the study of electron paramagnetic resonance (EPR) for example phosphorus defects at the Si/SiO,
interface [75] and hydrogen vacancies on a silicon surface.[76]

First-principles calculations have also been extensively applied to interpret electron energy loss
(EELS) measurements - many (scanning) transmission electron microscopes are fitted with an EELS
spectrometer. EELS provides a method of probing the bonding within a material. Depending on the
energy range examined the processes involved include excitations of core electrons into the
conduction states, and plasma excitations of the valence electrons. DFT has been shown to be
sufficient to interpret EELS spectra of a wide range of materials. It is a particularly important
technique for the study of nanomaterials as the latest generation of STEMs can obtain high-energy
resolution EELS at atomic-level spatial resolution. As an illustration, CASTEP was recently used to
predict the change in the carbon K-edge spectrum (an excitation of the 1s electron) due to the
presence of a substitutional nitrogen defect in graphene (Figure 15). The calculations predicted a
pronounced shoulder to the sigma* peak for the carbon atom directly bonded to the nitrogen.
Carbon atoms greater than three bonds from the defect were shown to have spectra essentially
identical to pristine graphene. These subtle changes were subsequently observed [77] in STEM
EELS measurements on N-doped graphene, providing direct evidence of the N-C bond.

10. Current challenges

The plane-wave method described in this paper provides an excellent balance between accuracy
and computational cost, and has been applied successfully to model a wide range of experimental
phenomena. Nevertheless there remain several challenges for DFT and its applications in the future,
some scientific and others technical in nature. Here we highlight three specific issues: exchange and
correlation; dispersion interactions; and the application of DFT to large solid-state systems.



10.1 Exchange-Correlation

There is now a large zoo of ab initio XC functionals to choose from when performing density
functional calculations, including GGAs, meta-GGAs, hybrid functionals, Hubbard-U parameters,
and many more. Although a DFT calculation with any particular choice of XC functional may be
considered ab initio, this freedom in the choice of functional naturally leads to many practitioners
deciding which is best for a particular simulation, and therefore introducing an element of
empiricism. Since there is no known universal functional, nor even a framework in which to improve
XC approximations systematically, the performance of an XC functional may only be tested by
comparison to simple model systems, known experimental results or high quality, computationally
intensive “post-DFT” quantum chemistry calculations.

The success of DFT with (semi-)local functionals such as LDA and GGAs is that it gives reasonable
accuracy for a large set of material properties for reasonable compute costs (we intentionally leave
“reasonable” ambiguously defined). The predictive power of such simulations arises precisely
because they are ab initio, with no free parameters and therefore no way in which the

computational scientist could have influenced the simulations’ outcomes. However these functionals
are not universal, and where they fail to describe a material with sufficient accuracy there is little
choice but to turn to the aforementioned functional zoo. Since it is not possible for the materials
scientist to try every functional to see which suits their particular application best, these DFT
simulations require some a priori knowledge of the XC functional’s range of validity and
approximate accuracy for a specific property - essentially a choice based on knowledge, experience
and comparison to experiment; this may yield useful insights into the system under study, but the ab
initio philosophy is lost and some of the predictive power with it.

The challenges for XC approximations in the future thus come in two categories: (i) can the
researchers working in the fundamental properties of DFT (the XC researchers) find a “more
universal” functional [78]? Are there other properties of the exact XC functional that can be used to
improve present approximations? This search is still ongoing, though with the occasional incremental
improvement in the quality of some material property predictions; (ii) can specific physical or
chemical mechanisms be identified which are not captured properly in standard XC approximations?
The identification of these mechanisms sheds light on the validity of XC functionals, and also paves
the way for the shortcomings to be addressed. Indeed it was just such an identification which led to
the DFT+U methodology, and as will be seen in the next section there is at least one other
mechanism lacking; one whose treatment has become an active research area in recent years.

10.2 Dispersion interactions

One area where DFT has traditionally struggled is in the treatment of dispersion interactions (such as
van der Waals) as they are both non-local and dynamical in origin. This has become something of a
“hot topic” of research in recent years, with a number of different approaches being promoted by
different groups, including semi-empirical correction schemes (usually a functional of the form D(r),
where r represents spatial coordinate), non-local density functionals (of the form D(r,r’)), and
many-body schemes such as the Random Phase Approximation (RPA) (of the form D(r,r,E), where
E is energy). These schemes differ dramatically in computational cost, with the semi-empirical
schemes being effectively free at the one extreme (compared to the cost of the overall DFT
calculation), and the RPA being very costly at the other; the computational cost rises quickly with
the “dimensionality” of the functional. Unfortunately the increase in computational cost is not always
rewarded by quantitatively superior results, and it is often found that the semi-empirical schemes are
good enough for practical purposes. A recent review article by Bjorkman et al. [79] summarises the



performance of a range of different approaches to dispersion interactions.

