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We explore the scattering properties of ultracold ground-state Cs atoms at magnetic fields between 450 G
(45 mT) and 1000 G. We identify 17 previously unreported Feshbach resonances, including two very broad
ones near 549 and 787 G. We measure the binding energies of several different dimer states by magnetic field
modulation spectroscopy. We use least-squares fitting to these experimental results, together with previous
measurements at lower field, to determine a six-parameter model of the long-range interaction potential,
designated M2012. Coupled-channels calculations using M2012 provide an accurate mapping between the
s-wave scattering length and the magnetic field over the entire range of fields considered. This mapping is crucial
for experiments that rely on precise tuning of the scattering length, such as those on Efimov physics.
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I. INTRODUCTION

Cold cesium atoms have provided the foundation for many
important experiments in basic science and also find appli-
cation in precise atomic clocks. A thorough understanding
of the collisions and interactions of two Cs atoms is crucial
to interpret such experiments and optimize the applications.
In particular, Cs has a complicated spectrum of magnetically
tunable Feshbach resonances [1], which allow precise control
of the two-body interactions. These resonances are due to near-
threshold bound states of the diatomic molecule Cs2 that can be
tuned to match the near-zero energy of the colliding atoms. The
resonances also allow an atomic sample to be converted with
high efficiency into diatomic molecules by tuning an applied
magnetic field across a resonance [2]. We have previously
shown that the weakly bound molecules formed in this way
can be converted into deeply bound [3] or even ground-state [4]
molecules by stimulated Raman adiabatic passage.

Early work with Cs atoms and its interactions was at low
magnetic field, B � 250 G [5]. Results on low-field Feshbach
resonances [6–9] made it possible to construct theoretical
models of the near-threshold bound and scattering states
of two cold Cs atoms [9,10]. These models used the full
Hamiltonian of Cs2, including the potential energy curves
of the 1�+

g singlet and 3�+
u triplet states, the molecular

spin-spin interaction, and the atomic hyperfine interactions.
Fitting the data allowed four key parameters of the model to
be adjusted so that the resonance structure could be reproduced
accurately in the low-field region. These early models yielded
an understanding of the large clock shifts in Cs atomic
fountain clocks [11], the anomalously large loss rates for
collisions of doubly spin-polarized Cs atoms [12], and the
magnetic field regions of moderate positive scattering length

where Bose-Einstein condensation (BEC) was possible [13].
Subsequent measurements of the binding energies of weakly
bound dimer states at fields up to 60 G [14,15] were mostly
in good agreement with calculations based on the model of
Ref. [9], which we designate M2004.

Ultracold Cs is particularly important for the study of
Efimov states [16], which are high-lying bound states of
triatomic molecules that appear when the two-body interaction
has a bound state very close to threshold. Efimov states
cause additional loss features close to two-body Feshbach
resonances. The first observation of an Efimov resonance in Cs
[17] was at a field near 8 G. We have recently extended this to
observe Efimov features associated with three additional two-
body Feshbach resonances, at fields up to 900 G, and reached
the remarkable conclusion that the Efimov features all occur
at almost the same two-body scattering length a and thus all
have almost the same binding energy at unitarity (a = ∞) [18].
This universality of Efimov states was quite unexpected and
contradicted previous theoretical indications [19], although
subsequent theoretical work is now starting to explain its ori-
gins [20–23]. Efimov states in other ultracold systems are now
also being found to show the same universal behavior [24–28].

The new Efimov resonances used to demonstrate univer-
sality in Ref. [18] are in the vicinity of two open-channel-
dominated s-wave Feshbach resonances that were theoretically
predicted with pole positions around 550 and 800 G [1]. Model
M2004 is quite accurate at fields below 100 G, but at higher
fields its predictions are in error by up to ≈1%, or 8 G for B on
the order of 800 G. This is not accurate enough to describe the
scattering physics to sufficient precision to interpret the Efimov
resonances, so an improved theoretical model is essential.

The aim of the present paper is to describe the properties
of 133Cs in its absolute atomic ground state in the magnetic
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high-field region between 450 and 1000 G. We present
new measurements of both resonance positions and binding
energies at fields up to 1000 G. We then use these results
to develop an optimized theoretical model, which we call
M2012, that is accurate at both high and low magnetic fields.
This model provides an accurate predictive tool to map the
scattering length a(B) as a function of magnetic field B [29],
which is difficult to measure directly. This mapping was key
to interpreting the Efimov features reported in Ref. [18].

This paper is organized as follows. Section II describes
the essential molecular physics of threshold Cs states and
describes the notation we use. Section III describes our experi-
mental methods and results in the high-field region. Section IV
describes our theoretical model. Section V describes our
least-squares fits to the experimental results and compares
experiment with theory in the regions of high, middle, and low
fields. Section VI summarizes our conclusions.

II. NEAR-THRESHOLD STATES OF CESIUM DIMER

Two alkali-metal atoms in 2S states interact at short range to
form singlet (X 1�+) and triplet (a 3�+) states, with potential
curves as shown in Fig. 1. Levels that lie more than about
100 GHz below dissociation have fairly well-defined singlet
or triplet character, so lie principally on one or the other of
these curves. However, the levels of primary interest in the
present work are very close to dissociation and are bound
by less than 1 GHz (and sometimes as little as 10 kHz). In
this region the singlet and triplet states are strongly mixed by
hyperfine interactions and it is more appropriate to describe
the levels in terms of atomic quantum numbers.

The zero-field levels of the Cs atom are characterized by
the nuclear spin i = 7/2, the electron spin s = 1/2, and their
resultant f = 3 or 4, with the f = 4 level 9.19 GHz above f =
3. In a magnetic field B, each level splits into 2f + 1 sublevels
labeled by mf , with the ground state (f,mf ) = (3,+3). In the
present work we label the atomic states with letters a,b,c, . . .
in increasing order of energy.
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FIG. 1. (Color online) Molecular potential energy curves V0(R)
and V1(R) for the singlet and triplet states of Cs2. The inset shows
an expanded view of the long-range potentials separating to the two
different f = 3 and 4 hyperfine states of the atoms at magnetic field
B = 0.

For Cs2 there are three field-free atomic thresholds, labeled
in increasing order of energy by (f1,f2) = (3,3), (3,4), and
(4,4), as shown in the inset of Fig. 1. In a magnetic field,
each threshold splits into sublevels labeled by (f1,m1) +
(f2,m2). The near-threshold molecular states are to a good
approximation described by quantum numbers (f1,f2,F,MF ),
where F is the resultant of f1 and f2 and MF = m1 + m2

(though m1 and m2 are not individually conserved). MF is a
nearly good quantum number except near avoided crossings.
For a homonuclear molecule such as Cs2, F is also nearly
conserved in the region where the atomic Zeeman effect is
near linear. Additional quantum numbers are needed for the
molecular vibration n and the partial-wave angular momentum
L. For near-dissociation levels it is convenient to specify
n with respect to dissociation, so that the topmost level
is n = −1, the next is n = −2, etc. In the present work
we describe near-threshold levels using a set of quantum
numbers n(f1f2)FL(MF ), with L = 0,2,4, etc. indicated by
the usual labels s, d, g, etc. This is sometimes abbreviated
to FL(MF ) to avoid repetition. Following Ref. [1], we
speak of bound levels with dominant s character in their
wave function as s-wave levels; similarly for d- or g-wave
levels with dominant L = 2 or 4 character in their wave
functions.

Each molecular level lies within a “bin” below its associated
threshold, with the boundaries of the bins determined by
the long-range forces between the atoms. For Cs2, with
V (r) = −C6r

−6 at long range and C6 ≈ 6890 Eha
6
0 for both

the singlet and triplet states, the n = −1 level lies between 0
and −105 MHz, and the n = −2 level lies between −105 and
−725 MHz [1]. Similarly, bin boundaries can be worked out for
more deeply bound levels. For Cs2 the background scattering
length for each channel is large and positive, on the order
of the scattering length of the triplet potential. Under these
circumstances all the levels lie near the top of their respective
bins, and their energies E are approximately given by those of
the triplet Born-Oppenheimer potential. Numerically, E/h is
−0.0046 , −0.11, −0.75, −2.4, −5.5, −10.6, and −18.1 GHz
for n = −1 to −7 for the M2004 model [9].

Feshbach resonances occur where a weakly bound state
exists at the same energy as the colliding atoms. Zero-energy
Feshbach resonances thus occur at magnetic fields where a
bound state crosses an atomic threshold. Each resonance is
labeled by the quantum numbers of the bound state that causes
it. We work here with the scattering and bound states associated
with the aa entrance channel, with two atoms in state a with
(f1,m1) = (3,+3). The energy zero at any magnetic field
strength B is set to the energy of two a-state atoms. In s-wave
scattering, the projection of the total angular momentum onto
the field, Mtot, is thus always +6 and is a rigorously conserved
quantity. The left-hand panels of Fig. 2 show the s-wave bound
states with Mtot = MF = +6 at magnetic fields up to 1000 G,
together with the scattering length calculated using only s

functions and thus including only resonances due to bound
states with L = 0.

