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We have studied interspecies scattering in an ultracold mixture of 87Rb and 133Cs atoms, both in their lowest-
energy spin states. The three-body loss signatures of 30 incoming s- and p-wave magnetic Feshbach resonances
over the range 0 to 667 G have been cataloged. Magnetic field modulation spectroscopy was used to observe
molecular states bound by up to 2.5 MHz × h. We have created RbCs Feshbach molecules using two of the
resonances. Magnetic moment spectroscopy along the magnetoassociation pathway from 197 to 182 G gives
results consistent with the observed and calculated dependence of the binding energy on magnetic field strength.
We have set up a coupled-channel model of the interaction and have used direct least-squares fitting to refine its
parameters to fit the experimental results from the Feshbach molecules, in addition to the Feshbach resonance
positions and the spectroscopic results for deeply bound levels. The final model gives a good description of
all the experimental results and predicts a large resonance near 790 G, which may be useful for tuning the
interspecies scattering properties. Quantum numbers and vibrational wave functions from the model can also be
used to choose optimal initial states of Feshbach molecules for their transfer to the rovibronic ground state using
stimulated Raman adiabatic passage.
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I. INTRODUCTION

Dilute quantum gases are ideal for studying many-body
physics, because they provide model systems in which the
parameters can be precisely controlled. External fields can be
used to tune the effective isotropic contact interactions between
the particles, and the geometry and strength of the confining
optical potentials can be controlled by laser beams. For ex-
ample, quantum-gas analogs of superconductivity [1] and the
superfluid-to-Mott-insulator quantum phase transition [2] have
been observed in the laboratory, and their properties have been
shown to agree beautifully with the predictions from theoreti-
cal models [3]. Recently, quantum gases of particles with long-
range anisotropic interactions have been created [4–6]. For
particles with permanent electric dipole moments, the range of
the dipole-dipole interactions can be much larger than typical
optical lattice spacings, and interesting new quantum phases
and quantum information applications have been proposed
[7–11]. A quantum gas of 40K87Rb ground-state molecules is
the only such system that presently exists in the laboratory [6].

Our goal is to generate a dipolar quantum gas of ground-
state 87Rb133Cs, which, unlike KRb, is expected to be colli-
sionally stable because both the exchange reaction 2RbCs →
Rb2 + Cs2 and trimer formation reactions are endothermic
[12]. Although other approaches are under development
[13–16], the only method currently available to produce high
phase-space density gases of ground-state molecules is to
create weakly bound molecules from ultracold atomic gases
by magnetic tuning across a Feshbach resonance [17,18] and
then to transfer the molecules to the rovibronic ground state
by stimulated Raman adiabatic passage (STIRAP) [6,19–24].

As a first step, we have performed evaporative cooling on
Rb and Cs samples in separate optical traps, combining them
at the end to obtain a Rb-Cs mixture with high phase-space
density [25]. We have successfully used this mixture to produce
ultracold samples of weakly bound RbCs [26]. In this paper,
we present a combined experimental and theoretical study
of the interspecies Feshbach resonances and weakly bound
molecular energy levels of Rb-Cs and use the results to develop
an accurate coupled-channel model of the interaction, based
on the derived interaction potentials for the molecular states
X 1�+ and a 3�+.

II. OVERVIEW

The work described in this paper involved a close collab-
oration between experiment and theory. At the start of the
work, the Feshbach resonances and bound states observed
experimentally [27] were unassigned. In initial theoretical
work, we developed preliminary coupled-channel models of
the bound states and scattering and used these to propose
assignments of quantum numbers to observed energy levels
and Feshbach resonances. Experiments were then carried out
to test the assignments and extend the early measurements.
The whole process was repeated several times. However, to aid
understanding, we describe the experiments in Sec. III below
using quantum numbers based on our final understanding from
theory (Sec. IV), even though the quantum numbers were not
known at the outset.

Two alkali-metal atoms in 2S states interact at short range
to form singlet (X 1�+) and triplet (a 3�+) states. Docenko
et al. [28] have carried out an extensive spectroscopic study
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FIG. 1. (Color online) Molecular potential energy curves V0(R)
and V1(R) for the singlet and triplet states of RbCs correlating with
two separated 2S1/2 ground-state atoms. The inset shows an expanded
view of the long-range potentials separating to the four different
hyperfine thresholds at zero field, labeled by (f87Rb,f133Cs), but no
longer by singlet or triplet.

of these states by Fourier transform spectroscopy and have
developed potential energy curves as shown in Fig. 1. They
were able to observe the vibrational ladder up to high-lying
levels with outer turning points around 1.5 nm, at which point
the coupling between singlet and triplet molecular states is
already significant. They also identified in the observed spectra
accidental coincidences of singlet and triplet levels deeper
within the potential wells, which fixed their relative energy
position very well. In the present work, we initially constrained
the short-range part of the potential to follow these curves and
adjusted the long-range parameters to reproduce the Feshbach
resonances and weakly bound states.

The bound states (Feshbach molecules) that are of most
interest in the present paper have binding energies of at
most a few MHz × h1 and require a quite different de-
scription. For a heteronuclear bialkali molecule, there are
four field-free atomic thresholds, which for 87Rb133Cs may
be labeled in increasing order of energy by (fRb,fCs) =
(1,3), (2,3), (1,4), and (2,4), as shown in the inset of Fig. 1. In
a magnetic field, each threshold splits into (2fRb + 1)(2fCs +
1) sublevels labeled |fRb,mRb〉 + |fCs,mCs〉. The Feshbach
molecules might be described using two different sets of quan-
tum numbers, either (fRb,mRb,fCs,mCs) or (fRb,fCs,F,MF ),
where F is the resultant of fRb and fCs and MF = mRb + mCs.
In the nonrotating case F and MF are exact quantum numbers
if there is no external field, but if there is an external magnetic
field, it mixes states with different F values, destroying the
exactness of F as a quantum number; the character of the
Feshbach molecules at the magnetic fields considered here
is more accurately described by (fRb,mRb,fCs,mCs). For high
magnetic fields, fRb and fCs are also no longer good quantum
numbers.

Additional quantum numbers are needed for the molecules’
end-over-end angular momentum L and the molecular

1We use units of energy and frequency interchangeably in the text,
in accordance with the conventional usage in this field of physics.
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FIG. 2. (Color online) Thresholds for 87Rb133Cs and the bins
(vertical boxes) below each threshold within which each vibrational
state must lie for any value of the scattering length. The horizontal
boxes, 1.5 GHz deep, show the energy range within which bound
levels can cause resonances at the |1,1〉 + |3,3〉 and |2, − 1〉 + |3,3〉
thresholds at fields under 500 G. The vibrational bin for each
hyperfine state that contains bound states that can cause resonances
at the lowest threshold is colored. Selected levels are shown (short
horizontal lines) as a function of L (s, p, d , f , g for L = 0, 1, 2, 3,
4, respectively) for the specific choice of scattering length that gives
a least-bound state for L = 0 with 110(20) kHz below threshold.
For fields below 500 G, only levels |n(fRb,fCs)〉 = |−2(1,3)〉 and
|−6(2,4)〉 can cause resonances at the |1,1〉 + |3,3〉 threshold and
only levels |−4(1,4)〉 and |−2(2,3)〉 can cause resonances at the
|2, − 1〉 + |3,3〉 threshold.

vibration. For near-dissociation levels it is convenient to
specify the vibrational quantum number with respect to the
asymptote of the atom pair, so that the topmost level is
n = −1, the next is n = −2, and so on. Each level lies within
a “bin” below its associated dissociation threshold, with the
boundaries of the bins determined by the long-range forces
between the atoms. For RbCs, using the published values of the
long-range dispersion coefficients, [29,30], which are the same
for the singlet and triplet potentials, we find that the n = −1
level lies between 0 and −165 MHz, and the n = −2 level
lies between −165 and −1150 MHz. Subsequent lower bin
boundaries lie at 3.7, 8.6, 16.7, and 28.8 GHz below threshold
for n = −3 to −6, respectively. As shown below, the actual
levels for 87RbCs lie close to the top of their bins.