10.3 Large simulations

The descriptive power of the plane-wave DFT method, coupled with the dramatic increase in
available computational resources, has led to DFT being applied to ever-larger simulation systems.
However for large simulations (~10° atoms), the computer memory required by a conventional DFT
simulation scales as the square of the simulation size. Furthermore the computational time required
scales as the cube of the system size. Whilst available computer power continues to increase, it is
attained for the most part not with faster compute cores, but with more compute cores. To address
large physical and chemical problems, or even move into the molecular biological sciences, is likely
to require simulations to run on hundreds of thousands, if not millions of cores. Not only does this
present an extremely difficult challenge for the parallel scaling of the DFT software, particularly any
parallel Fourier transforms, it also presents new problems. As the number of cores involved in a
calculation increases, the probability of a core failing increases combinatorially; in fact in a calculation
involving a million cores for many hours, it is likely that one or more cores will fail during the course
of the simulation. This requires a new consideration in the design of DFT programs: the capability to
detect and recover from severe hardware faults such as core, memory or network connection

failure. Such fault tolerant computing is already crucial for key computer server software and is an
active area of research in Computer Science, but its impact has not yet spread widely in
computational science simulations. It is vital that such fault tolerant techniques and algorithms are
used in DFT software for the future if it is ever to make full use of exascale computers and beyond.

An alternative approach to the problem of large simulations is that of linear-scaling DFT. The
Kohn-Sham equations can be reformulated in terms of the density matrix, n(r,r’), and for systems
with a band-gap this density matrix decays exponentially with |r-r’|. This exponential decay with
distance means the density matrix is diagonally dominant, and can be truncated safely beyond a
specified cut-off radius. By only storing the non-zero elements of the density matrix and careful use
of iterative matrix methods, both the computer memory and time required for a large DFT
calculation can be made to scale linearly with simulation size.

For extremely large calculations, this improvement of the scaling by two orders reduces the
computational time dramatically. However linear-scaling methods are relatively new compared to the
established plane-wave methods, and they are inherently more complex. At present conventional,
cubically-scaling methods out-perform linear-scaling computations for the vast majority of solid-state
simulations; the notable exception is for systems with large vacuum regions (e.g. isolated nanowires),
where linear-scaling methods can already surpass the performance of standard DFT simulations for
relatively modest simulation sizes.

Linear-scaling DFT is an area of active research in computational physics, with the performance of
the simulations improving steadily, especially on parallel high-performance machines. Historically,
linear-scaling implementations were restricted to basic ground state energy and density calculations,
but this has also improved in recent years with geometry optimisation and molecular dynamics (see
Section 8) becoming available. The user-friendliness of the programs has also been improved, with
the developers of linear-scaling codes such as CONQUEST [80,81] and ONETEP [82] seeking to
increase and broaden their user base.
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Figure captions

Figure 1: (Left) The Coulomb potential (dashed line) and an example pseudopotential (solid line)
for a carbon atom, along with the corresponding radial components of the 2s-orbital. The potential
and pseudopotential match beyond r,, as do the computed wavefunctions (right).

Figure 2: The density of states around the Fermi level (dashed line) for the half-metal Heusler alloy
CoFe, ;Mn, ;Si computed using PBE (top) and PBE+U (bottom). With the PBE

exchange-correlation functional the system is predicted to be fully metallic, whereas the inclusion of a
modest Hubbard U (U=2.1 eV) opens up a band-gap for the minority spins. Adapted with

permission from Hasnip et al. [31]. Copyright 2013, American Institute of Physics.

Figure 3: Defect levels in HfO, arising from oxygen vacancies (V) and interstitials (I) in a variety of
charge states. The top valence band (VB) and bottom conduction band (CB) are shown for

reference. The short lines show the energy level position within the gap and the dots show electron
occupancies. On the x-axis, V indicates ‘vacancy’ and I ‘interstitial” with the superscripts showing
the defect charge state. Reprinted with permission from Xiong et al. [36]. Copyright 2005,

American Institute of Physics.

Figure 4: A comparison between the computed band-gap from a screened-exchange (SX) DFT
calculation (blue), an ordinary PBE DFT calculation (green) and the experimental band gap for a
variety of materials. Reprinted with permission from Clark and Robertson [35]. Copyright 2010 by
the American Physical Society.



Figure 5: Gap eigenstate of the charged oxygen vacancy and zinc vacancy in ZnO. The coloured
contours show the charge density associated with the defect state ranging from low electron density
(blue) through to high electron density (red). Reprinted with permission from Clark et al. [37].
Copyright 2010 by the American Physical Society.

Figure 6: The potential energy surface experienced by a hydrogen atom on a MgO (111) surface
during layer-by-layer growth. MgO has a rocksalt structure, with an A-B-C stacking sequence

along (111); initially the surface is OH-terminated (site B, with the Mg sublayer at site A), but as the
next Mg layer is deposited (at site C) the OH dissociates and the H atoms rise to the new surface
and move across to the potential energy minimum. This energy minimum is at site A, the next site in
the MgO stacking sequence. Adapted with permission from Lazarov et al. [38]. Copyright 2011 by
the American Physical Society.