The (f1,f2) = (3,3) levels with MF = +6 in Fig. 2 have
the same magnetic moment as the separated aa atoms, and thus
the energies of these bound states are parallel to the E = 0
axis. However, MF = +6 levels arising from other (f1,f2)
combinations, and (3,3) levels with MF �= +6, have different
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FIG. 2. (Color online) Scattering length and energy levels versus magnetic field B for Cs collisions in the lowest energy aa spin channel.
(a) Scattering length, calculated including only s basis functions. The vertical lines indicate the pole positions. (b) Cs2 s-wave bound-state
energies below the aa threshold with Mtot = +6, MF = +6 in the range B = −200 to 1000 G, calculated with s basis functions only.
(c) Scattering length, calculated including s and d basis functions and including all matrix elements of the spin-dipolar coupling. (d) Cs2 s-wave
and d-wave bound-state energies below the aa threshold with Mtot = +6 and all allowed values of MF in the range B = −200 to 1000 G. The
legend shows the L(MF ) labels. Levels with different L or MF cross since small off-diagonal spin-dipolar matrix elements coupling them were
not included in the calculation. Properties in the aa channel at negative values of B apply to the gg channel with reversed Mtot = −6 (see text).
The lines in the upper left corner of panel (d) show the energies of the fg, ff, and eg atomic channels.

magnetic moments and can cross the aa threshold as the
magnetic field is varied. The three strong s-wave resonances
at fields below 1000 G are associated with ramping
n(f1f2)FL(MF ) states of −7(44)6s(6), −6(34)7s(6), and
−6(34)6s(6) character. However, it should be noted that in
each case the ramping s-wave state mixes strongly with the
least-bound state −1(33)6s(6), which has a binding energy
near 50 kHz, and this mixed state crosses threshold (and
causes a pole in the s-wave scattering length) at a magnetic
field below the field where the unperturbed ramping s-wave
state would cross threshold. Such shifts in pole position are
discussed in Refs. [1,30,31].

Figure 2 extends to negative magnetic field. This is to be
interpreted as a reversal of axis, which is equivalent to changing
the sign of all spin projection quantum numbers. Thus, the aa
channel at −|B| is equivalent to the gg channel at +|B|, where
the gg channel has two g-state atoms [(f1,m1) = (3,−3)]. The
bound states and scattering length are continuous across B =
0, and in particular the low-field behavior of the scattering
length is largely due to the ramping −7(44)6s(6) state, which
actually produces a resonance around B = −12 G (i.e., in the
gg channel), as shown in detail in Fig. 3.

Each s-wave bound state has a corresponding d-wave
state, also with MF = +6, that lies almost parallel to it

but is shifted by the rotational energy of the vibrational
state concerned; the rotational energy increases with binding
energy and thus depends strongly on the vibrational quantum
number n. However, levels with L > 0 and projection ML such
that Mtot = MF + ML = +6 will also cross the aa threshold
and can contribute to s-wave threshold scattering [32]. The
bottom-right panel of Fig. 2 shows the bound-state energies
including the additional d-wave levels with MF �= 6. The
top-right panel shows the s-wave scattering length obtained
with a basis set including both s and d functions (which we
refer to as an sd basis set), showing the additional resonances
that occur. Figure 3 shows an expanded view of the scattering
length and near-threshold bound states calculated with an sd

basis set in the low-field region between −60 and +60 G.
Figure 4 shows the near-threshold g-wave bound states, as
studied in Refs. [9,14,32].

Previous work on ultracold Cs has focused on the low-
field region. The first experimental studies of the collisional
properties of Cs were performed at Paris [12,33,34], Oxford
[35,36], and Stanford [6–8]. Chin et al. [7] and Leo et al. [10]
studied more than 30 resonances in several spin channels at
fields below 130 G. Chin et al. [9] observed more than 60
resonances in eight different spin channels (aa, gg, hh, an,
ao, ap, hn, and gf) for fields up to 250 G. In recent years,
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FIG. 3. (Color online) (a) The real (red, solid) and imaginary
(blue, dashed) parts of the complex scattering length (see Sec. IV),
calculated with an sd basis set. For B < 0, two-body relaxation is
possible to channels fg, ff, or eg. The inset shows an expanded view of
the pole region of the resonance near −12 G, indicating a maximum
variation in scattering length of ≈±105 a0 due to resonance decay.
Panel (b) shows the bound states below threshold, calculated as in
Fig. 2 so that levels of different L or MF cross instead of showing
avoided crossings. The MF labels in the negative B regions are shown
with reversed sign.

we have explored the energy spectrum of weakly bound Cs2

Feshbach molecules by magnetic moment, microwave [14],
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FIG. 4. (Color online) Low-field near-threshold bound levels of s,
d , and g symmetry. As for Figs. 2 and 3, the avoided crossings between
states of different L or MF are not calculated because spin-dipolar
coupling is omitted in this calculation. The low-field g-wave levels
are of −2(33) character, whereas the level marked x2g(2) is of mixed
n(f1f2) = −2(33), −6(34), and −7(44) character.

and magnetic field modulation spectroscopy [37]. The zero
crossing of the s-wave scattering length was also precisely
determined, using an approach based on measuring the
interaction-induced dephasing of Bloch oscillations [38,39].

III. FESHBACH SPECTROSCOPY AT HIGH
MAGNETIC FIELD

In the present work, we carry out a variety of different
experiments on ultracold 133Cs in its lowest internal state,
(f,mf ) = (3,3), at magnetic fields in the range between
450 and 1000 G. We first discuss the main experimental
procedures and conditions (Sec. III A). Next we report on
trap-loss spectroscopy, which allows measurement of the
positions of narrow Feshbach resonances (Sec. III B). Finally
we present magnetic field modulation spectroscopy for the
precise determination of molecular binding energies near
broad Feshbach resonances (Sec. III C).

A. Sample preparation

To access the high-field region, we have implemented a
new magnetic-field system in the experimental setup [40]. This
system is able to reach maximum magnetic field strengths up
to 1400 G in a steady-state condition with 10 mG long-term
stability. The high magnetic bias fields are created by three
separately controllable pairs of magnetic field coils, made
of 4- and 6-mm square-profile copper tubes insulated by
glass-fiber braided sleevings. For each coil pair the electric
currents, which are up to 400 A (4-mm tube) and 800 A
(6-mm tube), respectively, are supplied by two 6-kW power
supplies, connected in parallel. The temperature of the coil
system is kept below 50 ◦C by internal water cooling of the
copper tubes using a 10-bar pump system. Magnetic field
stability is governed by controlling the current in the coils by
an active feedback system, which operates at a precision level
of 10−5. For this, the actual currents are measured by highly
sensitive current transducers. We have checked that precise
current control is sufficient for magnetic field control to the
limit given above. Other influences, such as thermal expansion
of the copper coils, play a minor role. A detailed description
of the magnetic-field coil system can be found in Ref. [40].

The procedure used to prepare an ultracold cesium sample
in the absolute atomic ground is based on well-established
cooling and trapping techniques, which are similar to the ones
described in Ref. [41] down to the μK regime. After Zeeman
slowing and cooling in a magneto-optical trap, the atoms
are loaded into a three-dimensional optical lattice created
by four laser beams, where Raman-sideband cooling [42–44]
is performed for 3.5 ms. During this stage, where a small
magnetic field of several hundred mG is applied, the atoms
are cooled and spin-polarized into the absolute ground state.
After Raman-sideband cooling the ensemble size amounts
to 1.5 × 107 atoms at a temperature of about 1 μK. Then,
the atoms are transferred into a large-volume far-off-resonant
dipole trap [45] generated by two crossed 100-W CO2 laser
beams, featuring a waist of about 600 μm each. As the optical
trap is not strong enough to hold the atoms against gravity, an
additional magnetic levitation field of 31 G/cm is applied [13].
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FIG. 5. Timing sequence for the magnetic field ramps for trap-
loss spectroscopy and binding energy measurements. The magnetic
field strength B is linearly ramped from the final evaporation field
Bevap within the ramping time tramp,1 to the probe field Bprobe. After
an experimentally optimized hold time thold ranging between 0.2
and 1 s, the magnetic field strength is (linearly) ramped to the
imaging field Bimag. For Scheme A, Bevap and Bimag are in the
magnetic low-field region. The magnified segment visualizes Bprobe,
which is constant in time for trap-loss spectroscopy (solid line) and
sinusoidally modulated for the determination of binding energies
(dashed line).

