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Abstract: We study causal wedges associated with a given sub-region in the boundary of

asymptotically AdS spacetimes. Part of our motivation is to better understand the recently

proposed holographic observable, causal holographic information, χ, which is given by the area

of a bulk co-dimension two surface lying on the boundary of the causal wedge. It has been

suggested that χ captures the basic amount of information contained in the reduced density

matrix about the bulk geometry. To explore its properties further we examine its behaviour in

time-dependent situations. As a simple model we focus on null dust collapse in an asymptotically

AdS spacetime, modeled by the Vaidya-AdS geometry. We argue that while χ is generically quasi-

telelogical in time-dependent backgrounds, for suitable choice of sub-regions in conformal field

theories, the temporal evolution of χ is entirely causal. We comment on the implications of this

observation and more generally on features of causal constructions and contrast our results with

the behaviour of holographic entanglement entropy. Along the way we also derive the rate of

early time growth and late time saturation (to the thermal value) of both χ and entanglement

entropy in these backgrounds.
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1 Introduction

One of the important questions in holography is to understand the precise dictionary between the

bulk spacetime and its avatar in the dual boundary quantum field theory. Over the years we have

learnt to encode geometry in terms of field theory observables. While there has been considerable

success in identifying key geometrical features in terms of the field theory data, it is nevertheless

clear that the translation between the two descriptions is far from complete. We are still trying

to ascertain the sharpest statement about geometry. The present work, which is exploratory in

spirit, examines the features of observables generated from purely causal constructs of the bulk

spacetime.

One class of questions which probe the CFT encoding of the bulk geometry starts by re-

stricting the boundary region on which one has access to CFT data. For example, supposing we

know the full reduced density matrix ρA on some spatial region A on the boundary, how much

information does ρA contain about the bulk geometry? This question was examined recently in

[1–4], though no consensus on the final answer was reached. Instead of confronting this ques-

tion head-on, [3] took an indirect approach of asking: what is the most natural (i.e., simplest,

nontrivial) bulk region associated to A? Given such a natural and therefore important bulk

construct, we expect that there should exist a correspondingly important dual quantity in the

field theory, perhaps waiting to be found. If we succeed in identifying such an object within the

field theory, we will obtain a more direct handle on the gauge/gravity mapping of the geometry

and consequently on bulk locality.

The most immediate geometrical construct associated with A that probably springs into

the reader’s mind is an extremal co-dimension two bulk surface which is anchored at the AdS

boundary on ∂A. Indeed, this is a well-known and important construct: In [5, 6], Ryu and

Takayanagi conjectured that for an equilibrium state, the entanglement entropy of A is given by

the area of precisely such a bulk surface: a co-dimension two minimal area surface at constant

time which is homologous to A and anchored on ∂A (entangling surface). More generally, for

states that evolve non-trivially in time, one should use extremal surfaces as argued in [7]. Though

we have no proof to date, there is mounting evidence that entanglement entropy is indeed given

by the extremal surface area; see [8–12] for arguments to show that the holographic constructions

satisfy entropy inequalities and [13] for a derivation of the holographic entanglement entropy in

some special circumstances.

But is this the most natural bulk construct associated with A? Finding an extremal surface

in the bulk requires the knowledge of the bulk geometry. Although this is what we are ultimately

after, there is a more primal and perhaps more fundamental concept, namely the bulk causal

structure (the knowledge of which requires a proper subset of the information contained in the

bulk geometry). In [3] we argued that the simplest and most natural construct is in fact the

causal wedge (which we will denote �A) corresponding to the boundary region A, and associated

quantities. We will review the definition of �A in detail below; but to orient the reader, a
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Fig. 1: A sketch of the causal wedge �A and associated quantities in planar AdS (left) and global AdS

(right) in 3 dimensions: in each panel, the region A is represented by the red curve on right, and

the corresponding surface ΞA by blue curve on left; the causal wedge �A lies between the AdS

boundary and the null surfaces ∂+(�A) (red surface) and ∂−(�A) (blue surface).

succinct description is as follows: Take the boundary domain of dependence ♦A of A; this is the

boundary-spacetime region where the physics is fully determined by the initial conditions at A.

The bulk causal wedge is the intersection of the causal past and future of ♦A. Hence any causal

curve through the bulk which starts and ends on ♦A must be contained inside the causal wedge

�A, and conversely we may think of �A as consisting of the set of all such curves.1

The causal wedge is a (co-dimension zero) spacetime region; but we can immediately identify

associated lower-dimensional quantities constructed from it, namely bulk co-dimension one null

surfaces, forming the ‘future part’ ∂+(�A) and ‘past part’ ∂−(�A) of the boundary of the causal

wedge, as well as a bulk co-dimension two spacelike surface ΞA lying at their intersection. For

orientation, these constructs are illustrated in Fig. 1, for planar AdS (left) and global AdS (right).

Hence, ΞA, dubbed the causal information surface in [3], is a spacelike surface lying within the

boundary of the causal wedge which penetrates deepest into the bulk and is anchored on ∂A.

In [3, 7] we demonstrated that while ΞA must in fact be a minimal surface within ∂(�A) that is

anchored on ∂A, it is in general not an extremal surface in the full spacetime. There however are

certain situations where the causal information surface ΞA actually coincides with the extremal

surface EA as noted in [3]. It was conjectured there that the corresponding density matrix ρA

was maximally entangled with the rest of the field theory degrees of freedom. Below, we will

consider these special situations further and provide additional evidence for this suggestion.

So far we have utilized solely the causal structure of the bulk to construct our natural bulk

1Note that [1] shows that the causal wedge �A is equivalently defined in terms of the intersection of future and

past going light-sheets emanating from ♦A. They further argue using the covariant holographic entropy bounds

[14] that this implies that the causal wedge �A must be the maximal region of the bulk that can be described by

observables restricted to ♦A. Since the extremal surfaces computing entanglement entropy necessarily lie outside

the causal wedge [3, 12] it however seems more natural that the boundary theory restricted to ♦A is cognizant of

a larger part of the bulk as argued in [2].

– 3 –



region �A and associated surface ΞA; but now we finally recourse to geometry. In particular, in

analogy with entanglement entropy SA related to the proper area of EA, we identify a quantity

χA related to the proper area of ΞA,

χA ≡
Area(ΞA)

4GN

. (1.1)

In [3] we called this quantity the causal holographic information, and studied its properties in

equilibrium. In particular, we conjectured that χA provides the lower bound on the holographic

information contained in the boundary region A; however to make this more precise or mean-

ingful, we need to understand better what sort of quantity χ is from the field theory standpoint.

To that end, we will continue the exploration of the properties and behavior of χ under various

circumstances.

Since [3] constructed χ and causal wedge in equilibrium configurations, we will explore

the properties of χ in more general out-of-equilibrium situations. Rather than examining the

qualitative features of our constructs in arbitrary spacetimes, it will be instructive to obtain more

detailed quantitative results. To that end, it is useful to pick a specific class of examples, which

are not only tractable, but also far out of equilibrium. The more extreme the time variation, the

more easily we can sample the ‘dynamics’ of �A, ΞA, and χA, e.g. when the spatial position of A
is fixed but we study it at different times. We focus on a particularly simple time-dependent bulk

geometry, describing a collapse of a thin null spherical shell to a black hole in AdS, namely the

Vaidya-AdS spacetime. Since a (sufficiently large) AdS black hole corresponds to a thermal state

in the field theory, this geometry has been much-used to study thermalization in the field theory

via black hole formation in the bulk (see [15–25] for a sampling of references). Moreover, since the

shell is null, the collapse to a black hole (and hence the corresponding boundary thermalization)

happens maximally quickly. Also, since the shell is thin (and so starts out from the boundary at

a single instant in time), the change in the boundary corresponding to the introduction of the

shell is sudden: we deform the boundary Hamiltonian and then let the system equilibrate – in

other words, such process in an example of a quantum quench.2 We refer the reader to [27–31]

for further discussions of quantum quenches (including computation of observables) in conformal

field theories and to [32–43] for discussion of holographic quenches and thermalization.

To study the behavior of �A, ΞA, and χA in the Vaidya-AdS class of geometries, we set

up the geometrical construction in §2. We discuss the general expectations for the behavior of

these quantities in §2.1 and derive the explicit equations to construct �A in §2.2. In subsequent

2We should nevertheless emphasize that the modeling of quantum quench using the Vaidya-AdS spacetime is

somewhat contrived. Indeed, in the boundary theory the final state is thermal and known by construction, while

in a typical global quench protocol one changes a parameter of the Hamiltonian at some time without knowing

the final state, which is not guaranteed to be thermal. For instance, for simple integrable models like the Ising

chain it is known that the final state is given by a Generalized Gibbs Ensemble (GGE) [26] where in principle all

the (infinite) integrals of motion occurs. Furthermore, it is more realistic to introduce localized sources to deform

the theory, in contrast to the homogeneous disturbance (injected in the UV) used in the null shell collapse. The

primary advantage of the models we describe below is their tractability. This caveat should be borne in mind

before drawing general conclusions from our analysis.
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sections we examine the detailed ‘dynamics’ of our causal constructs, focusing on the causal

holographic information χA, for Vaidya-AdS3 in §3 and for higher-dimensional Vaidya-AdS in

§4. While the thin shell Vaidya-AdS class of geometries studied hitherto illustrates many of the

essential features of the causal wedge and χ, some of these results derive from the large amount of

symmetry which has rendered these examples tractable in the first place. To surmount potential

bias towards special situations, and in order to gain more intuition on the requirements which

any putative CFT duals of these quantities must satisfy in general, we comment on some general

properties of the causal construction in §5. These will be further explicated in a companion paper

exploring more formal aspects [45]. The appendices collect some of the technical computations for

three dimensional Vaidya-AdS spacetimes (in particular Appendix B contains some new results

on entanglement entropy for global collapse and details of early and late time behaviour).

2 Preliminaries

As described in §1, we would like to understand the behavior of the causal wedge �A and the

causal holographic information χA introduced in [3], in situations where the reduced density

matrix ρA associated with the given spatial region A is time dependent. We will concentrate

on the process of thermalization following a sudden disturbance which has oft been used as a

convenient toy model of a quantum quench. In particular, we consider a field theory on globally

hyperbolic background geometry Bd ≡ ΣB × Rt in which we introduce a homogeneous distur-

bance at an instant in time t = ts. Of specific interest will be the cases where the background

is either Minkowski spacetime ΣB = Rd−1 or the Einstein Static Universe (ESU), ΣB = Sd−1.

We can generate deformations via explicit (relevant) operators introduced into the Lagrangian,

and ensure homogeneity by smearing the insertion over the constant time slices ΣB. The result-

ing configuration will then undergo some non-trivial evolution, whose consequences we wish to

examine for a specified boundary region A ⊂ ΣB.

In the gravity dual, the said process of thermalization will be described by a simple spherically

symmetric null shell collapse geometry. We model this by the Vaidya-AdSd+1 spacetime with the

metric:

ds2 = 2 dv dr − f(r, v) dv2 + r2 dΣ2
d−1,K , f(r, v) = r2

(
1 +

K

r2
− m(v)

rd

)
(2.1)

where r is the bulk radial coordinate such that r =∞ corresponds to the boundary, the null co-

ordinate v coincides with the boundary time (i.e. we fix v = t on the boundary of the spacetime),

and dΣ2
d−1,K describes the metric on a plane (sphere) ΣB for K = 0 (K = 1), so that K keeps

track of the spatial curvature of the boundary spacetime geometry. The bulk spacetime (2.1) in-

terpolates between vacuum AdSd+1 and a Schwarzschild-AdSd+1 black hole if m(v)→ {0,m0} for

v → ∓∞ respectively. While any monotonically increasing interpolating function m(v) will do

the trick, the simplest examples are obtained in the so-called thin shell limit, when the transition

is sharp,

m(v) = m0 Θ(v − ts) , (2.2)
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with Θ(x) being the Heaviside step-function. In this case the shell is localized at constant v = ts,

imploding from the boundary r = ∞ to the origin r = 0. Moreover, we can write the metric in

a piecewise-static form,

ds2
α = −fα(r) dt2α +

dr2

fα(r)
+ r2 dΣ2

d−1,K , (2.3)

where the subscript α stand for i inside the shell and o outside, and the shell separating the

two spacetime regions is at some radius r = Rα(tα) corresponding to a radial null trajectory.

Although r is continuous across the shell, the time coordinate t is not. Though these thin shell

geometries will be main focus of our discussion, we will start by setting up the construction in the

more general spacetimes (2.1), allowing the deformation to act more smoothly temporally. This

will enable us to easily derive the jump across the thin shell as well as to check our analytical

results by numerical computations.

Having specified the bulk geometry, let us now return to the bulk quantities we wish to

construct, �A, ΞA, and χA, for a given boundary region A. It will be useful to start by recalling

the general story, to better understand the simplification afforded by (2.1) and the choice of

regions we use below. Following [3], we define3 the causal wedge as

�A = J+[♦A] ∩ J−[♦A] (2.4)

where the domain of dependence ♦A ∈ Bd contains the set of points through which any inex-

tendible causal boundary curve necessarily intersects A. Both ♦A and �A are defined as causal

sets; as such, their boundaries must be null surfaces, generated by null geodesics (within Bd and

in the d + 1 dimensional bulk spacetime, respectively), except possibly at a set of measure zero

corresponding to the caustics of these generators. This means that constructing the causal wedge,

for any boundary region A and in any spacetime, boils down to ‘merely’ finding null geodesics

in that spacetime. The crux of the computation typically lies in delineating where these future

and past null congruences intersect. In practice, though, it is desirable to simplify the prob-

lem still further, by considering convenient regions A and convenient asymptotically-AdS bulk

geometries.

Consider first the construction of ♦A within the boundary spacetime Bd. Although this

background spacetime is simple (e.g. spherically symmetric around any point), for generic regions

A, the domain of dependence is as complicated as the shape of A, as it terminates at a set of

caustic curves, the locus where the generators (namely null geodesics emanating normal to ∂A)

intersect. However, for spherically symmetric regions A, the symmetry of the setup guarantees

that within each (future and past) congruence, all null geodesic generators intersect at a single

point.

Hence for any interval in 1 + 1 dimensional boundary or for round ball regions in higher-

dimensional boundary, the domain of dependence is fully characterized by a pair of boundary

3 The notation is explained in more detail in [3]. Briefly, by J± we mean the causal past and future in the full

bulk geometry, whereas J±∂ indicates the causal past and future restricted to the boundary.
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points, corresponding to its future tip q∧ and past tip q∨. These two points then likewise

characterize the full causal wedge �A, since definition (2.4) merely extends this construction into

the bulk,

♦A = J−∂ [q∧] ∩ J+
∂ [q∨] =⇒ �A = J−[q∧] ∩ J+[q∨] . (2.5)

Therefore ∂+(�A) ⊂ ∂J−[q∧] and ∂−(�A) ⊂ ∂J+[q∨] are generated by null bulk geodesics which

terminate at q∧ or emanate from q∨, respectively.

