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8 Abstract Previous research has found that embedding a problem into a familiar context

9 does not necessarily confer an advantage over a novel context in the acquisition of new

10 knowledge about a complex, dynamic system. In fact, it has been shown that a semanti-

11 cally familiar context can be detrimental to knowledge acquisition. This has been described

12 as the ‘‘semantic effect’’ (Beckmann, Learning and complex problem solving, Bonn,

13 Holos, 1994). The aim of this study was to test two competing explanations that might

14 account for the semantic effect: goal adoption versus assumptions. Participants were asked

15 to learn about the causal structure of a linear system presented on a computer containing

16 three outputs by changing three inputs through goal free exploration. Across four condi-

17 tions the level of familiarity was experimentally varied through the use of different variable

18 labels. There was no evidence that goal adoption can account for poor knowledge

19 acquisition under familiar conditions. Rather, it appears that a semantically familiar

20 problem context invites a high number of a priori assumptions regarding the interdepen-

21 dency of system variables. These assumptions tend not to be systematically tested during

22 the knowledge acquisition phase. The lack of systematicity in testing a priori assumptions

23 is the main barrier to the acquisition of new knowledge. The semantic effect is in fact an

24 effect of untested presumptions. Implications for research in problem solving, knowledge

25 acquisition and the design of computer-based learning environments are discussed.
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29 Introduction

30 Whilst the influence of prior experience on problem solving and learning has been

31 examined quite extensively in studies on reasoning (e.g. Blessing and Ross 1996; Hesse

32 et al. 1997; Kotovsky and Fallside 1989), few studies have considered its impact in the

33 context of complex, dynamic problems. Complex, dynamic problems differ from the static

34 problems traditionally used in psychological research as they not only change as a result of

35 the decisions made by the problem solver but also change autonomously (Schoppek 2002).

36 Complex dynamic problems have been used to investigate human problem solving in

37 complex contexts (complex problem solving, CPS, e.g. Funke 1992); to study knowledge

38 acquisition processes and learning (Beckmann 1994; Beckmann and Guthke 1995; Guthke

39 et al. 1995; Goode and Beckmann 2010); and to assess problem solving competencies

40 (Greiff and Funke 2009) and intelligence (e.g. Kröner et al. 2005). They are also

41 increasingly utilised in educational contexts such as nursing (McGaghie et al. 2006; Ravert

42 2002), business and management education (Lainema and Nurmi 2006; Wood et al. 2009),

43 engineering (Chung et al. 2001; Fang et al. 2011), or generically to teach scientific prin-

44 ciples (de Freitas and Oliver 2006; Goldstone and Son 2005).

45 A distinction is often made between ‘‘abstract’’ complex problems and ‘‘concrete’’ or

46 ‘‘semantically meaningful’’ complex problems (e.g. Beckmann 1994; Burns and Vollmeyer

47 2002; Lazonder et al. 2008, 2009). Concrete or semantically meaningful problems use

48 cover stories and variable labels that refer to familiar systems in the real world. For

49 example, in LOHHAUSEN the problem solver is instructed to act as the mayor of a virtual

50 small town dealing with variables labelled such as ‘‘living standard of the workforce’’ and

51 ‘‘energy consumption’’ (Dörner 1987), whilst in FIRECHIEF individuals are required to

52 control fire station resources labelled as ‘‘helicopters’’ or ‘‘trucks’’ to stop simulated forest

53 fires spreading (Omodei and Wearing 1995). Abstract problems such as SINUS (Funke

54 1992) and MACHINE (Beckmann 1994; Beckmann and Guthke 1995) have cover stories

55 and variable labels that do not refer to any known or previously experienced system. In

56 SINUS problem solvers have to deal with an ecosystem on a fictitious planet where arti-

57 ficially labelled creatures live in an unknown dependency from one another. In MACHINE,

58 as a further example, problems solvers are asked to discover how ‘‘Control A’’, ‘‘B’’ and

59 ‘‘C’’ influence values in ‘‘Display X’’, ‘‘Y’’ and ‘‘Z’’. The terms ‘‘abstract’’ and ‘‘concrete’’

60 in this context are in fact rather ambiguous. It could be argued that the difference between

61 systems like FIRECHIEF and MACHINE does not lie in the concreteness or abstractness of

62 variable labels; a fire station is as abstract or concrete as a machine. Goldstone and Son

63 (2005, p. 72) refer to computerised interactive simulations or microworlds that model real

64 world entities as being ‘‘virtually concrete’’. The labels used in either problem, ‘‘concrete’’

65 or ‘‘abstract’’, are part of common language, and hence are in this regard semantically

66 meaningful, hence virtually concrete. They are likely to differ, however, with regard to

67 their semanticity, the degree to which the semantic context formed by the variable labels

68 creates some sense of familiarity in the problem solver. Here it is important to note,

69 however, that a sense of familiarity is not necessarily based on actual prior experience. We

70 can safely assume that only a minuscule minority of participants in respective studies were

71 in fact head of a fire fighter unit, entrusted with the governing of a town, or involved in the

72 management of a small, shirt producing, textile company ‘‘in real life’’. The presumed

73 sense of familiarity of these kinds of contexts is more often than not derived from ‘‘second

74 hand experience’’ at best, which in itself constitutes what is referred to as ‘‘common or

75 world knowledge’’. Hence, comparisons between ‘‘abstract’’ and ‘‘concrete’’ problems may

76 in fact be a comparison between varying degrees of semantic richness of variable labels
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77 (i.e. semanticity), which in turn, may trigger varying amounts of familiarity in the problem

78 solver. The consequences of these processes, especially their effect on what is learned

79 while dealing with semantically embedded complex, dynamic problems, are the main focus

80 of this paper.

81 The effect of semanticity

82 One question in this context is whether concrete or abstract variable labels should be used

83 when studying knowledge acquisition in complex, dynamic environments. In their review,

84 Goldstone and Sakamoto (2003) suggest that the use of variable labels that refer to familiar

85 contexts facilitates the understanding of abstract scientific principles. The sense of

86 familiarity is considered helpful to learners to understand the role that each of the variables

87 plays in a system (i.e. cause or effect). According to Klahr (2000), familiar problem

88 contexts may readily promote the formation of assumptions and hypotheses through

89 ‘‘analogical mapping, heuristic search, priming, remindings or conceptual combination’’

90 (p. 33). In the process of knowledge acquisition or learning problem solvers must then

91 evaluate the available data to determine whether it confirms or disconfirms these

92 hypotheses. If the task is novel and, due to its abstractness, prior experience does not evoke

93 hypotheses about the underlying structure of the system then knowledge must be induced

94 directly and solely from the data (Klahr 2000). From this perspective it could be theorised

95 that a familiar context in fact facilitates the acquisition of knowledge about the underlying

96 structure of a system.

