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Abstract

We present quantum-theoretical studies of collisions between an open-shell S-state atom and a

2Π-state molecule in the presence of a magnetic field. We analyze the collisional Hamiltonian and

discuss possible mechanisms for inelastic collisions in such systems. The theory is applied to the

collisions of the nitrogen atom (4S) with the OH molecule, with both collision partners initially

in fully spin-stretched (magnetically trappable) states, assuming that the interaction takes place

exclusively on the two high-spin (quintet) potential energy surfaces. The surfaces for the quintet

states are obtained from spin-unrestricted coupled-cluster calculations with single, double, and

noniterative triple excitations. We find substantial inelasticity, arising from strong couplings due

to the anisotropy of the interaction potential and the anisotropic spin-spin dipolar interaction.

The mechanism involving the dipolar interaction dominates for small magnetic field strengths and

ultralow collision energies, while the mechanism involving the potential anisotropy prevails when

the field strength is larger (above 100 G) or the collision energy is higher (above 1 mK). The

numerical results suggest that sympathetic cooling of OH by collisions with ultracold N atoms will

not be efficient.
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I. INTRODUCTION

The first experimental realization of Bose-Einstein condensation in a dilute gas in 1995

[1] opened up a novel and fast-growing field of research on cold and ultracold matter. At

temperatures below about 10−6 K, novel properties emerge in which the quantum nature

of atoms and molecules is crucial. Although the original experiments involved quantum-

degenerate states in atomic systems, it was soon realised that molecules, especially those

with a permanent dipole moment, offer an additional range of applications in physics and

chemistry. These include development of new frequency standards, tests of fundamental

physical concepts such as parity and time-reversal violation [2, 3], spectroscopic measure-

ments of unprecedented accuracy [4, 5], quantum information processing,[6, 7], and control

of chemical reactions with state-selected reagents and products [8–10].

In contrast to atoms, which nowadays can be cooled relatively easily by laser Doppler

cooling and evaporative cooling [11], molecules are incomparably more challenging because

of their complicated internal structure. Two main classes of methods have been established

to produce cold molecules: direct methods, in which molecules are cooled from high tem-

perature by means of a buffer gas or external fields, and indirect methods, in which cold

molecules are formed from precooled atoms by photoassociation or magnetoassociation.

Indirect methods can now produce ground-state molecules at temperatures below 1 µK

[12–14]. It has been shown recently that, for KRb, the rates of chemical reactions change

spectacularly between different nuclear spin states and can be dramatically affected by

applied electric fields [10]. However, indirect methods are so far restricted to alkali-metal

dimers and it will be challenging to extend them to other regions of the periodic table [15].

Direct cooling methods can be applied to a much larger variety of chemically interesting

molecules, including OH, NH3, CO and LiH [16–19]. Stark deceleration, pioneered by Meijer

and coworkers [16], can be applied to polar molecules with large Stark effects, while helium

buffer-gas cooling [20] has been particularly successful for paramagnetic species. However,

the temperatures so far achieved with direct methods are limited to tens of millikelvin, which

is not cold enough to achieve quantum degeneracy. The development of a second-stage

cooling method for such molecules is the biggest current challenge in the field. One of the

most promising proposals is to use sympathetic cooling, which is based on the conceptually

simple idea of bringing cold molecules into thermal contact with a bath containing ultracold
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atoms. So far sympathetic cooling has been successfully realized for ions [21, 22] and some

neutral atoms [23, 24], but not for neutral molecules.

Linear molecules in spatially degenerate electronic states (Π, ∆, etc.) are particularly

attractive for Stark deceleration, as they exhibit first-order Stark effects at moderate electric

fields (in contrast to molecules in Σ states, which exhibit only second-order Stark effects).

After deceleration, the molecules can be loaded into traps where they are confined by static

electric or magnetic fields. Such static traps are not the only way to confine cold molecular

species [25], but they are experimentally the most accessible. In addition, atoms in open-

shell S states (such as alkali-metal atoms, H(2S), N(4S), He(3S), and Cr(7S)), can be held in

magnetic traps and may be suitable as coolants.

Trapping with a static field is possible only if the atom or molecule is in a low-field-seeking

state. However, the absolute ground state is always high-field-seeking. Thus, in addition to

the elastic collisions that lead to thermalization of the sample, there is always the possibility

of inelastic collisions that transfer the colliding partners to a lower state and release kinetic

energy. Inelastic collisions eject molecules from the trap and may lead to the heating of

the sample. The success of sympathetic cooling therefore depends on the ratio of elastic to

inelastic events, which should preferably be as large as possible.

Molecular sympathetic cooling was first suggested for Rb+NH(3Σ−) [26]. Subsequently,

potential energy surfaces and the appropriate collision cross sections have been calculated

for a variety of candidate systems, including Mg+NH(3Σ−) [27], Li+LiH(1Σ+) [28, 29],

Rb+NH3 [30] and He+CH2(
3B1) [31]. Rb+ND3 has also been explored experimentally [32],

though the inelastic collision rate in an electric field turned out to be too high for cooling.

Studies of cold collisions with linear molecules in a Π state in the presence of external

fields have mostly been limited to cases when the second colliding partner is closed-shell. In

particular, Tscherbul et al. [33] have investigated OH+He collisions and have shown how the

inelastic cross sections can be reduced by combining electric and magnetic fields to eliminate

certain inelastic channels. Collisions of rotationally excited OH with He in the presence of

electromagnetic field were analyzed by Pavlovic et al. [34], while Bohn and coworkers [35]

studied cold collisions between two OH molecules with long-range dipole-dipole interactions

and concluded that the evaporative cooling of OH would be challenging. Lara et al. [36]

carried out theoretical studies of cold collisions of OH with Rb, taking account of multiple

potential energy surfaces and including the hyperfine structure of OH. However, they did
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not include external field effects.

