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Abstract

In this article, I compare credit risk models that are used for loan port-
folios, both from a theoretical perspective and via simulation studies. My
study is distinct from previous studies by including new models, consider-
ing sector correlation, and performing comprehensive sensitivity analysis.
CreditRisk++, CreditMetrics, Basel II internal rating based method, and
Mercer Oliver Wyman’s model are considered. Risk factor distribution
and the relationship between risk components and risk factors are the
key distinguishing characteristics of each model. CreditRisk++, due to
its extra degree of freedom, has the highest flexibility to fit various loss
distributions. It turns out that sector covariance is the most important
risk component for risk management in terms of risk sensitivity. Risk
sensitivities not only differ among models but also depend on the input
parameters and the quantile at which risk is measured. This implies that
risk models can only be judged in terms of the portfolio under considera-
tion, and banks should evaluate them based on their own portfolios.

Keywords: Credit risk model, Sector correlation, Loan portfolio, Com-
parison analysis.

1 Introduction

The importance of credit risk management cannot be overemphasized, and it is
well recognized by the banking industry. Most financial institutions already have
a credit risk management system and continue to improve it. The introduction
of the Third Basel Capital Accord (Basel III) triggered by the credit crisis in
2008 and other changes in the global financial market have accelerated the need
to validate and improve currently deployed credit risk management systems.
Despite the well-recognized importance of credit risk management, it is also true
that many, especially small, domestic banks use their credit risk management
system without clearly understanding the assumptions and characteristics of the
underlying model. This is partly because of the complexity behind the credit risk
models, but also because banks, without thorough evaluation, tend to rely on
the opinion of consultancies or the cases of other banks. Also, there are limited
resources that provide information on the credit risk models with comprehensive
comparative analysis. Therefore, this article aims to provide useful information
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for banks which consider validating or upgrading their credit risk models, by
comparing widely used credit risk models through various simulation studies.
Instead of repeating original derivation of each model, which can be easily found
elsewhere, models are approached from the same perspective so as to reveal
similarities and differences more clearly. The focus is on the credit risk models
that are appropriate for loan portfolios or other assets with no observable market
values. The models considered are: CreditRisk++, CreditMetrics, a model by
Mercer Oliver Wyman (MOW), and the internal rating based (IRB) model of
Basel II.

Gordy (2000), whose work serves as the basis of this study, compares Cred-
itRisk+ and CreditMetrics, and demonstrates how one can be converted to the
other. He shows, via empirical studies, that credit risk is particularly sensitive
to the volatility of probability of default, and that CreditRisk+ tends to measure
credit risk higher than CreditMetrics. In the same period, Crouhy et al. (2000)
also perform a comparative research on credit risk models. Their study covers
more models including KMV model and McKinsey’s CreditPortfolioView. How-
ever, they mainly summarize each model and fail to provide new insights. Frey
and McNeil (2001) take a different approach in comparing CreditRisk+ and
CreditMetrics. They consider various distribution assumptions for each model
and analyze the effects of the distributions on credit risk. They demonstrate
that different distribution assumptions lead to significantly different credit risks,
even under the same default correlation. Diaz and Gemmill (2002), unlike other
studies where only two states — default and no default — are assumed, compare
CreditRisk+ and CreditMetrics allowing rating migration.

This study distinguishes itself from previous studies in the following aspects.
First of all, new credit risk models, such as CreditRisk++, MOW, and Basel
IRB, are included in the comparison group. Banks using the internal rating
based method of the Basel II are required to calculate regulatory capital using
IRB model. Hence, it is important to understand the model and compare it with
other models. Secondly, while other comparative studies assume only single risk
factor, multiple risk factors are considered in this study. This enables us to take
the risk factor correlation into account and investigate its effect on credit risk.
This is particularly important since credit risk is known to be very sensitive
to the risk factor correlation. Finally, a comprehensive sensitivity analysis is
given via various simulations. This analysis identifies the input parameters to
which credit risk is sensitive and that need a special attention in credit risk
management. There are studies that compare risk of a portfolio using different
models, but to my best knowledge, there is no such a study that conducts
sensitivity analysis, which is much more informative.