We use two different schemes, which we refer to as
Scheme A and Scheme B. Scheme A is based on evaporation
and detection at low magnetic fields, similar to our previous
work [14]. This scheme could be implemented in a simple way,
but ramping up to the high probe field and back down to the
detection field involves crossing several Feshbach resonances,
which causes additional losses and heating. In the course
of performing the present experiments, we developed an
improved approach (Scheme B) that allows imaging in the
magnetic high-field region and optimization of evaporative
cooling at higher fields. In the following, both schemes are
described in detail. Figure 5 illustrates the generic timing
sequence for both schemes.

In Scheme A, evaporation is performed for 2 s at constant
depth of the CO2 laser trap in the magnetic low-field region.
This stage of plain evaporation results in ≈5 × 106 atoms at
a temperature slightly below 1 μK. Then, the CO2 laser trap
is spatially overlapped with a crossed dipole trap created by a
1064-nm fiber laser, with waists of 40 and 250 μm. To continue
evaporation, the tightly focused 40-μm beam is ramped down
from 60 to 3.5 mW within 6.5 s, while the intensity of the
250-μm beam is fixed at 400 mW. During this procedure,
both CO2 laser beams are switched off, finishing the sample
transfer. The s-wave scattering length is large and positive
during the evaporation sequence and is adjusted for the final
evaporation step to a ≈ 200a0, corresponding to a magnetic
field strength of Bevap � 21 G. Efficient evaporation conditions
are encountered at this field because of an Efimov-related
three-body recombination loss minimum [17]. In this way,
we end up with 105 thermal atoms at a temperature of 70 nK
in the magnetic low-field region.

When ramping over the broad Feshbach resonances, sizable
effects of three-body recombination are unavoidable, even
when applying the fastest possible ramp speeds. This causes
direct recombination losses and additional heating [46], which
can cause subsequent evaporation losses in the measurement
process. To avoid the latter effect, we recompress the trap
by increasing the intensity of the 40-μm beam by about a
factor 10 before the magnetic field ramp is carried out. In
the final step of the sample preparation, the levitation field

is decreased to 8 G/cm. The mean trap frequency is about
ω̄ = 2π × 46(5) Hz, and the final sample contains 105 thermal
atoms at a temperature of 120 nK in the magnetic low-field
region.

The measurements are performed by linearly ramping from
Bevap within a ramp time tramp,1 = 10 ms to the probe fields
Bprobe in the magnetic high-field region. As described above,
crossing of the broad s-wave Feshbach resonances leads to
considerable heating of the sample and additional particle loss.
We estimate the temperature at Bprobe to be between 150 and
200 nK with Scheme A.

To determine the particle number, we linearly decrease the
magnetic bias field to zero (Bimag � 0) within tramp,2 = 10 ms
and carry out resonant absorption imaging. The temperature
is obtained in time-of-flight expansion measurements after
release from the trap. The magnetic field strength is determined
from measurements of the (3,3) → (4,4) microwave transition
frequency by applying the Breit-Rabi formula [47].

In Scheme B, after loading the atoms from the Raman lattice
to the levitated CO2 laser trap, the magnetic field is linearly
ramped to the magnetic high-field region within 10 ms. For
measurements performed below 800 G the ramp ends at 561 G
(a = 1090a0), whereas for measurements above 800 it ends at
970 G (a = 1140a0).

At this stage, the three-body recombination losses that
are encountered while crossing the broad s-wave Feshbach
resonances are limited because of the low density and the
relatively high temperature (T � 1 μK) of the sample. The
temperature dependence of losses follows from the unitarity
limitation of three-body recombination rates [48]. To com-
pensate for the small change in the magnetic moment that is
encountered during the ramp as a consequence of the quadratic
contribution to the Zeeman effect, the magnetic levitation field
is adjusted simultaneously. Then, 2 s of plain evaporation
results in ≈5 × 106 atoms at a temperature of about 1 μK
(similar to Scheme A). Then the CO2 laser trap is spatially
overlapped with the 1064-nm crossed dipole trap as described
in Scheme A.

In the crossed dipole trap, we perform forced evaporation by
decreasing the laser intensity of the 40-μm beam from 60 to 3.5
mW within 15 s. During this step, the intensity of the 250-μm
beam is changed only slightly, from 400 to 300 mW. Both CO2

lasers are switched off during the first 5 s of evaporation to
achieve an efficient transfer to the 1064-nm trap. The magnetic
bias field is adjusted during the evaporation sequence for
optimized elastic scattering conditions. The last evaporation
step of this sequence ends at Bevap = 558.7 G (a ≈ 700a0) or
Bevap = 894 G (a ≈ 300a0), respectively. Note that close to
894 G an Efimov-related recombination minimum is present
[18], which apparently facilitates efficient evaporation. After
recompression and reshaping, leading to a mean trap frequency
of ω̄ = 2π × 26(3) Hz, we end up with a noncondensed sample
of between 5 × 104 and 105 atoms at a temperature of about
50 nK.

For Scheme B, no broad s-wave Feshbach resonances
are crossed in the final magnetic field ramps to reach Bprobe,
and therefore no noteworthy heating effects and particle
losses are observed. The particle number is determined by
high-field imaging in the vicinity of the zero crossing of
the broad s-wave Feshbach resonances at Bimag = 556.4 G
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FIG. 6. Results of trap-loss spectroscopy in the magnetic field
region between 450 and 1000 G, performed with Scheme B. The
enhancements in losses result from broad Feshbach resonances
centered at 494, 549, and 787 G. The resonance positions, which
are derived from our theoretical model (see Sec. IV), are indicated by
dashed lines, labeled according to the quantum numbers FL(MF ) of
the molecular states that cause the resonances. The measurements are
performed with a hold time of 500 ms. Narrow Feshbach resonances
are not visible in this scan because of the large step size of about 2 G.
A remaining atom fraction of 1.0 corresponds to 8 × 104 atoms.

and Bimag = 887.5 G. The magnetic field ramps to and from
Bprobe involve linear changes of the magnetic field with
tramp,1 = tramp,2 = 10 ms, as for Scheme A. The procedures
for magnetic field calibration and temperature determination
are the same as the ones in Scheme A.

B. Trap-loss spectroscopy

Trap-loss spectroscopy is a well-established method based
on the enhancement of collisional losses in the vicinity of
a Feshbach resonance [1]. For atoms in the absolute atomic
ground state, where inelastic binary collisions are energetically
forbidden, three-body recombination is the lowest-order loss
process. In this process three colliding atoms recombine to a
molecule and a free atom. Typically, the kinetic energy released
far exceeds the trapping potential, leading to loss of the three
particles involved. The general a4 scaling of three-body recom-
bination rates [46,49–51] leads to a maximum in losses at the
magnetic field position Bmax, corresponding to the divergence

of a at the Feshbach resonance pole, and a minimum at
the position Bmin, close to the zero crossing of the s-wave
scattering length. This allows the observed losses to be directly
related to the positions and widths of the Feshbach resonances.

In this section, we first report on experiments characterizing
the scattering properties in the vicinity of the broad s-wave
Feshbach resonances, as shown in Fig. 2(a), by performing
a broad magnetic field scan with large step size. Then, we
decrease the step size to perform detailed scans to identify
and characterize narrow Feshbach resonances, which originate
from states with higher rotational angular momentum (L > 0).

Trap-loss spectroscopy is performed by recording the
remaining atom fraction after a hold time thold at the probe
field Bprobe. In general, we cannot exclude additional losses
encountered within tramp,1 and tramp,2 during the magnetic
field ramps Bevap → Bprobe and Bprobe → Bimag. However, for
the characterization of narrow Feshbach resonances only a
small magnetic field region is investigated, where variations
in the initial atom number are negligible. Furthermore,
the measurements are performed with thold � tramp,1,tramp,2,
strongly limiting the effect of finite ramp times.

The broad scan of the magnetic high-field region covers
a range from 450 to 1000 G, as shown in Fig. 6. This scan
clearly shows two broad loss features around 550 and 800 G,
which can be assigned to the two high-field s-wave Feshbach
resonances, as discussed in Sec. II (see top panels Fig. 2). These
measurements demonstrate the large width of the Feshbach
resonance near 800 G. Because of the unitarity limitation
of three-body recombination losses [48], it is not possible
to determine Bmax accurately for the s-wave resonances by
trap-loss spectroscopy.

In the region around 500 G, no s-wave Feshbach resonance
is expected, but the theoretical model predicts a series of
closely adjoining d-wave Feshbach resonances, as shown in
Fig. 2. One of these has a width of about 5 G, producing the
broad loss signal around 495 G seen in Figs. 6 and 7.