There is thus a need for rigorous quantum studies of collisions between a Π-state molecule

and an open-shell S-state atom in the presence of external fields. In this paper, we extend

the theory presented in Refs. [36, 37] to handle this case. This theory will be applicable to

a broad set of experimentally important systems, including interactions of molecules such

as OH, NO, CH and CN with alkali-metal and other magnetically trappable atoms. As

an example, we present numerical results for collisions between OH(2Π) and N(4S) in a

magnetic field, with both colliding species initially in their fully spin-stretched low-field-

seeking states. OH was one of the first molecules to be decelerated and trapped [19, 38], and

many pioneering experiments with it have been reported. Gilijamse et al. [19] carried out

a crossed-beam experiment, colliding velocity-controlled OH molecules with Xe atoms; they

were able to resolve state-to-state inelastic cross sections as a function of the collision energy.

Similar experiments with improved sensitivity have recently been performed for OH colliding

with Ar, He, and D2 [39–41]. An experiment to collide two velocity-controlled beams, of OH

and NO, is in preparation [42]. Sawyer et al. [38] have measured energy-dependent cross

sections for collisions between magnetically trapped OH and slow D2 molecules.

Tscherbul et al. [43] have recently suggested that spin-polarized nitrogen atoms are a

promising coolant for sympathetic cooling experiments. N atoms at T >1 mK are sta-

ble against collisional relaxation between different Zeeman levels for a wide range of mag-

netic field strengths. Moreover, the low polarizability of the N atom leads to potential en-

ergy surfaces with an anisotropy much smaller than is usually encountered for interactions

with alkali-metal atoms. Theoretical and experimental studies for collisions of magnetically

trapped N(4S) and NH(3Σ−) have been reported [44, 45], showing that the trap loss in

this system is fairly small and is caused mostly by the anisotropic magnetic dipole-dipole

interaction between the atomic and molecular spins.

This paper is organized as follows. In Sec. II we describe calculations of the high-spin

(quintet) potential energy surfaces resulting from interaction of the N(4S) atom with the

OH(2Π) molecule. In Sec. III we describe the effective Hamiltonian used in the dynamical

calculations and give the expressions for the matrix elements of the Hamiltonian. In Sec. IV

we discuss the results of the scattering calculations and their implications for sympathetic

cooling of OH by N atoms. Finally, Sec. V summarizes and concludes the paper.
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II. POTENTIAL ENERGY SURFACES

The interaction between the N(4S) atom and the OH(2Π) molecule occurs on four adia-

batic surfaces: 3A′, 3A′′, 5A′, and 5A′′. The triplet surfaces have been studied extensively

to investigate the reaction N+OH→NO+H that can take place on the 3A′′ surface [46–

51]. This reaction is the major source of the NO radical in the interstellar medium and

is one of the key elementary processes in nitrogen chemistry. Formation of NO is barrier-

less, via a stable intermediate complex NOH, and is highly exothermic with 1.83 eV energy

release. The other possible reaction channel N+OH→NH+O is energetically forbidden for

low-energy collisions. If we neglect minor spin-orbit coupling effects between the triplet and

quintet states, the quintet surfaces are non-reactive. To our knowledge, the quintet surfaces

of N+OH have not been reported in the literature thus far.

We have carried out calculations of the quintet surfaces using the unrestricted ver-

sion of the coupled-cluster method with single, double, and noniterative triple excitations

[UCCSD(T)]. The unrestricted version was chosen to circumvent the problem of the lack

of size-consistency for the interaction between two open-shell systems in spin-restricted

coupled-cluster calculations [52]. The highly accurate aug-cc-pV5Z basis set of Dunning

[53] was employed for all atoms and the counterpoise procedure [54] was used to correct the

computed interaction energies for basis-set superposition error. The molpro suite of codes

[55] was used in the electronic structure calculations.

Both the 5A′ and 5A′′ potential energy surfaces were computed on a grid of points in

Jacobi coordinates (R, θ), where R is the intermolecular distance measured from the centre

of mass of 16OH to the 14N atom and θ is the angle between the vector pointing from O

to H in the OH molecule and the vector pointing from the centre of mass of OH to the N

atom. The angle θ = 0◦ thus corresponds to the linear O–H—N arrangement. The distance

R was varied from 4.0 to 12.0 a0 with an interval of 0.5 a0 and from 12.0 to 20.0 a0 with

an interval of 1.0 a0. The angular grid points was chosen as the set of points for 11-point

Gauss-Lobatto quadrature, which include points at θ = 0 and 180◦. The OH bond length

was kept fixed at the monomer equilibrium value of 1.834 a0.

Contour plots of the 5A′ and 5A′′ potential energy surfaces are shown in Fig. 1. The

shapes of the two quintet potentials are quite similar. The global minima appear for the

linear geometry O–H—N and have a depth of 120.6 cm−1. There are also local minima 71.5
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cm−1 deep, which occur at the linear N—O–H configuration. Note that for linear geometries

the 5A′ and 5A′′ states are degenerate, so these minima are common to the two surfaces.

The set of stationary points of the potentials is completed by saddle points between the two

minima, which are located at slightly different positions for the 5A′ and 5A′′ states. Table 1

gives the positions of the stationary points on the surfaces and the corresponding interaction

energies. The shapes of the quintet potential energy surfaces for N+OH closely resemble

the high-spin (quartet) surface for N+NH reported by Żuchowski and Hutson [44], although

the global minimum for N+OH is about 30 cm−1 deeper than for N+NH.

To perform quantum scattering calculations, it is necessary to expand the 5A′ and 5A′′ sur-

faces in terms of associate Legendre polynomials P
|q|
k (cos θ), or equivalently reduced Wigner

functions dk
0q(θ). For the interaction of an S-state atom with a Π-state molecule, there are

nonvanishing terms with q = 0 and q = 2. The sum of the 5A′ and 5A′′ potentials is expanded

in terms of polynomials with k = 0,

1

2
[VA′(R, θ) + VA′′(R, θ)] =

∞∑

k=0

P 0
k (cos θ)Vk0(R) =

∞∑

k=0

dk
00(θ)Vk0(R), (1)

while the difference between the 5A′ and 5A′′ potentials is expanded in terms of polynomials

with k = 2,

1

2
[VA′(R, θ)− VA′′(R, θ)] =

∞∑

k=2

P 2
k (cos θ)Vk2(R) =

∞∑

k=2

√
(k + 2)!

