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In this paper, we study the nonlinear matter power spectrum in a specific family of fðRÞmodels that can

reproduce the �CDM background expansion history, using high resolution N-body simulations based on

the ECOSMOG code. We measure the matter power spectrum in the range of 0:05h Mpc�1 < k<

10h Mpc�1 from simulations for our fðRÞ models and give theoretical explanations to their behavior

and evolution patterns. We also examine the chameleon mechanism for our models and find that it works

throughout the cosmic history in dense regions, for our fðRÞmodels with jfR0j< 10�4. On the other hand,

for models with jfR0j> 10�3, we find no chameleon screening in dense regions at late times (z < 3),

which means that those models could be ruled out due to the factor-of-1=3 enhancement to the strength of

Newtonian gravity. We also give the best-fit parameters for a generalized parametrized post-Friedman

fitting formula, which works well for the models studied here.
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I. INTRODUCTION

Conclusive observational evidences from supernovae
luminosity distances [1], cosmic microwave background
[2], and baryonic acoustic oscillations [3] indicate that our
Universe is undergoing a phase of accelerated expansion.
Understanding the nature of this cosmic acceleration is one
of the greatest challenges in contemporary physics.
Theoretically, the leading explanation to it is a cosmologi-
cal constant in the context of general relativity (GR).
Despite its notable success in describing the current cos-
mological data sets, this standard paradigm suffers from
several problems: the measured value of the cosmological
constant is far smaller than the prediction of the quantum
field theory, and there is a coincidence problem as to why
the energy densities of matter and the vacuum energy are of
the same order today (see Ref. [4] for review). It is also
possible to explain the acceleration as driven by a myste-
rious component called dark energy, which is some kind of
dynamical fluid with negative and time-dependent equa-
tion of state wðaÞ. However, to understand the nature of the
dynamical dark energy is even harder than that of the
cosmological constant in fundamental physics.

On the other hand, modified gravity theories are pro-
posed as a promising alternative for explaining the ob-
served accelerating expansion of our Universe. The idea
is that GR might not be accurate on cosmological scales
and that the Universe may obey a different law of gravity.
One of the simplest attempts is the so-called fðRÞ gravity,
in which the Ricci curvature R in the Einstein–Hilbert
action of GR is replaced by an arbitrary function of R in
the Lagrangian [5]. This model introduces an extra scalar
degree of freedom, which enables it to reproduce the

accelerating expansion history of the Universe with any
effective dark energy equation of state wðaÞ [6]. However,
any specifically designed wðaÞ other than w ¼ �1 is less
interesting because it can hardly be well motivated in
fundamental physics given the fact that we are still lacking
knowledge about the nature of dark energy at the moment,
and the observations do seem to favor w ¼ �1. Therefore,
it is of particular interest to investigate the family of fðRÞ
models that can exactly reproduce the �CDM background
expansion history. The motivation behind this is threefold.
First, this family of fðRÞ models can only be distin-

guished from the standard �CDM model in the perturbed
spacetime, and any deviations from the �CDM growth
history are direct consequences of the extra degree of
freedom. This family of models can be considered as an
ideal benchmark for testing the existence of scalar degrees
of freedom in general modified gravity theories.
Second, the Brans–Dicke theory [7,8] and general

coupled dark energy models [9] in the Einstein frame are
equivalent to fðRÞ gravity in the Jordan frame through
conformal transformations as long as the distribution of
the scalar curvature R is continuous. This equivalence is
rigorous in mathematics [9–11] and can also be well ex-
plained in physics [9,12,13]. Therefore, fðRÞ gravity is not
simply a stand-alone gravity theory but an equivalent
representation for a wide class of modified gravity theories
that involve extra scalar degrees of freedom.
Third, this family of fðRÞ models does have the well-

defined Lagrangian formalism in the spatially flat Universe
[14], which is valid for the whole expansion history of the
Universe from the past to the future. The model is no
longer simply a phenomenological model. The field equa-
tions can be deduced from the fundamental principle of
least action. Moreover, the model has only one more extra
parameter than that of the �CDM model.*jianhua.he@brera.inaf.it
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Because of the importance of this specific family of fðRÞ
models, in this paper, we will further investigate the impact
of the extra scalar degree of freedom on the large-scale
structure in both the linear and the nonlinear regimes using
N-body simulations. We will first review the linear power
spectrum for a large portion of parameter space using a
modified version of the CAMB code [15] and address the
importance of the chameleon mechanism [16,17] for fðRÞ
gravity to evade local tests of gravity. Then, we will imple-
ment a large suite of N-body simulations based on the
ECOSMOG code [18] to examine the nonlinear effect on

the matter power spectrum of our fðRÞ model.
This paper is organized as follows. In Sec. II, we de-

scribe the details and summarize the distinct features of our
fðRÞ model. In Sec. III, we review the linear power spec-
trum of the model using accurate numerical results. In
Sec. IV, we examine the nonlinear power spectrum using
a large suite of N-body simulations and discuss the cha-
meleon effect in our model. In Sec. V, we summarize and
conclude this work.