This article is organized as follows. In Section 2, key assumptions and
methodologies of each model are briefly described. Key differences among the
models are also summarized at the end of this section. Section 3 is devoted to
simulation studies, in which each model’s risk sensitivities to input parameters
are assessed and compared to each other. Concluding remarks and suggestions
are given in Section 4.
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2 Theoretical Comparison of Credit Risk Mod-
els

In this section, I briefly describe the credit risk models with a focus on their key
assumptions and main results, and address differences among the models from
a theoretical perspective.

2.1 Notations

Following notations are used throughout the article. Any other notations that
are used will be described when they first appear. A subset of a portfolio is
referred to as either a sub-portfolio or sector. A variable with subscript i is
associated with an individual asset, and a variable with p is associated with a
portfolio.

X : Risk factors. X = {X1, · · · , XK}
wi : Asset i’s weights on the risk factors. wi = {wi1, · · · , wiK}
Ri : Return on asset i
Pi : Probability of default (PD) of asset i. Pi(x) = {Pi|X = x}
PDi : Unconditional PD of asset i, i.e., PDi = E[Pi(X)]
Ui : Loss given default (LGD) of asset i. Ui(x) = {Ui|X = x}
LGDi : Unconditional LGD of asset i, i.e., LGDi = E[Ui(X)]
Ai : Exposure at default (EaD) of asset i. Assumed constant.
Yi : Default indicator. If i defaults, Yi = 1; otherwise, Yi = 0.

E[Yi] = PDi

ρij : Asset correlation coefficient, i.e., ρij = Cov(Ri, Rj)
ρDij : Default correlation coefficient, i.e., ρDij = Cov(Yi, Yj)
N : Number of assets in a portfolio
V aRα : Value-at-Risk at the probability level, α.

2.2 Systemic Risk

Most credit risk models assume one or several systemic risk factors, and define
some of the risk components as a function of the risk factors. The most common
practice is to assume PD or return on asset as a linear function of the risk
factors, while more complex models may also assume LGD as a function of the
risk factors. Care should be taken in the latter case since the usual definition of
expected loss, EL = A ·PD ·LGD, may not hold due to the correlation between
PD and LGD. Below are expositions of some of commonly used relationships
between risk components and risk factors.

CreditRisk+ In CreditRisk+, PD is assumed to be a linear function of the
risk factors, i.e.,

Pi = PDi

(
K∑
k=0

wikXk

)
(1)

where X0 = 1, and Xk (k > 0) are Gamma distributed independent risk factors
with mean 1 and variance σ2

k. Sum of the weights,
∑
k wik, is equal to 1. The
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PD conditional on X = x has the form

Pi(x) = PDi

(
K∑
k=0

wikxk

)
(2)

CreditMetrics While CreditRisk+ assumes PD as a linear function of the
risk factors, many other models assume asset return, or more generally latent
variable, as a linear function of the risk factors. CreditMetrics and IRB model
are in this category and they assume the following.

Ri = wiX + ψiεi (3)

The systemic risk factor X is N(0,Ω), and the idiosyncratic risk factors εi
are i.i.d. N(0, 1). Without loss of generality, Ri can be assumed to follow the
standard normal distribution, in which case, we have ψi =

√
1− w′iΩwi. Default

can be defined as the case when the return falls below a certain threshold.
Denoting the threshold λi, the PD conditional on X = x is given by

Pi(x) = Pr(wix+ ψiεi ≤ λi) = Pr

(
εi ≤

λi − wix
ψi

)
= Φ

(
λi − wix

ψi

)
. (4)

Since PD is the probability that Ri is less than or equal to λi and Ri ∼ N(0, 1),
the following holds.

PDi = Pr(Ri ≤ λi) = Φ(λi)→ λi = Φ−1(PDi) (5)

Thus, equation (4) can be rewritten as

Pi(x) = Φ

(
Φ−1(PDi)− wix

ψi

)
. (6)

From equation (2) and (6), we can see that the conditional PD is a linear
function of the risk factors in CreditRisk+, while it is a nonlinear function in
CreditMetrics. In contrast, asset return is a nonlinear function of the risk factors
in CreditRisk+ and has the form (Gordy, 2000)

Ri =

(
K∑
k=0

wikXk

)−1
ei. (7)

where ei is i.i.d. and has an exponential distribution with parameter value of 1.