We perform high-resolution scans by decreasing the step
size of the magnetic field scans to a few mG. The results of
these scans are displayed in Fig. 7. We observe 15 narrow loss
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FIG. 7. (Color online) Detailed results of trap-loss spectroscopy in the magnetic high-field region. We observe 15 Feshbach resonances,
stemming from d-, g-, and i-wave molecular states. Measurements indicated by (�) symbols are obtained by Scheme A, whereas the (•)
symbols refer to data points acquired with Scheme B. The poles of the Feshbach resonances, omitting the s-wave resonances, are marked with
an arrow. The loss features at 498.1, 553.3, 554.7, 818.9, and 853.1 G, which are indicated by “E”, are related to Efimov loss resonances as
reported in Refs. [18,52]. Note that the data in the intervals [728,729.5] and [980, 1000] G, which are measured for different thold, are multiplied
by scaling factors of 0.5 and 0.9, respectively, to reproduce the overall behavior shown in Fig. 6. A remaining atom fraction of 1.0 corresponds
to 8 × 104 atoms.
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TABLE I. Results of trap-loss spectroscopy in the magnetic high-
field region. The table shows the magnetic field values for loss maxima
(Bmax), resulting from the poles of the Feshbach resonances, and
minima (Bmin), which are related to the zero crossings of the s-wave
scattering length. The numbers in brackets are the experimental
1σ uncertainties, including statistical and systematic errors. The
assignments of the Feshbach resonances identify the molecular states
that cause the resonances. In the case of very narrow resonances, the
zero crossings could not be determined experimentally.

Molecular state
n(f1f2)FL(MF ) Bmax (G) Bmin (G)

−6(34)5d(5) 460.86(5)
i wavea 461.62(5)
−6(34)7b 492.45(3) 492.63(3)
−6(34)7b 494.4(9) 499.4(1)
−6(34)7b 501.24(3)
−6(34)7b 505.07(3)
g(3)c 554.06(2) 553.73(2)
i wavea 557.45(3)
i wavea 562.17(3)
g(4)c 565.48(3)
−2(33)6g(6)d 602.54(3)
g(5)c 729.03(3)
−6(34)6d(6) 820.37(20) 819.41(2)
−6(34)5d(5) 897.33(3)
−6(34)6d(4) 986.08(3)

aFor the i-wave resonances only the L quantum number of the
molecular state is known.
bThese Feshbach resonances arise from d-wave molecular states with
MF = 4, 5, 6, and 7, which are strongly mixed at the atomic threshold.
Therefore, we cannot give simple MF quantum numbers and use “x”
to indicate the strong coupling.
cFor these states only the quantum numbers L and MF are known.
dThis molecular state is strongly mixed with the state −6(34)6g(6).

features, which can be assigned according to the theoretical
model given in Sec. IV to Feshbach resonances originating
from the coupling of the free atoms to molecular states with
rotational angular momentum L > 0.

We observe three narrow resonances that cannot be at-
tributed to s-, d-, or g-wave molecular states in the present
model. They are found at 461.62, 557.45, and 562.17 G.
Our model, however, predicts the existence of Feshbach
resonances stemming from i-wave molecular states (L = 6)
in the magnetic field regions where we observe these features.
The calculations are not accurate enough to establish an
unambiguous assignment, but the match between experiment
and theory nevertheless provides strong evidence that this
is experimental observation of i-wave Feshbach resonances,
which have not previously been reported. These resonances
are discussed further in Sec. IV.

The positions of the poles of the d-, g-, and i-wave Feshbach
resonances obtained in these measurements are summarized in
Table I. The peak positions are determined by Gaussian fits to
the loss peaks. For several of these resonances we also identify
recombination loss minima, which also provide estimates for
the corresponding resonance widths.

Figure 8 shows expanded views of two regions in Fig. 7,
where interesting cases of overlapping FR scenarios occur.
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FIG. 8. (Color online) Expanded view of Fig. 7, showing the Fes-
hbach resonances arising from the g(3) state (a) and the −6(34)6d(6)
state (b), which overlap with the broad s-wave resonances. The solid
and open arrows mark the poles and zero crossings of the scattering
length, respectively. The remaining atom fraction at the zero crossing
in (b) is limited due to losses during the magnetic field ramps.

Figure 8(a) shows a g-wave resonance centered at 554.06(2)
G sitting on the shoulder of the 549-G s-wave Feshbach
resonance at a background scattering length of about −1000a0.
The zero crossing of a(B) leads to a loss minimum at
553.73(2) G. Even more intriguing is a d-wave Feshbach
resonance situated at 820.4(2) G. There, the broad 787-G
s-wave Feshbach resonance leads to an extremely large back-
ground scattering length of about −4200a0. Experimentally,
this large background masks the loss maximum but clearly
reveals the zero crossing at 819.41(2) G, as shown in Fig. 8(b).
Both the g-wave and the d-wave resonance have rather large
widths, of 0.33(3) and 0.96(22) G, respectively. Efimov-related
three-body physics has been revealed in the vicinity of these
resonances, as reported in Refs. [18,52].

C. Binding energy measurements

Binding energy measurements of weakly bound dimer
states provide a powerful additional tool to extract information
on the cesium interaction potentials and scattering properties.
In particular, for the s-wave Feshbach resonances the exact
positions of the poles are obscured by strong loss across a broad
magnetic field range, but can be extracted accurately from
binding energies. In the present work, we measure the binding
energies by magnetic field modulation spectroscopy, a method
which was introduced in Ref. [53]. This method is based on
a sinusoidal modulation of the magnetic bias field and allows
the creation of dimers starting from an ultracold atom sample.
This leads to an observable loss signal due to fast atom-dimer
relaxation when the modulation frequency matches the binding
energy of the dimers plus the small relative kinetic energy of
the colliding atoms. Since the modulation of the magnetic
field is parallel to the magnetic bias field, only transitions
between states with the same projection quantum number of
the total angular momentum are observed. This procedure has
been successfully applied in several experiments [37,53–58]
to determine atomic scattering properties.

The atom samples for the binding energy measurements are
prepared according to Scheme B, as described in Sec. III A. At
Bprobe, a modulation signal is applied for a variable duration of
thold = 0.1 to 1 s, in a frequency range of 50 to 1600 kHz and an
amplitude between 0.5 and 3 G (see Fig. 5). The amplitude and
the duration of the pulse are experimentally adjusted for each
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FIG. 9. (Color online) Typical signals for magnetic field mod-
ulation spectroscopy. (a) Frequency scan at a fixed magnetic field
strength of 911.69 G. The asymmetric shape of the signal is fitted by
a model that takes the temperature of the sample into account [59].
(b) Magnetic field scan at a constant modulation frequency of
425 kHz, revealing a loss resonance at 557.02 G. This resonance
stems from the s-wave molecular state. The line represents a Gaussian
fit. A remaining atom fraction of 1.0 corresponds to (a) 4.5 × 104 and
(b) 2.5 × 104 atoms.

binding energy measurement to optimize the signal-to-noise
ratio. The signal is generated by a programmable frequency
generator and subsequently amplified by a commercial 25-W
radio-frequency amplifier, which drives the current in a
separate set of coils and thereby creates the modulation of
the magnetic bias field.

The measurements are usually performed by varying the
modulation frequency at a fixed Bprobe. Another possibility,
however, is to scan Bprobe while the modulation frequency
is kept constant. The advantage of the latter approach is
that it is less sensitive to atom losses caused by technical
imperfections, such as resonance phenomena in the electric
circuit that drives the transitions. We checked that the two
methods give consistent results in our measurements. Figure 9
shows sample loss signals derived in a frequency scan (a) and
a magnetic field scan (b).

We studied the binding energies Eb of the high-field s-wave
states and of several d-, g-, and i-wave states, as shown in
Fig. 10. For the s-wave states with Eb/h < 200 kHz, we
observed asymmetric line shapes resulting from the finite
temperature of the samples. We include this effect in our fitting
routine using the line-shape model of Ref. [59]. For s-wave
states with Eb/h > 200 kHz and for dimer states with higher
rotational angular momentum, the binding energy has a strong
dependence on the magnetic field. In these cases, the magnetic
field noise and the field gradient that is applied to levitate
the atoms broaden and symmetrize the loss signals. For these
symmetrized signals, the effect from the finite temperature
plays a minor role, and we therefore obtain Eb by fitting a
simple Gaussian distribution to the data.