II. fðRÞ COSMOLOGY

We work with the four-dimensional action

S ¼ 1

2�2

Z
d4x

ffiffiffiffiffiffiffi�g
p ½Rþ fðRÞ� þ

Z
d4xLðmÞ; (1)

where �2 ¼ 8�Gwith G being Newton’s constant, g is the

determinant of the metric g��, LðmÞ is the Lagrangian

density for matter fields, and fðRÞ is an arbitrary function
of the Ricci scalar R [5] (see Ref. [19,20] for reviews). In

this work, we choose fðRÞ to have the form of the Gaussian
hypergeometric function [14]

fðRÞ¼�$

�
�

R�4�

�
pþ�1

2F1

�
qþ;pþ�1;rþ;� �

R�4�

�
;

�2�; (2)

which can enable the fðRÞ model to mimic the �CDM
background in a spatially flat Universe. The indices in the
expression are given by [14]

qþ ¼ 1þ ffiffiffiffiffiffi
73

p
12

; rþ ¼ 1þ
ffiffiffiffiffiffi
73

p
6

; pþ ¼ 5þ ffiffiffiffiffiffi
73

p
12

;

and $ is a constant.
Hence, our model has only one more extra parameter

than that of the �CDM model. Mathematically, when
b>0 and c>0, the hypergeometric function 2F1½a;b;c;z�
can have the integral representation on the real axis,

2F1½a; b; c; z� ¼
�ðcÞ

�ðbÞ�ðc� bÞ
�

Z 1

0
tb�1ð1� tÞc�b�1ð1� ztÞ�adt; (3)

where � is the Euler gamma function. 2F1½a; b; c; z�, in this
case, is a real function in the range of�1< z < 1, and our
model, Eq. (2), is well defined for R> 4�. Moreover, it is
important to note that our model does not have singularity
although it appears to be divergent at R ¼ 4�. fðRÞ is
actually finite at R ¼ 4� because we can find that

lim
R!4�

fðRÞ ¼ �2�� $4ð�511þ 79
ffiffiffiffiffiffi
73

p Þ�ð2=3Þ�ð�r�Þ
ð�5þ ffiffiffiffiffiffi

73
p Þð�1þ ffiffiffiffiffiffi

73
p Þð7þ ffiffiffiffiffiffi

73
p Þ�ð�p�Þ�ðqþÞ

� �2�� 1:256$; (4)

where

r� ¼ 1�
ffiffiffiffiffiffi
73

p
6

; p� ¼ 5� ffiffiffiffiffiffi
73

p
12

:

When R< 4�, Eq. (2) becomes complex. Obviously,
R< 4� is unphysical in our model.

For the background cosmology, we consider a homoge-
nous and isotropic Universe described by the flat
Friedmann–Robertson–Walker metric

ds2 ¼ �dt2 þ a2dx2: (5)

The modified Einstein equation gives the modified
Friedmann equation [14,19,20]

d2fR
dx2

þ
�
1

2

d lnE

dx
� 1

�
dfR
dx

þ d lnE

dx
fR

¼ 3ð1þ wÞ�0
d

E
e�3

R
x

0
ð1þwÞdx; (6)

where fRðxÞ � @f
@R and w is the effective dark energy equa-

tion of state, and the effective Friedmann equation E � H2

H2
0

can be written as

EðxÞ ¼ �0
me

�3x þ�0
de

�3
R

x

0
ð1þwÞdx; x � ln ðaÞ; (7)

where the current dark matter density �0
m and effective

dark energy density �0
d are defined by

�0
m � �2�0

m

3H2
0

; �0
d �

�2�0
d

3H2
0

: (8)

The background expansion history of our fðRÞ model
can exactly mimic that of the �CDM paradigm from the
matter-dominated epoch to the future, which yields very
simple expressions for the background evolution,
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EðxÞ ¼ �0
me

�3x þ�0
d;

RðxÞ ¼ ½3�0
me

�3x þ 12�0
d�H2

0 ;
(9)

where R is the scalar curvature.
The fðRÞ cosmology differs from the standard �CDM

cosmology by an additional scalar degree of freedom. As
we shall see later, this scalar degree of freedom plays an
important role in the perturbed spacetime in fðRÞ gravity.
In the background, the evolution of the scalar field fR is
governed by Eq. (6). However, in our model, fR has an
explicit expression that is the exact solution to Eq. (6) with
w ¼ �1 [14],

fRðxÞ ¼ Dðe3xÞpþ
2F1

�
qþ; pþ; rþ;�e3x

�0
d

�0
m

�
; (10)

where D is a dimensionless quantity, and is related to the
covariant parameter $ in Eq. (2) by

$ ¼ DðR0 � 4�Þpþ=ðpþ � 1Þ=�pþ�1

¼ D

pþ � 1

�
�0

m

�0
d

�
pþ
3�0

dH
2
0 : (11)

For more details about our model, we refer readers to
Ref. [14].

At early times, the Universe is dominated by matter, and
the curvature is very high, R � 4�. The hypergeometric
function goes back to unity 2F1 � 1. Thus, Eq. (2) can
reduce to

fðRÞ � �$

�
�

R

�
pþ�1

; (12)

which can exactly mimic the �CDM background in the
matter-dominated epoch. Moreover, for higher scalar cur-
vature R ! þ1, our model goes back to standard GR:

lim
R!þ1fRðRÞ ¼ 0: (13)

On the other hand, in the future limit (x ! þ1) where
the energy density of matter fields tends to be zero
(�m ! 0), the Universe is almost empty and dominated
only by vacuum. The scalar curvature R goes as R !
12�0

dH
2
0 ¼ 4� rather than zero. From Eq. (4), we can

see clearly that Eq. (2) is not divergent at R ¼ 4�, which
means that our model is able to describe the Universe even
in the extreme case of vacuum. Our model, therefore, is
self-consistent and is valid throughout the cosmic history.

In summary, our model has the well-defined Lagrangian
formalism. The model is not merely a phenomenological
one, and its field equations can be derived from the prin-
ciple of least action. Our model has only one extra parame-
ter compared with the �CDM model, and it can exactly
reproduce the �CDM background expansion history from
the past to the future. When $ � 0, the constant � in
Eq. (2) cannot be explained as the energy density of the
vacuum although it takes the same value as � in the

�CDM model and our model does not suffer the cosmo-
logical constant problem. Moreover, when D< 0 and
jfR0j< 1, our model satisfies:
(1) 1þ fR > 0 for R � R0, where R0 is the Ricci scalar

today;
(2) fRR > 0 for R � R0;
(3) Rþ fðRÞ ! R� 2� for R � R0;
(4) Obviously, our model can achieve the late-time

acceleration since it reproduces the �CDM back-
ground expansion history.