2.3 CreditRisk++

CreditRisk+ As seen earlier in this section, CreditRisk+ assumes that prob-
ability of default is governed by several risk factors that are Gamma distributed
and mutually independent. Therefore, the default correlation between assets
is determined by the weights of each asset on the risk factors. Portfolio loss
distribution is defined by the probability generating function (PGF) of the form

G(z) = exp

[
−Q0(1) +Q0(z)−

K∑
k=1

1

σ2
k

ln(1 + σ2
kQk(1)− σ2

kQk(z))

]
(8)
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where

Qk(z) =

n∑
i=1

wikPDiz
Ai , k = 0, . . . ,K. (9)

By differentiating the PGF, portfolio loss distribution and risk measures such as
Value-at-Risk can be obtained. For detailed derivation and numerical calcula-
tion of the PGF, readers are referred to CSFP (1997) or Gundlach and Lehrbass
(2003) (Ch. 2, 5, 7).

CreditRisk++ Even though it is theoretically possible to incorporate asset
correlation in CreditRisk+ by appropriately choosing weights, defining indepen-
dent risk factors and determining weights on them is difficult and impractical.
For this reason, extensions of the original model that explicitly take the corre-
lation into account have been introduced, and one of the latest developments is
CreditRisk++ by Han and Kang (2008). Creditrisk++ assumes that a corre-
lated risk factor can be divided into a sector specific term Yk and a macroeco-
nomic term Ŷ that are independent of each other, i.e.,

Xk = δkYk + γkŶ , k = 1, . . . ,K (10)

where

Yk ∼ Gamma (θk, 1) (11)

Ŷ ∼ Gamma (θ̂, 1) (12)

Then, the probability of default can be rewritten as a linear combination of
K + 1 Gamma distributed independent risk factors.

Pi = PDi

(
w0i +

K+1∑
k=1

wkiX̂k

)
(13)

where

X̂k ∼ Gamma (θk, δk) , k = 1, . . . ,K, (14)

X̂K+1 ∼ Gamma
(
θ̂, 1
)
, and (15)

wi(K+1) =

K∑
k=1

wikγk (16)

X̂k, k = 1, . . . ,K are sector specific risk factors and X̂K+1 is a macroeconomic
risk factor that has influence on all sectors. The degree of influence is determined
by δk and γk. The expected values and covariance matrix of the correlated risk
factors, Xk, have the form

E[Xk] = δkθk + γkθ̂, (17)

V [Xk] = δ2kθk + γ2k θ̂, (18)

Cov[Xk, Xl] = γkγlθ̂. (19)

Appropriately choosing the parameter values, various covariance structures can
be described by CreditRisk++. The parameters can be estimated by minimiz-
ing the distance between observed covariance matrix and the covariance matrix
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defined above. The main advantage of CreditRisk++ is that it can incorporate
risk factor correlations in a very flexible and intuitive manner, while maintaining
the framework of CreditRisk+. Therefore all the numerical algorithms devel-
oped for CreditRisk+ can be reused without modification.

2.4 CreditMetrics

I consider a two state - default and no default - version of CreditMetrics (CM2S)
that is appropriate for loan portfolios. CM2S assumes homogeneity of assets in
the same sector:

1. There are many assets in one sector and the size of each asset is sufficiently
small compared to the size of the sector.