(k − 2)!
dk

02(θ)Vk2(R). (2)

We think that defining the Vkq in this way is a very bad idea, because it is

inconsistent with all previous work that we can find on such systems, including

Alexander, Hutson and Tscherbul. It is also inconsistent with the base9, which

will cause confusion. It would be much better to use the definition in terms

of dk
0q. It makes no difference for k = 0 and only needs changing the numbers

for Ck2
n and the depth of V22(R).] Note that the definition of the difference potential,

either VA′ − VA′′ or VA′′ − VA′ , depends in general on the symmetry of the electronic wave

functions of the interacting subsystems [56, 57]. The radial functions Vkq(R) are obtained by

projecting the sum or difference onto the appropriate Legendre polynomials, using Gauss-

Lobatto quadrature to perform the numerical integration. Prior to this projection, the

interpolation to obtain VA′(R, θ) and VA′′(R, θ) at an arbitrary value of R is done for each

value of θ using the reproducing kernel Hilbert space (RKHS) procedure [58]. For the quintet
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states of N(4S)+OH(2Π), the dominant anisotropic term in the expansion (1) is V20(R) with

a well depth of approximately 28 cm−1, while the dominant term in the expansion (2) comes

from V22(R), but the latter is less than 6 cm−1 deep.

To improve the description of the potential at large R, we use an analytic representation

in this region. Each radial component Vkq(R) is expanded at long range in terms of Van der

Waals coefficients,

Vkq(R) = −
∑
n=6

Ckq
n /Rn. (3)

The expressions for the Ckq
n coefficients have been given by Skomorowski and Moszynski

[57]. We calculated the Van der Waals constants up to and including n=8, using the method

described in Ref. [57]. The results are listed in Table 2. For a weakly polarizable system

such as N+OH, the neglect of higher-order coefficients with n > 8 is fully justified. We used

the switching function of Janssen et al. [52], with parameters a = 15 a0 and b = 25 a0, to

join the asymptotic form based on the long-range coefficients and the RKHS interpolation

of the ab initio points.

III. COLLISION HAMILTONIAN

A. Effective Hamiltonian

We consider the case of an atom A(2s1+1S), interacting with a diatomic molecule BC(2Π),

in the presence of an external magnetic field B. The direction of the field defines the

laboratory (space-fixed) Z-axis. The system A–BC is described in Jacobi coordinates, with

the r vector connecting the heavier and lighter of the atoms B and C, and R connecting

the centre of mass of BC and the atom A. By convention, lower-case and capital letters

are used to represent the quantum numbers of the monomers and of the complex as a

whole, respectively. The subscripts 1 and 2 refer to the monomers A and BC, respectively.

For simplicity, the diatom will be treated as a rigid rotor in vibrational state v, although

generalization to include its vibrations is straightforward.

The Hamiltonian describing the nuclear motions of A+BC in the presence of magnetic

field B can be written

Ĥ = − ~
2

2µ
R−1 d2

dR2
R +

L̂2

2µR2
+ Ĥmon + Ĥ12, (4)
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where L̂ is the space-fixed angular momentum operator describing the end-over-end rotation

of A and BC about one another and µ is the reduced mass of the complex. Ĥmon contains all

terms describing the isolated monomers, i.e. Ĥmon = Ĥ1 + Ĥ2. Ĥ12 describes the interaction

between the monomers:

Ĥ12 = Ĥs1s2 + V̂ (R, θ). (5)

Here, Ĥs1s2 accounts for the direct dipolar interaction between the magnetic moments due to

the unpaired electrons of the monomers, and V̂ is the intermolecular interaction potential.

If s1 6= 0 and hyperfine terms are neglected, the Hamiltonian for an isolated atom in the

state 2s1+1S is fully determined by the Zeeman interaction between the electron spin and the

external magnetic field,

Ĥ1 = gSµB ŝ1 · B̂, (6)

where gS is the electron g-factor, µB is the electron Bohr magneton, and ŝ1 is the spin

operator.

The analogous Hamiltonian for a 2Π molecule can be written [59]

Ĥ2 = Ĥrso + ĤZ,2 + Ĥλ, (7)

where the rotational and spin-orbit contributions within the Π state are collapsed into the

first term,

Ĥrso ≡ Bv n̂2 + Av l̂ · ŝ2. (8)

Bv and Av are the molecular rotational and spin-orbit constants, respectively, and n̂ is the

operator of the mechanical rotation of BC, which can be expressed as ̂ − l̂ − ŝ2, where ̂,

l̂ and ŝ2 are the operators for the rotational, electronic orbital and spin angular momenta,

respectively. Ĥrso can be rewritten

Ĥrso = (Av + 2Bv) l̂z ŝ2z + Bv

[
̂2 + l̂2 + ŝ2

2 − 2̂ · ŝ2 + l̂2z − 2̂z l̂z

]
. (9)

The terms l̂2, ŝ2
2 and l̂2z simply shift all the levels by a constant amount and are omitted below.

The term Ĥλ, responsible for the Λ-doubling of the rotational levels of BC, is represented

by the effective Hamiltonian

Ĥλ =
∑
q=±1

e−2iqφr
[
(pv + 2qv)T

2
2q(̂, ŝ2)− qvT

2
2q(̂, ̂)

]
, (10)
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where φr is the azimuthal angle associated with the electron orbital angular momentum

about the molecular axis defined by r, while pv and qv are empirical parameters. In Eq.

(10), the second-rank tensor T2
q that couples two vectors k1 and k2 is defined as

T2
q(k1,k2) =

∑
q1,q2

〈1, q1; 1, q2|2, q〉T1
q1

(k1) T1
q2

(k2), (11)

where 〈1, q1; 1, q2|2, q〉 is a Clebsch-Gordan coefficient and the first-rank tensor components

are T1
0(k) = kz and T1

±1(k) = ∓(kx ± i ky)/
√

2. If only the electron spin and orbital

contributions are taken into account, the Zeeman term is

ĤZ,2 = gSµB ŝ2 · B̂ + g′LµB l̂ · B̂, (12)

where g′L is the orbital g-factor. For diatomic molecules of multiplicity higher than 2 (for

example 3Π), an additional term describing the intramolecular spin-spin interaction must

be included in the monomer Hamiltonian (7).