In general spacetimes, finding null geodesics amounts to solving a set of coupled 2nd order

nonlinear ODEs, so one would typically need to resort to numerics to construct these. Though

the equations simplify substantially for spherically symmetric geometries of the form (2.1) as

presented in §2.2, they still retain the form 2nd order coupled nonlinear ODEs. However, for

piecewise-static and spherically symmetric geometries (2.3), there are enough constants of motion

to obtain the geodesics by integration; in fact, in the specific cases of interest, we can even obtain

analytic expressions for the geodesics. Since the thin shell renders Vaidya-AdS merely piecewise

static, we need to supplement our expressions for the geodesics in each static piece by a ‘refraction’

law for geodesics passing through the shell. This, however, is easy to derive from the geodesic

equations for the global geometry, as we explain in §2.2.

The remainder of this section is organized as follows. In §2.1 we focus primarily on spherical

regions A and thin shell Vaidya-AdS geometries, to motivate our general expectations for the

dynamics of the causal wedge and χ. In §2.2 we go on to derive the equations to calculate these

constructs explicitly.

2.1 General expectations for χA

Consider a spherical entangling region A, specified by its radius a, located at time t = tA. As

indicated above, one may think of ♦A as enclosed by inverted light cones over the region A, so

♦A is equivalently specified by its future and past tip, q∧ and q∨; clearly for Minkowski or ESU

boundary geometry, the time at which these tips are located is simply

tq∨ = tA − a , tq∧ = tA + a . (2.6)

Armed with this data, we are now ready to describe the qualitative behavior of our bulk constructs

�A, ΞA, and χA in thin shell global Vaidya-AdS geometry.

Let us start by making the following simple observation: If we choose A such that its causal

wedge �A lies entirely in the AdS part of the geometry, χA will have the same ‘vacuum’ value as in

pure AdS. Similarly, if �A lies entirely in the Schwarzschild-AdS (SAdS) part of the spacetime,

then χA will have the ‘thermal’ value it would have in the corresponding eternal black hole

geometry. The former will be guaranteed if we take tA to precede ts by sufficient amount, such

that the future tip q∧ lies in AdS, namely tq∧ < ts – then by causality the rest of �A cannot

know about the shell. Similarly, for �A to lie entirely outside the shell, in the SAdS part of the

spacetime, it suffices that tq∨ > ts, since then the null rays from q∨ can never catch up with the
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Causal wedge profile in Vaidya:

Out[77]=

across shellAdS BTZ

For fixed size of    , causal wedge profile changes in time:A

Fig. 2: Radial profile of the causal wedge for fixed tA = −1.5 (left), tA = 0 (middle), and tA = 1.5

(right), for a set of A, color-coded by size a. The thick black curve on right in each panel is the

AdS boundary, the dashed black line on left is the origin, the dashed red curve the event horizon

(whose final size is rh = 2 in AdS units), and the thin brown diagonal line the shell. The black

dots denote the radial position of ΞA corresponding to the given A at time tA and size a. Our

coordinates are such that ingoing radial null geodesics are diagonal everywhere (i.e. parallel to the

shell). The plots are made for Vaidya-AdS3 spacetime.

Regime time tA equivalently ∂−(�A) ∂+(�A)

1 tA < ts − a tq∨ < ts, tq∧ < ts same as in AdS same as in AdS

2 ts − a < tA < ts tq∨ < ts, tq∧ > ts same as in AdS intersects the shell

3 ts < tA < ts + a tq∨ < ts, tq∧ > ts intersects the shell intersects the shell

4 tA > ts + a tq∨ > ts, tq∧ > ts same as in SAdS same as in SAdS

Table 1: Behavior of boundaries of causal wedge ∂−(�A) and ∂+(�A) depending on tA. (Here

Schwarzschild-AdS is abbreviated by SAdS.)

null shell and sample the AdS region. Conversely, if tq∨ < ts < tq∧ , then some part of �A lies in

AdS and some part lies in the black hole geometry. To illustrate the point, in Fig. 2 we plot the

radial profile of the causal wedge for a set of region sizes a for three values of tA: tA < ts − a
(left), tA = ts (middle), and tA > ts + a (right).

To examine this in bit more detail, in Table 1 we tabulate how the future and past parts

of the causal wedge boundary behave, depending on tA. If both ∂−(�A) and ∂+(�A) behave as

in AdS, then so does ΞA and χA. Similar statement holds for both parts behaving as in SAdS.

However, the intermediate case has a richer behavior: For tA < ts, none of the null geodesics

starting at q∨ can cross the shell before being intersected by those ending at q∧, which means

that ∂−(�A) still behaves as it would in AdS. However, despite the fact that ΞA lies on this

surface, it will not be the same curve as in AdS if tq∧ > ts, since the other null surface ∂+(�A)
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ends in the SAdS part of the geometry and therefore it no longer behaves as in pure AdS. So

in the regime ts − a < tA < ts indicated in the second line of Table 1, ΞA lies only within the

AdS part of the geometry, but it is nevertheless deformed from the pure AdS behavior. Since

the surface ΞA is deformed, one would naturally expect that its area χA is likewise deformed

from the AdS (‘vacuum’) value. We will however see later that for the special case of spherical

entangling regions A, this is in fact not the case; this is one of the surprising revelations of our

exploration.

The deformation (from its AdS behavior) of ΞA will grow as tA increases from ts − a to ts,

since more and more of ∂+(�A) samples the SAdS part of the geometry. When tA > ts, ΞA itself

can no longer lie entirely within AdS, since its boundary is in SAdS, by virtue of ∂ΞA = ∂A.

However, not all of ΞA can be entirely in SAdS either while tq∨ < ts, since the radial null geodesic

from q∨ must remain to the past of the shell and hence the deepest part of ΞA remains in AdS

until tA = ts + a, when the thermal regime is entered. Since the geometry is continuous, we

expect χA to vary continuously (and in fact monotonically) with tA.

Hence, the expected behavior of χA, characterized in terms of tA, is:

tA < ts − a χA = vacuum result

ts − a ≤ tA ≤ ts + a χA has non-trivial temporal variation

tA > ts + a χA = thermal result (2.7)

This means that by general causality arguments, we expect the following to hold:

1. The ‘thermalization’ timescale as characterized by χA scales linearly with the system size.4

2. χA is mildly teleological; it responds in advance to the perturbation on a timescale set by

light-crossing time of A.

The fact that χA generically responds to the presence of the shell at an earlier time tA < ts on

the boundary follows from the fact our construction involves ♦A which samples both the future

and past of the boundary region A. While ostensibly peculiar, this teleological nature is capped

off by the light-crossing time, set by the size of the region. Hence the teleological nature of χA

is not as bad as it sounds, since if we imagine measuring any thermodynamic quantity which

pertains to the full system, we would need at least this much time anyway. Of course as the

system size goes to infinity (in the planar case), we will see the usual teleological behavior often

associated with black hole horizons.

Both of these timescales (teleology and thermalization) are given simply by a, which is not

so surprising since it is the only scale characterizing A. However, we can in fact also generalize

the above statements to any-shaped region A, with appropriate identification of a: Since the

4 In other words, here we mean the timescale on which it takes χA to achieve its thermal value after the

excitation. This is not necessarily the timescale by which all observables in the field theory would achieve their

thermal values; indeed, depending on the diagnostic we use, we may never see true thermalization.
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boundary metric is fixed and has a well-defined notion of time t, we can define a as the difference

between tA and the earliest time to which ♦A reaches (or equivalently, half the timespan of ♦A).

Such identification provides a natural notion of characteristic size of the region A, and with this

definition, statements 1 and 2 above hold for any simply-connected5 region A. In the following

sections we explore these statements in some detail, starting first with the simplest case of d = 2,

where we can carry out most of the constructions analytically.

Before turning to the geodesics which govern our causal constructs, let us make one further

remark about the nature of χ. Above, we have been glibly discussing the ‘value’ of χA; however,

the surface ΞA stretches out to the boundary of AdS and hence χA is divergent. Moreover, it has

already been shown in [3] that the divergence structure of the area of ΞA is generically different

from that encountered in the area of the extremal surface EA relevant for the computation of

the holographic entanglement entropy (though in both cases the leading divergence is given by

the area law). Hence it is meaningless to compare χA − SA for a given region as a function of

time, except in special circumstances (e.g. d = 2). We therefore will most often concentrate on

regulated answer obtained by background subtraction, defining

δχA(t) = χA(t)− χbg
A ; χbg

A ≡ lim
t→−∞

χA(t) (2.8)

and similarly for δSA(t).

2.2 Geodesics in Vaidya-AdSd+1 geometry

Let us now collect some basic facts about geodesics in the spacetime (2.1) that will prove useful

in the sequel. Since the full d+ 1 dimensional spacetime has spherical (for K = 1) or planar (for

K = 0) symmetry, one can effectively reduce the problem of finding geodesics to 3 dimensional

problem, characterized by r, v, and ϕ (the latter generates a Killing direction of ΣB whose norm

defines our radial coordinate gϕϕ = r2). Then for an affinely-parameterized geodesic congruences

with tangent vector pa = v̇ ∂av + ṙ ∂ar + ϕ̇ ∂aϕ, it is convenient to define the ‘energy’ E, ‘angular

momentum’ L, and norm of the tangent vector κ:

E ≡ −pa ∂av = f v̇ − ṙ
L ≡ pa ∂

a
ϕ = r2 ϕ̇

κ ≡ pa p
a = −f v̇2 + 2 v̇ ṙ + r2 ϕ̇2 = −E

2

f
+
ṙ2

f
+
L2

r2

(2.9)

where ˙≡ d
dλ

. Note that we are considering full congruences smeared in the directions orthogonal

to ∂ϕ in ΣB to exploit the symmetry.

For affinely-parameterized null or spacelike or timelike geodesic, κ = 0 or 1 or -1, respectively;

in particular it is a constant of motion. Since ∂aϕ is a Killing field, L is a conserved along the

full geodesic. On the other hand, since ∂av is not a Killing field, E is in general not conserved.

5 We will briefly consider non-simply-connected regions in §5.
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However, in the thin shell limit it is conserved for each piece of the geodesic (inside the shell and

outside the shell) individually, which we will exploit. In particular, for constant E, the geodesic

{v(λ) , r(λ) , ϕ(λ)} can be obtained by integrating (2.9).

While the first-order equations (2.9) are convenient to use in finding the geodesics analyt-

ically, we can’t solve them globally using integrals when E is not constant. The second-order

geodesic equations valid for generic f(r, v) are

v̈ +
1

2
f,r v̇

2 − r ϕ̇2 = 0

r̈ +
1

2
(f f,r − f,v) v̇2 − f,r ṙ v̇ − r f ϕ̇2 = 0

ϕ̈+
2

r
ṙ ϕ̇ = 0

(2.10)

where we use the shorthand fr ≡ ∂f
∂r

(r, v) etc.. In order to solve (2.10) to obtain a specific

geodesic, we need to supply two initial conditions for each of the three coordinates. In terms of

the initial position {v0, r0, ϕ0} and the initial velocity, specified by κ, L, and initial energy E0,

and also a discrete parameter η = ±1 which specifies whether the geodesic is initially ingoing or

outgoing, these are

v(0) = v0 , v̇(0) =
1

f(r0, v0)

[
E0 + η

√
E2

0 + f(r0, v0)

(
κ− L2

r2
0

)]

r(0) = r0 , ṙ(0) = η

√
E2

0 + f(r0, v0)

(
κ− L2

r2
0

)
ϕ(0) = ϕ0 , ϕ̇(0) =

L

r2
0

(2.11)

Usually one can exploit symmetries to set ϕ0 = 0. For any given f(r, v), we can solve these

numerically to find any geodesic through the bulk.

Though the coordinates {v, r, ϕ} are useful for finding geodesics, they are not the best for

visualization since the AdS boundary is at r = ∞ and v is a null coordinate; hence on our

spacetime diagrams (such as right panel of Fig. 1, Fig. 2, as well as many of the following figures)

we present in this paper, we plot ρ = arctan r radially and v − ρ + π
2

vertically, so that ingoing

radial null geodesics are straight lines at 45◦. (Note that except for pure AdS spacetimes, the time

delay which outgoing radial geodesics experience when climbing out of gravitational potential

well is manifested by these being generically steeper than 45◦ lines.)

Jump across thin shell: We now consider the thin shell limit. Since we can solve (2.9) by

integration in each part of the spacetime where E is constant, all that remains is to account for

the jump across the shell. As discussed in [16] (see Appendix F), the jump follows immediately

from (2.10). With f(r, v) = r2 +K + Θ(v)m0/r
d−2, while f and f,r remain finite with a discrete

jump, f,v ∼ δ(v) diverges at v = 0.6 Thus for a geodesic crossing the shell, since the coordinates

6Without loss of generality, we henceforth set ts = 0.
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{v(λ), r(λ), ϕ(λ)} are continuous across the shell, {v̇, ṙ, ϕ̇} must also remain finite (as is evident

from (2.9)). This means that from (2.10), v̈ and ϕ̈ must remain finite as well, which in turn

implies that v̇ and ϕ̇ are in fact continuous across the shell. On the other hand, r̈ has a δ(v)

piece from the f,v term, so ṙ must jump across the shell. We can easily compute this jump by

direct integration,

r̈ ∼ 1

2
µ(r) v̇2 δ(v) =⇒ ṙ =

∫
r̈ dλ =

∫
r̈

v̇
dv =

1

2
µ(r) v̇ , (2.12)

with µ(r) = m0/r
d−2, which means that the jump in dr

dv
across the shell is

dri
dvi
− dro
dvo

=
1

2
(fi − fo) =

1

2
µ(r) . (2.13)

It is however even simpler to read off the jump in E directly from the fact that

v̇ =
1

f

[
E + η

√
E2 + f

(
κ− L2

r2

)]
(2.14)

is continuous across the shell. A bit of algebra then gives

Eo =
1

2 fi

[
(fi + fo)Ei − η (fi − fo)

√
E2
i + fi

(
κ− L2

r2

)]
, (2.15)

from which we recover

Ei − Eo =
1

2
(fi − fo) v̇ . (2.16)

We now have all the information required to explore the properties of χA in the Vaidya-AdS

spacetimes explicitly.

3 Shell collapse in three dimensions

Having gleaned some general features of χA in time dependent geometries, we now turn to the

specific example of null shell collapse in AdS3, modeled by (2.1) with d = 2. In this case we take

dΣ2
1 ≡ dϕ2 with the spatial circle parametrized by ϕ ' ϕ+ 2π, and

f(r, v) =

r2 + 1, for v = t < 0

r2 − r2
h, for v = t > 0

(3.1)

so that the spacetime is global AdS3 before the insertion of an operator deformation at ts = 0 and

BTZ with horizon radius rh afterwards. This could be achieved for instance by homogeneously

injecting energy along the spatial circle. The region A is then taken to be an arc of length 2ϕA,

without loss of generality lying between ±ϕA. This region will be taken to lie entirely at constant

time t = tA on the boundary.