Our model, therefore, meets the requirements for the viable
metric fðRÞ models as proposed in Ref. [20].

III. LINEAR MATTER POWER SPECTRA

In this work, we calculate the accurate linear matter
power spectra using our modified version of the CAMB

code [21], which solves the full linear perturbation equa-
tions in fðRÞ gravity [15]. We set the initial conditions for
the linear scalar field perturbations at a ¼ 0:04839 as
�fR ¼ 0 and �f0R ¼ 0, where prime denotes the derivative
with respect to the conformal time, and assume the cos-
mological parameters as�0

m ¼ 0:2814,�0
d ¼ 0:7186, h ¼

0:697, ns ¼ 0:962, and �8 ¼ 0:82 throughout this work.
The numerical results are shown in Figs. 1 and 2. In Fig. 1,
we show the linear matter power spectra for a large range
of scales (10�4h Mpc�1 < k< 102h Mpc�1) and of the
parameter 10�7 <�fR0 < 10�2. In Fig. 2, we illustrate
the fractional difference between fðRÞ gravity and general
relativity in the matter power spectrum. To better explain
our numerical results, we illustrate here with the aid of a
simplified equation the growth history of fðRÞ gravity [19],

€�m þ 2H _�m � 4�Geff�m�m ¼ 0; (14)

FIG. 1 (color online). The linear matter power spectrum for
our fðRÞ models.
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where �m is the density contrast for the matter field, the dot
denotes the derivative with respect to the cosmic time, and
the effective Newtonian constant Geff is given by [19]

Geff � G

1þ fR

4þ 3M2a2=k2

3ð1þM2a2=k2Þ ; (15)

where

M2 ¼ 1

3

�
1þ fR
fRR

� R

�
(16)

is the mass squared for the scalar field. Equation (14)
actually cannot give the accurate growth history for fðRÞ
models as pointed out in Ref. [22]. However, it does give
the correct qualitative behaviors at some extreme cases. We
use this simplified equation here only for illustrative
purpose.

First, on very small scales k > 10h Mpc�1, the growth
history becomes scale independent regardless of the types
of fðRÞ models. No matter how small we choose the
parameter jfR0j, there is a factor of 4

3 enhancement in the

effective Newtonian constant as k trends to infinity,

lim
k!þ1

Geff ¼ 4G

3ð1þ fRÞ ; (17)

and this is known as the ‘‘scalar-tensor’’ [19] or, equiv-
alently, ‘‘low-curvature’’ [23] regime. The curvature �R is
well suppressed and no longer tracks the matter density
field (as it does in GR). The enhancement in the effective
Newtonian constant Geff could render fðRÞ gravity models
unable to pass the local tests. On the other hand, this
enhancement would also increase the linear power of
matter in fðRÞ gravity on the smallest scales at the present

time compared to the �CDM model. As a result, the ratio
ðPfðRÞ � P�CDMÞ=P�CDM in Fig. 2 tends to be a constant on

extreme small scales (k > 10h Mpc�1) even for the small-
est value of jfR0j ¼ 10�7 as chosen in our plots.
Analytically, this can be understood as following: the
solution of Eq. (14) for the growth history in the �CDM

model (Geff ¼ G) is �2
m / t4=3 and, on extreme small

scales k > 10h Mpc�1, the solution for fðRÞ gravity with

Geff ¼ 3
4G is �2

m / tð
ffiffiffiffi
33

p �1Þ=3 [19]. The ratio of the matter

power spectrum, therefore, is

PfðRÞ
P�CDM

/ tð
ffiffiffiffi
33

p �5Þ=3; (18)

which is scale independent and only depends on the initial
conditions.
Second, in the small wave number k limit (M2 � k2=a2),

fðRÞ gravity will become very close to GR as

lim
fR0!0

Geff ¼ G

1þ fR0
: (19)

This is known as the ‘‘general relativistic regime’’ [19] or,
equivalently, ‘‘high-curvature regime’’ [23], in which the
curvature �R is able to track the matter density field
(�R� �2��) even in the case in which �� is very small.
However, the influence of the factor 1þ fR0 could be
prominent when the absolute value of fR0 approaches
unity. The amplitude of the power spectrum will be
enhanced due to the factor of 1

1þfR0
(remember that

fR0 < 0), which is shown clearly in Fig. 2.
Third, the scale of the transition from the high-curvature

regime to the ‘‘low-curvature regime’’ can be characterized
by the Compton wavelength, which is defined by [24]

B ¼ fRR
1þ fR

dR

dx

H
dH
dx

: (20)

In our model, we can find an analytical relation between D
and the Compton wavelength today, B0 � Bða ¼ 1Þ, as

B0 ¼ 2Dpþ
ð�0

mÞ2f1þD2F1½qþ; pþ; rþ;� �0
d

�0
m
�g

�
�
qþ
rþ

�0
d2F1

�
qþ þ 1; pþ þ 1; rþ þ 1;��0

d

�0
m

�

��0
m2F1

�
qþ; pþ; rþ;��0

d

�0
m

��
: (21)

We can also find the relationship between D and fR0 as

fR0 ¼ D� 2F1

�
qþ; pþ; rþ;��0

d

�0
m

�
: (22)

Thus, the value of Compton wavelength B0 is only deter-
mined by fR0 if the background cosmology is fixed. The
diminishing value of jfR0j will push the transition between
different regimes toward smaller scales. For any given

FIG. 2 (color online). The relative difference of the linear
matter power spectra between the fðRÞ models and the �CDM
model at z ¼ 0.
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wave number k or a certain scale we are interested in, a
smaller absolute value of jfR0j ! 0 will enhance the mass
squared (M2) for the scalar field. M2 is able to surpass the
wave number M2 � k2=a2, and the effective Newtonian
constant could go back to the general relativistic regime

lim
D!0

Geff ¼ lim
fR0!0

Geff ¼ G: (23)

This phenomena is consistent with our naive expectation
that setting $ ¼ 0 in Eq. (2) forces the model back to the
standard �CDM. Of course, this is only an extreme case,
which means that lim fR0!0B0 ¼ 0 such that the transition

happens on extremely small scales, which is very close to
zero.