The spin-spin dipolar interaction can conveniently be written [59]:

Ĥs1s2 = −g2
Sµ2

B(µ0/4π)
√

6
∑

q

(−1)q T2
q(ŝ1, ŝ2) T2

−q(C), (13)

with T2
q(C) = C2

q (θ, φ)R−3, where C2
q is a spherical harmonic function in the Racah nor-

malization and (R, θ, φ) is the set of relative spherical coordinates of the ‘composite’ atomic

and diatomic electronic spins in the space-fixed frame. µ0 is the magnetic permeability of

the vacuum.

B. Basis sets and matrix elements

The state of the BC molecule can conveniently be described using Hund’s case (a) basis

functions |λ; s2σ2; jωmj〉, where s2 is the electron spin with projection σ2 onto the molec-

ular axis (body-fixed z axis), λ is the (signed) projection of the electronic orbital angular

momentum onto the molecular axis, and j is the angular momentum of BC with projections

ω onto the molecular axis and mj onto the space-fixed Z-axis. For the body-fixed projec-

tions we have ω = λ + σ. The state of the atom is characterized by the electronic spin

function |s1ms1〉. The basis set used here for the A–BC collision system is constructed as

|s1ms1〉 |λ; s2σ2; jωmj〉 |LML〉, where |LML〉 are functions describing the relative motion of

A and BC in the space-fixed reference frame.
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In the presence of a magnetic field, the conserved quantities are the projection Mtot of

the total angular momentum, Mtot = ms1 + mj + ML, and the total parity P . An electric

field would mix states of different total parity. In the absence of an electric field it is most

efficient to use a parity-adapted basis set, |s1ms1〉 |s2; jω̄mjε〉 |LML〉, with

|s2; jω̄mjε〉 ≡ 1√
2

[
|1; s2σ2; jω̄mj〉+ ε(−1)j−s2 |−1; s2 −σ2; j −ω̄mj〉

]
, (14)

where ω̄ ≡ |ω|, σ2 = ω̄− 1 and ε = ±1. In this basis set, the parity of BC is p2 = ε(−1)j−s2 ,

and that of the triatomic system is P = p1p2(−1)L. The matrix elements of L̂2 and Ĥ1 are

diagonal, and given by ~2L(L + 1) and gSµBms1 B, respectively.

We next give the matrix elements of all terms in the Hamiltonian of Eq. (4), although only

those involving the atomic spin are new in the present work. The terms that do not involve

atomic spin are the same as for collisions with a closed-shell atom and were previously given

by Tscherbul et al. [33]. However, the published version of Ref. [33] contains a number of

typographical errors, so we report the correct expressions here.

The matrix elements of the molecular rotation/spin-orbit operator are

〈s2; jω̄mjε| Ĥrso |s2; jω̄
′mjε〉 =

δω̄ω̄′
{
Bv

[
j(j + 1)− 2ω̄2

]
+ (Av + 2Bv)(ω̄ − 1)

}

−Bv [δω̄ω̄′−1α−(j, ω̄′)α−(s2, ω̄) + δω̄ω̄′+1α+(j, ω̄′)α+(s2, ω̄
′ − 1)] , (15)

where we use α±(j, m) ≡
√

j(j + 1)−m(m± 1) both to simplify the equations and to ease

comparison with Ref. [33]. The off-diagonal terms on the right-hand side connect different

spin-orbit manifolds related by ω̄′ = ω̄ ± 1.

The Λ-doubling matrix elements are

〈s2; jω̄mjε| Ĥλ |s2; jω̄
′mjε〉 =

1

2
ε(−1)j−s2α−(j, ω̄′)

×[δω̄2−ω̄′qvα−(j, ω̄′ − 1) + δω̄1−ω̄′(pv + 2qv)α−(s2, ω̄)] (16)

and also couple states with different ω̄. For a 2Π molecule, the first factor inside the square

brackets mixes the 1/2 and 3/2 states, while the second is non-zero only for ω̄ = ω̄′ = 1/2.

The matrix elements of the Zeeman interaction for the molecule BC are

〈s2; jω̄mjε| ĤZ,2

∣∣s2; j′ω̄′mjε
〉

= µBB(−1)mj−ω̄
[
(2j + 1)(2j′ + 1)

]1/2


 j 1 j′

mj 0 mj



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×
[
gS

α+(s2, ω̄
′ − 1)√

2


 j 1 j′

ω̄ −1 −ω̄′


− gS

α−(s2, ω̄)√
2


 j 1 j′

ω̄ 1 −ω̄′




+
[
gS(ω̄ − 1) + g′L

]

 j 1 j′

ω̄ 0 −ω̄′




]
, (17)

and mix both different rotational and different spin-orbit states.

To determine the matrix elements of the spin-spin dipolar interaction it is natural to

expand the second-rank tensor T2(ŝ1, ŝ2) as a linear combination of the products of the

space-fixed components of first-rank tensors T1
p1

(ŝ1) and T1
p2

(ŝ2). The matrix elements of

T1
p1

(ŝ1) can be calculated directly in our basis set, while for T1
p2

(ŝ2) we first need to transform

from the space- to the body-fixed frame,

T1
p2

(ŝ2) =
∑

q

D(1)∗
p2q (Ω)T1

q(ŝ2), (18)

where DJ
KM is a Wigner rotation matrix and Ω represents the Euler angles for the transfor-