97 However, empirical evidence does not unequivocally support this claim. In a series of

98 studies by Beckmann (1994) involving secondary school students (mean age 14.3 years) as

99 well as university students (mean age: 24.1 years) participants were given one of two

100 versions of the same complex, dynamic system. The variables in one version, CHERRY
101 TREE, were labelled ‘‘Light’’, ‘‘Water’’ and ‘‘Heat’’ for the inputs and ‘‘Cherries’’,

102 ‘‘Leaves’’ and ‘‘Beetles’’ for the outputs, whilst the input variables in another version,

103 MACHINE, were ‘‘Control A’’, ‘‘Control B’’ and ‘‘Control C’’, the outputs were labelled

104 ‘‘Display X’’, ‘‘Display Y’’ and ‘‘Display Z’’. The results clearly showed that problem

105 solvers who worked with the MACHINE acquired significantly more knowledge about the

106 system’s underlying causal structure than those who worked with the CHERRY TREE. An

107 almost intrudingly obvious explanation for this—at first sight rather counterintuitive—

108 result is that the system structure for CHERRY TREE must have been counterfactual to

109 ‘‘common world knowledge’’. However, this can be easily ruled out by analysing the a

110 priori assumptions that problem solvers were asked to report before they interacted with

111 the system. Problem solvers’ expectations regarding the anticipated interdependency of the

112 variables did neither systematically agree nor disagree with the actual underlying structure

113 of the CHERRY TREE system. They in fact represented a balance of correct and incorrect

114 assumptions. Hence, the argument of a counterfactual system, which is in conflict with

115 ‘‘common sense’’, ‘‘world knowledge’’, or ‘‘prior experience’’, appears not to be viable.

116 In another study, Burns and Vollmeyer (2002) also gave participants structurally iso-

117 morphic problems with different set of labels for the system variables. In one version,

118 labels were selected to make the links between the variables as obvious as possible (e.g.

119 ‘‘hot water’’ increased ‘‘temperature’’), whilst the labels in the alternative version of the

120 same problem were selected to give no helpful information (e.g. ‘‘lime’’ increased ‘‘oxy-

121 genation’’). The results indicate that participants dealing with the ‘‘suggestive’’ problem

122 started off at a significant advantage based on prior knowledge that they were able to

The impact of context familiarity
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123 utilise. However, they did not ultimately gain more knowledge than those dealing with the

124 ‘‘less helpful’’ variable labels. This is even more surprising if we consider that the context-

125 induced assumptions represent knowledge that exists prior to dealing with the system, thus

126 it is knowledge that does not need to be acquired as a result of direct learning in the

127 situation studied.

128 Similarly, the results of a recent series of studies conducted by Lazonder et al. (2008,

129 2009) offer, although unwittingly, compelling evidence that even appropriate assumptions

130 about the underlying structure of a system may be detrimental to exploratory learning and

131 may inhibit the acquisition of new knowledge. Lazonder et al. (2009) gave participants

132 structurally isomorphic complex problems that had either ‘‘concrete’’, ‘‘abstract’’ or

133 ‘‘intermediate’’ labels of the system variables. In the ‘‘concrete’’ version of the problem,

134 the labels were selected to make three out of four links as obvious as possible, relying on

135 common world knowledge or experience (e.g. smoking is expected to be detrimental to

136 running performance). In the ‘‘abstract’’ and ‘‘intermediate’’ versions of the problem the

137 labels did not imply any specific links between the variables, thus all the rules regarding

138 variable interdependency had to be induced directly from data generated through direct

139 interaction with the system. As the variable labels in the ‘‘concrete’’ condition formed a

140 familiar context that allowed learners to derive correct assumptions, learners’ prior

141 knowledge in this experimental condition provided them with an initial advantage of six

142 points on the knowledge scale used in this study (ranging from 0 to 12). After the learning

143 phase, learners in this condition gained (i.e. learned) on average 3.56 knowledge points

144 whilst the ‘‘intermediate’’ group gained on average more than twice as much (i.e. 7.37

145 points). Learners under ‘‘abstract’’ conditions gained even more (i.e. 9.05 points). In

146 comparison to the ‘‘concrete’’ condition, the exploration behaviour of the ‘‘abstract’’

147 condition was characterised by a significantly higher proportion of fully specified

148 hypotheses being tested, which ultimately led to a high level of performance success

149 (estimated Cohen’s d = 1.62).1

150 In summary, the empirical evidence from these studies (knowingly or unknowingly by

151 authors) challenges the prevailing position that problem solving and learning is facilitated

152 by contextualisation or concreteness. Empirical evidence rather seems to suggest that novel

153 or abstract problem contexts might be advantageous in regard to knowledge acquisition

154 and learning.

155 Possible causes for the semantic effect

156 The aim of this paper is to further elucidate the underlying reasons for what has been

157 referred to as the ‘‘semantic effect’’ (Beckmann 1994, p. 118). The overarching research

158 question therefore is why problem contexts with high levels of semanticity seem to inhibit

159 the acquisition of new knowledge. The viability of two possible explanatory mechanisms

160 will be tested: (1) premature goal adoption and (2) semanticity induced presumptions.

161 The first proposed explanation for the semantic effect builds upon the assumption that

162 under semantically rich or familiarity inducing conditions, problem solvers may try to

163 control the system to reach context-related goals rather than exploring and testing

1FL01 1 Curiously, the authors interpreted these results differently. In comparing the final knowledge score
1FL02 between the three experimental conditions—without considering the a priori differences in knowledge—
1FL03 they erroneously arrived at the conclusion that concrete conditions are advantageous to the acquisition of
1FL04 new knowledge.
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164 hypotheses regarding its underlying causal structure. Hesse (1982) found that problem

165 solvers when given a problem presented in a familiar context were more goal-directed, and

166 paid less attention to the structure of the system than those given an abstract, hence novel

167 version of the same problem. From this perspective, a familiar context may encourage

168 problem solvers to pursue goals, rather than explore and acquire knowledge about the

169 system structure. Previous research has shown that participants’ awareness of future goals

170 (i.e. certain target values for the output variables of the system) shifts attention away from

171 the acquisition of knowledge. In studies that do not have a dedicated exploration phase or

172 explicit targets, problem solvers tend to set their own performance goals (Funke 1992).