Feshbach resonances occur at fields where a bound state
exists at the same energy as the colliding atoms. Zero-energy
Feshbach resonances are caused by molecular levels that
cross atomic thresholds as a function of magnetic field. Since
the level shifts due to the Zeeman effect at fields below
500 G2 are not more than 1.5 GHz, there is only one vibrational
level below each field-free threshold that can cause Feshbach
resonances at the |1,1〉 + |3,3〉 threshold, as shown in Fig. 2;
these are n = −5, −5, and −6 for levels associated with
(fRb,fCs) = (2,3), (1,4), and (2,4), respectively. In addition
to this, levels very close to dissociation (n = −1 or −2)
corresponding to the same zero-field threshold as the incoming
wave can also cause low-field resonances. Figure 2 also shows

2Units of gauss rather than tesla, the accepted SI unit for the
magnetic field, have been used in this paper to conform to the
conventional usage in this field of physics.
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the situation at the |2, − 1〉 + |3,3〉 threshold, which will be
considered in Sec. IV G 2.

In the general case we label weakly bound states with a com-
plete set of quantum numbers |n(fRb,fCs)L(mRb,mCs),M〉,
with L = 0, 1, 2, etc., designated by s, p, d, etc., re-
spectively. M is the sum of all angular momenta projected
onto the field axis, M = mRb + mCs + ML, and is the only
exactly conserved quantum number in an external field.
Since, however, M is always 4 for the levels studied in
this paper (except in Secs. IV G 1 and IV G 2), we omit it
in the following discussion. All other angular momenta are
approximate quantum numbers, but are sufficient for proper
labeling. We characterize by Lc = 0,1, . . . the partial wave
character of the continuum scattering process and speak of
incoming s- and p-wave resonances for Lc = 0 and Lc = 1,
respectively.

III. THE EXPERIMENTS

A. Feshbach resonances

Magnetic Feshbach resonances are an important tool for
the production of weakly bound molecules and for tuning the
scattering length, which determines the elastic and inelastic
scattering properties of cold atomic gases [31]. In addition,
their positions provide important clues to the molecular
bound-state structure that lies below the scattering threshold.
In previous work [27] we observed 23 resonances over
the range 0 to 300 G, using a mixture of the lowest spin
states, 87Rb|1,1〉 and 133Cs|3,3〉. Since this mixture was
prepared by evaporating both species simultaneously in the
same optical trap, interspecies three-body recombination loss
and heating [31] limited the evaporative cooling efficiency,
resulting in comparatively high temperatures of 7 μK and
low particle densities of about 5 × 1011 cm−3 for each
species.

In the current experiment, the mixture is created by
combining separately cooled atomic clouds [25], so it is much
colder (100 to 200 nK) and denser (5 × 1012 cm−3) and gives a
much better signal-to-noise ratio for the loss features discussed
below. We stop the evaporation procedure before the onset
of condensation because we have previously found the two
Bose-Einstein condensates (BECs) to be immiscible [25]. We
hold the mixture at constant magnetic field B for 200 ms.
Enhanced losses that occur simultaneously for Rb and Cs are
attributed to three-body recombination [31] at an interspecies
Feshbach resonance. We associate the field value B at which
maximum atom loss occurs with the pole of the resonance.
For example, Fig. 3 shows the atom loss in the vicinity of the
resonance near 197 G.

For sufficiently wide resonances, we find that the number of
Rb atoms exhibits a maximum at fields just above resonance.
Rb has a lower trap depth than Cs and thus bears most of
the heat load through evaporation when the two species are in
thermal equilibrium [25]. Reduced thermalization with Cs at
zero interspecies scattering length reduces the heat load on the
Rb part of the sample and thus leads to less loss of Rb atoms.
This simple explanation allows us to provide an estimate for
the resonance width �: it is the difference between the field
values for the minima (for Rb and Cs) and the maximum

FIG. 3. (Color online) Example of a Feshbach resonance scan
showing simultaneous loss for Rb and Cs near 197.06(5) G for a hold
time of 200 ms. The maximum for the number of Rb atoms to the right
of the resonance is attributed to the zero crossing for the interspecies
scattering length. The difference in the positions of the minima
and the maximum as indicated gives an estimate for the resonance
width �.

(for Rb) as indicated in Fig. 3. A detailed comparison with
calculated widths requires a thorough analysis, including
three-body and evaporation effects, and will be made in a future
publication.

As part of this work, we have scanned over a wider
range (0 to 667 G) than in Ref. [27], finding seven incoming
s-wave resonances in addition to those reported in Ref. [27].
The old and new resonances are collected together in Table I.
The resonances observed for temperatures �200 nK are
assigned as incoming s-wave (Lc = 0) resonances, while those
observed at 7 μK and not observed at 200 nK are assigned
as incoming p-wave (Lc = 1) resonances. The magnetic
field is calibrated near each resonance using Rb microwave
transitions. The calibration in our previous work [27] was
based on low-field data and was found to deviate from the
current calibration by as much as 0.5 G when extrapolated
to 300 G. The positions of the incoming p-wave resonances
have therefore been scaled to the new calibration, using the
incoming s-wave resonances observed in both experiments as
a reference. The incoming p-wave resonances from 258 to 272
G have been remeasured at 4 μK with the new calibration.

B. Magnetic-field modulation spectroscopy

We have used magnetic-field modulation spectroscopy
[17,32–34] on our atom mixture to measure binding energies
of Feshbach molecules. A set of auxiliary coils modulates
the magnetic field B along the quantization axis by up to
0.2 G. Atom losses occur when the modulation frequency fm

is resonant with a free-bound transition (Fig. 4). We observe
the losses by holding fm fixed and scanning B or by holding
B fixed and scanning fm. We find that the free-bound signal
dies off for fm above 2.5 MHz and attribute this to lower
field amplitudes generated by the coils due to their increased

032506-3
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TABLE I. 87Rb|1,1〉 + Cs|3,3〉 Feshbach resonances
observed over the range 0–667 G for s-wave and p-wave
scattering. The magnetic field uncertainties result from a
quadrature of resonance position uncertainty due to atom
number noise and an estimated field calibration error of
0.03 G. Resonances too narrow to allow a clear width
measurement have no width indicated.

s wave p-wave

Field B (G) Width � (G) Field B (G)

181.64(8) 0.27(10) 128.00(25)a

197.06(5) 0.09(1) 129.60(25)a

217.34(5) 0.06(1) 140.00(25)a

225.43(3) 0.16(1) 140.50(25)a

242.29(5) 234.35(25)a

247.32(5) 0.09(3) 235.96(25)a

272.80(4) 258.10(11)
273.45(4) 259.60(11)
273.76(4) 264.19(11)
279.12(5) 0.09(3) 266.23(11)
286.76(5) 271.73(11)
308.44(5) 289.97(25)a

310.69(6) 0.60(4) 292.08(25)a

314.74(11) 0.18(10)
352.65(34) 2.70(47)
381.34(5)
421.93(5)

aFrom Ref. [27] with field rescaled to current calibration.

impedance at high frequencies and to the Bessel-function-
squared dependence of the coupling strength on the binding
energy [35].