2. The assets in one sector are governed by one risk factor that is associated
with the sector.

3. All the assets in the same sector have the same PD, LGD, and asset
correlation.

4. Risk factors are normally distributed and mutually correlated.

In CM2S, asset return is a linear function of the associated risk factor. If asset
i belongs to sector k,

Ri = wikXk + ψiεi (20)

where Xk and εi are normally distributed and mutually independent. As derived
in Gordy (2002), VaR of each sector has the form

V aRα =
∑
i∈k

Ai · LGDi · Pi(Xα
k ) (21)

where Xα denotes the value of X at a probability level α. The equation indicates
that VaR is the sum of the expected losses of the assets conditional on that X
has the value at the probability level α. Under the homogeneity assumptions,
equation (21) can be rewritten as

V aRα = Ap · LGD · Φ
(

Φ−1(PD)−√ρΦ−1(α)
√

1− ρ

)
(22)

If sectors are perfectly positively correlated, VaR of a portfolio becomes the sum
of VaR’s of the sectors. Otherwise, Monte Carlo simulation should be employed
to obtain portfolio loss distribution and VaR.

2.5 Mercer Oliver Wyman

Mercer Oliver Wyman (2004) developed a proprietary credit risk model for their
clients and it is being used by several financial institutions. MOW is included
because it is distinguished from other models in the way of specifying portfolio
distribution: MOW does not specify risk factors but rather explicitly assumes
the portfolio loss distribution as a beta distribution. Below is a brief derivation
of the model.
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Default indicator of asset i, Yi, has the expected value and variance of the
form

E[Yi] = PDi (23)

V [Yi] = PDi(1− PDi) (24)

LGD of asset i, Ui, is assumed to have the expected value and variance of the
form

E[Ui] = LGDi (25)

V [Ui] = LGDi(1− LGDi)/2 (26)

The variance equation implies that the uncertainty in LGD is relatively small
when LGD is either very high or low, and it is maximized when LGD is 0.5. If
LGD is independent of default, the loss from unit exposure of asset i, YiUi, has
the expected value and standard deviation of the form

µi = PDi · LGDi (27)

σi =
√
LGD2

i · PDi(1− PDi) + PDi · LGDi(1− LGDi)/2 (28)

If the default correlation between assets is ρD and LGD is mutually independent,
when there are a large number of assets, the expected value and the standard
deviation of the portfolio loss per unit exposure can be approximated as

µp =
1

Ap

N∑
i=1

Ai · PDi · LGDi (29)

σp =

√√√√ N∑
i=1

σ2
i +

N∑
i=1

N∑
j 6=i

σiσjρD =
√
ρD

N∑
i=1

σi (30)

To calculate risk at a probability level, portfolio loss distribution needs to be
defined. MOW explicitly assumes that the portfolio loss is beta distributed, and
finds the distribution so that the expected value and the standard deviation of
the distribution are equal to those derived above. That is, letting the portfolio
loss distribution be Be(a, b),

a = µ2
p

1− µp
σ2
p

− µp (31)

b =
a

µp
− a (32)

VaR is then calculated from the equation

V aRα = Ap · Lαp (33)

where, Lαp = F−1β (α; a, b), and Fβ is the cumulative distribution function of the
beta distribution.
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2.6 Basel II IRB

Banks adopting the internal rating based method are required to calculate the
regulatory capital for credit risk using the following formula

K = LGDi

(
Φ

(
Φ−1(PDi) +

√
ρΦ−1(0.999)

√
1− ρ

)
− PDi

)
1 + (Mi − 2.5)b(PDi)

1− 1.5b(PDi)
.

(34)
1+(Mi−2.5)b(PDi)

1−1.5b(PDi)
is called maturity adjustment, where Mi is the maturity of the

asset and b(PDi) has the form

b(PDi) = (0.11852− 0.05478 log(PDi))
2 (35)

0.999 in (34) indicates that the IRB model calculates the capital based on the
risk at 99.9% probability level, and this number can be replaced by another
number for VaR at a different probability level. Since K has the meaning of
unexpected loss, V aRα in our context is obtained by adding expected loss to K
and summing up over the assets:

V aRα =

n∑
i=1

Ai ·Kα
i , (36)

Kα
i = LGDi · Φ

(
Φ−1(PDi) +

√
ρΦ−1(α)

√
1− ρ

)
1 + (Mi − 2.5)b(PDi)

1− 1.5b(PDi)
(37)

This equation is similar to equation (22) because the fundamental assumptions
of IRB are identical to those of CreditMetrics. IRB is different from CreditMet-
rics in that there is only one risk factor, assets are not necessarily homogeneous,
and there exists the maturity adjustment term. The maturity adjustment is an
increasing function of maturity and has a value of one when the maturity is one
year. This reflects, as noted in Basel (2005), the fact that long-term credits are
riskier than short-term credits. Since b(PDi) is inversely proportional to PD,
default risk increases faster with the maturity when the PD is lower. This is
because low PD assets have more room to deteriorate than high PD ones, which
are already risky.