173 Vollmeyer and colleagues found that problem solvers who were cognisant of future goals

174 practiced achieving these goals even though they were instructed to explore and to learn

175 about the system (Vollmeyer et al. 1996, 2002). Schauble et al. (1991)refer to the tendency

176 to produce a desired outcome rather than aiming for understanding the underlying model as

177 ‘‘engineering approach’’ (see also Njoo and de Jong 1993). In sum, system characteristics

178 or modes of instruction that allow for any type of goal adoption (i.e. either self or exter-

179 nally set) may impede knowledge acquisition.

180 An alternative explanation for the emergence of the semantic effect was proposed by

181 Beckmann (1994). He suggested that problem contexts with high levels of semanticity are

182 likely to induce a priori assumptions. This process might be mediated by a sense of

183 familiarity in the problem solver. The acquisition of an accurate representation (i.e. mental

184 model) of the system’s actual causal structure would then require a systematic testing of

185 these assumptions. The focus of such systematic testing would need to be on ruling out

186 inappropriate assumptions regarding the interdependence of system variables. Beckmann

187 (1994) further assumed that this reduction of complexity imposes higher cognitive demands

188 than inferring individual rules directly from the data (i.e. observed system behaviour)

189 under conditions with low semanticity. The latter represents a process of construction of
190 complexity. An evasion of the more demanding process of complexity reduction appears to

191 result in the general tendency to seek information that confirms rather than potentially

192 disconfirms initial assumptions (Dunbar 1993; Klayman and Ha 1987; Wason 1966).

193 In this study we will test hypotheses derived from both explanations for the origin of the

194 semantic effect. Testing the viability of the Goal adoption explanation requires contrasting

195 performances obtained in versions of the same system that differ with regard to their

196 control worthiness2; testing the viability of the Presumption explanation requires con-

197 trasting performances obtained in versions of the same system that differ with regard to the

198 semanticity carried by their variable labels.

199 Methods

200 Participants

201 A convenience sample of 80 first year psychology students at the University of Sydney

202 participated for course credit. Participants were randomly allocated to one of four

2FL01 2 We refer to control worthiness as a characteristic of a complex, dynamic system that is determined by the
2FL02 semanticity of its output variables. The underlying assumption is that output variables high in semanticity
2FL03 (i.e. with semantic reference to concrete objects in the ‘‘real world’’) are more likely to trigger control
2FL04 behaviour that aims at optimising levels of output variables according to self-set targets (e.g. increase,
2FL05 decrease, or keep stable) despite the task being to explore the system.

The impact of context familiarity
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203 conditions, which will be explained in detail in the following section, and were tested in

204 groups of 2–10 participants. Their ages ranged from 18 to 48 years (M = 20.19,

205 SD = 5.19).

206 Materials

207 The underlying causal structure of the complex, dynamic system employed in this study

208 was identical to the one introduced by Beckmann (1994). The system consists of three

209 input variables and three output variables. Figure 1 depicts the causal structure of the

210 system with CHERRY TREE labels. The underlying causal structure (i.e. 6 relationships out

211 of 12 possible) remained identical across all versions of the system. The variable labels

212 were systematically varied in order to create four experimental conditions that allowed

213 testing of the hypotheses.

214 Design

215 A simple contrast between performances obtained while working with a system with high

216 semanticity (e.g. CHERRY TREE) and low semanticity (e.g. MACHINE), as done in pre-

217 vious studies, would not suffice to help deciding whether goal adoption or presumptions

218 are causal to the semantic effect. In order to experimentally test whether pursuing goals

219 concerning the output variables contributes to the semantic effect we devised two addi-

220 tional versions of the same system that differ with regard to their proneness towards goal

221 adoption whilst keeping semanticity constant. In the MACHINE-output version of the

222 problem the input variables were labelled ‘‘Light’’, ‘‘Water’’ and ‘‘Temperature’’ whilst the

223 output variables carried MACHINE labels, i.e. ‘‘X’’, ‘‘Y’’ and ‘‘Z’’. In the CHERRY-TREE-

224 output version the input variables were labelled ‘‘A’’, ‘‘B’’ and ‘‘C’’, whilst the output

225 variables were labelled ‘‘Cherries’’, ‘‘Leaves’’ and ‘‘Beetles’’. Underpinning were two

226 assumptions: (1) goal adoption is focused on output variables, and (2) goal adoption is

227 most likely to occur for output variables high in semanticity. In other words, pursuing to

228 ‘‘increase number of CHERRIES, keep number of LEAVES constant, and decrease

229 number of BEETLES’’, as an example, is more meaningful than aspiring to ‘‘increase X,

230 keep Y constant, and decrease Z’’. Hence we hypothesise that if goal adoption was the

231 primary reason for the semantic effect then its adverse effects on knowledge acquisition

232 should be observable in conditions with CHERRY TREE-related labels for output variables

233 and less so in conditions with MACHINE-related labels for output variables (Goal adoption
234 hypothesis: knowledge acquisition). From a presumption perspective no such differences

235 would be expected between these two conditions as there is no reason to assume that the

Light Water Temperature

BeetlesLeavesCherries

Fig. 1 Diagram of the causal structure of the dynamic system
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236 combination of input variables high in semanticity and output variables low in semanticity

237 would provoke more a priori assumptions than the reverse combination with input vari-

238 ables low in semanticity and output variables high in semanticity. In other words, we

239 experimentally manipulated the likelihood of goal adoption by systematically varying the

240 control worthiness of the output variable labels. The success in controlling such complex,

241 dynamic system (which in this context means to reach and maintain pre-determined target

242 values in the output variables over a certain period of time) depends on the quality of the

243 knowledge acquired during the goal free exploration phase (Goode and Beckmann 2010).

244 We, therefore, hypothesise that differences in control performances will be observable

245 between these two conditions if goal adoption is causal to the semantic effect (Goal
246 adoption hypothesis: system control). Again, from a presumption perspective we would not

247 expect systematic control performance differences between these two conditions.

248 Tests of the presumption explanation for the semantic effect are based on the

249 assumption that the semanticity of variable labels has an impact on problem solvers’ a

250 priori mental models of the system. We therefore expect problem solvers to list higher

251 numbers of a priori assumptions regarding the interdependency of system variables if

252 labelled with a CHERRY TREE context (Presumption hypothesis: a priori assumptions). If

253 presumptions were to be responsible for the semantic effect we should observe perfor-

254 mance differences in the acquisition of knowledge about the causal structure of the system

255 between individuals who report high or low numbers of a priori assumptions, respectively

256 (Presumption hypothesis: knowledge acquisition). This, consequently, should also be

257 reflected in performance differences in their system control performance (Presumption
258 hypothesis: system control).
259 Table 1 provides an overview of the allocations of the four system versions to the

260 experimental conditions regarding control worthiness and semanticity.