The general strategy for finding the causal wedge is as described in §2. Since the boundary

spacetime is ESU2 (whose metric is flat), the domain of dependence of A is given by ♦A =
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J−∂ [q∧] ∩ J+
∂ [q∨], and correspondingly the causal wedge for A merely extends this construction

into the bulk, �A = J−[q∧] ∩ J+[q∨]. Hence to find ∂±(�A), and therefore ΞA, we need to find

future-directed null geodesics from q∨ and past-directed null geodesics in q∧. These future and

past tips lie at

q∧ : t∧ = v∧ = tA + ϕA , ϕ∧ = 0 , r =∞ ,

q∨ : t∨ = v∨ = tA − ϕA , ϕ∨ = 0 , r =∞ .
(3.2)

The expressions for the null geodesics themselves in the AdS3 part of the geometry are given

by the following expressions (η = ±1 for outgoing/ingoing respectively and ϕ∞ = 0 w.l.o.g.):

v(r) = v∞ −
π

2
(η + 1) + η arctan

(√
(1− k2) r2 − k2

)
+ arctan r

ϕ(r) = η

[
arctan

(√
(1− k2) r2 − k2

k

)
− π

2
sign(k)

]
(3.3)

with k = L/E for simplicity (using the scaling freedom of the null geodesic affine parameter).

Likewise, the BTZ null geodesics are (now with j = L/E):

v(r) = v∞ +
1

2 rh
ln

(r − rh)
(r + rh)

(√
(1− j2) r2 + j2 r2

h − η rh
)

(√
(1− j2) r2 + j2 r2

h + η rh

)


ϕ(r) = η
1

2 rh
ln

[√
(1− j2) r2 + j2 r2

h − j rh√
(1− j2) r2 + j2 r2

h + j rh

]
(3.4)

To keep track of various geodesic congruences, it is useful to adopt suggestive7 labels:

• v↗(r, `) and ϕ↗(r, `) describe outgoing congruence terminating at q∧ at the boundary.

• v↖(r, `) and ϕ↖(r, `) describe ingoing congruence starting from q∨.

In these expressions ` stands for the (normalized) angular momentum L/E along the given

geodesic seqment (which for notational convenience we call k in AdS and j in BTZ); because of

the refraction (2.15), the value of ` will change between k and j as the geodesic passes through

the shell.

3.1 Construction of ΞA

Having the explicit expressions for the geodesics at hand, the desired surface ΞA (which is a curve

in d = 2) can be found easily. One obvious quantity of interest is the minimal radial position

attained along the curve Ξ; we denote this by rΞ in what follows. It is useful to demarcate our

discussion into four different time intervals for the temporal location of A, corresponding to the

four rows of Table 1. We consider these in turn:

7 Here we envision the boundary as being on the right, as in Fig. 2.
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1. Vacuum (tA < −ϕA): Here t∧, t∨ < 0 implying that the entire causal wedge and thus

ΞA is in the AdS3 part of the spacetime. Using (3.3) with the initial points (3.2) we chart

out the surface of ∂(�A); see right panel of Fig. 1 for the actual shape when ϕA = π/3. The

explicit expressions are unnecessary for our purposes (and can be found in [3]). To determine

rΞ, it suffices to consider purely radial geodesics L = k = 0. Equating v↗(r, 0) with v↖(r, 0) we

immediately find

rΞ = cotϕA . (3.5)

Furthermore, one can conveniently characterize ΞA itself by

sin ρ cosϕ = cosϕA (3.6)

where ρ ≡ arctan r. On our spacetime plots such as Fig. 1, ΞA would be a horizontal curve at

v − ρ+ π
2

= tA. As discussed in [3], in pure AdS (and hence in the present “vacuum” regime of

Vaidya-AdS), the causal information surface ΞA in fact coincides with the extremal surface EA;

in 3 dimensions this is given by a spacelike geodesic with energy E = 0 and angular momentum

L = cotϕA. In [46] this surface was characterized by

r2(ϕ) =
L2

cos2 ϕ− L2 sin2 ϕ
, (3.7)

which, as can be easily checked, is equivalent to (3.6).

2. Shell encounter by ∂+(�A) only: (−ϕA < tA < 0): In this time interval, the ingoing

congruence which generates ∂−(�A), specified by8 {v↖(r, k−), ϕ↖(r, k−)}, still lies entirely in

the AdS3 geometry as explained in §2.1, cf. Table 1. On the other hand, since v∧ > 0, the

outgoing congruence generating ∂+(�A) has segments in both the AdS and the BTZ part of

the spacetime. Let us denote the segments in the two regions then as {v↗(r, k+), ϕ↗(r, k+)}
and {v↗(r, j+), ϕ↗(r, j+)} respectively, accounting now for the fact that the energies in the two

spacetimes will differ (while L along an individual geodesic remains constant).

Starting with the outgoing congruence which terminates at q∧, for each outgoing geodesic,

labeled by j+, we need to find the spacetime point ps = {vs = 0 , rs , ϕs} where it hits the shell,

as well as how does it refract there, specified by the relation between j+ and k+. Using the fact

that the segment {v↗(r, j+), φ↗(r, j+)} connects ps to q∧ we find that

rs = rh

(
coth(rh v∧) +

1√
1− j2

+

csch(rh v∧)

)
, erh ϕs =

erh v∧
√

1− j+ +
√

1 + j+

erh v∧
√

1 + j+ +
√

1− j+

. (3.8)

With the knowledge of rs, we can then solve the refraction condition (2.15) with j+ = L/Eo and

k+ = L/Ei to find that

k+ =
2 j+ rs (r2

s − r2
h)

rs (2 r2
s + 1− r2

h) + (r2
h + 1)

√
(1− j2

+) r2
s + j2

+ r
2
h

, (3.9)

8 We now distinguish the angular momenta characterizing the top and bottom of the causal wedge ∂±(�A) by

subscript k± for AdS and j± in BTZ.
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where rs itself depends on j+ as given by (3.8).

The main distinguishing feature of the time interval under focus is that k+(j+) from (3.9)

spans the entire range ±1. This in turn implies that we can view k+ as the data characterizing

the full angular span of ∂+(�A), and confirms that ΞA lies entirely in the AdS3 part of the

spacetime.

Having described how the outgoing congruence refracts through the shell, it only remains

to find where it intersects with the ingoing congruence emanating from q∨. For each pair of

intersecting geodesics, we denote their intersection by px = {vx , rx , ϕx}, which we can determine

by solving

v↗(rx, k+) = v↖(rx, k−) = vx , ϕ↗(rx, k+) = ϕ↖(rx, k−) = ϕx . (3.10)

While the expressions themselves are easy to write down and solve explicitly as we describe in

Appendix A, it is convenient to solve (3.10) numerically to find ΞA. Note that (3.10) gives a one-

parameter family of solutions for px (with corresponding angular momenta k±), which determines

ΞA. We can naturally take ΞA to be parameterized by j+ ∈ (−1, 1), or more conveniently by

rx ∈ (rΞ,∞) (for each half of Ξ). Since k+ = 0 when j+ = 0, we can easily find the minimal

radial position rΞ attained by ΞA analytically:

rΞ = tan

(
tA − ϕA

2
+ arctan

[
rh coth

(
rh
tA + ϕA

2

)])
. (3.11)

Note that in the relevant regime, rΞ is a monotonically increasing function of tA (for fixed ϕA

and rh).

In the left panel of Fig. 3 we plot ΞA (thick blue curve) for a region A (thick red curve), along

with representative generators of ∂±(�A) (thin null curves, color-coded by rx), for ϕA = 2π/5

and the final black hole size rh = 2. (Hence the radial null geodesics drawn as thin red curves are

precisely analogous to the curves demarcating the causal wedge profile in Fig. 2.) For comparison,

we also show the extremal surface EA (thick purple curve). We see that unlike the previous case,

in this regime ΞA is no longer plotted as purely horizontal curve, but rather bends outward and

downward - i.e. to the past of the constant t = v−ρ+ π
2

surface. On the other hand, the extremal

surface EA remains undeformed since, being anchored at tA < ts = 0, it cannot yet ‘know’ about

the shell. While the downward bend of ΞA is easy to see in Fig. 3, the outward deformation is

more apparent from when viewed from a different angle. To that end, in Fig. 4 we present the

same constructs as in Fig. 3, but viewed from top, i.e. projected onto a constant time slice. This

projection is known as Poincare disk, where ρ is the radial coordinate and ϕ the angular one.

Here it is evident that ΞA lies closer to the boundary than EA. For orientation we also show

the final black hole size rh, even though the generators are not directly dependent on it. On the

other hand, we can see that the generators of ∂+(�A) are refracted by the shell (which we don’t

show since its projection covers the full Poincare disk and each generator intersects it different

time and radial position).
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Fig. 3: A plot of the causal information surface ΞA (thick blue curve) along with representative generators

of ∂±(�A) (thin null curves, color-coded by rx), in Regime 2 (left) and 3 (right), as discussed in

text. For orientation we also show the boundary, imploding shell, corresponding event horizon whose

final size is rh = 2, the region A (thick red curve) whose size is ϕA = 2π
5 and time tA = −0.1

(left) and tA = 0.6 (right), the corresponding domain of dependence ♦A (thin grey curves) with

its future and past tips q∧, q∨ as marked, as well as the extremal surface EA (thick purple curve)

for comparison.

EA
EA

⌅A⌅A
AA

rh
rh

Fig. 4: Top view of the same plot as in Fig. 3 (with the same color-coding scheme), i.e. all curves are

projected onto the Poincare disk. For orientation, we also indicate the final black hole size rh

(dashed red curve).

3. Shell encounter by ΞA: (0 < tA < ϕA): We now come to the most complicated regime

of interest (cf. 3rd line of Table 1). For the time interval under consideration, while we still
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have v∨ < 0 and v∧ > 0, there is a qualitative change in the behavior. This is because ΞA

itself will intersect the shell, which one can argue for as follows. Along the ingoing congruence

{v↖(r, k−), φ↖(r, k−)}, the radial null geodesic (k− = 0) stays at v = v∨ and thus is parallel to

the shell’s trajectory and has to remain in AdS. On the other hand, the geodesics with k− ≈ ±1

lie close to the boundary and these must intersect the congruence from q∧ at v = tA > 0 on

the boundary. The only way for this to happen is for the ingoing congruence itself to cross over

through the shell and sample regions with both signs of v.

Hence in this regime, both the congruences generating ∂+(�A) and ∂−(�A) refract through

the shell. The transition (determined by where ΞA itself intersects the shell) is given by some

critical angular momenta j∗+ and k∗− demarcating the transfer of refraction from the top boundary

of the causal wedge to its bottom boundary. We have to determine these to find ΞA.

The analysis however is straightforward; start with the radial geodesics for which only the

refraction of the j+ = k+ = 0 geodesic matters. This is of course similar to what we encountered

in Regime 2 and it hence follows that the minimal radial position attained along ΞA continues

to be given by (3.11). We then increase j+ and follow Ξ along its path through the AdS region

as before. At the same time we monitor the ingoing geodesics along ∂−(�A) and ask when they

hit the shell. This happens for

rs = cot v∨ −
1√

1− k2
−

csc v∨ , ϕs =
π

2
sign(k−) + arctan

(
cos v∨ −

√
1− k2

−

k− sin v∨

)
. (3.12)

The critical angular momenta j∗+ and k∗− at which ΞA crosses the shell is then obtained by equating

rs and ϕs in (3.12) with the corresponding result in the black hole part (3.8). Denoting the

spacetime point where these critical geodesics with j∗+ and k∗− intersect (which is simultaneously

the point where ΞA intersects the shell) by pX = {vX , rX , ϕX}, we have vX = 0, rX ≡ rs(j
∗
+) =

rs(k
∗
−) and ϕX ≡ ϕs(j

∗
+) = ϕs(k

∗
−).

The strategy for finding ΞA then is similar to what was employed in (3.10). For |j+| < |j∗+|
or equivalently for rΞ ≤ r ≤ rX , the previous analysis carries over unchanged. For larger values

of angular momenta (r > rX), we must first account for the refraction of the ingoing congruence

from q∨ through the shell, by employing the relation between k− and j−, analogous to (3.9) and

obtained from the same refraction condition (2.15), now with η = −1, j− = L/Eo and k− = L/Ei:

j− =
2 k− rs (r2

s + 1)

rs (2 r2
s + 1− r2

h) + (r2
h + 1)

√
(1− k2

−) r2
s − k2

−
. (3.13)

The analog of (3.10) which we need is simply obtained by replacing k− → j− and k+ → j+ since

the intersection happens in the BTZ part of the spacetime now.

In the right panel of Fig. 3 we plot ΞA along with representative generators of ∂±(�A) for

this regime, as well as the extremal surface EA for comparison. We can see that ΞA now deforms

to an even larger extent than in Regime 2 (cf. the left panel), being pushed further outward and

downward, as well as kinked by the shell. The behavior of the extremal surface EA is likewise
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more complicated than in the previous two cases (whether or not EA crosses the shell depends on

the interplay of tA and ϕA; in the present case it does), and its detailed structure will be presented

elsewhere [47]. However, we can make the general statement that EA does not coincide with ΞA,

and reaches deeper into the bulk, as characterized by the minimum radius attained along EA,

rE < rΞ. We will revisit this point in the Discussion.

4. Thermal (tA > ϕA): Finally, let us consider the regime v∧, v∨ > 0, so the entire causal

wedge is in the BTZ part of the geometry. As demonstrated in [3], the causal information surface

ΞA now again coincides with the extremal surface EA; both are deformed outward and downward

by the presence of the black hole, such that rΞ = rE > rh. By similar arguments as for regime 1,

we now find the minimal radius reached to be9

rΞ = rh coth (rh ϕA) ≡ rξ . (3.14)

The static case expressions (3.5) and (3.14) are in fact the special limits of (3.11) as tA → ±ϕA,

respectively. As remarked above, rΞ increases monotonically with tA, so in particular the thermal

result (3.14) is larger than the vacuum result (3.5).

Now that we have covered all 4 qualitatively distinct regimes, we summarize our results. In

the left panel of Fig. 5 we plot the actual surfaces ΞA (now color-coded by tA) as tA varies across

the 4 regimes, again for a fixed value of ϕA = 2π/5 and the final black hole size rh = 2 (so the

thick blue curves ΞA in Fig. 3 are specific examples of these). We present the same curves ΞA

both on a spacetime plot (left) as well as its projection onto the Poincare disk (right). We can

clearly see how the surfaces deform outward and downward so as to remain outside the event

horizon. The 4 regimes are demarcated by the regions A for tA = −ϕA, 0, ϕA as labeled in the

left panel, and we can see that in regimes 1 and 4 the shape of ΞA remains the same, while in

regimes 2 and 3 the shape of ΞA changes with tA as expected. The qualitative difference between

the latter two regimes can be seen if we shift all Ξ’s such that they are anchored at the same

position on the boundary. Then one can confirm that in regime 2, all Ξ’s lie on the same null

surface, while in regime 3 they don’t.

To characterize the change in ΞA under variations of tA, it is better to concentrate on one

salient feature of ΞA rather than its entire shape. One such handy quantity is the bulk depth

to which ΞA penetrates. In Fig. 6 we plot the minimum radius rΞ (blue curve) and rE (purple

curve) attained by the causal information surface ΞA and the extremal surface EA, respectively,

as tA varies across the 4 different regimes discussed above, again for ϕA = 2π/5 and final black

hole size rh = 2. We clearly see that the expectations explained in §2.1 pan out: rΞ coincides

with rE in regimes 1 (AdS) and 4 (BTZ) and differs in regimes 2 and 3 (shell encounter); in

particular rΞ > rE (i.e. doesn’t penetrate as deep into the bulk) in the latter cases. Moreover, in

regime 2 (tA < ts = 0), while rE remains at its AdS value by causality, rΞ already starts to vary,

illustrating the quasi-teleological behavior of �A.