2.7 Summary

The main features of the models are compared in Table 1. The fundamental
difference of each model is the distribution assumption of the risk factors and
the relationship between default and the risk factors. Other assumptions, e.g.,
homogeneity of assets in CM2S or LGD variance of MOW, can be easily relaxed
without affecting the fundamentals of the models.

3 Simulation Analysis

In this section, I demonstrate the characteristics of each model by comparing
the credit risks of various portfolios. In particular, the risk sensitivity of each
model to input parameters is addressed. Simulation methods are described first
and interpretation of the simulation results follows.
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CR++ CM2S MOW IRB
No. of Risk Factors Many Many One

Risk Factors Gamma Normal Beta (loss Normal
Distribution distribution)

Risk Factor Linear with Linear with Not specified Linear with
Relationship PD asset return asset return

Risk Factor-Asset Many - 1 1 - 1 1 - 1

Risk Calculation Closed form Simulation Closed form Closed form
(Numerical)

Others Stochastic
LGD

Maturity ad-
justment

Table 1: Comparison of Credit Risk Models

3.1 Simulation Methods

Credit risks of the seven model portfolios (PF1 - PF7) in Table 2 are measured
using the credit risk models described in Section 2. The first portfolio is chosen
as a base loan portfolio and the rest portfolios are constructed so as to address
the effect of an input parameter on credit risk. In each portfolio, all assets are
assumed to have the same EaD, PD, LGD, and asset correlation.1 By shifting
one of these parameters in each portfolio, the risk sensitivity to each parameter
is investigated. One risk factor, or equivalently perfect correlation between the
risk factors, is assumed for PF1 to PF5, and two risk factors with correlation
coefficient of 0.5 and 0.0 is assumed for PF6 and PF7, respectively. When there
are two risk factors, the assets are assumed to be equally distributed into two
sectors.

The data provided in Table 2 are sufficient to calculate risk using CM2S,
while additional parameters need to be identified for CR++ and MOW: the
risk factor weights and the risk factor standard deviations in CR++, and the
default correlation in MOW. In CR++, the weights and the standard deviations
of the risk factors are obtained from the equation

wkσk = σ(P )/PD (38)

where
σ2(P ) = BIVAR(Φ−1(PD),Φ−1(PD), ρ)− PD2 (39)

As the assets are assumed to be homogeneous, the subscripts are omitted for
simplicity. BIVAR denotes the cumulative bivariate normal distribution. As
you can see from equation (38), the weights and the standard deviations of
the risk factors cannot be determined uniquely. A typical value for wk used in
practice is 1 or a high value above 0.5. Thus, I consider two cases, wk = 0.5
and wk = 1.0, and compare the results. When wk is higher, PD becomes more
dependent upon the risk factors, while, wkσk being constant, the volatility of
the risk factor becomes smaller. The default correlation in MOW is calculated

1Gordy (2000) shows that exposure variation in a portfolio does not affect the credit
risk significantly. It is also a common practice to cluster assets of similar properties into
a sector. Therefore, I assume homogeneity of assets and focus on the overall shift of each
input parameter.
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from the equation

ρD =
σ2(P )

PD(1− PD)
. (40)

Both constant (zero variance) and stochastic LGD are considered under MOW.
IRB is identical to CM2S except for the maturity adjustment for the model

portfolios considered here. Since the effect of the maturity adjustment on VaR
is obvious, IRB is excluded from simulation analysis. MOW is excluded from
the risk calculation of PF6 and PF7, as it is one factor model.