261 Measures

262 Our analyses were based on four measures: the number of a priori assumptions, accuracy of

263 knowledge acquired, systematicity of exploration interventions and quality of system

264 control.

265 A priori assumptions

266 To assess participants’ initial mental model of the structure of the system, a priori

267 assumptions with regard to the existence (and non-existence) of each of the 12 possible

268 relationships between the system variables were recorded. For that purpose, a template

269 with drop down boxes was presented on screen (see bottom section in Fig. 2). The template

270 elicited information regarding problem solvers’ assumptions regarding the existence or

271 non-existence of relationships between any given input variable and any given output

272 variable, or a dependency of any of the three output variables on itself by selecting ‘‘Y’’

273 (yes) or ‘‘N’’ (no). For assumed relationships problem solvers then could also specify their

Table 1 Experimental factors across conditions

Experimental factors CHERRY TREE CHERRY TREE out MACHINE out MACHINE

Semanticity High Medium Medium Low

Control worthiness High High Low Low

The impact of context familiarity
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274 direction, by selecting ‘‘?’’ (positive) and ‘‘-’’ (negative). Finally, assumptions regarding

275 the strength of the relationship were recorded, based on the selection of ‘‘W’’ (weak), ‘‘M’’

276 (medium) or ‘‘S’’ (strong) in the drop down menus. This information was then used to

277 generate a causal diagram, which was presented onscreen (see middle section in Table 2).

278 Solid arrows represent links assumed to exist; dashed arrows represent links were no

279 decision was made; absent arrows represent assumptions regarding non-existences of links.

280 The a priori assumption score has a theoretical range of 0–12.

281 Accuracy of acquired knowledge

282 Participants’ knowledge was assessed by asking them to complete causal diagrams of the

283 structure of the problem before they began the control task, and after each exploration trial

284 (see above mentioned procedure). The diagrams generated before they began the task and

285 at the end of the three exploration cycles with seven trials each were used to derive

286 problem solvers’ knowledge scores. These scores represent sensitivity scores (Pr) adopted

287 from memory recognition research (Snodgrass and Corwin 1988). In contrast to traditional

288 signal detection models Snodgrass and Corwin’s (1988) model conceptualises discrete

289 states of recognition (rather than a continuum of memory strengths). Translated into the

290 context of the acquisition of structural knowledge we distinguish between the states of

291 either knowing (that there is or is not a relationship between two variables) or not knowing.

292 This model also allows controlling for guessing (i.e. the tendency ‘‘to see that there is’’ or

293 ‘‘to see that there is not’’ a relationship in the state of not knowing). Pr scores have a

Fig. 2 Screen-shot of the task, as presented in the MACHINE condition

J. F. Beckmann, N. Goode
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294 theoretical range from -1 to 1, where scores below zero indicate inaccurate knowledge,

295 whilst scores above zero indicate accurate knowledge.

296 Systematicity of exploration

297 To determine whether participants explored the system systematically, the number of trials

298 in which one or none of the three inputs were varied was recorded; the VONAT (i.e., vary

299 one or none at a time) scores theoretically range from 0 to 21.3

300 System control

301 The quality of system control was calculated by determining the Euclidean Distance

302 between the actual and optimal values of the input variables on each of the seven control

303 trials during the control cycle. The optimal values for each input variable were calculated

304 by using the values of the output variables on the previous trial and the target output values

305 to solve the set of linear equations underlying the system. These scores are then averaged

306 across the seven control trials. The theoretical range of the scores was from 0 to 121, where

307 a lower score indicated a smaller deviation from optimal control interventions and

308 therefore better performance.

309 Procedure

310 Table 2 shows the procedure of the experiment, and indicates which performance data

311 were collected in each phase of the experiment. At the start of the experiment participants

312 were verbally instructed how to interact with the system, aided by a PowerPoint presen-

313 tation. The system was then presented on a computer. The entire experiment took under an

314 hour to complete.

315 Before engaging in any interaction with the system, participants were required to enter

316 any assumptions they had regarding the interconnectedness of the system variables. This

317 information was then used to generate a causal diagram, which remained on screen (see

318 middle section in Fig. 2).

319 The exploration phase then began, in which participants were prompted to learn about

320 the causal structure of the system. To this end they were given 3 cycles of 7 trials each (i.e.

321 a total of 21 trials) where they could change the three input variables (see sliders in the top

Table 2 Procedure of the experiment and performance measures collected

Phases Variables

1. Instruction —

2. Assessment of expectations • Number of assumptions
• Accuracy of prior knowledge (Pr0)

3. Goal-free exploration (3 cycles with 7 trials each) • Accuracy of knowledge acquired (Pr1–Pr21)
• Systematicity (VONAT)

4. System control (1 cycle with 7 trials) • Quality of control interventions (Control)

3FL01 3 Technically, only four interventions are necessary to completely identify a linear 3 by 3 system: one where
3FL02 none of the input variables are changed to identify autonomic changes in the output variables, and three
3FL03 interventions where only one of the input variables is changed in order to identify their respective effects on
3FL04 the output variables.
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322 section in Fig. 2) and then observe the effect on the output variables (see graph windows in

323 the middle section in Fig. 2). After each trial, participants were required to record what

324 they had learnt about the dependencies of the system variables using the template on

325 screen. These inputs modified the causal diagram accordingly. The causal diagram serves

326 as an externalisation of the acquired and to be refined mental model about the causal

327 structure of the system. The feature of enabling problem solvers to update the causal

328 diagram over the course of the 21 exploration trials accommodates the accumulative nature

329 of knowledge acquisition.

330 In the control phase, which consisted of seven intervention trials, participants were

331 instructed to control the system to reach and maintain given target values for the three

332 output variables. The target values were marked by yellow lines in the graph windows for

333 the output variables.

334 Analyses

335 A between-subjects design was used with a total of four system versions that allowed

336 contrasting (a) three levels of semanticity and (b) two levels of control worthiness. The

337 three levels of semanticity (i.e. low, medium, and high) aimed at the experimental

338 induction of varying levels of proneness towards the development of a priori assumptions.

339 The low level of semanticity is represented by the system version that comprises exclu-

340 sively of MACHINE related variable labels, the two system versions that had either input or

341 output variables with CHERRY TREE labels represented the medium level of semanticity.

342 The system version with CHERRY TREE labels for both, input and output variables rep-

343 resented high levels of semanticity (cf. Table 1). To test the presumption hypotheses we

344 first established whether a link existed between different levels of semanticity of a system

345 and the amount of a priori assumptions problem solvers held. Subsequently, we contrasted

346 performance measures obtained under varying levels of presumptiveness using ANOVA.