mation. The matrix elements in the primitive basis set are

〈LML| 〈λ; s2σ2; jωmj| 〈s1ms1| Ĥs1s2 |s1m
′
s1〉

∣∣λ; s2σ
′
2; j

′ω′m′
j

〉 |L′M ′
L〉

= −
√

30λs1s2(R)(−1)s1−ms1+s2−σ2+mj−ω−ML

× [s1(s1 + 1)s2(s2 + 1)(2s1 + 1)(2s2 + 1)(2j + 1)(2j′ + 1)(2L + 1)(2L′ + 1)]
1/2

×

 L 2 L′

0 0 0


 ∑

p1,p2,q


 1 1 2

p1 p2 −p





 s1 1 s1

−ms1 p1 m′
s1





 s2 1 s2

−σ2 q σ′2




×

 j 1 j′

−mj p2 m′
j





 j 1 j′

−ω q ω′





 L 2 L′

−ML −p M ′
L


 , (19)

and the corresponding matrix elements in the parity-adapted basis set are

〈LML| 〈s2; jω̄mjε| 〈s1ms1| Ĥs1s2 |s1m
′
s1〉

∣∣s2; j
′ω̄′m′

jε
〉 |L′M ′

L〉
=
√

30λs1s2(R)(−1)s1−ms1+s2+mj+2ω̄−ML

× [s1(s1 + 1)(2s1 + 1)s2(s2 + 1)(2s2 + 1)(2j + 1)(2j′ + 1)(2L + 1)(2L′ + 1)]
1/2

×

 L 2 L′

0 0 0


 ∑

p1,p2,q


 1 1 2

p1 p2 −p





 s1 1 s1

−ms1 p1 m′
s1





 s2 1 s2

−ω̄ + 1 q ω̄′ − 1




×

 j 1 j′

−mj p2 m′
j





 j 1 j′

−ω̄ q ω̄′





 L 2 L′

−ML −p M ′
L


 , (20)
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where p ≡ p1 + p2, λs1s2(R) = Eha
3
0α

2/R3 is the R-dependent spin-spin dipolar coupling

constant in atomic units and α ≈ 1/137 is the fine-structure constant.

Finally, the matrix elements of the interaction potential are

〈LML| 〈s2; jω̄mjε| V̂
∣∣s2; j

′ω̄′m′
jε
′〉 |L′M ′

L〉
= (−1)mj−ω̄′−ML [(2j + 1)(2j′ + 1)(2L + 1)(2L′ + 1)]

1/2

×1

2

∑

k,mk

[
1 + εε′(−1)k

]
(−1)mk


 j k j′

mj mk −m′
j





 L k L′

0 0 0





 L k L′

−ML mk M ′
L




×




 j k j′

ω̄ 0 −ω̄′


Vk0(R)− ε′

√
(k + 2)!

(k − 2)!


 j k j′

ω̄ −2 ω̄′


 Vk2(R)


 , (21)

where Vk0(R) and Vk2(R) are the radial strength functions of Eqs. (1) and (2). It should

be noted that our functions Vk2(R) are normalised differently from those of Tscherbul et al.

[33]. It is readily seen that states belonging to the same spin-orbit manifold are coupled

through the ‘average’ of the A′ and A′′ potential surfaces, while those of different manifolds

are connected through their difference. In addition, the factor 1
2

[
1 + εε′(−1)k

]
guarantees

that states of the same monomer parity are connected by terms Vkq(R) with even k, while

those with odd k couple rotational levels of opposite parity. It follows from this that a strong

parity-conserving propensity rule for transitions involving different spin-orbit manifolds can

be expected.

IV. DYNAMICAL CALCULATIONS

A. Computational details

Expanding the Schrödinger equation with the Hamiltonian of Eq. (4) in the parity-

adapted basis set (14) yields a set of coupled differential equations. We have written a

plug-in for the MOLSCAT general-purpose quantum molecular scattering package [60] to

implement the matrix elements described above for collisions between an open-shell S-state

atom and a 2Π-state molecule in a magnetic field. We solved the coupled equations numer-

ically using the hybrid propagator of Alexander and Manolopoulos [61], propagating from

Rmin = 4 a0 to Rmid = 25 a0 using a fixed-step log-derivative propagator with interval size

xx a0 [value needed] and from Rmid to Rmax = 800 a0 using a variable-step log-derivative
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propagator based on Airy functions. MOLSCAT applies scattering boundary conditions at

Rmax to extract scattering S-matrices, which are then used to calculate elastic and inelastic

cross sections.

Values of the OH molecular constants in the monomer Hamiltonian were taken from

Refs. [62, 63]. After performing numerous test calculations, we decided to include basis

functions with j ≤ 9/2 and L ≤ 8, which gives convergence of the cross sections to within

approximately 1%.

B. Results

The lowest rotational state of OH in its ground X2Π state at zero field is a Λ doublet with

j = 3/2. The doublet consists of two states, referred to as e and f , which have opposite parity

and are separated by 0.059 cm−1, with |j = 3/2, e〉 being the ground state. A magnetic

field splits each component of the doublet into four states differing by the projection of the

angular momentum mj on the field axis (mj = 3/2, 1/2,−1/2,−3/2). For the N atom in

its 4S ground state, a magnetic field produces four Zeeman levels, with spin projections

ms1 = 3/2, 1/2, −1/2 and −3/2. The combination of 8 Zeeman levels of OH with 4 of the N

atom yields 32 asymptotic levels (thresholds), as shown in Fig. 2. In principle, even at zero

field each of the levels is further split due to hyperfine interactions, although in the present

work hyperfine effects are neglected for simplicity.

N and OH can both be magnetically trapped in their spin-stretched states, with ms1 = 3/2

and mj = 3/2, respectively. There are two such states for OH, originating from the e and f

components of the Λ doublet. We choose the initial state to be |ms1 = 3/2〉|mj = 3/2, e〉,
shown with a red line in Fig. 2. This is likely to be more favourable for sympathetic cooling

than |ms1 = 3/2〉|mj = 3/2, f〉 (shown with a solid blue line in Fig. 2), because there are

fewer inelastic channels open for Zeeman relaxation at low collision energies. In particular,

we avoid transitions between the two fully spin-stretched states, from |ms1 = 3/2〉|mj =

3/2, f〉 to |ms1 = 3/2〉|mj = 3/2, e〉, at collision energies below about 85 mK. The only

centrifugal suppression in such a process, even for an incoming s wave (Li = 0,MLi = 0) is

due to a p-wave barrier in the outgoing channel (Lf = 1,MLf = 0) with a height of only 11

mK, necessitated by the change in OH monomer parity.