In the binding energy measurements, we observe several
avoided crossings between molecular states. Around 897 G
and Eb/h ≈ 500 kHz, the −6(34)6s(6) state crosses the
−6(34)5d(5) state. These two states are clearly resolved as
separate loss features in each magnetic field scan performed
at fixed frequency in the crossing region, as shown in the inset
of Fig. 10(a). In addition, we observe an avoided crossing at
about 557 G and Eb/h ≈ 350 kHz between the −6(34)7s(6)

k
k

(b)

(a)

FIG. 10. (Color online) Results of experimental binding energy
measurements. (a) The −6(34)6d(6) and −6(34)5d(5) states (dashed
lines) and the −6(34)6s(6) state (solid line) between 820 and 950 G.
The lines are guides for the eye. The inset shows a binding energy
measurement at the crossing of the −6(34)6s(6) and −6(34)5d(5)
states at 509 kHz. At fields above 900 G the s-wave state takes
on the character of the least-bound state −1(33)6s(6), which has a
binding energy around h × 50 kHz away from avoided crossings. The
strong variation of the magnetic moment follows from the avoided
crossing with this threshold s-wave state. (b) The binding energies of
the g(3) state (dashed line), an i-wave state (dot-dash line), and the
−6(34)7s(6) state (solid line). The positions of the resonance poles
are marked by a (�) symbol, with values taken from Table I.

state and an i-wave state, which clearly shows up in the binding
energy measurements presented in Fig. 10(b).

In view of the large difference in the partial-wave angular
momentum �L = 6, the crossing around 557 G appears to
be surprisingly strongly avoided. To confirm this, we prepare
molecular samples in the s-wave state by Feshbach ramps [1]
and perform magnetic moment spectroscopy for magnetic field
strengths ranging from 556.5 to 557.5 G using the Stern-
Gerlach effect in the same way as described in Ref. [14]. To
do this, we release the dimers from the trap while the magnetic
field gradient is switched on. After a fixed time of flight,
the dimers are dissociated by ramping back over either the
557.45-G or the 565.48-G Feshbach resonance. Subsequently,
the atoms are imaged and the molecular magnetic moment
is extracted from the vertical position of the atom cloud. We
observe a smooth change of the magnetic moment around
557.15 G over a magnetic field range of about 250 mG,
indicating that the character of the molecular state also changes
smoothly, from s-wave to i-wave character, over the width
of the crossing. Because of large calibration uncertainties in
these measurements, we cannot provide absolute values for the
molecular magnetic moments. In another experiment, we start
with weakly bound s-wave Feshbach molecules at a magnetic
field of 560 G and attempt to jump the avoided crossing
diabatically. As in the experiment previously outlined, we
can simultaneously detect and distinguish s-wave and i-wave
dimers by their magnetic moment. Applying a maximum ramp
speed of 10 G/ms, the number of transferred dimers is below
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our detection limit. This sets a lower limit of 30 kHz to the
strength of the avoided crossing according to the Landau-Zener
formula [60,61].

IV. THEORETICAL MODEL

The Hamiltonian for the interaction of two Cs atoms may
be written

h̄2

2μ

[
−R−1 d2

dR2
R + L̂2

R2

]
+ ĥ1 + ĥ2 + V̂ (R), (1)

where μ is the reduced mass and L̂2 is the operator for the
end-over-end angular momentum of the two atoms about one
another. The monomer Hamiltonians including Zeeman terms
are

ĥj = ζ ı̂j · ŝj + geμBB ŝzj + gnμBB ı̂zj , (2)

where ζ is the atomic hyperfine constant, ŝ1 and ŝ2 represent the
electron spins of the two atoms, and ı̂1 and ı̂2 represent nuclear
spins. ge and gn are the electron and nuclear g factors, μB is
the Bohr magneton, and ŝz and ı̂z represent the z components
of ŝ and ı̂ along a space-fixed Z axis whose direction is defined
by the external magnetic field B. The interaction between the
two atoms V̂ (R) is

V̂ (R) = V̂ c(R) + V̂ d(R). (3)

Here V̂ c(R) = V0(R)P̂ (0) + V1(R)P̂ (1) is an isotropic potential
operator that depends on the potential energy curves V0(R) and
V1(R) for the respective X 1�+

g singlet and a 3�+
u triplet states

of Cs2, as shown in Fig. 1. The singlet and triplet projectors
P̂ (0) and P̂ (1) project onto subspaces with total electron spin
quantum numbers 0 and 1, respectively. The term V̂ d(R)
represents small, anisotropic spin-dependent couplings that are
responsible for the avoided crossings discussed in the present
paper and are discussed further in Sec. IV C below.

A. Computational methods for bound states and scattering

The present work solves the Schrödinger equation for both
scattering and Feshbach bound states of Cs2 by coupled-
channel methods, using a basis set for the electron and nuclear
spins in a fully uncoupled representation,

|s1ms1〉|i1mi1〉|s2ms2〉|i2mi2〉|LML〉, (4)

symmetrized to take account of exchange symmetry. The
matrix elements of the different terms in the Hamiltonian in
this basis set are given in the Appendix of Ref. [32]. The
only rigorously conserved quantities are the parity, (−1)L, and
the projection of the total angular momentum, Mtot = ms1 +
mi1 + ms2 + mi2 + ML. The calculations in this paper used
basis sets with all possible values of ms and mi for both atoms
that are consistent with the required Mtot and parity, truncated
at Lmax = 4 (an sdg basis set) unless otherwise indicated. All
calculations in this paper are for s-wave incoming channels,
so have even parity.

Both scattering and bound-state calculations use propaga-
tion methods and do not rely on basis sets in the interatomic
distance coordinate R.

Scattering calculations are carried out using the MOLSCAT

package [62], as modified to handle collisions in magnetic

fields [63]. At each magnetic field B, the wave-function
log-derivative matrix at collision energy E is propagated
from Rmin = 6a0 to Rmid = 20a0 using the propagator of
Manolopoulos [64] with a fixed step size of 0.002a0, and from
Rmid to Rmax = 4000a0 using the Airy propagator [65] with a
variable step size controlled by the parameter TOLHI = 10−5

[66]. Scattering boundary conditions [67] are applied at Rmax to
obtain the scattering S matrix. The energy-dependent s-wave
scattering length a(k) is then obtained from the diagonal S

matrix element in the incoming L = 0 channel using the
identity [68]

a(k) = 1

ik

(
1 − S00

1 + S00

)
, (5)

where k2 = 2μE/h̄2.
In the vicinity of a resonance at the lowest atomic threshold,

the scattering length as a function of magnetic field (at small
fixed k) follows the functional form

a(B) = abg[1 − �/(B − Bres)]. (6)

The resonance pole position Bres may be associated with
the three-body loss maximum at a field Bmax. For a narrow
resonance (where the background scattering length abg does
not vary significantly across the resonance), the width �

is conveniently obtained from the difference between the
positions of the pole and zero in a(B). Experimentally,
this corresponds to the difference in field between the loss
maximum at Bmax and the loss minimum at Bmin. We have
extended MOLSCAT to provide an option to converge on poles
and zeros of a(B), instead of extracting them from a fit to a
grid of points.

Weakly bound levels for Feshbach molecules are obtained
using a variant of the propagation method described in
Ref. [32]. The log-derivative matrix is propagated outwards
from Rmin to Rmid with a fixed step size of 0.002a0 and inwards
from Rmax to Rmid with a variable step size, using the same
propagators as for scattering calculations. Rmid = 25a0 and
Rmax = 4000a0 were used for most bound states, although
Rmid = 35a0 and Rmax = 8000a0 were needed for states within
about 50 kHz of dissociation. In Ref. [32], bound-state energies
at a fixed value of the magnetic field B were located using the
BOUND package [69], which converges on energies where the
smallest eigenvalue of the log-derivative matching determinant
is zero [70]. However, for the purposes of the present work
we used a new package, FIELD [71], which instead works at
fixed binding energy and converges in a similar manner on the
magnetic fields at which bound states exist. BOUND and FIELD

both implement a node-count algorithm [70], which makes it
straightforward to ensure that all bound states that exist in a
particular range of energy or field are located.

As described above, zero-energy Feshbach resonances can,
in principle, be located as the fields at which the scattering
length a(B) passes through a pole. However, with this method
it is necessary first to search for poles, and it is quite easy to
miss narrow resonances. However, since resonances occur at
fields where there is a bound state at zero energy, the FIELD

package provides a much cleaner approach: Simply running
FIELD at zero energy provides a complete list of all fields
at which zero-energy Feshbach resonances exist [29]. In the
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present work we located resonances using FIELD and then
obtained their widths by converging on the nearby zero in
a(B) using MOLSCAT.