347 Testing the goal adoption hypotheses required an experimental manipulation of the

348 control worthiness of a system resulting in different levels of proneness towards goal

349 adoption. This was achieved by contrasting the two system variants with output variable

350 labels high in control worthiness (i.e. CHERRY TREE context) with the two system

351 variants where output variable labels are not likely to encourage goal adoption (i.e.

352 MACHINE related output variables). The effects of control worthiness on knowledge

353 acquisition as well as control performance were analysed using ANOVA.

354 Results

355 The random allocation of participants to the four experimental conditions resulted in the

356 following groups: nMACHINE = 21 (14 females), nCHERRY TREE = 20 (15 females), nCHERRY

357 TREE-output = 20 (15 females) and nMACHINE-output = 19 (14 females).

358 Table 3 provides descriptive statistics of the variables considered in the analyses. The

359 last column in Table 3 shows data derived from n = 20 generated data sets with random

360 responses to the a priori assumption assessment and to the knowledge assessment as well as

361 random control interventions.

362 The reliability estimation for the performance measures (i.e. knowledge acquisition

363 scores and control performance scores) were based on the data from all 80 participants,

364 regardless of the condition under which they dealt with the complex, dynamic system.

365 Cronbach’s alpha for the first, second, and third set of seven trials (i.e. exploration cycles)
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366 were .81, .97 and .98, respectively. Cronbach’s alpha for all 21 interventions during the

367 exploration phase was .97. The internal consistency for the seven interventions in the

368 control phase was also sufficiently high, resulting in a Cronbach’s alpha of .89.

369 Semantic effect

370 Prior to testing the specific predictions that were put forward in the contexts of the goal

371 adoption or presumption hypotheses, we tested whether the ‘‘semantic effect’’ was replicated

372 in the current study. To this end, we compared the knowledge scores (i.e. Pr21, the final score

373 after 21 exploration trials) achieved in the CHERRY TREE and in the MACHINE version. To

374 control for potential differences in their ‘‘a priori knowledge’’ (i.e. the knowledge score based

375 on the a priori assumptions elicited from each problem solver prior to their first exploration

376 trial), Pr0 was included as a covariate. The result confirmed the expected replication of the

377 semantic effect (F1,38 = 12.94, p = .001, g2 = .248). Problem solvers in the different

378 conditions started off at comparable levels of ‘‘a priori knowledge’’ (effect of covariate Pr0:

379 F1,3 = 1.52, p = .225). However, the semanticity of the system variables had an effect on

380 how much problem solvers learnt about the structure of the system. Problem solvers dealing

381 with labels with high semanticity tended to acquire less knowledge than problem solvers

382 working under the low semanticity condition. In fact, when compared with knowledge scores

383 derived from 20 simulated data sets with random causal diagrams (representing guessing or

384 ‘‘zero knowledge’’) problem solvers’ knowledge in the high semanticity condition (i.e.

385 CHERRY TREE) did not differ from that (F1,37 = 0.24, p = .631).

386 In a subsequent step we had to establish whether poor knowledge acquisition under high

387 semanticity conditions is attributable to an incompatibility between ‘‘common sense’’ (as

388 indicated by the a priori assumptions about the structure of the system held by problem

389 solvers) and the actual structure of the system (see Fig. 1 for the underlying causal

390 structure). If this were the case, the Pr0 scores in the CHERRY TREE condition should be

391 significantly less than zero, signalling systematic ‘‘false knowledge’’, which would be

392 indicative of a counterintuitive system structure. The results of a one-sample t test dem-

393 onstrated however that Pr0 scores in this condition (M = -0.008, SD = 0.15) were not

394 significantly different from zero (t[19] = -0.252, p = .804) which indicates that problem

395 solvers, on average, held an equal number of correct and incorrect assumptions with regard

Table 3 Descriptive statistics for the dependent variables [M(SD)]

Variables CHERRY TREE
(n = 20)

CHERRY TREE out
(n = 20)

MACHINE out
(n = 19)

MACHINE
(n = 21)

Random
(n = 20)

A priori assumptions 5.75 (5.39) 2.85 (4.89) 4.74 (5.51) 2.05 (4.12) 7.25 (1.80)

Accuracy of knowledge

based on assumptions: Pr0

-.008 (0.15) .025 (0.10) -.052 (0.13) -.016 (0.10) -.008 (0.28)

Systematicity of exploration

interventions: VONAT
9.55 (6.31) 9.05 (7.35) 9.42 (7.21) 12.43 (4.75) –

Accuracy of acquired

knowledge: Pr21

.041 (0.18) .230 (0.27) .173 (0.31) .328 (0.32) .008 (0.26)

Control performance:

Control
40.05 (12.11) 39.10 (18.26) 41.08 (11.19) 31.07 (13.26) 53.26 (12.06)

r(Pr21, Control) -.16 -.14 -.17 -.52 .14
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396 to the actual structure of the system. This eliminates the possibility that the ‘‘semantic

397 effect’’ might have simply been caused by a counterfactual causal structure.

398 As to be expected, the semantic effect was replicated also with regard to the control

399 performance. The significant effect of semanticity (F1,39 = 5.11, p = .029, g2 = .116) in

400 an ANOVA contrasting the control performance between the CHERRY TREE and the

401 MACHINE version of the system signifies that problem solvers’ control performance under

402 conditions with low semanticity (i.e. MACHINE) was superior to those working under high

403 semanticity conditions (i.e. CHERRY TREE). However, although little knowledge was

404 acquired during the exploration phase, the control performances under CHERRY TREE
405 conditions did significantly differ from scores derived from 20 simulated data sets with

406 random control interventions, representing some sort of ‘‘knowledge free control’’

407 (F1,38 = 11.95, p = .001, g2 = .239).

408 Goal adoption hypotheses

409 To test whether the premature pursuance of controlling the system (i.e. goal adoption) can

410 explain the semantic effect we contrasted knowledge acquisition performance as well as

411 control performances achieved when working with system versions that vary with regard to

412 the control worthiness of output variables. We compared performance scores from the

413 system versions with CHERRY TREE output variable labels (i.e. high in control worthi-

414 ness) with the system versions with MACHINE output labels (i.e. low in control worthi-

415 ness). The results indicate that there is no significant difference in the final knowledge

416 acquisition score (Pr21: F1,78 = 3.48, p = .0664) between these two groups. This result

417 pattern was replicated for the comparison of control performance (control: F1,78 = 1.38,

418 p = .244). These results do not support either of the two Goal adoption hypotheses (i.e.

419 knowledge acquisition and system control).