9 Note that we have denote the minimal radius attained by ΞA and EA in BTZ spacetimes as rξ for future

convenience.
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rh

A

Fig. 5: (Left): The curves ΞA (color-coded by tA) for a range of tA sampling across the 4 regimes

(separated by the three transitions at tA = −ϕA, 0, ϕA as labeled; the thin gray curves represent

A at those times) in increments of 0.1ϕA, for ϕA = 2π/5 and rh = 2. (Right): Same curves ΞA

projected onto the Poincare disk, analogous to Fig. 4.

�'A 'A
tA

rE

r⌅

rmin

0.5

1.0

1.5

2.0

Fig. 6: Comparison of minimum radii rΞ (blue curve) and rE (purple curve) attained by the causal

information surface ΞA and the extremal surface EA, respectively, as a function of tA, for the same

parameters as in Fig. 5, namely ϕA = 2π/5 and rh = 2. The regimes 1,2,3,4 are again demarcated

by tA = −ϕA, 0, ϕA.

3.2 Determining χA and comparison with SA

Now that we have analysed how the causal wedge �A and the corresponding causal informa-

tion surface ΞA ‘evolves’ during a thin shell collapse, let us turn to its proper area, the causal

holographic information χA. In particular, we would like to compare the regulated value of χA

with the regulated entanglement entropy SA. One might naively expect that χA and SA would

evolve with tA in a manner which is qualitatively analogous to that of rΞ and rE plotted in Fig. 6.
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Fig. 7: The variation of χA with time tA. We plot the absolute value of χA evaluated with a radial cut-off

r∞ = 100 in the Vaidya-AdS3 spacetime. The shell implodes from the boundary at ts = 0. The

plots are shown for two different region sizes indicated above and for different final black hole size

for each choice of ϕA.

Indeed, we find that in regimes 1 and 4 (AdS and BTZ), χA and SA must coincide, since the

actual surfaces whose area these quantities measure also coincide.

In particular, as can be verified by explicit computation, in the AdS (‘vacuum’) case,10

Regime 1 : χA = SA =
ceff

3
log[2 r∞ sinϕA] ≡ SAdS(ϕA) (3.15)

while in the BTZ (‘thermal’) case,

Regime 4 : χA = SA =
ceff

3
log

[
2 r∞
rh

sinh (rh ϕA)

]
≡ SBTZ(ϕA, rh) (3.16)

where r∞ is the radial UV cut-off to regulate the standard divergence encountered in the expres-

sions. We have also introduced new definitions for the values of the χ and S in the AdS and

BTZ geometries respectively for future convenience.

In the intermediate regime (Regimes 2 and 3) where the causal wedge encounters the shell

and ΞA no longer coincides with EA, we can compute χA numerically. (If fact, in the present

case we can also use a trick, explained in §3.2.1, to obtain χA almost analytically.) Using the

more obvious numerical method, we integrate the length element induced from (2.1) onto the

curve Ξ. This boils down to integrating the proper length in AdS for rΞ ≤ r ≤ rX (which for

Regime 2 is rX = ∞ so this gives the full answer) and using the BTZ metric for r ≥ rX . We

regulate the result by integrating the length element up to r = r∞; since at the end of the day

we are going to use background subtraction, all we need to do is to ensure that we pick the same

UV regulator for the AdS spacetime.

In Fig. 7 we plot the behavior of χA for two different values of ϕA. While we see that χA

10The expressions are written in terms of the field theory central charge ceff which is related to the gravitational

Newton’s constant via the standard Brown-Henneaux result ceff = 3RAdS

2G
(3)
N

.
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indeed monotonically interpolates between the AdS value and the BTZ value, we encounter a

surprise: χA behaves causally: it does not start to grow till the shell encounter! In other words,

χA = SA even in Regime 2, despite the fact that the surfaces ΞA and EA differ.

The reason that χA remains at the AdS value in Regime 2, and only starts to vary in Regime

3, is the following. As explained in §2.1 (cf. Table 1), ∂−(�A) lies entirely in AdS, so ΞA lies on

the same null surface ∂J+[q∨] as the extremal surface EA (the latter lying on ∂J+[q∨] by virtue of

coinciding with the causal holographic surface in pure AdS). In particular, past-directed outgoing

null geodesics emanating in a normal direction to EA thus generate ∂J+[q∨], with ΞA lying along

these generators between EA and q∨.

Since ∂J+[q∨] is a boundary of a causal set, its generators must be null geodesics which reach

the boundary at q∨ without encountering caustics along the way. By Raychaudhuri’s equation,

this in turn implies that these generators cannot contract towards the boundary, i.e. that their

expansion along past-directed (outgoing) direction must be non-negative, but cannot increase.

On the other hand, as shown in [7], the extremal surface is precisely the one with null normal

congruences (both ingoing and outgoing ones, or both future and past-directed ones) having zero

expansion. Since the generators of ∂J+[q∨] start out at EA with zero expansion towards the

boundary, they have to maintain zero expansion all along the entire ∂J+[q∨], which can be also

checked by explicit calculation (as we do in §4).

Having established zero expansion along null generators of ∂J+[q∨], the final ingredient in

our argument is translating this into comparison of areas of EA and ΞA. Since the expansion Θ

is the differential increase in area along the ‘wavefront’ of these generators, Θ = d
dλ

logA(λ), if

Θ(λ) = 0, then the ‘wavefront’ area A(λ) stays constant. Furthermore, since we can think of EA

as lying at λ = λE and ΞA as lying at λ = λΞ > λE (using, if necessary, the freedom of overall

rescaling of affine parameter along a null geodesic, and noting that at the boundary, finite λ flow

degenerates to a point, so that all constant λ wavefronts remain pinned to ∂A), the increase of

area between EA and ΞA must vanish, i.e. χA = SA.

Note that the above argument crucially relied on the fact that EA ∈ ∂J+[q∨]. This situation

is general for d = 2 where our region A is just an interval, since then ♦A is specified by the

two points q∨ and q∧ for any A. On the other hand, as pointed out in §2, this clearly does

not hold in higher dimensions for generic shapes of A. It is only for special (round) regions

A that EA coincides with ΞA in AdS and hence can lie on ∂J+[q∨]. For generic (non-round)

A, EA does not lie on ∂J+[q∨], so we do not have a handy curve on ∂J+[q∨] on which we are

guaranteed to have zero expansion. On the other hand, this lack of proof does not necessarily

imply inequality between SA and χA a-priori. To see whether χA does behave teleologically as

expected, or whether it still maintains causality for a more subtle reason, in §4 we examine these

quantities explicitly in higher-dimensional thin-shell Vaidya-AdS for both round and non-round

regions.
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3.2.1 Trick to evaluate χA(tA)

Above we have argued that in the thin shell Vaidya-AdS3 spacetime, χA behaves causally, in

the sense that it stays at the AdS value for all tA ≤ 0, i.e. up till the appearance of the shell.

However, it is also clear that between tA = 0 and tA = ϕA (when χA saturates to the BTZ value

SBTZ), there is a non-trivial variation in χ(tA) which we evaluated numerically; cf. Fig. 7. The

numerical computation follows the logic outlined earlier to find ΞA and then evaluating its area

(further details are presented in Appendix A).

In the present special case of thin shell Vaidya-AdS3 we however can exploit a trick to give

a simple compact expression for χA which only uses the critical angular momenta j∗+ and k∗−
discussed above (3.12) and the forms of null and (zero-energy) spacelike geodesics in pure AdS

and BTZ. While the expressions for j∗+ and k∗− require solving transcendental equations, we know

analytically the expressions for null and spacelike geodesics in AdS3 and BTZ spacetimes, which

suffices to bring the expression for χA into a convenient compact form.

The basic idea is simply an extension of the one used to argue that χ(tA < 0) = χ(tA < −ϕA),

now applied to light cones in both AdS and BTZ. Fix tA ∈ (0, ϕA), and consider the curve ΞA ≡ Ξ

(we drop the subscript A for the time being). This is composed of a central piece which resides

in AdS and the edge pieces which reside in BTZ and these intersect at pX = {v = 0, rX , ±ϕX}.
In fact, since everything is reflection-symmetric around ϕ = 0, it will be convenient to deal with

only one side (say for positive ϕ); we’ll denote the respective parts of one half of the curve by ΞAdS

and ΞBTZ respectively, and correspondingly their proper lengths by LAdS and LBTZ, respectively.

The total length of Ξ then determines χA ∝ 2 (LAdS + LBTZ).

Since the segments ΞAdS and ΞBTZ lie in different geometries, it is useful to tackle them

separately. A-priori to compute the two contributions to χ we would be satisfied with any

mechanism for computing the respective lengths without actually knowing the form of the curves

themselves. While this is usually tricky, in the present case we can map the computation of the

lengths LAdS and LBTZ, to computations to lengths of two other known curves in the AdS and

BTZ spacetime.

Imagine cutting (half of) Ξ at the intersection with the shell into its two segments at pX .

Since Ξ lies on the boundary of the causal wedge, it follows that ΞAdS lies on ∂J+[q∨]; similarly

ΞBTZ lies on ∂J−[q∧]. We are going to slide the two segments along these light cones to a point

where we encounter some known curves whose length is easy to compute.

First we however have to understand why we are free to slide the curve along the light cones.

Consider the AdS part of Ξ: by construction, ΞAdS lies in the AdS part of the geometry, on

the light cone ∂−(�A) ∈ ∂J+[q∨], whose null generators have zero expansion (as argued above).

This means that the length of ΞA is the same as the length of any other curve on ∂J+[q∨] which

traverses the same set of generators, namely those null generators of ∂J+[q∨] with sub-critical

angular momentum k ≤ k∗− (we take by convention k∗− > 0 on ΞAdS without loss of generality).

So as long as we slide ΞAdS up by the same affine time along the generators of ∂J+[q∨] with the
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ends on the generator k∗− we won’t change its length.

Among curves that lie on this light cone in AdS, a particularly convenient one is the zero-

energy spacelike geodesic in pure AdS, EA. We know it coincides with Ξ in AdS and therefore lies

on the future light cone from q∨, and moreover its length is given simply by its affine parameter

which is easy to evaluate. Such spacelike geodesic EA would lie at constant t in AdS, and in

particular encounters the critical null generator (i.e. one from q∨ with angular momentum k∗−)

at t = tA. So LAdS is given by the affine parameter λ(r) of a spacelike E = 0 geodesic in AdS

anchored on ∂A (i.e. with angular momentum L = rE = cotϕA), evaluated at the value of r at

which this geodesic intersects the critical null generator with k = k∗−.

Using explicit expressions for the null geodesics in AdS (3.3), we learn that the element of

the ingoing congruence with angular momentum k∗− starting from q∨ makes it to t = tA at a

radial position r2
∗ =

r2E+(k∗−)2

1−(k∗−)2
. Then it is a simple matter to integrate spacelike geodesic r(λ) to

infer λ(r∗). We use dr
dλ

=
√

(r2 + 1) (r2 − r2
E) for a E = 0 spacelike geodesic with L replaced by

the minimal radial position attained. The integral is simple to evaluate and we obtain

LAdS =
1

2
log

1 + k∗−
1− k∗−

. (3.17)

Note that (3.17) is independent of ϕA, which it has to be by scaling invariance of AdS. Also

note that for tA ≤ 0, we have k∗− = 1, so when the entire Ξ lies in AdS, we recover the usual

divergence in its length.

Let us now turn to the outer piece of Ξ, namely ΞBTZ. This part of Ξ lies entirely in the BTZ

part of the geometry, and in particular on the past light cone ∂+(�A) ∈ ∂J−[q∧]. We again slide

this down to a convenient position staying on this light cone; the main difference is that we are

interested only in the segment of the light cone generated by null geodesics with −1 < j+ < j∗+
with j∗+ indicating being the anchor point of our slide (having chosen positive k− we now need

to choose negative j+).

Since in pure BTZ, an extremal surface EA also coincides with the causal information surface

ΞA, the generators of ∂J−[q∧] must have zero expansion everywhere in BTZ, by the same type

of argument as for the AdS light cones: E forces the generators to start with zero expansion,

and Raychaudhuri equation ensures that the subsequent expansion does not grow and does not

become negative – i.e. it has to stay zero. So it then follows that the length LBTZ of ΞBTZ is the

same as the length of any other curve on ∂J−[q∧] which traverses the same generators, in this

case characterized by super-critical angular momentum, j+ < j∗+.

The calculation then proceeds exactly as above; we can pick the spacelike E = 0 geodesic

in pure BTZ geometry ending at t = tA, and find where it intersects with the null generator of

the past light cone from q∧ with angular momentum j∗+. Using (3.4) for the explicit form of the

null geodesics in BTZ we find that r2
∗ = (r2

ξ − r2
h (j∗+)2)/(1− (j∗+)2).11 Integrating the expression

11Note that since we are moving the segments of the curves ΞAdS and ΞBTZ the radial positions r∗ in AdS and

BTZ are unrelated.

– 23 –



for the spacelike geodesic with E = 0 and L = rξ (again set by the minimal radius attained)

which takes the simple form dr
dλ

=
√

(r2 − r2
h) (r2 − r2

ξ) in the BTZ spacetime, between r∗ and

the radial cut-off r∞, we learn that

LBTZ = log

(
2 r∞
rh

sinh(rh ϕA

)
− 1

2
log

1− j∗+
1 + j∗+

. (3.18)

From these two simple expressions it follows that in the regime 0 < tA < ϕA we have a

compact expression for χA

χA = SBTZ +
ceff

6
log

(
1 + k∗−
1− k∗−

1 + j∗+
1− j∗+

)
(3.19)

where we have written the expression in terms of the BTZ value of χ cf., (3.16). Note that k∗− > 0

and j∗+ < 0 additive logarithmic piece can a-priori be positive or negative. However, since the

presence of the black hole effectively repels geodesics, |j∗+| > |k∗−|, which forces the second term

in (3.19) to be negative. Moreover, explicit numerical solutions for the critical angular momenta

confirm that is always negative and χA < SBTZ which is consistent with the numerical results

of Fig. 7. We would like to emphasize that this is a-priori rather remarkable since the surface

ΞA lies nowhere near any extremal surface in the bulk, as is evident from Fig. 3. Despite the

apparent non-locality in the definition of the causal holographic information, the final result is

manifestly local. We will return to this point in §5.

3.2.2 The behaviour of χA − SA

Having understood how to compute χA, let us finally consider the difference between χA and SA

in regime 3, which is the only domain in t where it is different from zero.