The binding energies obtained in this way near the Feshbach
resonances at 181.6 and 197 G are plotted in Fig. 5. Two
avoided crossings close below threshold can clearly be
identified. We attribute these to the presence of a bound
state running parallel to the atomic threshold (with the same

FIG. 4. (Color online) Measurement of the binding energy of
the Feshbach molecules. This is an example of a field modulation
free-bound resonance scan showing simultaneous loss for Rb and Cs
for a hold time of 900 ms. The modulation frequency is held fixed at
fm = 330 kHz.

magnetic moment as the atom pair) with a binding energy
of approximately 110 ± 20 kHz × h. This “least-bound state”
|n(fRbfCs)L(mRbmCs)〉 = |−1(1,3)s(1,3)〉 cannot be observed
directly with the modulation technique except near avoided
crossings, because the initial and final states involved are
exactly equal in all spin quantum numbers; they thus do not
differ in magnetic moment and magnetic dipole transitions
between them are forbidden. The least-bound state causes
avoided crossings directly below the Feshbach resonances by
the same coupling mechanism as the Feshbach resonances,
and the resulting mixed states can be observed near these
crossings. The binding energy of the least-bound state allows
us to estimate the interspecies background scattering length as
+645(60)a0 for this scattering channel. This value is further
refined in Sec. IV F below. The large value for the scattering
length is responsible for the large background interspecies
thermalization and three-body loss rates observed previously
[25,36,37].

C. Feshbach molecules

To create Feshbach molecules, we sweep the magnetic
field B adiabatically from high to low field across one of the
Feshbach resonances. The weakly bound molecules formed
in this way can collide with atoms and decay to deeply
bound states. We must therefore remove the atoms quickly.
In previous experiments it was found that the atoms can be
removed from the molecular cloud with radiation pressure
from a laser (see, e.g., Refs. [38–40]). Here, however, we find
that the difference in magnetic moments between the atoms and
molecules can be made large enough that the Stern-Gerlach
effect due to the magnetic levitation gradient can be used
to separate atoms and molecules, allowing us to produce
pure samples of 2000 to 4000 RbCs molecules starting from
approximately 150 000 Rb and 60 000 Cs atoms [25]. The
temperature of the molecular cloud is approximately the same
as that of the atomic sample, that is, 100 to 200 nK.

We magnetoassociate at either the 197.06 or the 225.43 G
resonance, entering the bound-state manifold as seen in Fig. 5.
Below each of these Feshbach resonances, there is a strongly
avoided crossing with the least-bound state, which we cannot
jump over with our finite magnetic switching capability. As
a result, immediately after magnetoassociation, the molecules
transfer into the least-bound state |−1(1,3)s(1,3)〉, which has a
magnetic moment μ = −1.3μB, almost identical to that of the
free atom pair. In order to separate the atomic and molecular
clouds, we switch off the crossed optical dipole force trap
confining the atom-molecule mixture and quickly (in 0.5 ms)
sweep B down to the next avoided crossing, below the 181.64
or 217.34 G resonance, respectively.

In the case of magnetoassociation at 197.06 G, we cross
over onto the low-field-seeking state |−6(2,4)d(2,4)〉 (with
μ=+2.0μB) near 182 G, and then use another avoided
crossing [Fig. 5, panel (a)] to transfer to the high-field-seeking
state |−2(1,3)d(0,3)〉 (with μ = −0.9μB). Just before we take
the first of these two crossovers, the magnetic field gradient is
ramped up to a value suitable for levitating the |−2(1,3)d(0,3)〉
molecules. At this moment, the molecules are still in the
least-bound state |−1(1,3)s(1,3)〉 and are pushed upward
together with the atoms. Rb |1,1〉 and Cs |3,3〉 have nearly the
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FIG. 5. (Color online) Weakly bound states of RbCs obtained by free-bound (red, dark-gray) and bound-free (green, gray) magnetic-field
modulation spectroscopy, together with levels calculated for the final, fitted potentials (blue solid lines). All levels are shown relative to
dissociation limit Rb |1,1〉 + Cs |3,3〉 at the given magnetic field value B. Avoided crossings between the least-bound state and the ramping
n = −2 levels are shown as arrows. The smaller panels labeled (a), (b), and (c) refer to the areas on the larger panel marked by rectangles and
the same labels. The quantity 2β is the minimum separation in energy between the two states.

same magnetic-moment-to-mass ratio at these field values and
thus move together. A large downward impulse is imparted
to the molecules as they pass through the low-field-seeking
state. This separates the atomic cloud from the molecular
cloud. After going through the second crossover, the molecules
become high-field seekers that are levitated exactly against
gravity, and the optical dipole force trap is turned on again,
trapping the molecules. The Stern-Gerlach separation takes
3 ms and produces a pure sample of up to 4000 molecules.
These are observed by a dissociation ramp backward along
the previous path, after which the Rb and Cs atom clouds are
imaged separately.

In the case of magnetoassociation at 225.43 G, we cross
over near 217 G onto the |−6(2,4)d(2,2)〉 state, which is also
strongly low-field-seeking. To levitate the molecules in this
state, the direction of the current in the gradient coils must
be switched, causing a delay that results in additional atom-
molecule collisions. In this case, we produce pure clouds of
typically 2000 molecules.

We note that the molecule creation efficiency of less than
10% is much lower than can be reached under optimized
conditions for single-species experiments, for example, more
than 25% or even 30% [41–43] for the creation of Feshbach
molecules in a single-species BEC and more than 90% [24]
for the creation of Feshbach molecules in the two-atom shell
of a single-species atomic Mott-insulator state. For the present
experiment we believe that we are limited by phase-space
density, which is of order unity for both clouds before they
are brought to overlap. We expect to increase the molecule

creation efficiency greatly once we are capable of overlapping
the two atomic samples in the quantum-degenerate regime in
the presence of an optical lattice, as discussed in Ref. [25].

D. Magnetic moment spectroscopy

We have measured the magnetic moments of the Fesh-
bach molecules along the high-field-seeking sections of the
197.06 G magnetoassociation route. After retrapping the pure
|−2(1,3)d(0,3)〉 molecular cloud, we backtrack to a magnetic
field value B, where we are interested in measuring the
magnetic moment, and change the magnetic field gradient.
The dipole trap is then switched off and after 10–15 ms
the molecules are dissociated and the fragments are imaged.
The field gradient that exactly levitates the molecules is
scaled to the field gradient needed to levitate Rb atoms
at the same magnetic field value. The Breit-Rabi equation
is used to calculate the Rb|1,1〉 magnetic moment at this
field, and we multiply this by the scaling factor (considering
also the atomic and molecular masses) to get the molecular
magnetic moment. The measured magnetic moments (Fig. 6)
are consistent with those expected from the coupled-channel
calculations, which confirms our interpretation of the 197.06 G
magnetoassociation route. The error in the magnetic moment is
dominated by the error in judging the correct levitation gradient
due to the large cloud sizes which result from expansion during
the levitation period. Since the experiment takes place in a field
gradient, the error in the magnetic field measurement is due
mainly to the difference in vertical position between the atomic
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FIG. 6. (Color online) Calculated (solid line) and measured (red
points) molecular magnetic moment along the magnetoassociation
route starting at the 197.06 G Feshbach resonance. The two horizontal
error bars mark the estimated field values for two weak avoided
crossings, which we detect by variations in the cloud displacement at
fixed gradient field; see inset. The crossings are visible here as spikes
in the calculated curve and are indicated more explicitly in Figs. 5(b)
and 5(c). (Inset) Cloud displacement as a function of magnetic field B

near the weak avoided crossing at B = 189.50 G. The strong variation
in the displacement data indicates the presence of the crossing. Similar
data are obtained for the weak avoided crossing near B = 185.17 G.