PF1 PF2 PF3 PF4 PF5 PF6 PF7
N 10,000 10,000 10,000 10,000 10,000 10,000 10,000
EaD 100 100 100 100 100 100 100
PD (%) 0.5 0.1 2.0 0.5 0.5 0.5 0.5
LGD (%) 30.0 30.0 30.0 60.0 30.0 30.0 30.0
Asset corr 0.1 0.1 0.1 0.1 0.2 0.1 0.1
Sector corr 0.5 0.0

Table 2: Portfolios for Simulation
This table presents seven portfolios (PF1 ∼ PF7) considered for simulation.
Each portfolio is designed to reveal the risk sensitivity of each model with respect
to an input parameter. The assets in each portfolio are assumed to have the
same exposure (EaD), probability of default (PD), loss given default (LGD),
and asset correlation (Asset corr). The assets in PF1 to PF5 are assumed to be
allocated to a single sector, while the assets in PF6 and PF7 are assumed to be
allocated equally to two sectors with the sector correlation (Sector corr) given
in the table.

3.2 Simulation Results

Simulation results are reported in Table 3. I first focus on the results of the base
portfolio PF1. The credit risks by CR++ with wk = 1 and MOW with constant
LGD are similar, while the credit risk by CM2S is slightly higher. The highest
credit risk is attained from CR++ with wk = 0.5. This is because, as seen in
equation (38), a smaller weight implies a larger standard deviation of the risk
factor, which results in a higher probability at the tail region. This becomes
more evident if we compare two CR++ risk curves in Figure 1, where the credit
risks of PF1 at different quantiles are displayed: Credit risk increases more
rapidly with the probability level when the factor weight is smaller. Comparison
of the two MOW models reveals how uncertainty in LGD can increase the risk.
Ignoring the uncertainty can cause significant underestimation of the risk. As
noted by Giese (2005), stochastic LGD can be even more influential when it is
positively correlated with PD, which is the usual case. The difference among
models can be attributed mostly to the distribution assumption of each model;
gamma distribution of CR++, normal distribution of CM2S and IRB, and beta
distribution of MOW.

PF2 and PF3 are designed to assess the sensitivity of the credit risk to the
PD, by setting the PD of PF2 to 0.1% (80% decrease from PF1) and the PD
of PF3 to 2.0% (400% increase from PF1), while other input parameters are
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CR++ CM2S MOW
wk = 1.0 wk = 0.5 Sto. LGD Fix. LGD

99.00% 7,419 8,511 7,862 11,176 7,371
PF1 99.90% 11,649 17,020 13,796 18,698 11,206

99.99% 16,564 26,702 21,012 26,428 15,045
99.00% 1,894 2,097 1,960 2,851 1,861

PF2 99.90% 3,357 4,560 3,889 5,089 2,987
99.99% 5,114 7,373 6,543 7,442 4,139
99.00% 27,781 27,204 24,707 34,774 23,377

PF3 99.90% 40,138 50,002 38,471 54,543 33,623
99.99% 52,328 76,293 53,232 74,280 43,640
99.00% 14,840 17,022 15,724 17,142 14,736

PF4 99.90% 23,300 34,040 27,592 26,911 22,366
99.99% 33,131 53,404 42,024 36,743 29,968
99.00% 12,771 13,399 12,905 19,624 12,791

PF5 99.90% 25,220 32,980 27,294 38,296 22,118
99.99% 39,508 55,733 46,134 58,105 31,784
99.00% 6,543 7,440 6,633

PF6 99.90% 10,041 13,281 11,001
99.99% 13,683 19,895 16,223
99.00% 5,323 6,123 5,686

PF7 99.90% 7,521 9,675 9,021
99.99% 9,669 13,345 12,999

Table 3: Simulation Results
This table reports the VaR of portfolios PF1-PF7. The second column represents
the probability level for risk calculation and the figures are VaR from each risk
model.