First of all we recall that χA and SA have a leading area law divergence in the UV which

is replaced by the logarithmic behaviour in d = 2. Unlike the higher dimensional examples,

here neither has any further divergences, so it makes sense to consider the difference χA − SA
in the present case. One naively expects [3] that in this regime χA > SA, since the surface ΞA

lies closer to the boundary and hence ought to have greater (unregulated) length.12 However,

it is clear that this cannot be the entire story since we have argued that χA = SA in regime

4. It therefore must follow that the difference χA − SA is non-monotonic. Indeed, our explicit

computation bears this expectation out. In Fig. 8 we plot variation of χA − SA with time tA.

We see that this vanishes at both endpoints of this regime, tA = 0 and tA = ϕA, and is positive

in between. Moreover, the slope vanishes at both ends (though the numerics are not well under

control there). To get a handle on the behaviour of χA − SA near tA = 0 and tA = ϕA we turn

to an examination of the two quantities in these regimes in a perturbation expansion in time.

The behaviour for tA ' 0: Firstly, consider the behaviour near tA = 0. As we explain in

Appendix B it is quite straightforward to work out the rate of growth of SA from the vacuum

12The divergent logarithmic contribution comes from the fact that the curves approach the boundary normally.
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Fig. 8: The variation of χA − SA with time tA for the Vaidya-AdS3 spacetime. The plots are presented

for different values of region size ϕA and final black hole radius rh for comparison. These have

been obtained by using (3.19) and (B.31) which are evaulated numerically. We note that the result

is in good agreement with data obtained by numerically solving for ΞA as described in Appendix

A and thence computing χA and similary for SA

value. We find:

SA(tA, ϕA) = SAdS +
ceff

6

[
r2
h + 1

2
t2A −

r2
h + 1

48

(
6 csc2 ϕA + r2

h − 3
)
t4A + · · ·

]
, (3.20)

indicating a quadratic growth in the holographic entanglement entropy about its vacuum value.13

The behaviour of χA can be computed directly using (3.19) which is a clean local formula.

Were it not for this it would be quite hard to estimate the change in χA about its vacuum value.

We solve (3.8) and (3.12) for j∗+ and k∗− for small tA, which can be done analytically; plugging

the result into (3.19) we have (with rE = cotϕA and rξ defined in (3.14)):

χA(tA, ϕA) = SAdS +
ceff

6

[
r2
h + 1

2
t2A +

1

4
(rE − rξ)(r2

ξ − r2
E − 2− 2 r2

h) t
3
A + · · ·

]
. (3.21)

From (3.20) and (3.21) we conclude that the leading and first subleading terms in the growth of

χA and SA cancel each other off leaving behind a cubic growth:

χA − SA =
ceff

24
(cotϕA − rh coth rhϕA)(r2

h csch2 rhϕA − csc2 ϕA − r2
h − 1) t3A + · · · (3.22)

13As far as we are aware this is the first analytic result in the literature regarding the rate of growth of SA at

early times for finite region size. The linear behaviour in the intermediate times has been noted before since this

matches the CFT computation quite nicely. We also note that earlier [44] derived an universal expression for the

early-time growth focussing on arbitrarily large regions in the context of field theories in R1,1. More specifically

our results are valid for tA � {rh, ϕA}, with no hierarchy implied between the thermal scale set by rh and the

region size ϕA, whereas consideration of arbitrarily large regions requires tA � rh � ϕA. The latter is only

sensitive to the IR part of the entanglement entropy and does not for example see the saturation to the late time

thermal value as we describe next. We thank Esperanza Lopez for discussions on this issue. For completeness we

present in Appendix B the general behaviour of the growth of SA(t) at early times starting from various initial

configurations (global or Poincaré vacuum and thermal state) cf., (B.32) and (B.34).
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The coefficient of the cubic is positive definite guaranteeing that χA > SA in the neighbourhood

of the origin.

The behaviour for tA ∼ ϕA: At the other end where tA approaches ϕA, the quantities χA

and SA tend to their BTZ values SBTZ respectively. We can use a perturbation expansion in

ε ≡ ϕA − tA to figure out the rate of approach. For SA this is described in Appendix B; the

upshot of the computation is that SA approaches the thermal value as a power law with leading

exponent 3
2
. Specifically,

SA(tA, ϕA) = SBTZ −
ceff

6

r2
h + 1√

2 rξ

4

3
ε

3
2 +

√
2

3

r2
h + 1

r
3
2
ξ

ε2 + · · ·

 . (3.23)

Likewise we can use the result (3.19) to figure out the behaviour of χA in this regime. The

strategy involves solving (3.8) and (3.12) for j∗+ and k∗− perturbatively in ϕA − tA and then

plugging the result back into the expression for χ. A straightforward algebraic exercise leads to

χA = SBTZ −
ceff

6

r2
h + 1√

2 rξ

[
4

3
ε

3
2 −

5 r2
ξ − 4 r2

h − 1

5 rξ
ε

5
2 + · · ·

]
. (3.24)

From (3.24) and (3.23) it follows that

χA − SA =
ceff

6

(r2
h + 1)2

3 r2
h coth2(rhϕA)

(
ϕA − tA

)2
+ · · · (3.25)

implying that the curves in Fig. 8 approach the axis quadratically.

We should note that in the vicinity of tA = 0 and tA = ϕA the difference between χA and

SA is smaller than would be anticipated. In the former regime whilst both deviate from their

vacuum value quadratically, the leading deviations cancel and the cubic term in χA dominates.

On the other hand for tA → ϕ−A it is the quadratic term in SA which gives the rate of approach

to the thermal answer with the leading 3
2

power canceling out. We would like to suggest that the

smallness of the difference between χA and SA has to do with the specific nature of entanglement

in 1 + 1 dimensional CFTs, a point we will return to in §5.

Let us also note that from the numerical analysis we see that the difference χA − SA has a

characteristic peak, which lies in the vicinity of t∗A ≈ 2
3
ϕA. The location of the peak is mildly

dependent on both the black hole size and the size of the interval.

4 Shell collapse in higher dimensions

Let us now turn to the higher dimensional examples. Here we have a richer set of choices for

the shape of the region A. We will however restrict attention to two simple examples (disks

and strips) to illustrate the basic features of the causal wedges and χA. The choice of regions is

dictated both by tractability and to motivate the general lessons about the causal construction

one can infer from them.
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(i). Spherical entangling region: We choose either a ball shaped round region A ⊂ Rd−1

in Poincaré AdS, or slices of the boundary sphere at constant latitude A ⊂ Sd−1 in global AdS,

depending on whether we want to consider field theories on Minkowski space or on the Einstein

Static Universe.

For such spherical entangling regions it was argued in [3] that the causal information surface

ΞA coincides with the extremal (in fact minimal) surface EA. So in the vacuum we expect that

χA = SA. However, this ceases to be true once we excite the state. In the process of the

collapse, which we continue to model by the Vaidya-AdSd+1 geometry, we expect to see both

χA and SA increase monotonically from their vacuum values. For SA, which evolves causally

with δSA = 0 for tA ≤ 0 this was seen originally in [7] and has been throughly explored in the

recent investigations of holographic quench scenarios mentioned in the Introduction. Explicit

computations confirm a similar result to hold for χA. In particular, in the regime tA ≤ 0 the

difference δχA = 0 implying the χA also behaves causally for the same reason as for the d = 3

case described in the previous section.

One can in fact prove this analytically; for completeness and to bolster our arguments in

§3.2, we take a brief detour to show why the area of ΞA remains unchanged for all tA ≤ 0. As

explained above, in this regime, the surface ΞA lies entirely in AdS, and moreover lies on the

same light cone ∂J+[q∨] as EA. Without loss of generality, consider AdSd+1 in static coordinates

ds2 =
−dt2 + dr̄2 + r̄2 dΩ2

d−2 + dz2

z2
(4.1)

where r̄ is the boundary radial coordinate, and z is the bulk Fefferman-Graham radial coordinate.

Let the d− 1-dimensional region A on the boundary z = 0 be at t = a, r̄ = a, so that the light

cone in question (corresponding to ∂J+[q∨]) is simply the one from origin, described by

− t2 + r̄2 + z2 = 0 . (4.2)

As a co-dimension 1 surface, the light cone is parameterized by any two of these three coordinates

and all the angles in Ωd−2, which just come along for the ride. Now, since both the metric as

well as A is spherically symmetric in the Ωd−2, so will be any putative surface ΞA; such spacelike

d− 1 dimensional surface will then be parameterized by e.g. z (or r̄ or t) and the d− 2 angles,

but it won’t depend on the angles. That means that ΞA is specified by a single function, r̄(z).

It can be drawn as a curve in {t, r̄, z} space, with t(z) determined from (4.2). We will now show

that the area of any surface Ψ specified by arbitrary function r̄(z) is in fact independent of r̄(z),

and indeed even independent of r̄(0) = a. The area of Ψ given by

AΨ = VΩ

∫ zmax

0

dz
r̄(z)d−2

zd−1

√
−t′(z)2 + r̄′(z)2 + 1 = VΩ

∫ zmax

0

dz
r̄d−2

zd−1

(r̄ − z r̄′)√
r̄2 + z2

, (4.3)

where VΩ = 2π
d−1
2 /Γ(d−1

2
) is the area of unit Sd−2, zmax is the maximal reach of Ψ and the

last term was obtained by using (4.2) to simplify t′(z). We can now use the change of variables

u = r̄(z)
z

, to rewrite (4.3) as

AΨ = VΩ

∫ ∞
0

ud−2

√
u2 + 1

du . (4.4)
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Note that not only the integrand, but also the limits of integration, are independent of the shape

of Ψ: the lower limit follows from r̄(zmax) = 0 and the upper limit from z = 0 while r̄(0) = a > 0.

The expression (4.4) is useful to obtain the actual area in d+ 1 dimensions.

Note that the total area AΨ is of course infinite, so we regulate the expression using a finite

z cutoff. Then slight care is needed to correctly compare the regulated areas of different surfaces

Ψ. A consistent cutoff must be one which is mapped between different surfaces Ψ by the null

generators of the light cone, and is implemented by keeping u∞ ≡ r̄(zco)/zco fixed. For example,

if we fix the cutoff ε for the original surface given by r̄E(z) =
√
a2 − z2, then along another

surface Ψ specified by r̄Ψ(z) ≈ a+ r̄′′Ψ(0) z2 + . . ., the new cutoff is modified at quadratic order,

zco = ε

(
1 + ε2 1 + a r̄′′Ψ(0)

2 a2
+ . . .

)
. (4.5)

However for tA > 0 we expect to find χA 6= SA since the corresponding values differ in

the thermal state [3] even for these spherical entangling surfaces. Each individually evolves

monotonically to their final thermal values as a function of tA.

(ii). Strip-like region: Our second example is a strip like region A ⊂ Rd−1 in Poincaré AdS;

we take A to be a segment of the real line in one of the directions (call it x) and translationally

invariant in all other spatial directions. The problem of computing the causal wedge in this

case still continues to be an effective three dimensional problem. In this case it is known that

χA 6= SA even in the vacuum AdSd+1 geometry [3, 7], so this makes for a good example to

illustrate the general features we argued for in §2.1. We anticipate as described there that χA

will evolve teleologically and numerical checks show that it indeed does so. Note that while it

is still true that in the analog of regime 2 (tA ≤ 0) the surface ΞA continues to lie on ∂J+[q∨],

the fact that EA lies outside �A in AdSd+1 implies that the generators of ∂J+[q∨] have positive

expansion towards the boundary. With the introduction of the shell, ΞA bends down and toward

the boundary, thus moving in the direction of the expanding generators and thereby ends up

having greater area consistent with the general expectations outlined in §2.1.

5 Discussion

We have explored properties of bulk causal constructs of [3] which are naturally associated with

a specified spatial region A in the boundary field theory. In particular, we studied how the causal

wedge �A, causal information surface ΞA, and the causal holographic information χA behave in

time-dependent bulk geometries, in order to glean further hints for what these constructs might

correspond to in the field theory.

While we do not yet have the answer to this important question, and therefore there might be

no apparent motivation for field theorists to study these constructs, it is useful to draw a lesson

from the story of entanglement entropy: the work on understanding properties of co-dimension

two extremal surfaces could likewise have been largely ignored were it not for the connection
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with an important field theory quantity, the entanglement entropy; yet most of our insight into

the behavior of entanglement entropy and related quantities derives from understanding the

behavior of the bulk surfaces. Certain important properties, such as strong subadditivity, which

are difficult to prove directly on the field theory side, become manifest in the bulk description. But

suppose that we did not have this connection between entanglement entropy and bulk extremal

surfaces yet. Nevertheless, results about extremal surfaces would secretly contain important

insights, waiting to be realized, about the field theory. While extremal surfaces EA enjoy the

status of having an associated field theory quantity SA already identified, our causal constructs

�A, ΞA, and χA fall into the latter category: We do not yet know what field theory quantity

they correspond to. We study their properties to gather hints about what such a dual quantity

might be, but we do not offer a definitive answer. Nevertheless, the results we uncover may bear

more fruit later when the dual of χ and Ξ are finally identified.

The path towards elucidating the nature of χ and Ξ which we chose to follow in the present

work focuses on a specific class of spacetimes, namely the thin-shell Vaidya-AdS geometries,

which describe maximally rapid collapse from pure AdS to a black hole. This choice not only

made our calculations tractable, but offered explicit results in case of physical interest which is

in some sense furthest removed from equilibrium. Before reviewing these results, let us remark

on one potential drawback to this approach. In particular, the large amount of symmetry which

rendered the calculation tractable simultaneously renders such cases somewhat special, so that

greater caution is needed in drawing general lessons. We have however exercised this caution and

explicitly identified where and why the calculation simplifies. Moreover, these cases also enjoy

an important physical significance, as already noted in [3].

In the 3-dimensional case, where the bulk geometry is pure AdS3 before/inside the shell and

BTZ after/outside, the causal information surface ΞA coincides with the extremal surface EA

only in Regimes 1 and 4 (identified in Table 1) when tA ≤ −ϕA or tA ≥ ϕA, respectively, which

implies that χA = SA in these regimes. Fig. 3 explicitly demonstrates that ΞA and EA differ in

Regimes 2 and 3, i.e. for −ϕA < tA < ϕA. On general grounds, we might then have expected that

χA > SA in these regimes. Nevertheless, we have seen that in fact χA = SA in Regime 2 as well,

namely when tA ≤ 0. This is because the corresponding causal information surface ΞA lies on the

same light cone as EA whose null generators have zero expansion. The important implication of

this result is that while we might expect on causal grounds that χA behaves quasi-teleologically

in tA, in the present case it is completely causal: by measuring χA, one cannot determine the

presence of the shell until the shell has been injected on the boundary.

On the other hand, in Regime 3, where tA > 0, ΞA is necessarily kinked by the shell. (The

extremal surface EA is likewise kinked by the shell, but it no longer lies on the same light cone

as ΞA.) Here we indeed confirm that χA > SA (cf. Fig. 8), and in the process discover another

surprise: It is easier to find χ than to find S! Ordinarily one would have expected that due

to the temporally non-local nature of the causal wedge, finding χ is more complicated, since

it requires us to know the spacetime sufficiently far into the future and past of tA, whereas
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once EA is determined, changing the metric to its future or past does not affect it. (In fact,

direct numerical computation of χ is indeed more involved than that of S.) However, in this

case, ΞA lies piecewise either on (future) light cone in AdS or (past) light cone in BTZ, and we

can therefore evaluate its length by computing the length of different curves on the same light

cones, connected by flows along non-expanding generators. In particular, the computation of χ

then reduces to finding affine parameter along spacelike E = 0 geodesics in pure AdS or BTZ,

plus finding the intersection of Ξ with the shell, which yields the simple result (3.19). On the

other hand, computation of S requires finding a geodesic which refracts through the shell, and

is moreover posed as a boundary-value problem.