B. Representation of the potential curves

At long range, the potentials are

V LR
S (R) = − C6y6(R)/R6 − C8y8(R)/R8

− C10y10(R)/R10 ± Vex(R), (7)

where S = 0 and 1 for singlet and triplet, respectively. The
dispersion coefficients Cn are common to both potentials and
the functions yn(R) account for retardation corrections [72].
The exchange contribution is [73]

Vex(R) = Aex(R/a0)γ exp(−βexR/a0) (8)

and makes an attractive contribution for the singlet and a
repulsive contribution for the triplet. The value of βex is
usually obtained from the ionization energies of the atoms
[73], which for Cs gives βex = 1.069 946, and γ is related
to β by γ = 7/β − 1. In the present work we found that, to
reproduce the experimental results, it was necessary to reduce
βex slightly from its original value. We therefore introduce
an additional factor ρex so that βex = 1.069 946ρex, with γ

adjusted accordingly.
The detailed shapes of the short-range singlet and triplet

potentials are relatively unimportant for the ultracold scatter-
ing properties and near-threshold binding energies considered
here, although it is crucial to be able to vary the volume of
the potential wells to allow adjustment of the singlet and
triplet scattering lengths. In the present work we retained the
functional form used by Leo et al. [10] and Chin et al. [9].
Each short-range potential is represented by a set of 14 ab
initio points between R = 7a0 and 20a0 [74]. The two sets
of potential points are first multiplied by R6 and the resulting
(smoother) functions are interpolated using Akima splines [75]
to obtain their values at RLR = 17.6a0. The value of Aex is
chosen to match Vex to (V1 − V0)/2 at RLR, and both sets
of points are shifted to match (V1 + V0)/2 at RLR. Finally,
the analytic V LR

S (R) is used to generate new grid points
between 17.6a0 and 20a0 and the resulting sets of points
are reinterpolated as above between R = 7a0 and 20a0. The
analytic long-range form (7) is used outside 20a0.

The flexibility needed to adjust the singlet and triplet
scattering lengths is provided by simply adding a quadratic
shift to each of the singlet and triplet potentials inside its
minimum,

V shift
S (R) = SS(R − ReS)2 for R < ReS, (9)

with Re0 = 8.75a0 and Re1 = 11.8a0.

C. Magnetic dipole interaction and second-order
spin-orbit coupling

At long range, the coupling V̂ d(R) of Eq. (3) has a simple
magnetic dipole-dipole form that varies as 1/R3 [76,77].
However, for atoms as heavy as Cs, second-order spin-orbit
coupling provides an additional contribution that has the same
tensor form as the dipole-dipole term and dominates at short

range [78]. In the present work, V̂ d(R) is represented as

V̂ d(R) = λ(R)[ŝ1 · ŝ2 − 3(ŝ1 · 
eR)(ŝ2 · 
eR)], (10)

where 
eR is a unit vector along the internuclear axis and λ

is an R-dependent coupling constant. The second-order term
has been calculated by Kotochigova et al. [79] and fitted to a
biexponential form, so that the overall form of λ(R) is

λ(R) = Ehα
2

[
Ashort

2SO exp (−2β2SOR)

+A
long
2SO exp (−β2SOR) + 1

(R/a0)3

]
, (11)

where α ≈ 1/137 is the fine-structure constant and the
parameters obtained from fitting to the electronic structure
calculations [79] are Ashort

2SO /hc = 34.4 cm−1, A
long
2SO/hc =

0.25 cm−1, and β2SO = −0.35a−1
0 . However, in fitting to the

experimental results, this coupling function was found to
be slightly too strong. We therefore retained the functional
form (11) but introduced an additional scaling factor S2SO that
multiplies both exponential terms and is allowed to vary in the
least-squares fit to the experimental results.

V. LEAST-SQUARES FITTING OF
POTENTIAL PARAMETERS

In the present work, our primary objective is to obtain
potential parameters that give a reliable representation of
a(B) in the regions where Efimov resonances occur, namely
near 8, 554, and 853 G. Earlier potentials [9,10] focused
on representing the positions of Feshbach resonances in the
low-field region below about 60 G.

A key advantage of the propagator approach to locating
bound states and resonances, implemented in the BOUND and
FIELD programs, is that it is fast enough to be incorporated in
a least-squares fitting program. We have therefore carried out
direct least-squares refinement of the potential parameters. We
experimented with fitting various combinations of parameters,
and concluded that adequate flexibility is available in the six-
parameter space S0, S1, C6, C8, S2SO, ρex.

The set of experimental results used for fitting is listed in
Table II. It consists of all the observed resonance positions (loss
maxima) in the regions relevant to Efimov physics, together
with representative bound-state positions. It also includes zero
crossings of the scattering lengths measured from loss minima,
Bloch oscillations [38], and BEC collapse measurements [80].
All the bound-state positions are expressed as the fields at
which bound states exist at specific binding energies, except
for the −3(33)6g(6) state, which is almost parallel to the
lowest threshold and is included in the fit as a binding
energy at B = 18.6 G. The strength of the avoided crossing
between the −2(33)4d(4) and −7(44)6s(6) states near 48 G
is included as an explicit difference between fields where
states exist at energies of 78 and 24 kHz. The quantity
optimized in the least-squares fits was the sum of squares
of residuals [(obs−calc)/uncertainty], with the uncertainties
listed in Table II [81].

Although the experimental data do allow all six of the
potential parameters described above to be determined, the fit
is very highly correlated. Under these circumstances, a fully
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TABLE II. Quality of fit between calculations using the M2012 model and the experimental results used in the fit.

Bobs (G) Bcalc (G) Bobs − Bcalc (G) Unc. (G) Method Reference

−7(44)6s(6) at 7.8 MHz 17.53 17.51 0.02 0.02 Microwave spectroscopy [14]
−7(44)6s(6) at 1.2 MHz 21.60 21.59 0.01 0.02 Microwave spectroscopy [14]
−7(44)6s(6) at 104 kHz 32.05 31.70 0.35 0.03 Magnetic field modulation [37]
Zero crossing near 17 G 17.12 17.14 −0.02 0.01 Bloch oscillations [38]
−2(33)4d(4) at 174 kHz 48.01 48.01 0.00 0.06 Magnetic field modulation [37]
−2(33)4d(4) crossing strength 78–24 kHz 1.19 1.21 −0.02 0.02 Magnetic field modulation [32]
Loss minimum (d) near 48 G 47.94 47.98 −0.04 0.04 Inferred from magnetic field modulation [37]
Loss maximum (d) near 48 G 47.78 47.79 −0.01 0.06 Inferred from magnetic field modulation [37]
� (d) near 48 G 0.16 0.18 −0.02 0.06 Inferred from magnetic field modulation [37]
2g(2) at 17 kHz 53.42 53.76 −0.34 0.08 Magnetic field modulation [37]
−2(33)6g(6) at 18.6 G (MHz, not G) −5.03 −4.99 −0.04 0.01 Microwave spectroscopy [14]

Loss maximum −6(34)7d(x) 492.45 492.68 −0.23 0.06 Trap loss spectroscopy This work
Loss maximum −6(34)7d(x) 501.24 501.44 −0.20 0.06 Trap loss spectroscopy This work
Loss maximum −6(34)7d(x) 505.07 505.37 −0.30 0.06 Trap loss spectroscopy This work
−6(34)7s(6) at 1.0 MHz 556.47 556.48 −0.01 0.02 Magnetic field modulation This work
−6(34)7s(6) at 700 kHz 556.72 556.76 −0.04 0.02 Magnetic field modulation This work
−6(34)7s(6) at 170 kHz 557.88 557.80 0.08 0.03 Magnetic field modulation This work
−6(34)7s(6) at 100 kHz 558.44 558.36 0.08 0.03 Magnetic field modulation This work
Zero crossing near 556 G 556.26 556.19 0.07 0.03 Collapse of BEC [80]
−3(33)6g(3) at 368 kHz 553.44 553.44 −0.00 0.01 Magnetic field modulation This work
Loss minimum (g) near 554 G 553.73 553.75 −0.02 0.01 Trap loss spectroscopy This work
Loss maximum (g) near 554 G 554.06 554.07 −0.01 0.02 Trap loss spectroscopy This work
� (g) near 554 G 0.33 0.32 0.01 0.01 Trap loss spectroscopy This work
−6(34)6s(6) at 1.7 MHz 890.52 890.61 −0.09 0.02 Magnetic field modulation This work
−6(34)6s(6) at 356 kHz 899.93 900.19 −0.26 0.03 Magnetic field modulation This work
−6(34)6s(6) at 110 kHz 915.66 915.54 0.12 0.03 Magnetic field modulation This work
Zero crossing near 881 G 880.90 880.66 0.24 0.03 Collapse of BEC [80]
−6(34)6d(6) at 342 kHz 819.17 819.20 −0.03 0.03 Magnetic field modulation This work
Loss minimum (d) near 820 G 819.41 819.37 0.04 0.03 Trap loss spectroscopy This work
Loss maximum (d) near 820 G 820.37 820.33 0.04 0.02 Trap loss spectroscopy This work
� (d) near 820 G 0.96 0.97 −0.01 0.05 Trap loss spectroscopy This work

automated approach to fitting is unreliable: Individual least-
squares steps often reach points in parameter space where the
levels have moved too far to be identified reliably, particularly
in the early stages of fitting. We therefore carried out the
fitting using the I-NOLLS package [82] (interactive nonlinear
least-squares), which gives the user interactive control over
step lengths and assignments as the fit proceeds. This allowed
us to converge on a minimum in the sum of weighted squares,
with the parameters given in Table III.