The interaction between collision partners that are initially in fully spin-stretched states
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takes place almost entirely on the quintet (high-spin) potential energy surfaces. A full

description of exit channels in which ms1 + mj has changed requires triplet surfaces, but

including these explicitly would be computationally prohibitively expensive. In the present

work, we effectively approximate the triplet potential surfaces with the corresponding quintet

ones. This approximation is closely analogous to that used for N+NH in ref. [44].

In a low-energy inelastic collision, the quantum state of at least one of the colliding

species changes and kinetic energy is released. There are two main mechanisms that produce

inelasticity in ultracold collisions of an open-shell S-state atom with a molecule in a 2Π state.

The first is direct coupling through the anisotropy of the interaction potential, which drives

transitions to states with the molecular quantum number mj reduced by at least 1 and the

atomic spin projection ms1 unchanged. This mechanism is also present in collisions between

a closed-shell atom and a 2Π molecule and has been described by Tscherbul et al. [33]. The

second mechanism arises from coupling by the spin-spin dipolar interaction Ĥs1s2 . Here, the

final Zeeman state may have quantum numbers mj and ms1 reduced by at most one. Such

processes are also present in collisions of an open-shell S-state atom with 2Σ or 3Σ molecules,

or indeed between two alkali-metal atoms. Collisions of spin-polarized S-state atoms with

2Π molecules thus combine two direct mechanisms for coupling between different Zeeman

levels.

The most important contribution to coupling by the interaction potential comes from the

anisotropic term V20(R), which induces direct transitions from the OH state |mj = 3/2, e〉
to |mj = 1/2, e〉 and |mj = −1/2, e〉. This occurs even in the s-wave regime (Li = 0). An

s-wave collision in which ms1 + mj decreases requires MLf > 1 to conserve Mtot. If the

monomer parity is unchanged, conservation of total parity then requires Lf ≥ 2. There

is thus a centrifugal barrier in the outgoing channel, which suppresses the inelastic cross

sections for low collision energies and low fields. For N+OH, the centrifugal barriers are

relatively high due to the low reduced mass and small C00
6 coefficient: the height of the

d-wave barrier is 71 mK.

Fig. 3 shows the cross sections for Zeeman relaxation in collisions of OH(X2Π, |mj =

3/2, e〉) with N(4S, |ms1 = 3/2〉) for magnetic field strengths B = 10, 100, 500 and 1000

G. At low collision energies (below 0.1 mK), the cross sections behave according to the

Wigner threshold laws [64]: the elastic cross section is constant, while the total inelastic

cross section grows with decreasing energy as E−1/2. The elastic cross section is almost
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unaffected by the magnetic field. At ultralow collision energies, the inelastic cross sections

are suppressed due to centrifugal barriers in the outgoing channels, and the total inelastic

cross section grows with increasing field because the increasing kinetic energy release helps

overcome these barriers. For example, the energy released by relaxation to the state |ms1 =

3/2〉|mj = −1/2, e〉 at a field of 560 G is sufficient to overcome the d-wave barrier, and

Fig. 3 shows how the inelastic cross section is enhanced for fields of 500 G and higher in

the s-wave regime. For collision energies between 4 mK and 80 mK, both the elastic and

inelastic cross sections feature numerous resonances, mostly Feshbach resonances due to

coupling with higher-energy closed channels.

As discussed above, there are two mechanisms driving transitions between different Zee-

man levels, one driven by the spin-spin dipolar term Ĥs1s2 and the other driven by the

anisotropy of the intermolecular potential Vkq(R). The mechanism involving Ĥs1s2 domi-

nates for low fields (10 G and below) and in the s-wave regime. For higher fields (100 G

and above), the opposite is true and the relaxation is driven by Vkq(R). Fig. 4 shows the

integral cross sections and the s-wave contribution for the two lowest fields (10 and 100 G),

with the Ĥs1s2 term in the Hamiltonian included or neglected. Fig. 5 compares the s-wave

contributions for the same two fields with those obtained by neglecting either the spin-spin

dipolar term Ĥs1s2 or all the anisotropic terms Vkq(R). At 10 G, Ĥs1s2 greatly enhances

inelastic processes in the ultracold regime: at 10−5 K, the enhancement is almost two orders

of magnitude. However, for B = 100 G, Vkq(R) is dominant over the whole range of energies.

[Note that we have moved the previous Fig. 6 to here (now Fig. 5) and unified

the discussion. But we think that there is too much duplication between Figs.

4 and the new 5 and they should be combined.]

The way in which the spin-spin dipolar interaction induces transitions between different

Zeeman levels is exactly parallel to that described by Janssen et al. [65]. It is a purely long-

range effect caused by narrowly avoided crossings between the potential adiabats at very

long range, which enable transitions between Zeeman levels without the need to penetrate

centrifugal barriers. In the present case, avoided crossings due to the dipolar term are

present between the adiabat asymptotically correlating with the incident s-wave channel

|ms1 = 3/2〉|mj = 3/2, e〉 and other adiabats correlating with the states |ms1 = 3/2〉|mj =

1/2, e〉, |ms1 = 1/2〉|mj = 3/2, e〉, and |ms1 = 1/2〉|mj = 1/2, e〉. The p-wave and higher-L

contributions to the total inelastic cross sections are almost unaffected by the inclusion of
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Ĥs1s2 for any field and collision energy. This arises because the long-range avoided crossings

for incident channels with centrifugal barriers are energetically inaccessible at low energies.