In summary, according to linear theory, if fR0 � 0, the
fðRÞ gravity model would always have the low-curvature
solution on extreme small scales no matter how small jfR0j
is. The factor-of-1=3 enhancement to the strength of
Newtonian gravity on small scales would make the fðRÞ
theory fail to pass the local test. Fortunately, if the chame-
leon mechanism [16,17,23,25,26] works efficiently, the
model could still follow the high-curvature solution in
high-density regions at late times of the Universe, and
the low-curvature regime only appears in low-density re-
gions on scales in which the Compton condition is violated
[23]. This class of models could then pass local experi-
mental constraints in high-density regions such as our solar
system.

IV. NONLINEAR POWER SPECTRA

To study the nonlinear power spectra, we carry out a
large suite of N-body simulations, which are based on the
ECOSMOG code developed by Ref. [18]. ECOSMOG is a

modified version of the mesh-based N-body code
RAMSES [27], which calculates the gravitational force by

solving the Poisson equation on meshes using a relaxation
method to obtain the Newtonian potential and then differ-
encing the potential. ECOSMOG is efficiently parallelized
and suitable to run simulations systematically.

In N-body simulations, at early times and in high-
density regions, we assume that R � 4� and the hyper-
geometric function goes back to unity 2F1 � 1. Equation
(2) reduces to

fðRÞ � �$

�
�

R

�
pþ�1

: (24)

Although Eq. (24) is much simpler than Eq. (2), we stress
that the model it represents can exactly mimic the �CDM
background in the matter-dominated epoch no matter how
large a value of $ we choose.

Taking the derivative of above equation and using
Eq. (11), we find that

fRðRÞ �D

�
3�0

mH
2
0

R

�
pþ

< 0; D < 0: (25)

Inversely, we can obtain R in terms of fR:

R ¼ 3�0
mH

2
0

�
D

fR

� 1
pþ : (26)

A. High-curvature and low-curvature solutions

In fðRÞ gravity, the structure formation is governed by
the modified Poisson equation

r2� ¼ 16�G

3
��� �R

6
(27)

as well as the equation for the scalar field fR [23],

r2�fR ¼ 1

3c2
½�R� 8�G���; (28)

where � represents the gravitational potential, �fR ¼
fRðRÞ � fRð �RÞ, �R ¼ R� �R, �� ¼ �� ��. The overbar
denotes the background quantities, and r is the gradient
operator with respect to the proper distance. Inserting
Eq. (26) into Eq. (28), we obtain

r2fRðRÞ ¼ �0
mH

2
0

c2

�
D

fRðRÞ
� 1
pþ � �R

3c2
� 8�G�

3c2
þ 8�G ��

3c2
:

(29)

Given the density field � and boundary conditions for fR,
the above equation completely determines fR on the whole
simulation domain. The extra scalar field fR makes the
nonlinear behavior of fðRÞ gravity very complicated. To
better understand the impact of the extra scaler field in
Eq. (29) on the large-scale structure formation, we define
the effective Newtonian constant as

Geff �
�
4

3
� �R

3�2��

�
G; (30)

such that the modified Poisson equation in Eq. (27) can be
recast into

r2� ¼ 4�Geff��: (31)

Clearly,Geff directly indicates the modification of standard
gravity.
In the dense regions � � ��, there are two possible types

of solutions to Eq. (29). The gradient term on the left-hand
side of Eq. (29) can be large enough to rival the matter
density field. The fact that the density is high does not
mean the curvature is also very high. In this case, we have
�R 	 �2��, and the solution of Eq. (29) is called the low-
curvature solution [23]. The effective Newtonian constant
Geff � 4

3G is larger than the standard gravity by a factor

of 1=3.
On the other hand, the curvature perturbation �R can

also be large enough to track the density field �R� �2��,
which is known as the high-curvature solution [23]. In this
case, the modifications to standard gravity are well sup-
pressed, and the effective Newtonian constant goes back to
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its GR value (Geff �G). If the dense regions follow the
high-curvature solution at late times, the fðRÞ model can
pass local tests of gravity; this is well known as the
chameleon mechanism [16,17]. However, even if, at early
times, the dense regions generally follow the high-
curvature solution, at late times, the solution can transfer
to the low-curvature solution. It is also possible that the
high-curvature solution is not achieved anywhere in the
Universe.

At early times, the background curvature is very high
( �R � �R0, where R0 is the Ricci curvature today). The
density field is relatively homogenous (��� 0). The so-
lution of Eq. (29) is also nearly homogenous and close to
the background value

fR � �fR ¼ D

�
3�0

mH
2
0

�R

�
pþ
; (32)

where

�R ¼ 3�0
mH

2
0

�
1

a3
þ 4�0

d

�0
m

�
: (33)

This is clearly the high-curvature solution since �2�� R.
As structure formation proceeds, �R gradually falls behind
�2�� except in regions with very high �� because Eq. (29)
is a differential equation rather than an algebraic equation.
As a result, unless � � ��, we will find G<Geff < 4G=3
according to Eq. (30).