11



Figure 1: VaR at Different Probability Levels: PF1

held constant. The results indicate that the risk sensitivity2 with respect to
the PD is lower than 1. For example, if we compare 99.9% VaR of CM2S, risk
decreases by 72% in PF2 and increases by 280% in PF3. The risk sensitivity
with respect to the PD is also visualized in Figure 2, where 99.9% VaR of each
model is displayed for a range of PD values. The risk curves of CM2S and MOW
are concave with respect to the PD, while that of CR++ is almost linear. The
linear behavior of CR++ stems from the specification of PD. By specifying PD
as a linear function of the risk factors (Equation (1)), default probability only
determines the mean of PD but does not affect the overall shape of the loss
distribution. It is not clear which model is more compatible with the reality.
Given the fact that the expected loss is linear with the PD, it seems reasonable
for the unexpected loss to be linear with the PD as well. On the other hand,
since an increase of the PD does not necessarily mean an increase of uncertainty,
unexpected loss being less sensitive to the PD seems also reasonable.3

PF4, while other input parameters being equal, has twice larger LGD than
PF1. Since all the models except MOW assume a constant LGD, risk increases
linearly with the LGD in these models. As the variance of the LGD in MOW is
a parabolic function of the LGD with its maximum at LGD = 0.5, the variance
can either increase or decrease depending of the value of LGD. In the sample,
the credit risk increases 1.5 times when the LGD doubles from 0.3 to 0.6.

PF5 has twice higher asset correlation than PF1. The asset correlation vs.
credit risk diagram is displayed in Figure 3, where 99.9% VaR for different values
of the asset correlation is drawn. Obviously, risk becomes larger when the asset
correlation increases. What is more intriguing is that, as shown in Figure 3,
the risk curves are convex and risk increases sharply as the asset correlation
increases. This is contrary to the case of PD. For example, an increase of the
asset correlation from 0.1 to 0.2 results in twice larger risk (sensitivity of 1)
while increase from 0.1 to 0.9 results in 18 times larger risk (sensitivity of 2) in

2Risk sensitivity is defined as the ratio of the change in credit risk over the change in the
input parameter of interest.

3Even though the uncertainty in the market remains the same, the variance of PD, PD(1−
PD), increases and the overall risk also increases.
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Figure 2: Probability of Default vs. 99.9% VaR

all models except CR++ with wk = 0.5, in which risk increases almost linearly
with the asset correlation. Moreover, risk becomes more sensitive to the asset
correlation at a higher probability level: From Table 3, the risk sensitivity with
respect to the asset correlation is about 1.0 at α = 99.9%, while it ranges from
1.04 to 1.19 at 99.99%. Putting together, the asset correlation becomes a more
influential factor at a far tail of the loss distribution, especially when its value
is high. This makes the asset correlation a key factor for risk management.

Figure 3: Asset Correlation vs. 99.9% VaR

Finally, PF6 and PF7 are designed to analyze the effect of the sector correla-
tion on risk. Two risk factors are assumed in PF6 and PF7, with the correlation
coefficient of 0.5 and 0.0, respectively. PF1 can be regarded as having two per-
fectly correlated risk factors. The results are reported at the bottom of Table 3.
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The VaR’s from multi-factor CM2S are obtained via a Monte Carlo simulation
with 1,000,000 iterations. Decrease of the correlation from 1.0 to 0.5 and to 0.0
respectively results in risk reduction of about 20% and 40% in both CR++ and
CM2S. For CR++, risk reduction is more apparent when wk = 0.5. Also, risk
is reduced more rapidly at a higher probability level. 99.9% VaR’s for various
sector correlation coefficients are displayed in Figure 4. The risk sensitivity with
respect to the sector correlation is more or less similar among the models. To
assess the effect of the number of sectors, 99.9% VaR is calculated for the cases
of 4, 10, and 50 uncorrelated sectors, and the results are displayed in Figure 5.
As expected, risk is reduced as the number of sector increases due to diversifica-
tion effect. When sectors are highly correlated, diversification benefit becomes
much less significant (not reported here). It is remarkable that CR++ with
wk = 0.5 enjoys the diversification effect most and the risk changes from the
highest when the number of sectors is 1 to lowest when the number of sectors
is 50.