Channels corresponding to different Zeeman levels are also directly coupled by the

anisotropy of the intermolecular potential Vkq(R). Fig. 6 shows a schematic illustration

of the first-order couplings by Ĥs1s2 and Vkq(R) for collisions involving an incoming s wave

and outgoing d waves. Because of this, long-range avoided crossings are present even if we

neglect Ĥs1s2 . However, the effect of the avoided crossings on collision outcomes is much

more pronounced for crossings due to Ĥs1s2 than for those due to Vkq(R). The latter dies

off much faster with R than Ĥs1s2 , and is one or two orders of magnitude weaker at the

positions of the long-range avoided crossings. The ratio of the coupling strengths is approx-

imately Ĥs1s2(R)/V20(R) = Ehα
2/C20

6 (R/a0)
−3. The avoided crossings for B = 10 G occur

at distances ranging from 159 to 342 a0, corresponding to a ratio Ĥs1s2(R)/V20(R) between

10 and 100. It follows from an approximate Landau-Zener model [66] that the probability

of ending in a different asymptotic level after a nonadiabatic transition is proportional to

the square of the coupling between the diabats if the coupling is relatively small.

The interplay between the spin-spin dipolar term and the intermolecular potential terms is

also manifested in the state-to-state cross sections. Fig. 7 shows state-to-state cross sections

(s-wave contributions only) for B = 10 G and 100 G. At B = 10 G, in the region where

the Ĥs1s2 term dominates (below 1 mK), the most important transitions are to states with

mj or ms1 quantum numbers reduced by 1, which are those coupled to the incident channel

|ms1 = 3/2〉|mj = 3/2, e〉 by Ĥs1s2 , while for collision energies above 1 mK the dominant

inelastic channels become |ms1 = 3/2〉|mj = 1/2, e〉 and |ms1 = 3/2〉|mj = −1/2, e〉, which

are those coupled by Vkq(R). At B = 100 G, only channels coupled by Vkq(R) are important.

The s-wave cross sections at B = 10 G exhibit two distinct resonant structures: a strong

feature near 15 mK and a weaker one around 41 mK. Both are Feshbach resonances caused

by coupling to closed channels arising from the f component of the Λ doublet of OH.

The coupling arises almost exclusively from the V10(R) term in the intermolecular po-

tential, which couples states of different monomer parity. The Feshbach resonance near

15 mK can be attributed to a bound state on the p-wave adiabat correlating with the

|ms1 = 3/2〉|mj = 1/2, f〉 threshold, as shown in Fig. 8. This resonance moves to smaller

energies with increasing field, because the energy difference between the |mj = 3/2, e〉 and

|mj = 1/2, f〉 states (red and dotted blue lines in Fig. 2, respectively) decreases as the
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field increases. For sufficiently large field (B > 1200 G), this resonance will disappear

as the |mj = 1/2, f〉 level drops below |mj = 3/2, e〉. The second Feshbach resonance

near 41 mK can be attributed to a bound state on the p-wave adiabat correlating with

the |ms1 = 3/2〉|mj = 3/2, f〉 threshold. The position of this resonance is almost un-

affected by the field strength since the energy difference between the two spin-stretched

states, |mj = 3/2, e〉 and |mj = 3/2, f〉, is independent of magnetic field.

The fact that these are Feshbach (rather than shape) resonances is confirmed by several

observations. First, the d-wave contributions to the inelastic cross sections show resonant

structures at exactly the same energies as the s-wave contribution. Secondly, the positions

and shapes of the Feshbach resonances can be reproduced using even the smallest possible

basis set that allows inelastic transitions, with j ≤ 3/2, L ≤ 2, and potential terms Vkq(R),

k ≤ 2. Thirdly, the presence of the V10(R) term, which does not couple the incident and

outgoing channels directly, is crucial for the existence of the resonances. It is worth noting

that no such structure due to Feshbach resonances would be present for collisions involving

the initial state |ms1 = 3/2〉|mj = 3/2, f〉, with OH in the upper component of its Λ doublet,

since no low-lying closed channels are present in that case. However, molecules in the f state

are likely to undergo fast relaxation to the e state in collisions driven directly by V10(R).

Fig. 9 shows the ratio of the elastic to total inelastic cross sections as a function of collision

energy. The ratio is not favourable for sympathetic cooling of OH by collision with ultracold

N atoms, except at fields below 10 G and collision energies below 1 mK. The cross sections

presented here may be compared to those for N(4S)+NH(3Σ) by Żuchowski and Hutson

[44]. The ratio of the elastic to inelastic cross sections is at least an order of magnitude

lower for N+OH than for N+NH. Two main reasons for this can be identified. First, the

spin-stretched component of the rotational ground state of NH (3Σ−, n = 0) is not directly

coupled by the potential anisotropy to any other accessible Zeeman level, whereas such a

coupling does exist for the ground state of OH(2Π, j = 3/2) (or any other molecule with

j ≥ 1). Secondly, there are low-lying states arising from the f component of the Λ doublet

in the OH radical that create many Feshbach resonances and increase the inelasticity. Both

effects are particularly strong for collision energies above 10 mK, where the contributions

from p and d incoming waves to the inelastic cross sections are dominant. For all field

strengths, the ratio of elastic to inelastic cross sections at collision energies above 1 mK is

more than 10 times larger for N+OH than for N+NH.
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C. Potential dependence

The results of scattering calculations at ultralow collision energies are in general very

sensitive to the details of interaction potentials. To estimate the accuracy of the calculated

potential energy surfaces for N+OH, we have carried out additional electronic structure

calculations for the geometry corresponding to the global minimum of the potentials at the

linear N–OH geometry. In the aug-cc-pV5Z basis set, the global minimum has a well depth

of 120.6 cm−1, while in the aug-cc-pV6Z basis set this shifts to 121.6 cm−1. Based on these

two results, we can estimate the complete basis set limit of the CCSD(T) method to be

122.9 cm−1, using the extrapolation formula of Bak et al. [67]. This corresponds to an

error estimate of 1.9% for our full potential surfaces using the aug-cc-pV5Z basis set. To

estimate the error in the correlation energy obtained from the CCSD(T) method, we have

performed full configuration-interaction (FCI) calculations with eight electrons correlated

in the cc-pVDZ basis set. The relative contribution of the FCI correction to the CCSD(T)

result should only be weakly dependent on the basis set used, so even in the small cc-

pVDZ basis set we should obtain a reliable estimate of the FCI valence-valence correlation

correction. The FCI correction to the CCSD(T) result accounts for approximately 1.3% of

the interaction energy at the global minimum. We can thus estimate the uncertainty of our

potential energy surfaces to be 4% at worst.