Rb cloud used for microwave-based magnetic field calibration
and the molecular cloud.

Magnetic moment spectroscopy has also allowed us
to estimate the magnetic field values at which the two
|−2(1,3)d〉 states cross the least-bound state, as shown by
arrows in Fig. 5. Results for one of the crossings are shown
in the inset to Fig. 6. A very small increase in the magnetic
moment is seen near 189.50 G, which we interpret as a
partial crossover onto |2(1,3)d(1,1)〉 during the magnetic
field sweep before levitation; the corresponding avoided
crossing is illustrated in Fig. 5(c). We have tried to cross
over to this state adiabatically but have not been successful,
most likely due to technical magnetic field fluctuations. The
| − 2(1,3)d(0,3)〉 ↔ |−1(1,3)s(1,3)〉 crossing, illustrated in
Fig. 5(b), has also been observed in this way. The magnetic
moment signal produced by these crossings is difficult to
analyze because it is so weak, and the error bars shown in
Fig. 5 simply span the range over which the magnetic moment
deviates from its background value.

E. Bound-free modulation spectroscopy and binding energy of
the |−2(1,3)d(0,3)〉 state

The binding energy of the |−2(1,3)d(0,3)〉 state proved to
be difficult to measure directly, presumably due to extremely
weak coupling to the atomic scattering channel. However,
it was possible to observe this state in the vicinity of the
crossing with |−6(2,4)d(2,4)〉, as shown in Fig. 5(a), using
bound-free magnetic-field modulation spectroscopy [17]. In
this version of modulation spectroscopy, molecules that are
produced by magnetoassociation (as described in Sec. III C)

are dissociated when the energy hfm corresponding to the
modulation frequency fm is equal to or slightly greater
than the binding energy. The threshold frequency at which
molecules begin to be destroyed is associated with the binding
energy. We observe the bound-free transition by omitting from
our experimental sequence the reverse magnetoassociation
ramp that is used to observe the molecules. Any atoms
that appear after applying the modulation are assumed to
be produced from molecule-atom transitions. Because the
atomic signal background is now very low, this method has
inherent signal-to-background advantages over free-bound
spectroscopy, but the low number of molecules increases the
statistical noise. The |−2(1,3)d(0,3)〉 state was observable
only due to mixing with |−6(2,4)d(2,4)〉 near the crossover
at about 2.5 MHz × h binding energy. This is consistent
with the fact that no Feshbach resonance could be found
for the |−2(1,3)d(0,3)〉 state near its predicted intersection
with the incoming scattering channel. Power broadening
causes the binding energy of the most deeply bound states
to be underestimated. While this effect was extrapolated to
zero intensity, the error bars shown in Fig. 5 reflect our best
estimate of the possible systematic error that remains.

IV. THEORY AND CALCULATIONS

The Hamiltonian for the interaction of two alkali-metal
atoms may be written as

h̄2

2μ

[
−R−1 d2

dR2
R + L̂2

R2

]
+ ĥ1 + ĥ2 + V̂ (R)x, (1)

where μ is the reduced mass and L̂ is the operator for the
end-over-end angular momentum of the two atoms about one
another. The monomer Hamiltonians including Zeeman terms
are

ĥj = ζ ı̂j · ŝj + geμBB ŝzj + gnμBB ı̂zj , (2)

where ŝ1 and ŝ2 represent the electron spins of the two atoms
and ı̂1 and ı̂2 represent the nuclear spins. The constants ge

and gn are the electron and nuclear g factors, μB is the Bohr
magneton, and ŝz and ı̂z represent the z components of ŝ and
ı̂ along a space-fixed Z axis whose direction is defined by the
external magnetic field B. The atomic g factors were taken
from the 2006 CODATA adjustment of fundamental constants
[44] and the 87Rb hyperfine constant from Bize et al. [45]. The
Cs hyperfine constant is exact by definition.

The interaction between the two atoms V̂ (R) is

V̂ (R) = V̂ c(R) + V̂ d(R). (3)

Here V̂ c(R) = V0(R)P̂ (0) + V1(R)P̂ (1) is an isotropic potential
operator that depends on the potential energy curves V0(R) and
V1(R) for the respective X 1�+

g singlet and a 3�+
u triplet states

of the diatomic molecule. The singlet and triplet projectors
P̂ (0) and P̂ (1) project onto subspaces with total electron spin
quantum numbers 0 and 1, respectively. Figure 1 shows
the two potential energy curves for RbCs. The term V̂ d(R)
represents small, anisotropic spin-dependent couplings, which
are responsible for the avoided crossings described in the
experimental section and are discussed further in Sec. IV C
below.
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A. Computational methods for bound states and scattering

The three theoretical groups working on this problem
used different sets of computer codes that gave results in
agreement with one another. The methods used in Hannover to
interpret the Fourier transform spectra and Feshbach resonance
positions are described in Ref. [46]. Those used at Temple
University and NIST are described in Ref. [47]. The methods
used at Durham are described below.

For the scattering and Feshbach bound states, we solve the
Schrödinger equation by coupled-channel methods, using a
basis set for the electron and nuclear spins in a fully decoupled
representation,

|sRbms,Rb〉|iRbmi,Rb〉|sCsms,Cs〉|iCsmi,Cs〉|LML〉. (4)

The matrix elements of the different terms in the Hamiltonian
in this basis set are given in the appendix of Ref. [48]. The
calculations in this paper used basis sets with all possible
values of ms and mi for both atoms, truncated at Lmax = 2
unless otherwise indicated.

Scattering calculations are carried out using the MOLSCAT

package [49], as modified to handle collisions in magnetic
fields [50]. At each magnetic field B, the wavefunction
log-derivative matrix at collision energy E is propagated from
R = 0.3 to 2.5 nm using the propagator of Manolopoulos [51]
with a fixed step size of 0.02 pm and from 2.5 to 1500 nm using
the Airy propagator [52] with a variable step size controlled by
the tolerance input parameter TOLHI = 10−5 [53]. Scattering
boundary conditions [54] are applied at R = 1500 nm to
obtain the scattering S matrix. The energy-dependent s-wave
scattering length a(k) is then obtained from the diagonal
S-matrix element in the incoming L = 0 channel using the
identity [55]

a(k) = 1

ik

(
1 − S00

1 + S00

)
, (5)

where k2 = 2μE/h̄2. For L = 1, this is generalized by
replacing a with a3

1 and k with k3.
Weakly bound levels for Feshbach molecules are obtained

using a variant of the propagation method described in
Ref. [48]. The log-derivative matrix is propagated outward
from R = 0.3 to 2.5 nm with a fixed step size of 0.02 pm
and inward from 1500 to 2.5 nm with a variable step size. In
Ref. [48], bound-state energies at a fixed value of the magnetic
field B were located using the BOUND package [56], which
converges on energies where the smallest eigenvalue of the
log-derivative matching determinant is zero [57]. However, for
the purposes of the present work we used a new package, FIELD,
which instead works at fixed binding energy and converges
in a similar manner on the magnetic fields at which bound
states exist. BOUND and FIELD both implement a node-count
algorithm [57] which makes it straightforward to ensure that
all bound states that exist in a particular range of energy or
field are located.