420 Presumption hypotheses

421 To test the alternative explanation for the semantic effect, we first analysed the distribution

422 of the number of a priori assumptions problem solvers held across the three different levels

423 of semanticity. In general, we expected to find an increase in the number of a priori

424 assumptions with increasing levels of semanticity. As shown in Fig. 3 this expectation was

425 confirmed, which lends tentative support to the presumption explanation (Presumption

426 hypothesis: a priori assumptions).

427 An inspection of the distribution of the number of presumption across the levels of

428 semanticity also reveals bi-modality. This suggests that problem solvers tend either to have

429 none or only a few presumptions (i.e. less than 4) or they have many assumptions (i.e. eight

430 or more). In light of these findings we created a quasi-experimental factor with two levels

431 of a priori assumptions. All problem solvers with less than 6 (out of possible 12) a priori

432 assumptions were allocated to the ‘‘low assumption’’ group (nlow = 53); all problem

433 solvers with six or more assumptions formed the ‘‘high assumption’’ group (nhigh = 27).

434 The calculation of Somers’ D (Somers 1962), as an estimate of the size of the assumed

435 directional association between an ordinal and a dichotomous variable, resulted in a value

436 of .246 (p = .007) indicating a significant dependency of the number of a priori

4FL01 4 Under given sample size constellations an existing effect of at least medium size (i.e. d C 0.57)—which in
4FL02 this form of analysis also translates into an effect of as small as 9 % of explained variance—will be
4FL03 detectable with a probability of more than .80.
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437 assumptions from the level of semanticity. Somers’ D can be interpreted as the difference

438 between two probabilities (Newson 2006, p. 311), which in the given context means that

439 the probability to adopt high levels of assumptions will increase by .25 when confronted

440 with higher levels of semanticity (see Presumption hypothesis: a priori assumptions).

441 Presumption hypothesis: knowledge acquisition

442 An ANCOVA analysing the effect of a priori assumptions on knowledge acquisition

443 (Pr21), whilst controlling for potential differences in Pr0, resulted in a significant main

444 effect (F1,77 = 6.13, p = .016, g2 = .073), indicating that problem solvers with a high

445 number of a priori assumptions tend to acquire less knowledge over the course of the

446 exploration phase. Regardless of whether problem solvers held high or low numbers of

447 assumptions, they did not differ in their ‘‘a priori knowledge’’ as signified by the non-

448 significant effect of the covariate Pr0 (F1,77 = 0.003, p = .958).

449 Presumption hypothesis: system control

450 As expected, the subsequent control performances also differed significantly between

451 problem solvers with high and low numbers of a priori assumptions (F1,78 = 24.60,

452 p \ .001, g2 = .240).

453 The accumulated evidence regarding systematic differences in knowledge acquisition

454 and control performance between the two assumption groups lends further support to the

455 presumption explanation. However, holding a priori assumptions about the system struc-

456 ture is not necessarily a hindrance to knowledge acquisition and the subsequent reason for

457 inferior control performance per se. Only if not systematically tested during the exploration

458 phase assumptions impose a consequential threat to the acquisition of new knowledge. An

459 ANOVA with the two assumption levels (high vs. low) and the individual degree of

460 systematicity of interventions across the three exploration cycles (i.e. VONAT) was con-

461 ducted. The significant effect of assumptiveness (F1,78 = 30.62, p \ .001, g2 = .282)

462 confirms that high levels of assumptions are substantially associated with low levels of

463 systematicity in exploration behaviour. As to be expected, systematicity in exploration

464 behaviour, on the other hand, is positively associated with accuracy of acquired knowledge

465 (r = .32, p = .002).

Fig. 3 Number of a priori
assumptions across different
levels of semanticity
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466 Overall, the results with regard to the presumption hypotheses indicate that a problem

467 context with high levels of semanticity tend to encourage the formation of higher numbers

468 of a priori assumptions. These assumptions are less likely to be tested systematically as

469 indicated by the significantly lower level of systematcity in the exploration behaviour of

470 this group. Unsystematic exploration behaviour tends to produce non-informative system

471 states (i.e. design of ‘‘inconclusive experiments’’, de Jong and van Joolingen 1998, p. 185)

472 that complicate the extraction of knowledge (i.e. induction of causal structure). A lack of

473 knowledge ultimately leads to poor control competency.

474 Discussion

475 The goal of this study was to better understand how the semantic context of a problem

476 might influence the way problem solvers approach a complex, dynamic system. We were

477 interested in further elucidating the underlying mechanisms that lead to the semantic effect.

478 To that end we explored the viability of two—potentially alternative—explanatory

479 mechanisms, namely goal adoption and presumptions.

480 The study replicates results reported by Beckmann (1994; Beckmann and Guthke 1995)

481 with regard to the semantic effect, which refers to the phenomenon of impeded acquisition

482 of knowledge about the causal structure of a complex, dynamic system as well as inferior

483 control performance when presented with semantically familiar labels in contrast to the use

484 of abstract variable labels.

485 In terms of the quest for an explanatory mechanism for this phenomenon, empirical

486 evidence obtained in this study lends little support for goal adoption as the underlying

487 cause. Contrary to what would be expected if goal adoption were causally linked to the

488 semantic effect, we were not able to find systematic performance differences (i.e.

489 knowledge acquisition and system control) between conditions presumably most and least

490 conducive to goal adoption. This could mean two things: either goal adoption does not

491 result in a semantic effect or goal adoption did not occur. We do not have a direct indicator

492 of whether problem solvers in conditions with high levels of control worthiness have

493 indeed engaged in pursuing self-set goals. Systematicity of interventions could serve as an,

494 although indirect indicator. In this sense, we would argue that inputs that are aimed at

495 exploring the causal structure of a system are more systematic in comparison to inter-

496 ventions targeted at reaching and maintaining certain target values in output variables.

497 Systematic exploration behaviour focuses on individual links between a single input and a

498 single output variable. To establish the existence of such links interventions are required

499 where only one input variable is changed whilst the other input variables are be kept

500 constant (see VONAT). Control goals, in contrast, refer to all output variables simulta-

501 neously. Therefore, control interventions require changes of more than just one input

502 variable. As a result, input behaviour typical of goal adoption should be characterised by

503 lower VONAT scores. A comparison of VONAT scores for CHERRY-TREE-output and

504 MACHINE-output conditions (see Table 3) suggests no such difference. If we accept

505 systematic differences in VONAT scores as an (indirect) indicator of goal adoption and if

506 we accept that goal adoption is less likely occur in a context of variables low in seman-

507 tictity we have to conclude that goal adoption might not have taken place in our study.