To assess the sensitivity of the scattering results to the uncertainty in the interaction

potential, we have carried out calculations with the interaction potential scaled by a constant

factor λ in the range 0.96 ≤ λ ≤ 1.04, corresponding to the estimated error bounds in the

calculated potential energy surfaces. The results at B = 10 G are shown in Fig. 10 for

collision energies of 1 mK and 10 µK. The weak dependence of the cross sections on the

potential scaling is disturbed by the presence of sharp resonances, which occur when bound

states of the N-OH complex cross the incoming threshold (or more precisely the collision

energy) as a function of λ. Two of the peaks in the inelastic cross sections, near λ = 1.010

and λ = 1.026, can be attributed to the Feshbach resonances in the s and d partial-wave

contributions discussed above. The two additional peaks at λ = 0.97 and λ = 1.017,

which broaden substantially with collision energy, are due to shape resonances in the p-wave

partial cross section. If the true potential happens to bring one of these resonances close to

zero energy, it may change the ratio of elastic to inelastic cross sections quite dramatically.
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However, Fig. 10 shows that the resonances occur in quite narrow ranges of λ, so that there is

a low probability that the true potential will be such that the ratio of elastic to inelastic cross

sections is seriously affected by resonances for collision energies below 1 mK. It may also

be noted that the numerical results obtained with the unscaled potential (λ = 1) are fairly

typical of the range expected for N+OH on plausible interaction potentials, in the sense that

the low-energy elastic cross section (around 1000 Å2) is close to the value σ = 4πā2 = 780

Å2 obtained from the mean scattering length ā defined by Gribakin and Flambaum [68].

V. SUMMARY AND CONCLUSIONS

We have presented a theoretical study of the relaxation processes in collisions between an

atom in an open-shell S state and a molecule in a 2Π state, in a magnetic field, using the ex-

ample of N(4S)+OH(2Π). The transitions between different Zeeman levels in such collisions

are driven by two mechanisms: coupling through the spin-spin dipolar term and through

the anisotropy of the interaction potential. Both mechanisms are present in first order. The

spin-spin dipolar term dominates when both the collision energy and the magnetic field are

low, while the anisotropy of the interaction potential dominates at higher energies or fields.

In the latter regime, the spin-spin dipolar term can be neglected. Neglecting the dipolar

interaction is equivalent to treating the atom as closed-shell, which dramatically reduces the

cost of the scattering calculations.

An important general point is that spin relaxation collisions can be driven directly by the

anisotropy of the interaction potential for any molecule that has rotational angular momen-

tum. Since the anisotropies of atom-molecule and molecule-molecule interaction potentials

are typically quite large, this will often provide an important trap loss mechanism for such

states. For molecules in 2Π states, this is true even for the molecular ground state.

For the case of N+OH, the spin-spin dipolar term dominates at collision energies below

about 1 mK and magnetic fields of 10 G or less. In this regime, the ratio of elastic to inelastic

cross sections is greater than 100 and thus favourable for sympathetic cooling. However, if

either the collision energy or the magnetic field is significantly above this, inelastic processes

due to the potential anisotropy dominate and the ratio of elastic to inelastic cross sections

falls. This suggests that sympathetic cooling of OH by collisions with N atoms is unlikely

to be successful except at collision energies below 1 mK.
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Julienne, J. L. Bohn, D. S. Jin, and J. Ye, Science 327, 853 (2010).

[11] C. N. Cohen-Tannoudji, Rev. Mod. Phys. 70, 707 (1998).

[12] K.-K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Pe’er, B. Neyenhuis, J. J. Zirbel, S. Ko-

tochigova, P. S. Julienne, D. S. Jin, and J. Ye, Science 322, 231 (2008).
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TABLE I: Characteristic points of the interaction potentials for the quintet states of N(4S) +

OH(2Π).

R [a0] θ [degrees] V [cm−1] Surface

Global minimum 6.55 0.0◦ –120.6 5A′, 5A′′

Local minimum 6.36 180.0◦ –71.5 5A′, 5A′′

Saddle point 6.56 97.2◦ –61.0 5A′

Saddle point 6.66 100.1◦ –45.8 5A′′
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TABLE II: Long-range coefficients (in atomic units) for N(4S)+OH(2Π).

k → 0 1 2 3 4

Ck0
6 27.84 4.92

Ck2
6 1.23

Ck0
7 51.60 24.61

Ck2
7 –6.38

Ck0
8 583.34 312.00 48.29

Ck2
8 159.09 31.42
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FIG. 1: Contour plots of the quintet interaction potentials for N+OH: 5A′ (upper panel) and 5A′′

(lower panel). Energies are in cm−1.
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FIG. 2: Energy levels of noninteracting N(4S)+OH(X2Π, j = 3/2) in a magnetic field. The solid red

and blue lines indicates the spin-stretched low-field-seeking states |ms1 = 3/2〉|mj = 3/2, e〉 (red)

and |ms1 = 3/2〉|mj = 3/2, f〉 (blue). The dotted blue line shows state |ms1 = 3/2〉|mj = 1/2, f〉.
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FIG. 3: Elastic and total inelastic cross sections for N+OH scattering at different magnetic field

strengths B. The elastic cross section is almost unaffected by the field strength and is shown only

for B = 10 G.
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to them (lower panel) for N+OH, obtained with the spin-spin dipolar interaction included or

neglected in the Hamiltonian, for magnetic fields B = 10 and 100 G.
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FIG. 5: Comparison of the s wave total inelastic cross sections for N+OH with those obtained with

either the spin-spin dipolar term or the anisotropy of the interaction potential neglected. Upper

panel: B = 10 G; lower panel: B = 100 G.
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FIG. 7: State-to-state inelastic cross sections (s-wave contribution only) for fields of 10 G (upper

panel) and 100 G (lower panel).
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