Zero-energy Feshbach resonances can, in principle, be
located as fields Bres at which the scattering length a(B) passes
through a pole. However, with this method it is necessary
first to search for poles, and it is quite easy to miss narrow
resonances. Since resonances occur at fields where there is
a bound state at zero energy, the FIELD package provides a

much cleaner approach: simply running FIELD at zero energy
provides a complete list of all fields at which zero-energy
Feshbach resonances exist.

B. Representation of the potential curves

The singlet and triplet curves are represented as described
by Docenko et al. [28]. In a central region from RSR

S to RLR
S ,

with S = 0 or 1 for the singlet or triplet state, respectively, the
curves are well determined by the Fourier transform spectra
and are represented as finite power expansions of a nonlinear
function ξ that depends on the internuclear separation R,

VS(R) = hc

n∑
i=0

aiξ
i(R), (6)

where

ξ (R) = R − Rm

R + bRm
. (7)

The quantities ai and b are fitting parameters, and Rm is chosen
to be near the equilibrium distance. At long range (R > RLR

S ),
the potentials are

V LR
S (R) = −C6/R

6 − C8/R
8 − C10/R

10 − (−1)SVexch(R),

(8)

where the dispersion coefficients Cn are common to both
potentials. The exchange contribution is [58]

Vexch(R) = Aex(R/a0)γ exp(−βR/a0) (9)

and makes an attractive contribution for the singlet and a
repulsive contribution for the triplet. β and γ are related via
γ = 7/β − 1 and are obtained from the ionization energies of
Rb and Cs [58], and Aex is a fitting parameter. The midrange
potentials are constrained to match the long-range potentials
at RLR

S . Finally, the potentials are extended to short range
(R < RSR

S ) with simple repulsive terms,

V SR
S (R) = ASR

S + BSR
S [a0/R]N, (10)

where ASR
S = VS(RSR

S ) − BSR
S [a0/R

SR
S ]N is chosen to match

the short-range and mid-range potentials at RSR
S .

C. Magnetic dipole interaction and second-order
spin-orbit coupling

At long range, the coupling V̂ d(R) of Eq. (3) has a simple
magnetic dipole-dipole form that varies as 1/R3 [59,60].
However, for heavy atoms it is known that second-order
spin-orbit coupling provides an additional contribution that
has the same tensor form as the dipole-dipole term and
dominates at short range [61,62]. In the present work, V̂ d(R)
is represented as

V̂ d(R) = λ(R)[ŝ1 · ŝ2 − 3(ŝ1 · �eR)(ŝ2 · �eR)], (11)

where �eR is a unit vector along the internuclear axis and λ

is an R-dependent coupling constant. This term couples the
electron spins of Rb and Cs atoms to the molecular axis. In
particular, it couples the even partial waves (s,d, . . .) with one
another and does the same for the odd partial waves (p,f, . . .).

In the present work the second-order term was evaluated
from electronic structure calculations in a manner similar to
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that described in Ref. [62], using a relativistic configuration-
interaction (RCI) valence bond (VB) method. The molecular
wave function is constructed from atomic orbitals localized
at the different atomic centers. Configuration interaction (CI)
coefficients are obtained by solving a generalized eigenvalue
matrix problem of the relativistic electronic Hamiltonian
based on a nonorthogonal basis set. At short internuclear
separations, the one-electron orbitals from different centers
have considerable overlap or nonorthogonality, which gives
rise to a large exchange interaction and thereby creates the
bond. For large internuclear separations, the molecular wave
function automatically obtains a pure atomic form, which is
the correct asymptotic limit for any molecular wave function.
In our version of the RCI VB method, the atomic Slater
determinants are constructed from one-electron numerical
Dirac-Fock functions for occupied core and valence orbitals
and numerical Sturmian functions for virtual or unoccupied
orbitals. These Sturmian orbitals are obtained by solving
integro-differential Dirac-Fock-Sturm equations [63].

For RbCs, all occupied orbitals up to the 4s2 shell in Rb
and the 5s2 shell in Cs are defined as the core orbitals. The
4p6 orbitals in Rb and 5p6 orbitals in Cs are included in the
core-valence subspace, allowing single and double excitations.
The 5s, 5p, 4d, 6s, and 6p orbitals of Rb and 6s, 6p, 5d, 7s,
and 7p orbitals of Cs are added to the active subspace with
single, double, and triple occupancy. In addition, we included
virtual Sturm 5d, 4f , 7s, and 7p orbitals of Rb and 6d, 4f ,
8s, and 8p orbitals of Cs to complete the active space. Up to
double occupancy is allowed for these virtual orbitals.

Our relativistic valence bond method calculates the second-
order spin-orbit splitting nonperturbatively. The calculation
finds the energetically lowest 	 = 0− and 1 states, which
correspond to the two fine-structure components of the S = 1
a 3�+ Born-Oppenheimer potential. We denote the relativistic
potentials by VS,	(R). The difference V1,1(R) − V1,0− (R) =
−(3/2)λ(R) provides the second-order spin-orbit splitting
shown in Fig. 7. Also shown is the strength of the spin-spin
dipole interaction, which leads to a splitting between the
0− and 1 Born-Oppenheimer potentials with opposite sign
compared to the second-order spin-orbit contribution.

The second-order spin-orbit splitting has a nearly exponen-
tial dependence on R and lies about half-way between the
values for Rb2 and Cs2 molecules calculated previously [62].
The results of the electronic structure calculations were fitted
to a biexponential form, so that the overall form of λ(R) is

λ(R)=Ehα
2

[
Ashort

2SO exp
( − βshort

2SO (R/a0)
)

+A
long
2SO exp

( − β
long
2SO (R/a0)

) + 1

(R/a0)3

]
, (12)

where α ≈ 1/137 is the atomic fine-structure constant. The
parameters obtained from fitting to the electronic structure
calculations are Ashort

2SO = −50.974, A
long
2SO = −0.0525, βshort

2SO =
0.80, and β

long
2SO = 0.28. However, in fitting to the weakly bound

levels, this coupling function was found to be too strong to
reproduce the avoided crossings shown in Fig. 5. We therefore
retained the functional form (12) but allowed the parameter
A

long
2SO to vary in the least-squares fit to the experimental results

described below.
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FIG. 7. (Color online) Study of the second-order spin-orbit

interaction energy V1,1(R) − V1,0− (R) as a function of internuclear
separation R. The solid circles are the result of the ab initio
RCI VB electronic structure calculation. The green dash-dotted line
is a fit to the ab initio values using the functional form of Eq. (12).
The blue line corresponds to the second-order spin-orbit interaction
energy optimized to reproduce the location of the observed magnetic
Feshbach resonances for A

long
2SO = −0.033 10. For comparison, the

absolute value of the corresponding splitting due to the magnetic
dipole-dipole interaction is shown by a red dashed line.