The analytic simplification in evaluating χ allows us to find its scaling behaviour in the

regions near its initial (vacuum) and final (thermal) values. We find that both χ and S start

growing quadratically at small tA, with cubic correction for χ and quartic correction for S. On

the other hand, near the saturation point tA = ϕA, both χ and S exhibit a faster 3/2 power-

law behaviour, with greater subleading correction to S than to χ. It would be interesting to

understand the significance of these exponents from a field theory perspective (especially for S).

In our 3-dimensional setting, we can in fact compare S and χ directly, since both have the same

divergence structure. Evaluating χ−S (presented in Fig. 8), we find that not only the divergent

parts, but in fact both the leading finite piece and the first subleading pieces cancel, so that

χ− S grows only as t3A when tA → 0+ and as (ϕA − tA)2 when tA → ϕ−A. It is quite remarkable

that despite the geometric differences in the construction of ΞA and EA, their lengths χA and

SA agree to such high order. We believe that this is related to the point discussed below of why

these cases are so special.

The fact that the deviation from the vacuum value near tA = 0 is slower than the deviation

from the thermal value near tA = ϕA indicates where the effect of the shell is greatest.14 Near

tA = 0, both ΞA and EA cross the shell near the boundary, where the shell is weak. As tA

increases, these surfaces cross the shell deeper, where it gains more strength. Near tA = ϕA,

only the tips of ΞA and EA (i.e. their parts at small ϕ < ϕs � π/2) feel the shell. Although

this constitutes a tiny region of the full surface which is appreciably affected by the shell, the

intersection rs is radially deeper, and the effect of the shell correspondingly stronger. The latter

effect is the more important one, causing χ and S to deviate from their static values more quickly

near the thermal end than near the vacuum end.

Having enjoyed the simplifications specified above in three dimensional setting of §3, ulti-

mately afforded by the fact that ΞA and EA coincide both in AdS3 as well as in BTZ, we briefly

considered higher dimensional situations in §4. There one of the simplifications disappears but

we can still consider special cases where another simplification prevails. In particular, for spher-

ical regions A, the bulk causal wedge �A = J−[q∧] ∩ J+[q∨] is generated simply, and ΞA still

coincides with EA in pure AdSd+1 for any d. This implies that in Regime 2, ΞA is still on the

14 Although the strength of the shell (e.g. as measured by the amount of refraction of geodesics which cross

it) blueshifts into the bulk, this might be offset by the portion of the curve which traverses the other side of the

shell.
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same light cone in AdS as EA (along which the null generators always have zero expansion as

shown in [7]), so that χA = SA for tA ≤ 0, just as in the 3-dimensional case. However, it is

no longer true that the extremal surface EA coincides with the causal information surface ΞA in

the higher-dimensional black hole, Schwarzschild-AdSd+1 for d > 2. This means not only that

χA 6= SA in Regime 4, but also that we can no longer find χA as simply in Regime 3. In partic-

ular, while it is still true that χ is piecewise either on a (future) light cone from the boundary in

AdS or a (past) light cone from the boundary in Schwarzschild-AdS, we can no longer evaluate

the area of the latter by the same trick of simply comparing with the corresponding part of the

extremal surface.

To take another step towards the generic situation, in last part of §4 we drop the other

simplification as well by considering non-spherical entangling regions ∂A, while nevertheless

retaining tractability of the computation. Specifically, in the case of the strip in planar Vaidya-

AdSd+1 for d > 2, we find that Ξ and E do not coincide even for pure AdSd+1, as already noted

in [3]. In this case we confirm that χA differs from its AdS value already in Regime 2 – in

other words, here χA does behave quasi-teleologically. As pointed out in §2.1, this is a very mild

form of teleology: χA knows about the shell only short time before the shell (on the timescale

of light-crossing transversely across the strip). Nevertheless, this is an important data point to

keep in mind when searching for plausible field theory duals to this construct.

As pointed out in [3], one lesson of recent findings is that χA and SA coincide whenever

the degrees of freedom in A are maximally entangled with those in its complement Ac, namely

when the region A is a spherical ball in planar or global AdS in all dimensions (or an arc of the

boundary circle in the BTZ spacetime). The fact that the coincidence extends slightly beyond

these stationary cases is suggestive. We believe that as a result of this maximal entanglement

in the AdS geometry for the said regions, it is impossible for χA to grow from its vacuum value

until the disturbance has come to play on the boundary. It is for this reason in the field theory

that despite the deformation of the causal wedge in a quasi-teleological fashion, χA nevertheless

evolves causally.

So far, we have restricted our attention to a specific class of configurations, namely the thin-

shell Vaidya-AdS spacetimes, serving a convenient toy model of quantum quench in the field

theory. A complementary approach to elucidating the nature of χ and Ξ is to maximally relax

the assumptions about the bulk spacetime, and consider general global properties that these

constructs must satisfy. Since this approach is rather more formal, we have chosen to present

the results separately in a companion paper [45]. As a preview, here we simply note some of the

key features.

It is sometimes useful to consider disconnected regions, A = A1 ∪ A2 with A1 ∩ A2 = ∅. If

A1 and A2 are taken to lie at the same time in the boundary field theory, then it follows trivially

that the causal wedges for the two parts are disjoint, and the causal holographic information is

simply the sum of the two parts. More generally (for intersecting regions) it is easy to establish

subadditivity, though as demonstrated by explicit examples in [3], strong subadditivity is not
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universally satisfied. In higher dimensions we can also consider a single but non-simply-connected

region A. In such a case, �A is likewise non-simply-connected, and ΞA consists of multiple

components. More curiously, even for simply-connected regions A, �A itself can have non-trivial

topology, and ΞA may consist of arbitrarily many disconnected components. We explain and

explicitly demonstrate this in [45].

While the above remarks might lead the reader to expect that “anything goes” and that

causal wedges have properties which are hard to characterize globally, there are some features

which hold in full generality. One such important feature, already alluded to above, is that causal

wedges can never penetrate the event horizon of a black hole. This follows simply from causality:

causal curves from within the black hole can never reach the boundary and therefore the interior

of a black hole cannot be contained in the causal wedge of any boundary region. Nevertheless,

�A can reach close (or up to) the horizon for suitable regions A.

In this context, there is an important difference between global and planar asymptotically

AdS geometries: For the field theory living on Minkowski background, there is no upper bound

on the size of A, and ΞA can penetrate arbitrarily close to the horizon for arbitrarily large regions

A. In fact, in this regime it is easy to see that the finite piece of χA scales extensively with the

volume of A. On the other hand, for the field theory living on Einstein Static Universe, the

region A can at best wrap the sphere. That means that the extent of the domain of dependence

is either bounded by ϕA < π or fills up the entire boundary spacetime. In the former case, ΞA

only reaches a finite distance from the black hole. On the other hand, in the latter case, (for

both ESU and Minkowski boundary geometries) when A covers the entire Cauchy slice of the

spacetime, the boundary of the causal wedge by definition coincides with the event horizon. In

this case χA is precisely the black hole entropy.

Finally, let us contrast this feature of the causal information surface ΞA with the extremal

surface EA. While the black hole deforms EA outward as compared to the AdS case (with same

ϕA), and in static bulk black hole spacetime extremal surfaces anchored on the boundary must

lie outside the horizon (both of these features were recently demonstrated by e.g. [46]), in a time-

dependent situation the extremal surface can actually penetrate the event horizon. This was

argued already in [46, 48], and seen explicitly in [17] for the planar Vaidya-AdS case, but is also

manifest in the right panel of Fig. 3. These issues are examined further in the forthcoming work

[47]. Hence while causal holographic information is not cognisant of the causally disconnected

region inside a bulk black hole, the entanglement entropy does sample at least a bit of the

spacetime inside.
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A Computational details for ΞA in Vaidya-AdS3

In this appendix we present some details about the computation of quantities which are relevant

for the explicit determination of ΞA in thin shell geometries.

Let us begin by collecting expressions of the null geodesics occurring in the determination

of ΞA for −ϕA < tA < ϕA. In order to shorten the formulae, we find it convenient to introduce

V α(r) ≡ r2 − (L/Eα)2fα(r); explicitly

V i(r) ≡ (1− k2)r2 − k2 , V o(r) ≡ (1− j2)r2 + j2r2
h . (A.1)

In the following, these quantities will occur with a further subindex which is either ↗ or ↖,

indicating whether the corresponding geodesic is respectively outgoing or ingoing.

• An outgoing geodesic lying entirely outside the shell and arriving at q∧ reads

v↗(r, j+) =
1

2rh
log

((√
V o
↗(r)− rh

)(√
V o
↗(r) + rh

) (r − rh)
(r + rh)

)
+ v∧ (A.2)

ϕ↗(r, j+) =
1

2rh
log

(√
V o
↗(r)− j+rh√
V o
↗(r) + j+rh

)
(A.3)

• Likewise, an outgoing geodesic lying inside the shell and connecting ΞA to a point of the

shell with coordinates ps = (vs = 0, rs, ϕs) is given by

v↗(r, k+) = arctan
√
V i
↗(r) + arctan(r)− arctan

√
V i
↗(rs)− arctan(rs) (A.4)

ϕ↗(r, k+) = arctan
(

1
k+

√
V i
↗(r)

)
− arctan

(
1
k+

√
V i
↗(rs)

)
+ ϕs (A.5)

The choice of the integration constants guarantee that v↗(rs, k+) = 0 and ϕ↗(r, k+) = ϕs.

• An ingoing geodesic outside the shell which connects a point of the shell to a point of ΞA

reads

v↖(r, j−) =
1

2rh
log

(√
V o
↖(r) + rh√
V o
↖(r)− rh

r − rh
r + rh

)
− 1

2rh
log

(√
V o
↖(rs) + rh√
V o
↖(rs)− rh

rs − rh
rs + rh

)
(A.6)

ϕ↖(r, j−) =
1

2rh
log

(√
V o
↖(r) + j−rh√
V o
↖(r)− j−rh

√
V o
↖(rs)− j−rh√
V o
↖(rs) + j−rh

)
+ ϕs (A.7)

– 33 –



The integration constants are obtained by imposing v↖(rs, j−) = 0 and ϕ↖(rs, j−) = ϕs.

• Finally, an ingoing geodesic which starts at q∨ is given by

v↖(r, k−) = v∨ − arctan
(√

V i
↖(r)

)
+ arctan(r) (A.8)

ϕ↖(r, k−) = − arctan
(

1
k−

√
V i
↖(r)

)
+
π

2
sign(k−) (A.9)

A.1 Solving the refraction conditions

Having explicit solutions for the geodesics we turn to the refraction conditions. We discuss an

alternative way to find the solutions of the refraction conditions across the shell which is slightly

different with respect to the one described in §2.2 (and serves to provide a complementary

viewpoint). The equations to solve are

1

v′i(rs)
− 1

v′o(rs)
=

1 + r2
+

2
,

v′i(rs)

ϕ′i(rs)
=

v′o(rs)

ϕ′o(rs)
. (A.10)

Given a geodesic crossing the shell at the point ps from one side, these equations tell us which

is the corresponding geodesic on the other side of the shell. We find it convenient first to find

the solution from the second equation of (A.10) and, subsequently, employ the first one as a

consistency check.

In order to deal with the second equation of (A.10) notice that

v′α(rs)

ϕ′α(rs)
=
rs
(
rs + η

√
V α(r)

)
(L/Eα)fα(rs)

≡ rsCα(rs, L/Eα) . (A.11)

The second equation of (A.10) can be written as Ci(rs, k) = Co(rs, j). From this equation we

can extract either k(rs, j) or j(rs, k) finding

k =
2rsCo(rs, j)

C2
o (rs, j)fi(rs) + 1

=
2j rsfo(rs)

rs
[
fi(rs) + fo(rs)

]
+ η
[
fi(rs)− fo(rs)

]√
V o(rs)

(A.12)

j =
2rsCi(rs, k)

C2
i (rs, k)fo(rs) + 1

=
2k rsfi(rs)

rs
[
fo(rs) + fi(rs)

]
+ η
[
fo(rs)− fi(rs)

]√
V i(rs)

(A.13)

The second expression in (A.12) and (A.13) is obtained multiplying the first one respectively

by 1 =
rs−η
√
V o(rs)

rs−η
√
V o(rs)

and 1 =
rs−η
√
V i(rs)

rs−η
√
V i(rs)

. Notice that (A.12) and (A.13) can be interchanged by

exchanging the inside and outside quantities, as expected.

A.2 Regime 2: −ϕA < tA < 0

In this regime the whole refraction curve belongs to ∂+(�A) and therefore ΞA lies entirely inside

the shell.
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A.2.1 Refraction curve on ∂+(�A)

The outgoing geodesic arriving at q∧ crosses the shell at the point ps, whose radial coordinate rs

is defined by v↗(rs, j+) = 0. From (A.2), this equation reads(√
V o
↗(rs)− rh

)
(rs − rh)(√

V o
↗(rs) + rh

)
(rs + rh)

= e−2rhv∧ . (A.14)

For the radial case j+ = 0, the l.h.s. of (A.14) simplifies to a square, giving rs = rh coth(rhv∧/2).

In the generic case, writing (A.14) in a form where
√
V o
↗(rs) is isolated on one side of the equation

and then squaring it, we obtain an algebraic equation of fourth order in rs which admits rs = ±1

as solutions. Thus, we are left with the following second order equation

r2
s − 2rh coth(rhv∧) rs +

1− j2
+ coth2(rhv∧)

1− j2
+

r2
h = 0 , (A.15)

whose largest root is the first formula in (3.8). The angular coordinate ϕs = ϕ↗(rs, j+) can be

found from (A.3). By observing that V o
↗(rs) reduces to a perfect square, one obtains the second

formula of (3.8).

The outgoing geodesic of ∂+(�A) which refracts at the point ps of the shell is made by the part

inside and the part outside the shell, which are characterized by k+ and j+ respectively. These

coefficients are related one to each other by (A.12) and (A.13) with η = +1 (see e.g. (3.9)).

A.2.2 ΞA inside the shell

In the regime we are considering ΞA is entirely inside the shell. The curve is the solution of

(3.10). In the first equation, the term arctan(rix) cancels because it occurs both in (A.4) and

(A.8). In order to deal with (3.10), first we bring the terms dependent on rix on one side of the

equations, then we take the tan of them. Employing the addition formula tan(a+b) = tan a+tan b
1−tan a tan b

and the property tan(x± π/2) = − cot(x), we find√
V i
↗(rix) +

√
V i
↖(rix)

1−
√
V i
↗(rix)V i

↖(rix)
= tan

(
v∨ + arctan

√
V i
↗(rs) + arctan(rs)

)
≡ T iv (A.16)

√
V i
↗(rix)/k+ +

√
V i
↖(rix)/k−

1−
√
V i
↗(rix)V i

↖(rix)/(k+k−)
= − cot

(
arctan

(√
V i
↗(rs)/k+

)
− ϕs

)
≡ T iϕ (A.17)

In the special case of the radial geodesics k+ = k− = 0, the equation (A.16) simplifies to

2rΞ

1− r2
Ξ

= tan
(
v∨ + 2 arctan(rs)

)
. (A.18)

Then, using the duplication formula for tan in this equation, we find the solution (3.11).