In practice, Eq. (28) is numerically solved by using
relaxation method with many iterations from the initially
guessed value for the scalar field until convergence is
reached. In ECOSMOG, we take the initial guess for fR as
its background value �fR. Therefore, in dense regions in
which � � ��, whether we could obtain the high-curvature
solution is somewhat determined by whether the value for
R can be efficiently boosted from �R to �2�. Analytically, it
can be understood like this: for given scalar curvature R,
from Eq. (26), we obtain

~�R ¼ � 3�0
mH

2
0

pþfR

�
D

fR

� 1
pþ ~�fR ¼ � R

pþfR
~�fR; (34)

where ~� denotes small changes with respect to the local
quantities and not the background quantities. For a given
value of R, from Eq. (26), we can see clearly that
jfRj ! þ1 when jDj ! þ1, which means that, in
Eq. (34), to get a small change in R, we need a substantial
change in fR. In the opposite limit, Eq. (26) shows that
jfRj ! 0 when jDj ! 0, in which case it is easy to have
significant change in R with only small changes in fR.
Therefore, a smaller absolute value of D can help form the
high-curvature solution in regions in which � � ��, while
the larger absolute values of D will do the opposite. It can

then be expected that, with large jDj, the change ~�fR can
be large enough for the gradient term on the left-hand side
of Eq. (29) to dominate over the curvature term on the

right-hand side; in this case, �R 	 �2��, and there is no
high-curvature solution in the whole system.
After these qualitative analyses, in the next few sections,

we will go through the technical details of our N-body
simulations and present the numerical results.

B. Equations in code units

The ECOSMOG code is based on the supercomoving
coordinates

~x ¼ x

aB
; � ¼ �a3

�c�
0
m

; ~v ¼ av

BH0

;

~� ¼ a2�

ðBH0Þ2
; d~t ¼ H0

dt

a2
; ~c ¼ c

BH0

;

(35)

where x is the comoving coordinate, �c is the critical
density today, c is the speed of light, and B is the size of
the simulation box in the unit of h�1 Mpc. In the code
units, Eqs. (27) and (28) can be written as

~r2 ~�¼2a�0
mð~��1Þþa

2
�0

m�a4�0
m

2

�
Da2

~fR

� 1
pþ þ2a4�0

d;

(36)

~r2 ~fR¼�a�0
m

~c2
ð~��1Þþa4�0

m

~c2

�
Da2

~fR

� 1
pþ �4a4�0

d

~c2
�a�0

m

~c2
;

(37)

where ~fR � a2fR and we have used Eq. (33).
Equations (36) and (37) here are related to the equations

used in the original code for the Hu–Sawicki model [23] by

n ¼ pþ � 1; 	 ¼ �D

n
3nþ1; (38)

where n and 	 are defined in Ref. [18]. This provides a
simple way to cross-check our modification of the code.
We have checked and found good agreements between our
modification and the original code [18]. For more technical
issues about N-body simulations, the readers are referred
to Refs. [18,27].

C. Cosmological simulations

In our N-body simulations, we adopt �0
m ¼ 0:2814,

�0
d ¼ 0:7186, h ¼ 0:697, ns ¼ 0:962, and �8 ¼ 0:82 as

the cosmological parameters, which are consistent with the
parameters used in the linear perturbation calculation. We
use the GRAFIC [28] package to generate the initial con-
ditions and set the starting point at a ¼ 0:04839, the same
as in the linear calculation. In our simulations, we imple-
ment five realizations for each fðRÞ model, and models of
the same realization share the same initial conditions. We
choose the parameter fR0 to cover a large portion of
parameter space. The detailed settings are listed in
Table I. In addition to the above parameters, a
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convergence criterion is used to determine when the re-
laxation method has converged. In ECOSMOG, convergence
is considered to be achieved when the residual of the partial
differential equation, i.e., the difference between the two
sides of the partial differential equation, is smaller than a
predefined parameter 
. We set 
 ¼ 10�8 throughout this
work. The simulation results are shown in two-dimensional
snapshots in Fig. 3.

To study the chameleon mechanism, we plot the statis-
tics of the effective Newtonian constantGeff with respect to
the density contrast � ¼ �= ��� 1. For this purpose, we
first note the values of the scalar field fR and the density
field � on the grids in the leaves cells (the most refined
cells) that do not have son cells in the simulations. Then,
we divide the values of � into several bins and count the

number of cells in which the values of � fall into each bin.
Finally, we take the arithmetical average of Geff using
Eq. (39) over the cells in the simulations for each bin.
Measuring Geff provides the most straightforward way to
examine the chameleon mechanism in dense regions in
which � � 1,

Geff

G
¼ 4

3
� �R

3�2��

¼ 4

3
� a3

3ð~�� 1Þ
��

Da2

~fR

� 1
pþ � 1

a3
� 4�0

d

�0
m

�
: (39)

As shown in Fig. 4 at late times (z < 3), the effective
Newtonian constant Geff for fðRÞ models with jfR0j �
10�3 is close to 4

3G in dense regions, which corresponds

to the low-curvature solution of Eq. (28). We find no high-
curvature solution in the dense regions in these cases. On
the other hand, for models with jfR0j 
 10�4, Geff shows
clear transition features from the high-curvature solution
(Geff �G) in dense regions to the low-curvature solution
(Geff � 4

3G) in lower-density regions. The chameleon

mechanism does work, in this case, until the present
time. The qualitative behavior shown by Fig. 4 fully agrees
with our previous analysis. There is an important threshold
value for jfR0j above which we cannot find the high-
curvature solution in the dense region in the Universe at
late time. Therefore, as a rough guide, viable fðRÞ models
should have jfR0j 
 10�4.
The chameleon mechanism is vital to fðRÞ gravity, not

only because it can provide a way to evade the stringent
constraints from local tests of gravity but also because it
can have significant impact on the matter power spectra
even on scales that are usually considered as in the linear
reigme. We will explore this issue in the next subsection.

D. Matter power spectra

We use the publicly available code POWMES [29] to
measure the matter power spectra from our simulations.
POWMES constructs the density field on a regular grid by

direct particle assignment and then uses a fast Fourier
transform to compute the spectra. The grid we used for
the spectra measurement is 2563, which is the same as the
domain grid used in our N-body simulations. The

FIG. 3 (color online). The snapshots of density fields for the
�CDM model, fðRÞ models with jfR0j ¼ 10�4, 10�3, 10�2,
respectively. The snapshots are taken from the simulations
with Lbox ¼ 150h�1 Mpc at redshift z ¼ 0.