508 Tests of the presumption explanation resulted in a more coherent result pattern. The

509 likelihood of adopting higher numbers of a priori assumptions increases by 25 % when

510 being confronted with a system with high levels of semanticity. Problem solvers tend not to

511 systematically test these presumptions, i.e. 28 % of variation in the systematicity of
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512 decisions made during the goal free exploration phase can be accounted for by the level of

513 a priori assumptions. Higher levels of systematicity led to more accurate knowledge about

514 the causal structure of the system, which ultimately enabled problem solvers to better

515 control the complex, dynamic system. Overall, the level of presumptions explains 7 % in

516 the variation of knowledge acquisition scores and 24 % in control performance, respec-

517 tively. All in all, it is the combination of both, semanticity induced presumptions and

518 failing to test them systematically that qualifies as a sufficient cause for the semantic effect.

519 Consequently, the semantic effect should be more appropriately referred to as ‘‘pre-

520 sumption effect’’. As long as we cannot demonstrate an occurrence of the semantic effect

521 independently of untested presumptions, they also have to be considered a necessary cause.

522 On the other hand, if we accept that goal adoption might not have occurred in this study

523 then goal adoption has to be ruled out as a necessary cause for the semantic effect. For the

524 same reason, we cannot decide whether goal adoption could be a sufficient cause for the

525 semantic effect. The fact that goal adoption might not have occurred in this study—despite

526 creating arguably conducive conditions for it—raises doubts regarding its viability as a

527 ‘‘naturally’’ occurring phenomenon. Goal adoption might only occur if problem solvers

528 were informed about goals before they are asked to explore the system.

529 Before discussing some of the implications of these findings with regard to complex

530 problem solving research and to appropriately map the findings into the field of instruc-

531 tional design we briefly bring to mind the specifics of the learning task imposed in this

532 study. Strictly speaking, the task was twofold. The first subtask was a learning task in a

533 narrow sense, whilst the second subtask can be seen as an indirect learning task. The first

534 subtask required the acquisition of knowledge about the causal structure of a complex,

535 dynamic system. The second subtask comprised of the application of the acquired

536 knowledge to reach a defined target. In the context of cognitive learning, the knowledge

537 acquisition task required the induction of rules regarding the interdependencies of variables

538 in this system from a series of observations. These observations had to be generated by the

539 problem solver through systematic interactions with the system. Systematicity in these

540 interactions pretty much is aligned with systematic inquiry used in experimentation (e.g.

541 change one variable at a time whilst keeping others constant) to draw causal inferences.

542 The second subtask builds on the first in so far as the mental model developed during the

543 preceding exploration phase (see subtask 1) has to be utilised to control the system. System

544 control, in this context, means reaching and maintaining a goal state of the system that

545 comprised certain target values for a subset of system variables. Performance in both

546 subtasks, i.e. knowledge acquisition and system control, depends on a range of intra-

547 personal and situational factors. Reasoning ability would be an example for the former,

548 semantic context of the problem would be an example for the latter. This study was

549 concerned with the impact of semanticity on learning and the application of acquired

550 knowledge.

551 We now discuss some of the implications of these findings with reference to two broad

552 contexts, one is the use of complex, dynamic problems in research on cognitive learning,

553 and the other one refers to instructional design.

554 The use of complex dynamic systems in research in cognitive learning, reasoning

555 and intelligence

556 Computer-simulated scenarios are prominent tools used in the study of human problem

557 solving behaviour. As it was in this study, the focus is on how people learn to operate in

558 complex, dynamic environments. One of our findings suggests—in accordance with
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559 previous studies—that a complex, dynamic problem can be controlled at levels substan-

560 tially better than pure random interventions without the acquisition of (explicable)

561 knowledge about its causal structure. In the context of the apparent dissociation between

562 control competency and knowledge the imperfection of the methods used to assess the

563 results of knowledge acquisition processes led to the notion of implicit, i.e. non-explicable

564 knowledge or implicit learning. As in Goode and Beckmann (2010) we argue that the role

565 of implicit learning is negligible in the given context. More likely are processes of what has

566 been described previously as ‘‘ad hoc control’’ (Beckmann and Guthke 1995, p. 195). ‘‘Ad

567 hoc control’’ refers to an intervention-by-intervention optimization, or simply trial-and-

568 error-processes during system control. As an example, if the first (‘‘knowledge free’’)

569 intervention caused the system to deviate further from the goal states then a reasonable ad

570 hoc control strategy to (over-)compensate this undesired development would be to enter

571 values for the input variables that carry the algebraic sign opposite to the previous inter-

572 vention trial. Inputs that tend to bring the system closer to the goal state are likely to be

573 repeated.

574 The heuristic of ‘‘ad hoc control’’ does not require any structural knowledge about the

575 system. The correlation pattern between knowledge acquisition and control performance

576 (see bottom row in Table 1) in combination with the knowledge acquisition and control

577 performance scores across the different conditions supports this claim.

578 One of the implications is that sole reliance on control performance as an indicator of

579 learning success is inadequate. The potential multiple determination (i.e. ad hoc, knowl-

580 edge based etc.) of control performance imposes a validity challenge to the use of control

581 performance in complex, dynamic problems as a proxy for knowledge and learning.

582 We see another consideration that speaks against the reliance on control performance

583 measures in the context of research on learning, especially learning processes. This con-

584 cern is most relevant for task settings where problem solvers are given control goals

585 without a preceding goal free exploration or learning phase, exclusively dedicated to the

586 acquisition of structural knowledge. Situations in which we expect problem solvers to learn

587 whilst they are in fact being asked to perform (e.g. to control a system)—occasionally

588 disguised as ‘‘learning by doing’’—are less likely to promote effective learning as a sys-

589 tematic testing of assumptions are seldom expedient to reaching control targets. Again,

590 when studying learning behaviour in complex problem scenarios we therefore should not

591 rely on performance measures such as control performance to make inferences regarding

592 the quality of knowledge acquisition.

593 The presumption effect in relation to instructional design

594 In our pedagogical attempts to make problems or learning tasks more interesting, more

595 relevant, more meaningful and subsequently more motivating to problem solvers, we

596 should not forget that the references to real life systems as suggested by variable labels are

597 of a mere token nature. As shown in this study, problem solvers have difficulties in treating

598 certain kind of information as an irrelevance. Although in a different context, Cooper and

599 colleagues gave a critical account of the risk associated with the use of potentially con-

600 fusing ‘‘realistic’’ items in their research on knowledge and skill acquisition in mathe-

601 matics (Cooper and Dunne 2000; see also Lubienski 2000). Variable labels are quite

602 tempting as they offer a (too) convenient way of sense making that is hard to resist.