Figure 4: Sector Correlation vs. 99.9% VaR: Two Sectors

Various types of loan portfolios, rare default events, and low credit risk
measurement frequency all make it very difficult to evaluate credit risk models
and choose one particular model as a standard. Under this circumstance, one
important criterion for model selection would be the flexibility of the model to
fit various loss distributions. While PD, LGD, and EaD are likely to have little
room for adjustment, banks usually have more discretion for defining sectors
and their correlations. Thus, these variables could act as control variables to
fit the model to actual portfolios. Based on this idea, I calculated risk of each
model changing the number of sectors (1 to 50) and sector correlations (0.0 to
1.0) as a measure of flexibility. The results are displayed in Figure 6. CR++
with wk = 0.5 has the widest range of VaR while CR++ with wk = 1.0 has the
narrowest range. This indicates that if there are no other dominating criteria
to choose another model, CR++ might be a good choice if the control variables
are carefully determined.

So far, I have demonstrated the risk sensitivity with respect to the input
parameters. Credit risk is most sensitive to the asset correlation, and the sen-
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Figure 5: Number of Sectors vs. 99.9% VaR

Figure 6: VaR Range
Range of VaR for different numbers of sectors (1 to 50) and sector correlations
(0 to 1). For each model, three scattered diagrams are, from left to right, 99%,
99.9%, and 99.99% VaR’s.

sitivity becomes even severer when the correlation is higher. Credit risk also
appears to be sensitive to the sector correlation. Considering the fact that the
asset correlations are normally estimated from the volatility of the sector, sector
covariance can be regarded as the most significant risk component in credit risk
measurement. Sector covariance is difficult to estimate and can vary widely
depending on the economic cycle. Therefore, choosing a proper method for
measuring sector covariance is crucial for sound credit risk management. Risk
sensitivity varies not only among the models but also with the input parameter
values and the quantile at which risk is measured. The difference in the risk
sensitivity among the models is most evident with respect to the PD. CR++,
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with the additional degree of freedom, has the most flexibility and if flexibility
could be considered as a criterion for model selection, CR++ might be worth
considering as the first choice.

4 Concluding Remarks

In this article, I compare four widely used credit risk models that are especially
suited for loan portfolios: CreditRisk++, CreditMetrics, MOW, and IRB. These
models are first compared from a theoretical perspective and then evaluated via
various simulation studies. The most important attributes that distinguish one
model from another are the risk factor distribution and the relationship between
the risk components and the risk factors. These attributes are the determinants
of the portfolio loss distribution. For the model portfolios considered in the sim-
ulation analysis, risk tends to increase in order of, from low to high, MOW with
constant LGD, CR++ with risk factor weight of 1.0, CM2S, CR++ with risk
factor weight of 0.5, and MOW with stochastic LGD. However, risk sensitivity is
affected by the input parameters values and other factors, and this order cannot
be generalized. Risk turns out to be most sensitive to the asset correlation and
the sensitivity becomes even higher when the correlation is high. Risk is also
very sensitive to the sector correlation. Reflecting the fact that asset correlation
is often estimated from the sector volatility, sector covariance is considered to
be the most crucial component in risk management. CR++, due to its extra
degree of freedom, can have a wide spectrum of loss distribution, even for the
same input parameters. This is an advantage of CR++, but at the same time,
can cause unexpected results unless the parameters are carefully chosen.

By summarizing the key features of each model and conducting various sim-
ulations, this article provides valuable information on credit risk model evalu-
ation for the banks who consider implementing a new model or upgrading the
existing one. In particular, by taking multi-factors and their correlations into
consideration and performing comprehensive sensitivity analysis with respect to
the input parameters, this article exposes subtle differences among models and
suggests new insights into them. One model cannot be claimed to be superior
to the others in all aspects. Banks should choose the most appropriate model
based on their risk preference, management purpose, and own portfolios: If a
bank holds a conservative view, it might choose a model that measures risk
comparably high; A more stable model might be preferred for calculation of
capital buffer, while a more sensitive model might be better suited for internal
management and decision making. It would be beneficial for a bank to measure
the risk of its own portfolio with several models and compare the results before
choosing the final model.
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