TABLE I. The simulation technical details about the fðRÞ models.

fR0 B0 D Lbox Number of particles Realizations

�3� 10�5 0.000166045 �0:0000517106 150h�1 Mpc 2563 5

�5� 10�5 0.000276748 �0:0000861843 150h�1 Mpc 2563 5

�10�4 0.000553523 �0:000172369 150h�1 Mpc 2563 5

�3� 10�4 0.0016609 �0:000517106 150h�1 Mpc 2563 5

�10�3 0.00554022 �0:00172369 150h�1 Mpc 2563 5

�5� 10�3 0.0278125 �0:00861843 150h�1 Mpc 2563 5

�10�2 0.0559059 �0:0172369 150h�1 Mpc 2563 5
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measured power spectra are shown in Fig. 6. In Fig. 7, we
show the fractional differences of matter power spectra
between fðRÞ models and the �CDM model. The dashed
lines show the predictions from linear perturbation theory,
the solid lines are the linear power spectra corrected by the
Halofit formula derived from the �CDM model [30], and
the points with error bars are measured from our simula-
tions. Figure 7 shows that the nonlinear power spectra have
several distinct features from the results of linear perturba-
tion theory and Halofit.

For fðRÞ models with jfR0j 
 10�4, Fig. 4 shows that
the chameleon screening could be efficient from early
times up until present day. The difference in the matter
power spectra from the�CDM prediction is suppressed on
all scales. The linear perturbation theory and the standard
Halofit formalism cannot even predict the correct qualita-
tive behavior of the matter power spectra on small scales.
Another prominent feature is that the scales of k�
0:06h Mpc�1, which are supposed to be in the linear
regime, cannot be well described by linear theory for our
fðRÞ models. Indeed, from Fig. 7, we can see that linear
theory becomes inaccurate almost as soon as the power
spectrum starts to deviate from the �CDM prediction. The
reason for this is due to the chameleon mechanism. In
linear theory, the perturbation dynamics transfers from
the high-curvature regime at early times to the low-
curvature regime at late times, and the effective
Newtonian constant in all regions changes from G to
4G=3. However, in fðRÞ simulations, Geff tends to be G
due to the chameleon mechanism both at early times and at
late times in dense regions. Therefore, compared to the

linear theory prediction, the growth history from N-body
simulations is closer to the �CDM model. In other words,
the difference between fðRÞ and �CDM is suppressed by
the nonlinearity in the theory, as clearly shown in Fig. 7.
For models with jfR0j � 10�3, the chameleon screening

stops working from at least z ¼ 3 (see Fig. 4), and the
effective Newtonian constant is enhanced by 1=3 com-
pared to its GR value. The Halofit formalism, in such cases,
can predict the matter power spectra correctly down to
scales of k� 0:1h�1 Mpc because these scales are still in
the linear regime with Geff � 4

3G. On even smaller scales

(k > 1h�1 Mpc), however, we find a significant suppres-
sion in the power spectrum. As explained in Ref. [31], this
suppression is due to the much larger velocity dispersions
at small scales, which prevent matter from even stronger
clustering. Similar suppressions have been observed for
nonchameleon simulations, too (see Fig. 9 in Ref. [32])
and, contrary to the naive interpretation, are not because
the chameleon mechanism brings things back to GR on
small scales [31,33,34].
To quantitatively analyze the velocity dispersions, we

measure the statistical quantities

�v ¼ 1

N

XN
i¼1

vi; (40)

where �v is the average velocity of all particlesN ¼ 2563 in
our simulations. The velocity for each particle is defined by

vi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
xi þ v2

yi þ v2
zi

q
: (41)

We use the standard deviation to characterize the disper-
sion of velocities

�v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N � 1

XN
i¼1

ðvi � �vÞ2
vuut ; (42)

where �v has the same unit as �v. In Fig. 5, we present the
probability density function of particle velocity for the
�CDM model and fðRÞ models with jfR0j ¼ 10�4, 10�3,
and 10�2, respectively. The statistical results are shown in
Table II. In the �CDM model, we find that the average
velocity of all particles is �v ¼ 296:5 km=s, and the disper-
sion is �v ¼ 178:4 km=s. However, in fðRÞ models, we
find much larger average velocity as well as the disper-
sions. We find �v ¼ 344:0 km=s, �v ¼ 210:3 km=s for the
model with fR0 ¼ �10�4, �v ¼ 400:2 km=s; �v ¼
247:0 km=s for the model with fR0 ¼ �10�3; and �v ¼
448:5 km=s, �v ¼ 272:9 km=s for the fðRÞ model with
fR0 ¼ �10�2. It is clear that the larger the absolute value
of fR0, the larger the dispersion of the velocities in the fðRÞ
model. The increased velocity dispersion is expected to
affect the profiles of halos making matter less clustered on
small scales. For models with jfR0j � 10�3, the fifth force
can both accelerate particles and deepen the central poten-
tial of a halo, but particles’ kinetic energy is increased

FIG. 4 (color online). The average effective Newtonian con-
stant with respect to density contrast. At a late time of the
Universe, the chameleon mechanism appears for the fðRÞ model
with jfR0j ¼ 10�4. However, for fðRÞ models with jfR0j ¼ 10�2

and jfR0j ¼ 10�3, there are no chameleons even in the high-
density regions.
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more than their potential energy, so that they tend to cluster
less.