Figure 7: Thermodynamically stable compositions can be predicted using a convex-hull plot (or
Maxwell construction more generally). In this case, A is hydrogen, and B is carbon. At ambient
pressure the stable compositions are predicted to be H, (x=0), CH, (x=0.2) and C (x=1, graphite).
At 10 GPa further compositions become thermodynamically stable, including polyethene and the
predicted (and experimentally confirmed) graphane.

Figure 8: Discovery of novel magnetism in the elements. (Left) Ferromagnetism is confined to the
elements highlighted in red, promoted by narrow 3d and 4f bands. Many elements, such as
aluminum [61], become “electrides” at high pressures - the valence electrons are squeezed between
the atomics cores, localising them and leading to band narrowing. Could this localisation lead to
unexpected ferromagnetism? Extensive spin unrestricted searches over many elements in the
periodic table, at a range of pressures, were performed. The alkali elements highlighted in blue were
revealed to exhibit (weak) ferromagnetism. (Right) Potassium (purple) adopts the simple cubic
structure at about 20 GPa, and is a ferromagnetic electride [62]. The spin-density isosurface is
shown in green. Nearly one electron spin-polarised is localised in the centre of the cubic cell, leading
to a CsCl crystal structure with the electron playing the role of the anion. Adapted with permission
from Pickard and Needs [62]. Copyright 2011 by the American Physical Society.

Figure 9: Visualisation of the eigenvectors of a 31.7 cm™ phonon mode with a wavevector
q=("5,7,"3) from a DFPT phonon calculation of the Pa3 low-temperature phase of C,. “External”
librational modes such as this one emerge from exactly the same crystalline periodic lattice dynamics
formalism as “internal” molecular deformation modes. Reproduced with the permission of the PCCP
owner societies from Parker et al. [68].

Figure 10: Inelastic neutron spectra of the internal modes of Cg, in the Pa3 phase recorded at the
ISIS neutron scattering facility on the TOSCA instrument (blue), the MARI instrument (olive green
and black) compared with the predicted spectrum from a DFPT calculation (red). Reproduced with
the permission of the PCCP owner societies from Parker et al. [68].

Figure 11: Calculated Raman spectrum of C, in the Fm-3 model structure (blue) compared with
the measured spectrum at room temperature (red) corrected for instrumental factors.

Figure 12: Trajectories of cold high-pressure structures of hydrogen obtained from simulations with
classical and quantum nuclei at 80 GPa starting from the P2, /c-24 structure. Yellow balls show the
representative configurations of the centroids throughout the course of the simulation. The red rods



show the static (geometry-optimised) structure. A conventional hexagonal cell containing 144 atoms
was used. Panels (a), (¢), (e), and (g) show the z—x plane and panels (b), (d), (f), and (h) show the
x—y plane of the hcp lattice. The four simulations are: (1) MD with classical nuclei at 50 K (panels
(a) and (b)), (2) PIMD for D at 50 K (panels (¢) and (d)), (3) PIMD for H at 50 K (panels (e¢) and
(1)), and (4) PIMD for D at 150 K (panels (g) and (h)). In the MD simulation, the anisotropic
inter-molecular interaction outweighs the thermal and quantum nuclear fluctuations. Therefore, the
molecular rotation is highly restricted. The thermal plus quantum nuclear fluctuations outweigh the
anisotropic inter-molecular interactions in the PIMD simulations of H at 50 K and D at 150 K.
Reprinted with permission from Li et al. [71]. Copyright 2013, the Institute of Physics.

Figure 13: The structure of galactose as determined by comparison between the computed and
observed NMR chemical shifts. (Left) The galactose structure showing hydrogen (white), carbon
(grey) and oxygen (red), with hydrogen bonds shown in blue. (Right) The experimental 'H NMR
spectrum together with the spectra calculated using the two proposed hydrogen bond networks (see
text). The atoms contributing to the diagnostic small downfield peak are highlighted. Reprinted from
Kibalchenko et al. [73]. Copyright 2010, with permission from Elsevier.

Figure 14: Hypothetical layered double hydroxide (LDH) structure (left) Atom colours are
hydrogen (white), oxygen (red), nitrogen (blue), aluminium (purple) and magnesium (green). 'H
MAS NMR spectra of two Mg/Al LDH materials showing the proportions of the different hydroxyl
groups present (right). Reprinted with permission from Cadars et al. [74]. Copyright 2011, the
American Chemical Society.

Figure 15: (a) Medium angle annular dark field (MAADF) image of a nitrogen substitutional dopant
atom in graphene; (b) Model used for simulations; (c) Experimental and calculated EELS data.
Reprinted with permission from Nicholls ez al. [77]. Copyright 2013, the American Chemical
Society.
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