The parameter uncertainties are given in Table III as 95%
confidence limits [83]. However, it should be emphasized
that these are statistical uncertainties within the particular

TABLE III. Parameters of the fitted potential.

Confidence
Fitted value limit (95%) Sensitivity

C6 (Eha
6
0 ) 6890.4768 0.081 0.0003

C8 (Eha
8
0 ) 1 009 289.6 2900 0.1

S0 (Eha
−2
0 ) 3.172 749 × 10−4 2.5 × 10−6 2.7 × 10−10

S1 (Eha
−2
0 ) 1.343 217 × 10−4 2.5 × 10−6 1.3 × 10−10

S2SO 1.364 32 0.022 0.000 65
ρex 0.978 845 0.0026 5.5 × 10−7

parameter set. They do not include any errors due to the choice
of the potential functions. Such model errors are far harder to
estimate, except by performing a large number of fits with
different potential models, which is not possible in the present
case.

In a correlated fit, the statistical uncertainty in a fitted
parameter depends on the degree of correlation. However,
to reproduce the results from a set of parameters, it is often
necessary to specify many more digits than implied by the
uncertainty. A guide to the number of digits required is given
by the parameter sensitivity [83], which essentially measures
how fast the observables change when one parameter is varied
with all others held fixed. This quantity is included in Table III.

The singlet and triplet scattering lengths and the pole
positions of the s-wave resonances are not directly observed
quantities. Nevertheless, their values may be extracted from
the final potential. In addition, the statistical uncertainties in
derived parameters such as these may be obtained as described
in Ref. [83]. The values and 95% uncertainties obtained in this
way are given in Table IV.

A. Region between 800 and 920 G

In the region between 800 and 920 G, the near-
threshold molecular structure and the corresponding scattering
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TABLE IV. Comparison between key quantities calculated from
different potentials.

Derived parameters M2012 M2004

aS (bohr) 286.5(1) 280.37(6)
aT (bohr) 2858(19) 2440(24)
s pole near −10 (G) −12.38(8)
s pole near 550 (G) 548.78(9)
s pole near 800 (G) 786.8(6)

properties are relatively straightforward. As seen in Fig. 2, the
ramping −6(34)6s(6) state has a strong avoided crossing with
−2(33)6s(6) near 850 G at a binding energy of about 110 MHz.
This crossing is still incomplete when the mixed state crosses
the least-bound state −1(33)6s(6) around 100 kHz. It is the
state resulting from this second crossing that is observed at
binding energies of 0.1 to 1.7 MHz between 890 and 920 G.
These points are very well reproduced by the fit, as seen in
Fig. 11. The −3(34)6d(6) state that crosses the axis at 820.37
G is also well reproduced by the fit, as seen in Fig. 12.

The position of the s-wave resonance pole in this region has
not been observed because of large three-body losses, but it is
predicted by the fitted potential at 786.8(6) G. It is interesting
to note that, because of the shift produced by the crossing with
the least-bound state, the s-wave resonance occurs at a lower
field than the corresponding d-wave resonance in this case,
even though (as always) the unperturbed ramping s-wave state
is lower in energy.

B. Region around 550 G

The region around 550 G is considerably more complicated.
In this case the crossing between the ramping −6(34)7s(6)
state and −2(33)6s(6) near 510 G is much narrower and
so is almost complete by the time −6(34)7s(6) crosses the
least-bound state −1(33)6s(6). This produces a zero crossing

afo
stinu()

B(a
) 0

FIG. 11. (Color online) (a) The scattering length in the region
between 875 and 950 G. The solid lines show results calculated
for the M2012 potential with an sdg basis set. The diamond near
880 G indicates the position of the zero crossing. (b) The calculated
bound-state energies with the same basis set. The diamonds show the
measured energies in this region.
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FIG. 12. (Color online) The scattering length and bound-state
energy in the pole region of the −6(34)6d(6) resonance. The solid
lines show results from model M2012, calculated with an sdg basis
set. The points in panel (a) show the measured pole position and
loss minimum. The points in panel (b) show the measured binding
energies. The dashed line in (a) and the arrow in (b) show the
calculated pole position. Error bars refer to 1σ uncertainties.

near 556 G. However, as described in the experimental section,
there is also a ramping −3(33)3g(3) state that crosses threshold
just below this, producing an additional pole and zero crossing
near 554 G. Because of the large background scattering length
arising from its proximity to the s-wave resonance, the g-wave
resonance is far wider than is usual.

The bound-state measurements near 557 G are further
complicated by an additional state that crosses and appears
to mix with the s-wave state in the top 1 MHz. This cannot
be assigned as s-, d-, or g-wave; it must be due to an i-wave
state, and indeed the M2004 model predicts four i-wave levels
to be in the range between around 530 and 590 G, with two
between 555 and 565 G. However, these states are associated
with hyperfine-excited thresholds, and their exact positions are
very sensitive to details of the potential that do not significantly
affect the other experimentally measured quantities considered
here. We have been unable to decide unambiguously which one
is responsible for the observed crossing. In addition, the i-wave
states have very little influence on the s-wave scattering length
that is the main object of interest in this region. We therefore
decided to fit using a basis set with Lmax = 4, which excludes
the i-wave states entirely, and also to exclude from the fit any
binding energies affected by the crossing between the s- and
i-wave states.

The general fit to the ramping s-wave bound state is shown
in Fig. 13 and an expanded view of the fir to the g-wave state
is shown in Fig. 14. It may be seen that the calculated s-wave
state passes well through the experimental points either side of
the crossing with the i-wave state, while the calculated g-wave
state reproduces the bound-state energies as well as the zero
crossing and pole in the scattering length.

The crossing between the i-wave state and the −6(34)7s(6)
state near 557 G is surprisingly strongly avoided. As described
above, we were unable to ramp the magnetic field fast enough
to transfer a detectable number of molecules between the two
states, which sets a lower limit of 30 kHz to the strength of
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FIG. 13. (Color online) (a) The scattering length between 546
and 564 G. The solid lines show results calculated for the M2012
potential with an sdg basis set. The diamonds show the measured
pole position and loss minimum near 554 G and the zero crossing
near 556 G. The dashed line shows the calculated pole position.
(b) The calculated binding energies with the same basis set as for
panel (a). The diamonds show the measured binding energies.

the avoided crossing. In a zeroth-order picture, the two states
are separated by �L = 6 and the only coupling off-diagonal
in L is V̂ d(R), which can couple only �L = 2 and is quite
small. However, quantitative modeling of this effect requires
a theoretical model that places the i-wave state in the correct
place. This is likely to require simultaneous modeling of the
present results and the spectroscopy of more deeply bound
levels, and this remains a subject for future work.

C. Low-field region

The low-field region, below 60 G, is also quite compli-
cated. The ramping s-wave state responsible for the Efimov
resonances in this region is −7(44)6s(6). However, there are
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FIG. 14. (Color online) Expanded view of the scattering length in
the pole region of the −3(33)6g(3) resonance. The solid line shows
results calculated for the M2012 potential with an sdg basis set.
The points show the measured bound-state energies. The calculated
and measured pole positions are indicated by solid and open arrows,
respectively. Error bars refer to 1σ uncertainties.

FIG. 15. (Color online) The bound-state energies between 35 and
60 G. The solid lines show results calculated for the M2012 potential
with an sdg basis set, showing one side of the avoided crossings of
the −7(44)6s(6) bound state with the −1(33)6s(6) least-bound state
in the threshold entrance channel. The points show the previously
measured bound-state energies [14,37]. The agreement is much better
with the new M2012 model than with the old M2004 model, shown
as light dashed lines.

also families of ramping −2(33)6g states that cross threshold
between 4 and 8 G and −2(33)4g states that cross between 11
and 21 G. In addition, there is a −2(33)4d(4) state that crosses
near 48 G and a 2g(2) state that crosses near 54 G. The latter
state does not carry a clear n(f1f2) signature, but it clearly has
2g(2) character.