Compared to simulation results for the Hu–Sawicki
model [31,33,35,36], for our models with no high-
curvature solution at late times (jfR0j> 10�3), the transi-
tion from the high-curvature solution at early times to the
low-curvature solution at late times happens much earlier
in the models studied here. As we shall see later in Fig. 9,
the pattern of the matter power spectrum at redshift z ¼ 3
in our models is similar to that of the Hu–Sawicki model at
z ¼ 0. Therefore, the qualitative behavior of our models is
similar to that of the Hu–Sawicki model, but with a shift to
higher redshift.

Indeed, we find that, to obtain similar PfðRÞ=P�CDM, the

value of jfR0j is roughly 1 order of magnitude larger than
the corresponding value in the Hu–Sawicki model (with
n ¼ 1) studied in Refs. [31,33,35,36]. The reason for such
a difference is as follows: according to Eq. (38), the models
studied in Refs. [31,33,35,36] correspond to our model
with pþ ¼ 2, while here we have pþ � 1:129. A direct
comparison between Eq. (37) above and Eq. (13) of
Ref. [18], or Eq. (36) above and Eq. (11) of Ref. [18],

shows that the only difference is in the factor f�1=pþ
R

[where the relationship between D in our model and 	 in
the Hu–Sawicki model, as shown in Eq. (38), is used].
Clearly, as 1=pþ is smaller in the Hu–Sawicki model, to

obtain similar jfRj1=pþ (remember that jfRj 	 1) their jfRj
must be smaller overall.

FIG. 5 (color online). The probability density function of
particle velocity for the �CDM model and fðRÞ models with
jfR0j ¼ 10�4, 10�3, and 10�2, respectively.

FIG. 6 (color online). The power spectra measured from our
N-body simulations. The box size is Lbox ¼ 150h�1 Mpc, and
the redshift is z ¼ 0.

FIG. 7 (color online). The relative difference of the matter
power spectra between the fðRÞ and �CDM simulations at
z ¼ 0. The dashed lines show the predictions from linear per-
turbation theory. The solid lines represent the linear power
spectra corrected by the standard Halofit formula. The points
with error bars are measured from our simulations.

TABLE II. The statistical properties of the velocity field for
our simulations with box size Lbox ¼ 150h�1 Mpc at redshift
z ¼ 0.

Model �v km=s �v km=s

�CDM 296.5 178.4

fR0 ¼ �10�4 344.0 210.3

fR0 ¼ �10�3 400.2 247.0

fR0 ¼ �10�2 448.5 272.9
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We can also explain the observation that, in our models,
the modified gravity effect seems to start earlier than in the
Hu–Sawicki model (the shift of the power spectrum pattern
to higher redshift). Let us consider the background value of
jfRj only, in which case we have

j �fR;HSj�1=ðnþ1Þ ¼ j �fR;Wej�1=pþ (43)

with n ¼ 1, pþ ¼ 1:129. This gives

j �fR;HSj ¼ j �fR;Wej2=1:129 � j �fR;Wej1:77: (44)

As j �fRj 	 1 in both models, we can see j �fR;Wej � j �fR;HSj
at early times. Assuming the same background cosmology
for these two models, this implies that j �fRR;Wej � j �fRR;HSj,
and so, according to Eq. (20), the Compton wavelength
would be much larger in our model at early times, resulting
in an earlier effect of modified gravity. The larger Compton
wavelength implies that it is much easier to violate the
Compton conditions [23] in low-density regions in our
model, and the high-curvature solution could more easily
transfer to the low-curvature solution at earlier times. The
large-scale structure of the Universe in our model at
present could be deemed as the future scenarios for the
Hu–Sawicki model, and our model therefore has richer
phenomenology.

E. Resolution issues and the PPF fit

We investigate the resolution issues in fðRÞ simulations
using two different box sizes, respectively, Lbox ¼
150h�1 Mpc and Lbox ¼ 100h�1 Mpc. To this end, we
choose three representative values, jfR0j ¼ 10�4, 10�3,
and 10�2, which include the fðRÞ models both with and
without chameleon screening at late times. The detailed
settings are listed in Table III, and the simulation results are
displayed in Fig. 8. On large scales (k < 1h Mpc�1), the
simulations from the two boxes match well with each
other. We find that the simulations with a larger box tend
to overestimate the power �P=P on small scales k >
1h�1 Mpc, which is consistent with what is found in
Ref. [31]. Because the fifth force in fðRÞ simulations is
sensitive to the resolution, the higher-resolution simula-
tions could give more reliable results on small scales [31],
and we shall refer to the results from the smaller box
hereafter.
The scale-dependent growth history of fðRÞ gravity

changes not only the amplitude but also the shape of the
power spectra. In addition, the shape of the power spectrum
evolves throughout the cosmic history. To address this
point, in Fig. 9, we plot �P=P of the simulations from
the 100h�1 Mpc box at three different redshifts z ¼ 0, 1,

FIG. 8 (color online). The relative difference of the matter
power spectra between the fðRÞ and �CDM simulations with
different box size. The solid lines are for the results with Lbox ¼
150h�1 Mpc and the dashed lines for Lbox ¼ 100h�1 Mpc

TABLE III. Parameters for fðRÞ simulations with different box sizes.

fR0 B0 D Lbox Lbox Number of particles Realizations

�10�4 0.000553523 �0:000172369 100h�1 Mpc 150h�1 Mpc 2563 5

�10�3 0.00554022 �0:00172369 100h�1 Mpc 150h�1 Mpc 2563 5

�10�2 0.0559059 �0:0172369 100h�1 Mpc 150h�1 Mpc 2563 5

FIG. 9 (color online). The circles with error bars represent the
results measured from simulations with Lbox ¼ 100h�1 Mpc at
redshift z ¼ 0, 1, and 3, respectively. The solid lines show the
PPF fitting results from our generalized fitting formula.
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and 3, respectively. The circles with error bars represent
the simulation results. At redshift, z ¼ 0, �P=P peaks
roughly at k� 0:7h Mpc�1 for all fðRÞ models.
However, at higher redshifts, z ¼ 1 and z ¼ 3, the peaks
shift to smaller scales significantly, which is roughly
around k� 1h Mpc�1 at z ¼ 1 and k� 3h Mpc�1 at z ¼
3. In Ref. [31], such a shift is explained as the result of
hierarchical structure formation: the peak position corre-
sponding to typical cluster scales at a given time, above
which matter clustering is boosted by the enhanced gravity
and below which the increased velocity dispersion prevents
even stronger clustering.