D. Assignment of quantum numbers

At the start of this work, the singlet and triplet scattering
lengths aS and aT for RbCs were unknown within wide ranges
and there was no assignment of quantum numbers to the
Feshbach resonances of Ref. [27]. However, the identification
of a bound state in the |1,1〉 + |3,3〉 channel bound by only
about 110 kHz placed the possible values of aS and aT along
a well-defined curve in the upper-right quadrant of aS,aT

space. We therefore used a prepublication version of the
midrange RbCs potentials of Docenko et al. [28], modified
to allow us to vary the scattering lengths, and carried out
coupled-channel calculations at a number of points along
this line to identify lists of s-wave Feshbach resonances. By
altering the long-range coefficients and inner-wall parameters
of this potential, we were able to produce a resonance pattern
that approximately matched the experimental one and also
gave a pattern of bound states similar to that from free-bound
spectroscopy. A key feature that strengthened our confidence in
this assignment was that it predicted two very weak crossings
between the least-bound state near 110 kHz and two n = −2
states, as shown in Fig. 5. The presence of these crossings
was then confirmed by experiment, as described in Sec. III D
above.

At around this time, the final version of the spectroscopic
potentials of Ref. [28] became available. These had differ-
ent numbers of singlet and triplet bound states from the
preliminary version, but approximately the correct scattering
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TABLE II. Quality of fit to Feshbach bound states and resonance positions. (Top section) A complete list of the fields (in G) for all
calculated s-wave resonances in the region 10 to 560 G using an Lmax = 2 basis, together with quantum labels as explained in the text. Some
calculated resonances have not been observed experimentally. (Center section) Fields used to characterize the ramping states | − 6(2,4)d(2,4)〉
and | − 6(2,4)d(2,3)〉 and their avoided crossings with the least-bound state. (Bottom section) The binding energy of the | − 2(1,3)d(0,3)〉
bound state at 181.18 G, just below its crossing with | − 6(2,4)d(2,4)〉. For all states here, the total angular projection quantum number M is
4. The uncertainties quoted here are those that define the weights used in our least-squares fit.

Bcalc Bobs Bobs − Bcalc Uncertainty Quantum labels

87.25 | − 2 (1,3) d (−1,3)〉
123.09 | − 2 (1,3) d (0,2)〉
181.63 181.64 0.01 0.10 | − 6 (2,4) d (2,4)〉
197.07 197.06 −0.01 0.046 | − 6 (2,4) d (2,3)〉
217.33 217.34 0.01 0.047 | − 6 (2,4) d (2,2)〉
225.47 225.43 −0.04 0.034 | − 6 (2,4) d (1,4)〉
242.25 242.29 0.04 0.047 | − 6 (2,4) d (2,1)〉
247.28 247.32 0.04 0.048 | − 6 (2,4) d (1,3)〉
272.81 272.80 −0.01 0.043 | − 6 (2,4) d (2,0)〉

273.45 0.04
273.69 273.76 0.07 0.043 | − 6 (2,4) d (1,2)〉
279.02 279.12 0.10 0.048 | − 6 (2,4) s (2,2)〉
286.68 286.76 0.08 0.047 | − 6 (2,4) d (0,4)〉
308.45 308.44 −0.01 0.045 | − 6 (2,4) d (1,1)〉
310.71 310.69 −0.02 0.056 | − 6 (2,4) s (1,3)〉
314.56 314.74 0.18 0.11 | − 6 (2,4) d (0,3)〉
352.74 352.65 −0.09 0.34 | − 6 (2,4) s (0,4)〉
353.57 | − 6 (2,4) d (0,2)〉
381.28 381.34 0.06 0.047 | − 6 (2,4) d (−1,4)〉
408.63 | − 2 (1,3) d (1,2)〉
422.04 421.93 −0.11 0.047 | − 6 (2,4) d (−1,3)〉
552.75 | − 6 (2,4) d (−2,4)〉
185.24 185.34a 0.10 0.35 | − 2 (1,3) d (0,3)〉
189.47 189.66b 0.19 0.10 | − 2 (1,3) d (1,1)〉

Bcalc Bobs Bobs − Bcalc Uncertainty

B(2,4) at −1.02 MHz 181.729 181.758 0.030 0.03
B(2,3) at −0.84 MHz 196.978 196.946 −0.019 0.02
B+

(2,4) at −0.030 MHz 181.381 181.380
B−

(2,4) at −0.210 MHz 182.358 182.316 −0.042 0.03
B−

(2,4) − B+
(2,4) 0.977 0.936 −0.041 0.07

B+
(2,3) at −0.030 MHz 196.991 196.950

B−
(2,3) at −0.185 MHz 197.300 197.278 −0.022 0.03

B−
(2,3) − B+

(2,3) 0.309 0.328 0.019 0.06

−Ecalc −Eobs −Eobs + Ecalc Uncertainty

E−2
(0,3) at 181.18 G (MHz) 2.767 2.525 −0.242 0.10

aResonance position extrapolated from avoided crossing at 185.17 G.
bResonance position extrapolated from avoided crossing at 189.50 G.

lengths. We therefore used this potential to produce resonance
patterns and a bound state map of the region immediately
below the lowest threshold. This gave a good match to the
experimentally observed Feshbach resonance positions, but
placed the two n = −2 states that cross the least-bound state
between 180 and 190 G at fields about 3 G too low. In addition,
the avoided crossings between the n = −6 states and the
least-bound state were broader than was found experimentally.
We therefore embarked on a two-part least-squares refinement,
beginning from the potential of Ref. [28], as described
below.

E. Least-squares refinement

The Feshbach bound states and resonance positions are
strongly sensitive to the long-range potential and to the
scattering lengths, but only weakly sensitive to the details of
the potential in the well region. The Fourier transform spectra,
by contrast, are very sensitive to the well region. The potentials
are determined in an iterative loop using the data sequentially,
as was successfully applied, for example, in Ref. [46]. First,
in the least-squares fit to weakly bound states and Feshbach
resonance positions, the potential curves in the central region
were held fixed but the long-range coefficients C6 and C8 were
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allowed to vary. In addition, the parameters BSR
0 and BSR

1 were
varied, allowing the inner walls of the two potential curves
to move sufficiently to adjust the singlet and triplet scattering
lengths independently of C6 and C8. The scaling factor for
the long-range part of the second-order spin-orbit coupling
was also varied in this step. In the second step, the long-range
function was held fixed and the inner parts of the potentials
were varied to fit the large set of results from Fourier transform
spectroscopy, adding as data the uncoupled last-bound levels
constructed from the fit in the first step. Two iterations were
sufficient to achieve convergence between the two different
least-squares procedures.

The propagator approach to locating bound states and
resonances, implemented in the BOUND and FIELD programs,
is fast enough to be incorporated in a least-squares fitting
program. Nevertheless, it is still slow enough that these
calculations form the major time-consuming step in a least-
squares refinement procedure. Furthermore, the parameter
set used is highly correlated. Under these circumstances, a
fully automated approach to fitting is unreliable: individual
least-squares steps often reach points in parameter space
where the levels have moved too far to be identified reliably,
particularly in the early stages of fitting. We therefore carried
out this stage of the fitting using the I-NOLLS package [64]
(interactive nonlinear least-squares), which gives the user
interactive control over step lengths and assignments as the
fit proceeds. This allowed us to converge on a minimum in the
sum of weighted squares in a relatively small number of steps.