The binding energies of many of these states have been
measured by magnetic moment spectroscopy at binding
energies up to about 10 MHz [14], though these measurements
have significant uncertainties associated with the integration
over field. However, there are much more precise results for
the −7(44)6s(6) state as it crosses with the least-bound state,
obtained from microwave spectroscopy [14] and magnetic
field modulation spectroscopy [37]. Particularly important are
measurements of the crossing between this mixed state and the
−2(33)4d(4) state near 48 G, since the strength of this crossing
provides the most direct experimental information available on
the strength of the second-order spin-orbit coupling and thus
on the potential parameter S2SO.

Figures 15 and 16 show the overall fit to the bound states
below 60 G for both the M2004 and the M2012 potentials.
The ramping s-wave state between 17 and 60 G is of particular
interest. This state switches from −7(44)6s(6) to −1(33)6s(6)
character as B increases. All the experimental energies are well
reproduced, including those near the two avoided crossings
with the 4d(4) and 2g(2) states shown in Fig. 15. Even in this
region, the M2012 model agrees with the experimental results
significantly better than the M2004 model.

D. Independent tests of the M2012 model

The older potential models [9,10] satisfactorily reproduced
the bound states for s-, d-, and g-wave states at fields below 60
G. However, the measurements also revealed the existence of
l-wave (L = 8) states [14,15], which do not lead to observable
Feshbach resonances because of their very weak coupling to
the s-wave threshold channel. The M2004 model failed for
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FIG. 16. (Color online) Comparison between experimental
results for s-wave levels (diamonds [14,37]) and g- and l-wave levels
(open circles [14,15]) with the results of the M2012 model (solid
lines). Only levels for which experimental results exist are shown. The
s-wave and g-wave levels are calculated with the full sdg basis set.
The l-wave levels are calculated with an l basis only. The light dashed
lines show the l-wave levels calculated with the M2004 model. The
arrows show the separation between equivalent levels in the M2004
and M2012 models. The additional quantum numbers n(f1f2) are
−2(33) for the two 4g levels and −3(33) for the three 6l levels.

these l-wave states, with errors of up to 5 G in the positions
at a given bound-state energy. The l-wave states were not
included explicitly in our fits, but the comparison between the
calculated levels and experiment is shown in Fig. 16 for both
the current model M2012 and the older M2004 one. It is clear
that M2012 gives a far more satisfactory reproduction of the
experimental l-wave levels.

There is a particularly interesting region near 500 G, where
a group of four strongly coupled −6(34)7d(MF ) levels cross
threshold. The underlying levels have MF values of 4, 5, 6,
and 7, but are strongly mixed with one another so that MF

is not a good quantum number for the actual eigenstates.
The bound states have not yet been measured in this region,
but the calculated levels are shown in Fig. 17, together
with the calculated scattering length and the positions of the
measured loss maxima and minima. The loss maxima are well
reproduced. The two loss minima at 499.6 and 502.15 G are
also well reproduced by the model, but the loss minimum
at 492.8 G is not near a zero-crossing of the calculated
scattering length. However, there are two strong overlapping
and interfering resonances with poles in a(B) at 492.7 and
495.0 G, and it is not clear how to interpret the three-body
loss in such a region. This complex region from 490 to 510
G needs further investigation, especially since it may display
rich Efimov physics [52].

E. Mapping between scattering length and magnetic field

An important goal of this paper is to develop a theoretical
model that is capable of giving an accurate mapping between
the scattering length a(B) and the magnetic field B, with
particular focus on collisions between two Cs atoms in the
lowest Zeeman level of the ground-state manifold. Our new
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FIG. 17. (Color online) The scattering length (a) and bound-state
energies (b) between 490 and 508 G, calculated for the M2012
potential with an sdg basis set. The solid diamonds in (a) show
the positions of experimental loss maxima and the open circles show
the positions of loss minima. The four ramping −6(34)7d(x) levels,
labeled collectively by x since their MF components are mixed,
undergo avoided crossings with the −2(33)6g(6) level that passes
through this region with −E/h ≈ 2 MHz. The avoided crossings
with the least-bound level −1(33)6s(6) near −E/h ≈ 0.01 MHz are
too close to the E = 0 line to be seen on the figure.

M2012 model is based on realistic potentials and includes
the full spin Hamiltonian for the Cs2 molecule at long range.
It has been calibrated against experimental binding energies
and a large number of resonance positions at magnetic fields
between 0 and 1000 G. We therefore expect it to provide an
accurate representation of a(B) across this entire range of
fields. Figure 18 shows a(B) on a grid with 0.1 G spacing over
the new experimental range between 460 and 1000 G. At this
resolution, some narrow resonances are not fully resolved, and
the narrowest ones are not visible at all.

The Supplemental Material [29] provides a tabulation of
a(B) against B over the full range of fields from 0 to 1200 G,

FIG. 18. (Color online) The scattering length between 460 and
1000 G, calculated for the M2012 potential with an sdg basis set.
The dashed lines indicate the pole positions of the broad s-wave
resonances near 549 and 787 G and the d-wave one near 820 G. Note
that some narrow resonances appear as spikes because of the limited
grid spacing of 0.1 G, and some of the narrowest are not visible
at all.
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for use in interpreting experiments. Additional tables lists all
s-, d-, g-, i-, and l-wave resonances up to 1000 G.

VI. CONCLUSION

We have explored the scattering properties of ground-state
Cs atoms and the binding energies of weakly bound Cs2

molecules in the previously uncharted magnetic field range
up to 1000 G, using a combination of experiment and theory.
We have developed a model of the interaction potential that
reproduces the experiments accurately over the entire range of
magnetic fields studied.

Experimentally, we have investigated Feshbach resonances
and dimer binding energies in the magnetic field range between
450 and 1000 G, utilizing an ultracold Cs sample in an optical
dipole trap. Around 550 and 800 G, we verified that the general
scattering properties of atomic Cs are governed by two broad
s-wave Feshbach resonances. Fifteen Feshbach resonances
stemming from molecular states with L > 0 were pinpointed
by trap loss spectroscopy. We found evidence for the existence
of i-wave Feshbach resonances, resulting from the coupling
of molecular states with L = 6 to the atomic threshold.
By performing magnetic field modulation spectroscopy, we
determined the binding energies of several dimer states, paying
particular attention to the two s-wave states that are responsible
for the general Cs scattering properties in the high-field region.

To calculate the scattering properties and bound-state
energies, we solve the Schrödinger equation using coupled-
channel methods. We carried out direct least-squares fit-
ting to the combined experimental data of this article and
Refs. [14,32,37,38,80] to obtain a six-parameter model of
the long-range interaction potential, which we designate
M2012.

The M2012 potential reproduces the experimental results
much better than the earlier M2004 potential [9], particularly at
higher fields (above 250 G). It also predicts i-wave and l-wave
states, which were not included in the least-squares fits. The
calculated positions of l-wave bound states agree well with

the experimental results reported in Ref. [15], for which the
M2004 potential failed; this demonstrates the predictive power
of the model. The pole positions of the two broad s-wave
Feshbach resonances at high field are calculated to be 548.78
and 786.80 G for the −6(34)7s(6) and the −6(34)6s(6) states,
respectively.

The M2012 potential does have some remaining deficien-
cies. In particular, it is fitted only to results from ultracold
collisions and the bound states that lies within 10 MHz of the
atomic threshold. It does not include results from electronic
spectroscopy on deeply bound levels of Cs2, or the near-
dissociation levels observed in two-color photoassociation
spectroscopy [84], which are bound by 5 to 80 GHz. It also
does not satisfactorily reproduce the positions of i-wave states
associated with excited hyperfine thresholds. Resolving these
remaining issues will require a simultaneous fit to all the
experiments together and is a topic for future work.

Our model allows us to make an accurate connection
between the experimentally controllable magnetic field
strength B and the s-wave scattering length a over a wide range
of fields. The scattering length is the essential parameter in
universal theories, and this connection was crucial in allowing
us to interpret our measurements of three-body recombination
in terms of universal Efimov physics in Ref. [18]. The
present work is important not only for experiments on Cs, but
also provides important information for ongoing and future
experiments involving Cs mixtures, such as RbCs [85], LiCs
[86,87], and other interesting combinations.
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Phys. Rev. Lett. 91, 123201 (2003).

[47] G. Breit and I. I. Rabi, Phys. Rev. 38, 2082 (1931).
[48] J. P. D’Incao, H. Suno, and B. D. Esry, Phys. Rev. Lett. 93,

123201 (2004).
[49] P. O. Fedichev, M. W. Reynolds, and G. V. Shlyapnikov, Phys.

Rev. Lett. 77, 2921 (1996).
[50] B. D. Esry, C. H. Greene, and J. P. Burke, Phys. Rev. Lett. 83,

1751 (1999).
[51] E. Nielsen and J. H. Macek, Phys. Rev. Lett. 83, 1566 (1999).
[52] F. Ferlaino, A. Zenesini, M. Berninger, B. Huang, H.-C. Nägerl,
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