For non radial geodesics, we can obtain simpler expressions for (A.16) and (A.17) multiplying

their l.h.s.’s by 1 =

√
V i
↗(rix)−

√
V i
↖(rix)√

V i
↗(rix)−

√
V i
↖(rix)

and 1 =

√
V i
↗(rix)/k+−

√
V i
↖(rix)/k−√

V i
↗(rix)/k+−

√
V i
↖(rix)/k−

, respectively. Besides the

radial case, this step is not allowed for k+ = k−, but this is never realized in this regime. This
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trick leads to the important simplification of a factor (rix)2 + 1, allowing us to write (A.16) and

(A.17) as a linear system in terms of
√
V i
↗(rix) and

√
V i
↖(rix), whose solution reads√

V i
↗(rix) =

(k+ + k−)(k−T
i
ϕ − T iv)

(1− k2
−)T ivT

i
ϕ

(A.19)

√
V i
↖(rix) =

(k+ + k−)(k+T
i
ϕ − T iv)

(1− k2
+)T ivT

i
ϕ

(A.20)

Taking the square of these two equations, we can find (rix)2 and a consistency condition

rix =
1√

1− k2
+

[
k2

+ +

(
(k+ + k−)(T iv − k−T iϕ)

(1− k2
−)T ivT

i
ϕ

)2
] 1

2

(A.21)

k2
+ +

(
(k+ + k−)(T iv − k−T iϕ)

(1− k2
−)TvTϕ

)2

=
1− k2

+

1− k2
−

[
k2
− +

(
(k+ + k−)(T iv − k+T

i
ϕ)

(1− k2
+)T ivT

i
ϕ

)2
]

(A.22)

In order to understand these relations, we recall that (rs, ϕs) and k+ depend on (j+, v∧) through

(3.8) and (3.9). Then, from (A.16) and (A.17) we write T iv = T iv(j+, v∧, v∨) and T iϕ = T iϕ(j+, v∧).

Plugging these dependences into (A.22), and inverting (numerically) this relation we obtain k− =

k−(j+, v∧, v∨), telling us which geodesic of ∂−(�A) intersects the geodesic of ∂+(�A) characterized

by j+. Substituting this result into (A.21) we finally find rix = rix(j+, v∧, v∨). The angular

coordinate ϕix = ϕ↗(rix, k+) = ϕix(j+, v∧, v∨) is then obtained through (A.5).

As a check of (A.21) and (A.22), notice that in this regime of tA and ∀j+ we have vix < 0, namely

that ΞA is entirely inside the shell.

A.3 Regime 3: 0 < tA < ϕA

In this regime, the central part of the refraction curve belongs to ∂+(�A). The corresponding

part of ΞA is inside the shell and it can be found as explained in §A.2.2. Thus, the results found

above must be applied only for |j+| < |j∗+| < 1 or, equivalently for |k−| < k∗− < 1, where j∗+ (or

k∗−) characterizes the critical geodesics.

For |j∗+| < |j+| < 1 (or k∗− < |k−| < 1 equivalently), the refraction curve belongs to ∂−(�A) and

therefore the corresponding parts of ΞA (they are symmetric w.r.t. to the radial geodesics) are

outside the shell. For these geodesics, the results showed in this subsection must be used in order

to find ΞA outside the shell.

A.3.1 Refraction curve on ∂−(�A) and critical geodesics

The ingoing geodesic starting from q∨ at the boundary crosses the shell at ps first. The radial

coordinate rs of this point is such that v↖(rs, k−) = 0, i.e. from (A.8)

arctan
(√

V i
↖(rs)

)
− arctan(rs) = v∨ . (A.23)

First, we take the tan of this equation employing also the subtraction formula for the tan. Then,

multiplying the l.h.s. of the resulting equation by 1 =

√
V i(rs)+rs√
V i(rs)+rs

, we find expression where
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√
V i(rs) occurs only in the denominator. Isolating

√
V i(rs) and then taking the square, we

obtain the following second order equation for rs

r2
s − 2 cot(v∨) rs −

1 + k2
− cot2(v∨)

1− k2
−

= 0 , (A.24)

whose largest solution is given in the first equation of (3.12). The angular coordinate ϕs =

ϕ↖(rs, k−) given in the second equation of (3.12) can be computed through (A.9), by further

noticing that V i
↖(rs) becomes a perfect square.

The ingoing geodesic starting from q∨, characterized by k−, becomes an ingoing geodesic char-

acterized by j− and propagating inside the shell. The function j−(k−) is given in (3.13) and it is

obtained from (A.13) with η = −1.

In this regime of tA, two symmetric critical geodesics on ∂−(�A) occur. They meet both the shell

and ∂+(�A) at the same point. This implies that the corresponding critical value k∗− satisfies

(A.24) with rix given in (A.21) instead of rs, namely

(rix)2 − 2 cot(v∨) r
i
x −

1 + (k∗−)2 cot2(v∨)

1− (k∗−)2
= 0 =⇒ j∗+ . (A.25)

As discussed in the end of §A.2.2, from (A.21) and (A.22) we find k∗− = k∗−(j∗+, tA, ϕA) and

rix = rix(j∗+, tA, ϕA). Substituting these results into (A.25), it becomes an equation for j∗+ that

we can (numerically) invert, getting j∗+ = j∗+(tA, ϕA), where 0 < tA < ϕA.

A.3.2 ΞA outside the shell

The curve ΞA outside the shell is given by (rox, ϕ
o
x) satisfying

v↖(rox, j−) = v↗(rox, j+) ≡ vox , ϕ↖(rox, j−) = ϕ↗(rox, j+) ≡ ϕox (A.26)

where the geodesics of ∂+(�A) are given by (A.2) and (A.3), while the ones belonging to ∂−(�A)

are described by (A.6) and (A.7). Notice that in the first equation of (A.26) the term 1
2rh

log rox−rh
rox+rh

simplifies. Writing (A.26) as equations involving the arguments of the log’s, they become(√
V o
↖(rox) + rh

)(√
V o
↖(rs)− rh

)
(rs + rh)(√

V o
↖(rox)− rh

)(√
V o
↖(rs) + rh

)
(rs − rh)

= e2rhv∧

√
V o
↗(rox)− rh√
V o
↗(rox) + rh

(A.27)

(√
V o
↖(rox) + j−rh

)(√
V o
↖(rs)− j−rh

)(√
V o
↖(rox)− j−rh

)(√
V o
↖(rs) + j−rh

) e2rhϕs =

√
V o
↗(rox)− j+rh√
V o
↗(rox) + j+rh

(A.28)

Multiplying the l.h.s. of (A.27) by 1 =

√
V o
↖(rox)+rh√
V o
↖(rox)+rh

and its r.h.s. by 1 =

√
V o
↗(rox)−rh√
V o
↗(rox)−rh

, the

equation simplifies. A similar simplification occurs in (A.28) when we multiply its l.h.s. by

1 =

√
V o
↖(rox)−j−rh√
V o
↖(rox)−j−rh

and its r.h.s. by 1 =

√
V o
↗(rox)−j+rh√
V o
↗(rox)−j+rh

. In the resulting equations, the dependence

of rox can be isolated on one side, which becomes the square of a simple rational function in terms

of
√
V o
↖(rox). Taking the square root of the two equations in such form, they can be written
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respectively as follows√
V o
↖(rox) + rh√
V o
↗(rox)− rh

= erhv∧

√
(1− j2

−)(rs − rh)
(√

V o
↖(rs) + rh

)
(1− j2

+)(rs + rh)
(√

V o
↖(rs)− rh

) ≡ T ov (A.29)√
V o
↖(rox) + j−rh√
V o
↗(rox)− j+rh

= e−rhϕs

√
(1− j2

−)
(√

V o
↖(rs) + j−rh

)
(1− j2

+)
(√

V o
↖(rs)− j−rh

) ≡ T oϕ (A.30)

It is now clear that these equations can be written as a linear system in
√
V o
↗(rox) and

√
V o
↖(rox),

which can be easily inverted, giving√
V o
↗(rox) = rh

1− j− + T ov − j+ T
o
ϕ

T ov − T oϕ
(A.31)

√
V o
↖(rox) = rh

T oϕ − j− T ov + (1− j+)T ov T
o
ϕ

T ov − T oϕ
(A.32)

Squaring both these equations, we obtain (rox)2 and a consistency condition

rox =
rh√

1− j2
+

[(
1− j− + T ov − j+ T

o
ϕ

T ov − T oϕ

)2

− j2
+

] 1
2

(A.33)

(
1− j− + T ov − j+ T

o
ϕ

T ov − T oϕ

)2

− j2
+ =

1− j2
+

1− j2
−

[(
T oϕ − j− T ov + (1− j+)T ov T

o
ϕ

T ov − T oϕ

)2

− j2
−

]
(A.34)

These equations allow to find the part of ΞA outside the shell, as well as (A.33) and (A.34) lead

to the part of ΞA inside the shell. Indeed, first we observe that (rs, ϕs) and j− depend on (k−, v∨)

through (3.12) and (3.13). Then, the definitions (A.29) and (A.30) tell us T ov = T ov (k−, v∨, v∧)

and T oϕ = T oϕ(k−, v∨). By inserting all these functions into the consistency condition (A.34), it

becomes an equation which gives us (through numerical inversion) j+ = j+(k−, v∨, v∧), namely

the geodesic of ∂+(�A) intersecting the geodesic of ∂−(�A) characterized by k−. Given this

result, (A.33) allows to obtain rox = rox(k−, v∨, v∧). The angular coordinate ϕox = ϕ↖(rox, j−) =

ϕox(k−, v∨, v∧) is then obtained through (A.7).

We can check (A.33) and (A.34) by verifying that in this regime of tA and for |k−| > k∗− we have

vox > 0, namely that ΞA is outside the shell.

B Computational details for SA

In this appendix we give some details for the analytical computation of SA in three dimensions.

We generalize the discussion of [20], allowing for the geometry inside the shell to be either

Poincaré AdS or global AdS or another BTZ spacetime (corresponding to heating up a preexisting

thermal state). While many of the results follow from our discussion in the main text and

Appendix A modified appropriately to spacelike geodesics, it is useful to work these out explicitly

to obtain compact expressions for the entanglement entropy.
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B.1 Spacelike geodesics and refraction conditions

While for the determination of ΞA we needed the null geodesics, for the holographic entangle-

ment entropy SA we have to compute the spacelike geodesics anchored on the boundary at the

endpoints of the interval A.

We can be sufficiently general and consider a metric like (2.1) with d = 2 and f(r, v) =

fi(r) + Θ(v)[fo(r) − fi(r)], where we always consider a BTZ geometry outside the shell (i.e.

fo(r) = r2 − r2
h,o), while inside the shell we choose either Poincaré AdS (fi(r) = r2) or global

AdS (fi(r) = r2 + 1) or another BTZ (fi(r) = r2 − r2
h,i) with rh,i < rh,o in order to satisfy the

null energy condition.

As discussed in §2.2, the spacelike geodesics (κ = 1 in (2.9)) are characterized by the pair

(E,L). The ones we are interested in are made by three branches: two disconnected and sym-

metric ones outside the shell and one inside the shell. The coordinates of the meeting points

are (vs = 0, rs,±ϕs). The symmetry of the problem allows us to consider only a half of the

geodesic, the outgoing one, going from (vE, rE, 0) to the point (tA,∞, ϕA) of the boundary. Be-

ing ϕ̇ continuos across the shell, Li = Lo, while the jump of E is given by (2.16), where κ = 1

occurs through v̇ at the shell (see (2.14)). Since we are considering equal-time endpoints (for

endpoints at different times on the boundary see [44]), inside the shell we have (Ei, Li) = (0, rE).

Then, from (2.14) we find that v̇ at the shell for spacelike and outgoing geodesics (η = 1) reads

v̇s = [(r2
s − r2

E)/(r2
sfi(rs))]

1/2 and, through (2.16), this leads to Eo. Thus, the pair (Eo, Lo) reads

Eo =
[fo(rs)− fi(rs)]

√
r2
s − r2

E

2 rs
√
fi(rs)

, Lo = Li = rE . (B.1)

The equations to solve in order to find the spacelike geodesics are

t′ =
ηEα

fα
√
E2
α + fα(1− Lα/r2)

, ϕ′ =
ηLα

r2
√
E2
α + fα(1− Lα/r2)

, (B.2)

where α is either i or o, and fi(r) is one of the three choices described right above.

Outside the shell we have a BTZ geometry and the solutions of (B.2) are

to(r) =
1

2rh
log

(
r2 − (rh + Eo)rh + η

√
Do(r)

r2 − (rh − Eo)rh + η
√
Do(r)

)
+ Ct ≡ t̃(r) + Ct (B.3)

ϕo(r) =
1

2rh
log

(
r2 − rhLo + η

√
Do(r)

r2 + rhLo + η
√
Do(r)

)
+ Cϕ ≡ ϕ̃(r) + Cϕ (B.4)

where we introduced Do(r) ≡ E2
or

2 + (r2 − r2
h)(r

2 − L2
o). It is important to remark that the

integration constants Ct and Cϕ provide the boundary data, namely

Ct = tA , Cϕ = ϕA . (B.5)

These parameters are also related to (rs, ϕs) of the point at the shell by the conditions vo(rs) = 0

and ϕi(rs) = ϕo(rs) ≡ ϕs, which give respectively

tA = − t̃(rs)−
1

2rh
log

(
rs − rh
rs + rh

)
, ϕA = ϕs − ϕ̃(rs) . (B.6)
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Let us focus on the first equation of (B.6) and try to extract rs. First, notice that, from (B.1),

we find that Do(rs) = (r2
s − r2

E)[fo(rs) + fi(rs)]
2/[4fi(rs)]. This result gives

t̃(rs) =
1

2rh
log

2(r2
s − r2

h)rs +
√

r2s−r2E
fi(rs)

[
rs
∣∣fo(rs) + fi(rs)

∣∣− rh(fo(rs)− fi(rs))]
2(r2

s − r2
h)rs +

√
r2s−r2E
fi(rs)

[
rs
∣∣fo(rs) + fi(rs)

∣∣− rh(fo(rs) + fi(rs)
)]
 . (B.7)

Following [20], we find it convenient to introduce a new parameter θ which mixes rs and rE. Its

definition depends on the geometry inside the shell

cos θ ≡
√
r2
s − r2

E

fi(rs)
=


√

1− r2
E/r

2
s Poincaré AdS√

1− (r2
E + 1)/(r2

s + 1) global AdS√
1− (r2

E − r2
h,i)/(r

2
s − r2

h,i) BTZ

(B.8)

Notice that the cases of Poincaré AdS and global AdS are obtained from the expression for BTZ

by substituting respectively r2
h,i = −1 and r2

h,i = 0. This feature persists also in the expressions

hereafter, unless otherwise specified. From (B.8), notice that r2
E can be written in terms of r2

s

and θ as r2
E = r2

s − (r2
s − r2

h,i) cos2 θ = r2
s sin2 θ + r2

h,i cos2 θ.