The measurements on weakly bound states described
above complement the measurements of the positions of
Feshbach resonances. In particular, (i) the position of the
least-bound state is sensitive to the background scattering
length in the incoming |1,1〉 + |3,3〉 channel; (ii) the strengths
of the avoided crossings between the least-bound state and
the ramping n = −6 states from the (2,4) threshold are sensi-
tive to the magnitude of the second-order spin-orbit coupling;
(iii) the positions of the n = −2 states associated with the (1,3)
threshold, observed through their avoided crossings with the
least-bound state, are sensitive to the long-range C6 coefficient,
but relatively uncontaminated by the influence of C8, which
becomes important for deeper levels. In combination with the
Feshbach resonances due to n = −6 states, whose position
is significantly influenced by the C8 coefficient, the n = −2
levels open the way for C6 and C8 to be determined separately.

Once we were confident of the assignment of the weakly
bound states and Feshbach resonances, we therefore carried
out least-squares refinement of the potential using the I-NOLLS

package in the five-parameter space BSR
0 , BSR

1 , C6, C8, A
long
2SO.

The set of experimental results used for this stage of fitting
is listed in Table II. It consists of the magnetic fields for
all the measured s-wave resonances, except the resonance at
273.45 G, which we attribute to a bound state of g character,
and is supplemented by a selection from the measurements of
the binding energies: (i) two additional resonance positions for
the n = −2 states, obtained from the positions of the avoided
crossings between the n = −2 states and the least-bound
state by a (very short) extrapolation to zero energy using the
calculated slopes of the n = −2 states; (ii) fields at which the
bound states |−6(2,4)d(2,4)〉 and |−6(2,4)d(2,3)〉 exist near 1
MHz; (iii) four fields at which bound states exist near 110 kHz,

TABLE III. Potential parameters and derived quantities resulting
from least-squares fitting to Feshbach bound states and resonance
positions.

95% confidence
Fitted value limit Sensitivity

BSR
0 (Eh) 6960.7 710 0.5

BSR
1 (Eh) 19 793.3 110 0.1

A
long
2SO −0.0331 0.0028 0.0001

C6 (Eha
6
0 ) 5693.7056 2.2 0.0004

C8 (Eha
8
0 ) 796 487.36 1900 0.3

Derived
parameters Value Uncertainty

aS (a0) 997 11
aT (a0) 513.3 2.2

designated B+
(mRb,mCs)

and B−
(mRb,mCs)

, just above and just below
the avoided crossings between the least-bound state and the
|−6(2,4)d(2,4)〉 and |−6(2,4)d(2,3)〉 states (to improve the
determination of the second-order spin-orbit coupling, two of
these were included as field differences B− − B+ between
levels just above and just below each crossing); (iv) the
energy of the |−2(1,3)d(0,3)〉 state at 181.18 G, just below
its crossing with |−6(2,4)d(2,4)〉. The quantity optimized
in the least-squares fits was the sum of squares of residuals
[(observed − calculated)/uncertainty], with the uncertainties
listed in Table II.

F. Final potential

At the conclusion of the two-part least-squares refinement
procedure described above, we arrived at the potentials given
in Tables III, IV, and V. Table III gives the parameters from
fitting to the Feshbach bound states and resonance positions,
whereas Tables IV and V give the full potentials for the singlet
and triplet states, respectively.

Although the Feshbach bound states and resonance posi-
tions do allow all five parameters in Table III to be extracted,
they are very highly correlated. The table therefore gives both
95% confidence limits and parameter sensitivities as defined
by Le Roy [65]. The 95% confidence limits are correlated
properties that describe the uncertainty in an individual
parameter, but the parameters need to be specified to within
their sensitivities, not their confidence limits, in order to
reproduce the results of the calculations.

The new version of the electronic potentials for the RbCs
ground-state system reproduces the Fourier transform spectra
as accurately as the original version of Ref. [28], with the
important improvement that it can also accurately reproduce
properties relating to the very top of the electronic potentials,
such as Feshbach spectra. There are some remaining deviations
between the observed and calculated positions of the n = −2
states, as shown in the lower panels of Fig. 5, but in view of the
possible systematic errors in the corresponding measurements
described in Secs. III E and III D above, these are not a great
cause for concern.

The final results for the resonance positions and weakly
bound states are listed in Table II, together with the quality of
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TABLE IV. Parameters of the analytic representation
of the potential of state X 1�+. The energy reference is
the dissociation asymptote.

R < RSR = 0.3315 nm

A
SR,a
0 /hc −0.407 634 031 × 104 cm−1

BSR
0 /hc 1.527 706 30 × 109 cm−1

N0 7

RSR � R � RLR = 1.150 nm

b 0.09
Rm 0.442 708 150 nm
a0 −3836.365 09 cm−1

a1 −0.036 998 071 664 539 479 4 cm−1

a2 0.447 519 742 785 341 805 × 105 cm−1

a3 −0.134 065 881 674 135 253 × 105 cm−1

a4 −0.112 246 913 875 781 145 × 106 cm−1

a5 −0.680 373 468 487 243 954 × 105 cm−1

a6 0.124 395 856 928 352 383 × 106 cm−1

a7 −0.527 808 915 105 630 062 × 106 cm−1

a8 0.160 604 050 855 185 674 × 107 cm−1

a9 0.856 669 313 055 434 823 × 107 cm−1

a10 −0.423 220 682 973 604 128 × 108 cm−1

a11 −0.846 286 860 630 152 822 × 108 cm−1

a12 0.775 110 557 475 278 497 × 109 cm−1

a13 0.208 102 060 193 851 382 × 109 cm−1

a14 −0.762 262 944 271 048 737 × 1010 cm−1

a15 0.645 280 096 247 728 157 × 1010 cm−1

a16 0.358 089 708 848 128 967 × 1011 cm−1

a17 −0.685 156 406 423 631 516 × 1011 cm−1

a18 −0.340 359 743 040 435 295 × 1011 cm−1

a19 0.204 117 122 912 590 576 × 1012 cm−1

a20 −0.207 876 500 106 921 722 × 1012 cm−1

a21 0.712 777 331 768 994 293 × 1011 cm−1

R > RLR

C6 5693.7056 Eha
6
0

C8 796 487.36 Eha
8
0

C10 95 332 817 Eha
10
0

Aex/hc 0.376 646 85 × 103 cm−1

γ 5.427 916
β 1.0890

aThis parameter is set to give continuity between the short-
range and midrange functional forms.

fit to the experimental data and the quantum label assignments.
The calculated s-wave scattering length and its match to the
resonance positions is shown in Fig. 8, together with an
overview of the bound states responsible for the resonances.

The singlet and triplet scattering lengths aS and aT obtained
from the fitted potentials are included in Table III, together with
their fully correlated uncertainties, calculated as described in
Ref. [65]. The background scattering length derived for the
|1,1〉 + |3,3〉 channel is 651 ± 10a0, calculated at B = 500 G
far from resonances. We have also calculated the binding
energy of the least-bound state for L = 0 at B = 211 G (this
value was chosen to represent a value far from resonance within
the region for which experimental values are available) and
found it to be 110 ± 2 kHz × h.

TABLE V. Parameters of the analytic representation
of the potential of state a 3�+. The energy reference is
the dissociation asymptote.