Hu and Sawicki have proposed a simple way to modify
the Halofit to reproduce the nonlinear power spectrum in
modified gravity models, which is called the parametrized
post-Friedman (PPF) [37] fit. The PPF matter power spec-
trum interpolates between the nonlinear power spectrum
without any screening mechanism to recover GR on small
scales and the non-linear power spectrum in the �CDM
model. It assumes that, on very small scales, the power
spectrum should go back to the�CDM result, and a simple
form is given by [37]

Pðk; zÞ ¼ Pnon-GRðk; zÞ þ cnl�
2ðk; zÞPGRðk; zÞ

1þ cnl�
2ðk; zÞ ; (45)

where Pnon-GR indicates the nonlinear power spectrum in
modified gravity without the mechanism that recovers GR
on small scales and in our case can be simply taken as the
linear power spectrum in fðRÞ gravity corrected by the
standard Halofit formula.

PGR is the power spectrum in the�CDMmodel.�2ðk; zÞ
is given by

�2ðk; zÞ ¼
�
k3

2�2
Plinðk; zÞ

�
1=3

: (46)

Plin is the linear power spectrum in fðRÞ gravity. Equation
(45) has been tested and shown to work very well in several
modified gravity models [31,33]. However, we find that
this simple formula gives poor fits to our simulations by
overestimating the power on small scales k > 1h Mpc�1.
To get a better fitting, we generalize Eq. (45) by making the
coefficient of cnl as a function of k:

Pðk; zÞ ¼ Pnon-GRðk; zÞþ ðCnl1k
� þCnl2Þ�2ðk; zÞPGRðk; zÞ

1þðCnl1k
� þCnl2Þ�2ðk; zÞ ;

(47)

in which Cnl1 and Cnl2 are dimensionless fitting parameters
that depend on model and redshift, and so is �.
The performances of our modified fitting formula are

shown in Fig. 9 as solid lines. The best-fit PPF parameters
are listed in Table IV. Although the generalized fitting
formula works very well for individual models, it is still
challenging to find a single formula that could fit well for
all these models at different redshifts. The reason is two-
fold. First, the growth history is scale dependent, and the
shape of the power spectrum varies with redshift. Second,
the chameleon mechanism works for models with jfR0j<
10�4 but not for models with jfR0j> 10�3; it is hard to
mediate the formula from the models with the chameleon
mechanism to those without.

V. CONCLUSIONS

In this work, we have studied the impact of a family of
fðRÞ models that can reproduce the �CDM background
expansion history on the large-scale structure using a large
suite of N-body simulations. We have analyzed the cha-
meleon mechanism using our simulation data and found
that it works throughout the whole cosmic history (in dense
regions) provided that jfR0j< 10�4 in our model.
However, for models with jfR0j> ¼ 10�3, we find no
high-curvature solution in dense regions at late times
(e.g., z < 3), which means that those models could be ruled
out due to the factor-of-1=3 enhancement to the strength of
Newtonian gravity. Although our simulations have limited
resolution, our results do show that the chameleon mecha-
nism fails to bring the value of jfRj to be very small inside
dark matter halos for models with jfR0j> ¼ 10�3. There is
no thin-shell structures observed in these simulations. The
Galaxies’s gravitational potentials are not sufficient to
make them self-screened, and, as the galaxies are not
screened, the stars’ potentials are not sufficient to make
them self-screened either. As the screening mechanism
fails for both galaxies and stars, the model can be safely
ruled out.
We have analyzed the nonlinear matter power spectra for

our fðRÞ models. Compared to simulation results for the
Hu–Sawicki model [31,33,35], our models show much

TABLE IV. The best-fit PPF parameters.

Redshift z ¼ 0 z ¼ 1 z ¼ 3
fR0 �10�4 �10�3 �10�2 �10�4 �10�3 �10�2 �10�4 �10�3 �10�2

Cnl1 0.02349462 0.1410763 0.1212703 0.02247135 0.05641741 0.05899864 0.3860476 0.01189381 0.05077320

Cnl2 0.4634951 0.01632510 0.01721348 0.1484467 0.003195103 0.03894015 0.3163662 0.1535029 0.01491219

� 2.251794 1.129913 1.036022 1.990064 1.426073 1.296817 0.4359099 0.6882835 0.3786083
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smaller deviations from�CDM for the same value of jfR0j,
as is shown clearly in the plot of �P=P; equivalently, to get
the same deviation from the �CDM power spectrum, our
model requires larger values of jfR0j. The modified gravity
effect starts earlier in our models than in the
Hu–Sawicki model, and this can be explained by the differ-
ence in the values of the parameter pþ in these two models.

We have also generalized the PPF fitting formula [37] to
fit our simulation results, and the new fitting formula works
very well for individual fðRÞ models. However, it is still
challenging to find a single formula that could fit well for
all these models at different redshifts due to the scale-
dependent growth history and the chameleon effect.

Finally, it is very important to note that, even in the
model with jfR0j< 10�4 in which the chameleon mecha-
nism could work efficiently in the dense regions and there
are no significant signatures in the matter power spectra, in
low-density regions in which �� �� or in voids in which

�� 0, the Compton condition [23] is violated, and the
strength of the gravity could substantially differ from the
GR result, which provides a smoking gun for testing
the modified gravity theories, as pointed out by Ref. [38].
It is therefore very interesting to investigate the halo and
void properties in our fðRÞmodel, and this will be a subject
for future work.
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