Plugging the definition (B.8) into (B.7) with the assumption fo(rs)+fi(rs) > 0, the first equation

of (B.6) leads us to write rs as a function of tA and θ. After some algebra, one finds the following

algebraic equation of the second order in rs

(
rs
rh,o

)2

− coth(rh,otA)
rs
rh,o

+
cos θ

1 + cos θ

(
1−

r2
h,i

r2
h,o

)
= 0 (B.9)

whose largest root reads

rs =
rh,o
2

coth(rh,otA) +

√
coth2(rh,otA)−

2 cos θ(1− r2
h,i/r

2
h,o)

1 + cos θ

 . (B.10)

Notice that rs is contained also in the r.h.s. of (B.10) through cos θ, and this means that we

have not fully inverted the first equation of (B.6). Nevertheless, the formula (B.10) gives rs in

terms of tA and θ.

From the second equation in (B.6) we can write ϕA in a more compact form. From (B.4) with

η = +1 and Do(rs) given above, we obtain

ϕ̃(rs) =
1

2rh,o
log

2(1 + cos θ)r2
s − 2rh,o

√
r2
s sin2 θ + r2

h,i cos2 θ − (r2
h,o + r2

h,i) cos θ

2(1 + cos θ)r2
s + 2rh,o

√
r2
s sin2 θ + r2

h,i cos2 θ − (r2
h,o + r2

h,i) cos θ

 , (B.11)

where the term with the square root is simply rE extracted from (B.8).

In order to find ϕs = ϕi(rs), we need the solution ϕi(r) of the second equation in (B.2) for the
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different choices of fi. They read

ϕi(r) =



√
r2 − r2

E

rE r
Poincaré AdS

1

2
arcsin

(
(1− r2

E)r2 − 2r2
E

(1 + r2
E)r2

)
+
π

4
global AdS

1

2rh,i
log

r2 − rh,i rE +
√

(r2 − r2
h,i)(r

2 − r2
E)

r2 + rh,i rE +
√

(r2 − r2
h,i)(r

2 − r2
E)

rE + rh,i
rE − rh,i

 BTZ

(B.12)

where the integration constants have been fixed by imposing that ϕi(rE) = 0. Now we can write

ϕi(rs) = ϕs in terms of rs and θ as follows

ϕs =



cot θ

rs
Poincaré AdS

arctan

(
cos θ√

r2
s sin2 θ − cos2 θ

)
global AdS

1

2rh,i
log


√
r2
s sin2 θ + r2

h,i cos2 θ + rh,i cos θ√
r2
s sin2 θ + r2

h,i cos2 θ − rh,i cos θ

 BTZ

(B.13)

For θ ∈ (0, π/2), the first expression is the limit rh,i → 0 of the third one, as expected. As for

the second one, it can obtained by setting rh,i = i (the imaginary unit) in the third one and then

using that 1
2i

log(z/z̄) = arg(z) for any complex number z.

At this point we remark that

ϕA = ϕA(rs, θ) = ϕA(tA, θ) . (B.14)

The first equality comes from the second formula in (B.6), (B.11) and the expression of ϕs in

(B.13) corresponding to the geometry inside the shell, while the last step is found by further

substituting rs = rs(tA, θ) given in (B.10). Thus, by (numerically) inverting (B.14), one can find

θ = θ(tA, ϕA).

Behaviour near tA = 0 and tA = ϕA: It is instructive to perform such inversion through

series expansions around tA = 0 and tA = ϕA. In both these cases we use that

tanϕA =
tanϕs(tA, θ)− tan ϕ̃(tA, θ)

1 + tanϕs(tA, θ) tan ϕ̃(tA, θ)
(B.15)

where ϕs(tA, θ) is the expression in (B.13) corresponding to BTZ and ϕ̃(tA, θ) ≡ ϕ̃(rs) is obtained

by plugging (B.10) into (B.11). We stress that all the following results provide the corresponding

quantities also for Poincaré AdS and global AdS inside the shell. They are easily obtained as

the special cases of rh,i = i (the imaginary unit) and rh,i = 0 respectively.

About tA = 0, using that θ(0, ϕA) = 0, we can write

θ(tA, ϕA) ≡
+∞∑
k=1

Θk(ϕA) tkA =⇒ tanϕA ≡
+∞∑
n=0

Φn(ϕA) tnA (B.16)
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where for tanϕA (B.15) is applied and therefore the coefficients Φn’s depend on ϕA through the

Θk’s. Since the l.h.s. of the second equation in (B.16) is independent of tA, it can be solved

order by order, namely tanϕA = Φ0(ϕA) and 0 = Φn(ϕA) for n > 1. From these equations we

find respectively

Θ1 =
rh,i

sinh(rh,i ϕA)
, Θ2 = 0 , Θ3 =

Θ1(2Θ1 − r2
h,o + 3r2

h,i)

12
, Θ4 = 0 , . . .

(B.17)

which give the expansion of θ(tA, ϕA) around tA = 0.

As for the expansion of θ(tA, ϕA) around tA = ϕA, notice that θ(ϕA, ϕA) = π/2. Now we

need to introduce half-integer powers, namely (recall that 0 < tA < ϕA)

θ(tA, ϕA) ≡ π

2
−

+∞∑
k=1

Θ̃k/2(ϕA) (ϕA − tA)k/2 =⇒ tanϕA ≡
+∞∑
p=0

Φ̃p/2(ϕA) (ϕA − tA)p/2 .

(B.18)

As above, we can solve the second equation order by order. The first order gives no information

since from the expansion of the r.h.s. of (B.15) with the first formula of (B.18) plugged in we

find Φ̃0(ϕA) = tanϕA. For p > 0 we impose Φ̃p/2(ϕA) = 0, finding that

Θ̃1/2 =
√

2rh,o coth(rh,o ϕA) , Θ̃1 = −
r2
h,o − r2

h,i

3 rh,o
tanh(rh,o ϕA) ,

Θ̃3/2 =
−2 (5 r4

h,o − 4 r2
h,i r

2
h,o + 2 r4

h,i) + 3 r4
h,o csch2(rh,o ϕA) + 4 (r2

h,o − r2
h,i)

2 sech2(rh,o ϕA)

18 r2
h,o

√
2 rh,o coth(rh,o ϕA)

(B.19)

and so on, which provide the expansion of θ(tA, ϕA) around tA = ϕA.

In order to find e.g. rE = rE(tA, ϕA), we first write r2
E = r2

s − (r2
s − r2

h,i) cos θ from (B.8), then

we plug in rs(tA, θ) given in (B.10) and finally we employ θ = θ(tA, ϕA) obtained by inverting

(B.14), as explained above. A plot of rE = rE(tA, ϕA) as a function of tA for a fixed ϕA is shown

in Fig. 6. Through the expansions of θ(tA, ϕA) found above, we can write the first terms of the

expansion of rE = rE(tA, ϕA) when tA → 0 and tA → ϕA for a BTZ spacetime inside the shell.

They read respectively

rE(tA, ϕA) = rh,i coth(rh,i ϕA) +
(r2
h,o − r2

h,i)r
3
h,i coth(rh,i ϕA)

8 sinh2(rh,i ϕA)
t4A + . . . (B.20)

rE(tA, ϕA) = rh,o coth(rh,o ϕA)−
(r2
h,o − r2

h,i)
√
ϕA − tA√

2rh,o coth(rh,o ϕA)
−

(r2
h,o − r2

h,i)
2(ϕA − tA)

3 r2
h,o coth2(rh,o ϕA)

+ . . . .

(B.21)

We can also find rs in terms of (vE, rE) at the turning point. Indeed, inside the shell we have

vi(r) = ti(r) + pi(r) +Bi (B.22)

where Bi is a constant and pi(r) is the solution of p′ = 1/fi(r) given by pi(r) = 1
2rh,i

log
r−rh,i
r+rh,i

for BTZ, pi(r) = arctan r for global AdS and pi(r) = −1/r for Poincaré AdS. Since Ei = 0, we

– 42 –



have that ti(r) = 0 for every r inside. In particular, considering the point r = rE, we obtain

Bi = vE − pi(rE). Then, by imposing vi(rs) = 0, we find that pi(rs) = pi(rE)− vE and therefore

we can write rs in terms of (vE, rE).

B.2 Holographic entanglement entropy

According to the prescription of [5–7], the holographic entanglement entropy SA is given by the

length of the spacelike geodesic studied in the previous subsection. The functional giving the

length of a piece of curve which is either entirely inside (α = i) or entirely outside the shell

(α = o) reads

Lα =

∫ r2

r1

√
−fα(t′)2 +

1

fα
+ r2(ϕ′)2 dr . (B.23)

Integrating (B.23) with (B.2) plugged in, a primitive is

Lα(r) ≡ 1

2
log
(
E2 − L2 + 2r2 − r2

h + 2
√
E2r2 + (r2 − r2

h)(r
2 − L2)

)
. (B.24)

We recall that if α = i, then r2
h = r2

h,i in this expression and, in particular, r2
h,i = −1 for global

AdS and r2
h,i = 0 for Poincaré AdS inside the shell. In the latter case the argument of the

logarithm becomes a perfect square.

The holographic entanglement entropy is given by

4G
(3)
N SA = 2

[
Li(rs)− Li(rE)

]
+ 2
[
LBTZ(r∞)− LBTZ(rs)

]
(B.25)

where G
(3)
N is the three dimensional Newton constant and r∞ → ∞ is the UV cutoff in the

boundary theory (cf., Footnote 10 for conversion between G
(3)
N and the boundary central charge

ceff).

Outside the shell, by using (B.24) and that LBTZ(r∞) = log(2 r∞) + O(r−2
∞ ) asymptotically,

we find

2
[
LBTZ(r∞)− LBTZ(rs)

]
= 2 log(2 r∞)− log

(
E2
o − r2

E + 2r2
s − r2

h,o + 2
√
Do(rs)

)
(B.26)

= 2 log(2 r∞)− log

(
[fo(rs)− fi(rs)]2(r2

s − r2
E)

4r2
sfi(rs)

− r2
E + 2r2

s − r2
h,o +

√
r2
s − r2

E

fi(rs)

∣∣fo(rs) + fi(rs)
∣∣)

where Do(r) has been defined after (B.4). In the second step, (B.1) and the expression of Do(rs)

given after (B.6) have been used. Inside the shell, since Ei = 0, the argument of the logarithm

in (B.24) becomes a perfect square and therefore we find

2
[
Li(rs)− Li(rE)

]
= 2 log

(√
fi(rs) +

√
r2
s − r2

E√
r2
E − r2

h,i

)
. (B.27)
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Combining together the two contributions (B.26) and (B.27), and discarding the divergent term

2 log(2 r∞), we find for the regularized holographic entanglement entropy

4G
(3)
N SA,reg = 2 log

(√
r2
s − r2

h,i +
√
r2
s − r2

E√
r2
E − r2

h,i

)
(B.28)

− log

((
r2
h,o − r2

h,i

)2
(r2
s − r2

E)

4r2
s(r

2
s − r2

h,i)
− r2

E + 2r2
s − r2

h,o +

√
r2
s − r2

E

r2
s − r2

h,i

(
2r2

s − r2
h,o − r2

h,i

))
.

It is interesting to rewrite this formula by employing (B.8). First, notice that√
fi(rs) +

√
r2
s − r2

E√
r2
E − r2

h,i

=
1 + cos θ

sin θ
. (B.29)

After some algebra the argument of the logarithm in the second line of (B.28) can be written as

r2
h,o(1 + cos θ)2

[(
cos θ(1− r2

h,i/r
2
h,o)

2(1 + cos θ)rs/rh,o
+

rs
rh,o

)2

− 1

]
=
r2
h,o(1 + cos θ)2

sinh2(rh,otA)
(B.30)

where the second step is obtained by isolating coth(rh,otA) in (B.9) first and then by using

the identity coth2 x − 1 = 1/ sinh2 x. Thus, putting together (B.29) and (B.30), one can write

the regularized holographic entanglement entropy (B.28) in a compact form. Adding also the

divergent term coming from (B.26), the holographic entanglement entropy reads

SA(tA, ϕA) =
ceff

3
log

(
2 r∞ sinh(rh,otA)

rh,o sin θ(tA, ϕA)

)
(B.31)

where we remarked that θ = θ(tA, ϕA), as discussed after (B.14). For Poincaré AdS inside the

shell, we recover the result of [19, 20]. Notice that the expression (B.31) is formally the same

for all the choices of the geometry inside the shell that we considered. The definition (B.8)

distinguishes among them.

Behaviour near tA = 0 and tA = ϕA: It is useful to write the first terms of the expansions

of SA(tA, ϕA) around tA = 0 and tA = ϕA.

As for the expansion around tA = 0, first we plug into (B.31) the expansion of θ(tA, ϕA) given

in (B.16) and then employ the explicit expressions for Θk(ϕA), obtained by solving the second

equation in (B.16) order by order in tA (see (B.17)). Thus, we find that

6

ceff

SA(tA, ϕA) = 2 log

(
2 r∞
rh,i

sinh(rh,i ϕA)

)
+
r2
h,o − r2

h,i

2
t2A (B.32)

−
r2
h,o − r2

h,i

48

(
6 r2

h,i

sinh2(rh,i ϕA)
+ r2

h,o + 3r2
h,i

)
t4A +O(t6A) .

When the spacetime inside the shell is global AdS (i.e. when rh,i is the imaginary unit), the

expansion (B.32) becomes (3.20). Instead, the limit rh,i → 0 of (B.32) provides the corresponding

result for Poincaré AdS inside the shell, namely

6

ceff

SA(tA, ϕA) = 2 log (2 r∞ ϕA) +
r2
h

2
t2A −

r2
h

48

(
6

ϕ2
A

+ r2
h

)
t4A +O(t6A) . (B.33)
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Discarding the constant term in tA and taking the limit of large ϕA of the remaining part, we get

r2
ht

2
A/2− r4

ht
4
A/48 +O(t6A). These are the first terms of the expansion for small tA of the function

4 log(cosh(rhtA/2)) found in [44] (see also footnote 13).

A similar procedure provides the expansion of SA(tA, ϕA) for tA → ϕ−A: plugging the expansion

of θ(tA, ϕA) defined in (B.18) into (B.31) and then using (B.19), we find

6

ceff

SA(tA, ϕA) = 2 log

(
2 r∞
rh,o

sinh(rh,o ϕA)

)
−

2
√

2 (r2
h,o − r2

h,i)

3
√
rh,o coth(rh,o ϕA)

(
ϕA − tA

)3/2

−
(r2
h,o − r2

h,i)
2 tanh2(rh,o ϕA)

3 r2
h,o

(
ϕA − tA

)2
+ . . . (B.34)

where the dots represent subleading contributions. Specializing this result to the case of global

AdS inside the shell, we find (3.23). Instead, setting rh,i = 0 we obtain the corresponding

expansion for Poincaré AdS inside the shell.
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