R < RSR = 0.522 nm

A
SR,a
1 /hc −0.500 680 370 × 103 cm−1

BSR
1 /hc 4.344 138 85 × 109 cm−1

N1 7

RSR � R � RLR = 1.200 nm

b 0.06
Rm 0.621 937 76 nm
a0 −259.335 87 cm−1

a1 0.146 618 857 369 934 491 4 cm−1

a2 0.525 743 927 693 154 455 × 104 cm−1

a3 −0.122 790 966 318 838 728 × 105 cm−1

a4 0.175 565 797 136 193 828 × 104 cm−1

a5 0.173 795 490 253 058 379 × 105 cm−1

a6 −0.119 112 720 845 007 316 × 105 cm−1

a7 −0.245 659 148 870 101 490 × 105 cm−1

a8 0.303 380 094 883 701 415 × 106 cm−1

a9 −0.100 054 913 157 079 869 × 107 cm−1

a10 −0.296 340 813 141 656 632 × 106 cm−1

a11 0.997 302 450 614 721 887 × 107 cm−1

a12 −0.272 673 123 492 070 958 × 108 cm−1

a13 0.323 269 132 716 538 832 × 108 cm−1

a14 −0.147 953 587 185 832 486 × 108 cm−1

R > RLR

C6 5693.7056 Eha
6
0

C8 796 487.36 Eha
8
0

C10 95 332 817 Eha
10
0

Aex/hc 0.376 646 85 × 103 cm−1

γ 5.427 916
β 1.0890

aThis parameter is set to give continuity between the short-
range and midrange functional forms.

G. Independent tests and predictions

1. Resonances in p-wave scattering

As described above, some of the resonances observed by
Pilch et al. [27] do not appear for the Rb + Cs mixture at
the lower temperatures studied in the present work and are
assigned as resonances in p-wave scattering. When Lc = 1,
MLc can take values of −1, 0, or +1, so M can be 3, 4,
or 5 at the |1,1〉 + |3,3〉 threshold with MF = 4. Figure 9
compares the observed p-wave resonance positions with the p-
wave scattering lengths for these three values of M , calculated
using the fitted potentials. It may be seen that the observed
resonances correspond quite well to a subset of the calculated
resonances, although it is not altogether clear why Pilch et al.
[27] observed some p-wave resonances and not others.

2. Resonances at the |2, − 1〉 + |3,3〉 threshold

In addition to the resonances at the lowest threshold, Pilch
et al. [27] observed two resonances at an excited threshold
with the Rb atoms in their |2, − 1〉 state, at 162.3 and 179.1 G.
At this threshold inelastic scattering is possible, and trap loss
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FIG. 8. (Color online) Weakly bound states of RbCs for M = 4 at fields up to 550 G, calculated using the final fitted potentials, together
with the scattering length at the |1,1〉 + |3,3〉 threshold, calculated at E = 160 nK. Bound states are plotted in a color corresponding to their
value of MF , as shown on the figure. States arising from L = 2 (d states) are shown as solid lines, and from L = 0 (s states) are shown as
dashed lines. The resonance positions are marked on the scattering length plot as vertical lines with the same color as the bound state that they
arise from. The slanted text on the left-hand axis and below the bottom axis indicates which vibrational and hyperfine manifold the L = 2
bound states arise from. The least-bound state |−1(1,3)s(1,3)〉 is within the thickness of the zero line on this scale. The observed positions of
incoming s-wave resonances are shown as arrows above the plot.

can occur through either two-body or three-body collisions.
The scattering length is complex, a(B) = α(B) − iβ(B), and
the inelastic collision rate is proportional to β(B). Figure 10
shows the real and imaginary parts of the s-wave and p-wave
scattering lengths at this threshold, calculated using the fitted
potentials, and compares them to the experimental resonance
positions. It may be seen that the two observed resonances
are in good agreement with the calculation, with the high-field
resonance arising from s-wave scattering and the low-field
resonance from p-wave scattering.
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FIG. 9. (Color online) The p-wave scattering lengths at the
|1,1〉 + |3,3〉 threshold for the three values of M allowed for p-wave
scattering of Rb + Cs, calculated at E = 7 μK using the final fitted
potentials. Results for MF = 3, 4, and 5 are shown as blue (dark gray),
magenta (gray), and green (light gray), respectively. The observed
positions of p-wave resonances are shown as arrows at the top of the
graph.

3. Unassigned resonance

As noted above, there is one resonance observed in s-wave
scattering, at 273.45 G, that does not appear in coupled-channel
calculations on the fitted potential using a basis set with
Lmax = 2. However, there are numerous additional resonances
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FIG. 10. (Color online) The real and imaginary parts of the
complex scattering length at the Rb |2, − 1〉 + Cs |3,3〉 threshold,
calculated using the final fitted potentials: s wave (red, dark gray,
left-hand axis) and p-wave (green, light gray, right-hand axis). The
observed resonance positions are shown as arrows at the top of the
graph. The three components of the p-wave scattering length are
indistinguishable on this scale.
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FIG. 11. (Color online) RbCs scattering length at the |1,1〉 +
|3,3〉 threshold at fields above 560 G, calculated at E = 160 nK
using the final fitted potential. Resonance positions are marked by
vertical lines, with the value of MF of the corresponding bound state
indicated using the same color scheme as in Fig. 8.

that appear when basis sets including more partial waves are
used. In particular, a calculation including L = 4 functions
yields an additional resonance at 275.07 G that arises from the
| − 6 (2,4) g (−2,4)〉 state. The exact position of this resonance
is quite sensitive to variations of the potential within its
uncertainty and is plausibly responsible for the otherwise
unassigned resonance.

4. High-field scattering

The resonances listed in Table II, at fields up to 553 G,
include all those expected from |−6(2,4)d〉 states. However,
there are additional resonances that appear at higher field,
mostly due to s and d states of |−5(2,3)〉. Some of the
corresponding bound states appear in Fig. 8. Figure 11 shows
the s-wave scattering length at fields up to 1000 G; in particular,
the comparatively wide resonance near 790 G (with width
� = 4.2 G) is due to the |−5(2,3)s(2,2)〉 state. This wide
resonance may be useful for tuning interspecies scattering
properties and for studying few-body properties such as
interspecies Efimov resonances [66]. In particular, since there
is a very broad Feshbach resonance for Cs in state |3,3〉 with a
pole at 787 G [67], Rb + Cs mixtures may make it possible to
study Efimov physics near overlapping Feshbach resonances.

V. OUTLOOK

We have studied and modeled interspecies scattering in
an ultracold Rb-Cs gas mixture with the aim of finding an
assignment for the observed interspecies Feshbach resonances
and in particular to understand the spectrum of weakly bound
RbCs molecules.

Our results are of great importance for the production
of ultracold samples of heteronuclear molecules and for the
generation of dipolar quantum gases made of RbCs molecules.
With recent work on optical one- and two-photon spectroscopy
[26] we are now poised to perform stimulated ground-state
transfer using the STIRAP technique. We expect that a
three-dimensional optical lattice will allow us to maximize
the molecule creation and state transfer efficiencies, as in
recent work on Cs2 [24]. As detailed in Ref. [25], interspecies
Feshbach tuning will be used to bring a superfluid sample of Rb
atoms into overlap with a single-atom-per-site Mott insulator
for Cs, in order to optimize the Rb-Cs pair-creation efficiency.
With sufficiently high efficiencies, the creation of a dipolar
quantum gas of RbCs molecules is within reach.
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