603 Goldstone and Son (2005, p. 100) refer to ‘‘people’s natural tendency to interpret

604 ambiguous objects so as to be consistent with (previously experienced), unambiguous

605 objects …’’ In the context of learning tasks imposed in the present study we would argue
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606 that the use of (overly) concrete labels (i.e. high semanticity) creates a situation where

607 problem solvers are likely to be tempted to fill the ‘‘ambiguity vacuum’’ with assumptions

608 that are not necessarily incorrect (see neutral knowledge scores based on a priori

609 assumptions) but not necessarily helpful either. In short, the use of systems with high

610 semanticity comes with the risk of diverting problem solvers from a learning path.

611 In our study, we observed problem solvers who resisted the temptation to adopt high

612 levels of a priori assumptions under conditions with high semanticity (i.e. 9 out of the 20,

613 or 45 %, see Fig. 3). At the same time, the adoption of high levels of assumptions in the

614 low semanticity condition is considerably lower (i.e. 3 out of 21, or 14 %, see Fig. 3). Not

615 adopting high levels of assumptions can be seen as the first protective factor against the

616 semantic effect. As said before, high levels of a priori assumptions are not detrimental to

617 knowledge acquisition per se; failing to test them systematically is.

618 The consistently observed difficulties problem solvers seem to experience in system-

619 atically testing their a priori assumptions poses a challenge to constructivist, discovery,

620 problem-based, experiential, and inquiry-based teaching (Kirschner et al. 2006; Klahr and

621 Nigam 2004). Our results suggest that it is somewhat presumptuous to rely on hypothesis

622 testing in problem solving to take place ‘‘naturally’’ (Gopnik et al. 2001). As a recom-

623 mendation implied by our results, rather than condemning the use of systems with high

624 levels of semanticity, it appears crucial to provide problem solvers with guidance on how

625 (a) to explicate assumptions and (b) to test them systematically.

626 Research in the context of discovery learning using simulations (e.g. de Jong and van

627 Joolingen 1998) has identified a range of similar difficulties learners tend to experience

628 which include hypothesis generation, design of experiments, interpretation of data, and

629 regulation of learning. Subsequently, a variety of remedial support features or pedagogies

630 are proposed. They, for example, include a program feature called ‘‘hypothesis scratchpad’’

631 (van Joolingen and de Jong 1993) that is meant to encourage the generation of hypotheses.

632 Also, more or less explicit hints as to what kind of interaction with the computerised

633 system (i.e. inputs) are likely to generate most informative system states were suggested

634 (Leutner 1993). Another attempt to support learners is to ask for explicit predictions of

635 outcomes of certain interventions (Beckmann 1994), which, in their comparison to the

636 actual outcomes, is expected to generate feedback informative of whether the assumed

637 (hypothesised?) mental model is correct or needs modification. These support features,

638 however, have not consistently shown the expected effects (de Jong and van Joolingen

639 1998, p. 193).

640 Despite their differences we see relevance of our findings with regard to discovery

641 learning at a conceptual as well as methodological level. Discovery learning is mainly

642 concerned with concept learning (employing conceptual models in simulations). The study

643 presented here focuses on the application of a generic problem solving skill (i.e. drawing

644 causal inferences based on systematic experimentation) which utilises a computerised

645 system that follows an operational model). On a conceptual level, the findings reported

646 here suggest that the effectiveness of discovery learning is potentially threatened by one of

647 its core features: its reliance on contextual embedment. On a methodological level it is

648 apparent that in the majority of relevant studies in discovery learning differences in

649 exploration behaviour between successful and less successful learners are used as the basis

650 for predominantly descriptive accounts of difficulties learners tend to experience. The

651 study presented here, however, goes beyond the ex post facto comparison of successful and

652 less successful learners by focussing on situational characteristics (i.e. semantic embed-

653 ment as a design feature of contextualised learning) that may contribute to learners’

654 difficulties in discovery learning using computerised scenarios.
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655 A further potential problem of using highly contextualised learning environments is that

656 learning products (i.e. knowledge and understanding) are tied to specific contexts.

657 Knowledge and skills acquired within narrowly defined contexts are less likely to be

658 transferred into novel, yet homomorphous situations. To mitigate this problem Goldstone

659 and Son (2005) convincingly proposed the approach of concreteness fading (see also

660 Schwartz and Black 1996) which refers to ‘‘… the process of successively decreasing the

661 concreteness of a simulation with the intent of eventually attaining a relatively idealized

662 and decontextualized representation that is still clearly connected to the physical situation

663 that it models’’ (Goldstone and Son 2005. p. 70). Learning and transfer are best facilitated

664 by moving from higher to lower levels of semanticity and not by the reverse sequence as

665 Goldstone and Son (2005) as well as Koedinger and Anderson (1998) were able to show.

666 This raises the question whether our findings stand in contradiction to the concreteness

667 fading approach. Not necessarily. A possible reconciliation lies in differences in the actual

668 learning tasks. The learning task set in Goldstone’s studies is aimed at developing an

669 understanding of a specific scientific principle or concept (i.e. ‘‘competitive specialisa-

670 tion’’—a principle that underpins the decentralised organisation of complex behaviour such

671 as bird flocks, traffic jams and forest fires, see Resnick 1994). As stated before, the learning

672 task posed in the study we have presented here aimed at a rather generic problem solving

673 skill that is central to scientific enquiry, namely drawing causal inferences based on sys-

674 tematic experimentation. Successful experimentation represents the basis for an under-

675 standing of principles such as ‘‘competitive specialisation’’. Hence, we argue that the

676 former functionally serves as a precursor for the latter. A synthesis of the two seemingly

677 contradictory pieces of evidence results in the insight that different learning foci call for

678 different features in learning environments (such as semantic embedment) as do different

679 phases in the process of acquiring knowledge.

680 Desiderata

681 The next questions to address are: (a) Why are presumptions not tested systematically by

682 default; and (b) What can be done about it. Tentative answers to these questions are that

683 semanticity tends to encourage a (false) sense of familiarity or an ‘‘illusion of knowing’’.

684 Furthermore, starting a learning process with a set of assumptions ideally requires a sys-

685 tematic reduction of complexity of the initial mental model of the problem. Problem

686 contexts with low levels of semanticity are more likely to make it easier for the problem

687 solver to realise that they might not know. Hence the necessity to acquire knowledge,

688 rather than relying on presumptions and leaving them untested, comes to the fore. Learning

689 and knowledge acquisition under these circumstances represents a process of building up

690 or creation of complexity.
691 When creating learning environments we need to ensure that cover stories and variable

692 labels—as well-intended as they might be—are not standing in the way of learning. If

693 ignored by using semantically embedded problems uncritically at least two parties will be

694 negatively affected; the researcher who is interested in studying learning processes and the

695 learner who is confronted with this kind of material.
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