
Time-weighted multi-touch attribution and channel relevance in the

customer journey to online purchase

David A. Wooffa∗and Jillian M. Andersonb

aDurham University, Department of Mathematical Sciences, Stockton Road, Durham DH1 3LE, UK
bSummit Media Ltd, Albion Mills, Albion Lane, Willerby, Hull, HU10 6DN, UK

August 5th 2012

Abstract

We address statistical issues in attributing revenue to marketing channels and inferring the importance
of individual channels in customer journeys towards an online purchase. We describe the relevant data
structures and introduce an example. We suggest an asymmetric bathtub shape as appropriate for time-
weighted revenue attribution to the customer journey, provide an algorithm, and illustrate the method.
We suggest a modification to this method when there is independent information available on the relative
values of the channels. To infer channel importance, we employ sequential data analysis ideas and restrict
to data which ends in a purchase. We propose metrics for source, intermediary, and destination channels
based on two- and three-step transitions in fragments of the customer journey. We comment on the
practicalities of formal hypothesis testing. We illustrate the ideas and computations using data from a
major UK online retailer. Finally, we compare the revenue attributions suggested by the methods in this
paper with several common attribution methods.

Keywords: Sequential analysis; Metrics; Path to conversion; Clickstream; Digital marketing; E-
commerce.

1 Introduction

This paper concerns statistical analysis of the routes to online purchase – known as conversion – by customers
at a retail internet site. Prior to conversion, consumers typically visit several websites, including multiple
visits to the final retail site, for purposes including searching, browsing and knowledge building (Moe,
2003). A typical example might begin with a customer searching for a product, narrowing down on product
details, using shopping comparison sites to compare prices, checking for availability of vouchers, and so
forth. This is the customer journey, also known as the clickstream. Retailers use a variety of online
marketing channels to raise brand awareness and drive conversions; therefore, it is possible for a consumer
to interact with multiple marketing channels prior to conversion. The customer journey is recorded via
cookies stored on the consumer’s computer. Usually, some fraction of the sale revenue is attributed to steps
in the journey. Simplistically, these are monetary rewards for sites which funnel customer traffic towards
the final retailer. These sites are classified as marketing channels of various kinds: display campaigns, direct
email advertisements, social media such as Facebook, and so forth. One fundamental problem is to decide
which fraction of revenue should be attributed to each marketing channel: in the UK, this is the weighted
attribution problem; in the USA it is better known as the multi-touch attribution problem. More detailed
descriptions of the process may be found in Abhishek et al. (2012) and Xu et al. (2012).

In 2012, total spend on digital advertising in the UK alone amounted to £5416 million, with annual
growth of around 13% (Internet Advertising Bureau UK, 2013). In the USA, corresponding spend is
presently around $40000 million (Dalessandro et al., 2012). Around 58% of UK spend is on pay-per-click
(PPC) advertisements via search engines such as Google, Bing, and Yahoo. The remaining spend is on
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other digital marketing channels. This sector of the economy is already of major importance, and growing,
but many aspects are poorly understood, including our area of interest, the customer journey. Industry
evidence is that around 65% of conversion journeys contain more than one visit to the final retail site,
and about 81% contain interactions with more than one marketing channel. There is enormous interest in
determining which channels are relevant to the final purchase. One reason is that the different marketing
channels might be stages in, or different aspects of, an advertising campaign, and where it is desired to
measure the value of each aspect in contributing to the final purchase decision. Understanding the true
value of each kind of marketing channel should lead to better budget planning, to identification of crucial
steps in the journey, and to improved exploitation of emerging channels.

1.1 The attribution problem

Existing methods for attributing conversions to marketing channels range from the simplistic to detailed
algorithms. The most basic methods attribute the conversion to a single step in the journey, typically
the first step in the journey (“first click wins”) or the last step prior to conversion (“last click wins”).
By only acknowledging a single channel within a conversion journey we underestimate the importance of
channels which might only appear as intermediate in the journey, but which may in fact be crucial to the
conversion. Multi-channel attribution assigns a proportion of the conversion revenue to each step in the
journey. A recent survey suggests that 30% of retailers use single-source attribution, 34% use a multiple-
source method, and 11% use an algorithm-based approach (Osur et al., 2012), with attribution depending
on inferred measure of channel relevance Shao and Li (2011); Abhishek et al. (2012); Xu et al. (2012). Many
current multi-channel models are subjective with weights assigned on a marketer’s experience rather than
data analysis.

There is no industry standard for attributing revenue and no single measure exists for comparing the
many different methods available. Dalessandro et al. (2012) recommends these properties of a good attri-
bution model: (1) fairness – attribution should be based on the channel’s ability to influence conversions;
(2) data-driven – attribution should be based on statistical principles, but should also utilise a retailer’s
knowledge of the marketplace; (3) interpretability – the attribution model should be transparent and suffi-
ciently simple to be understood and implemented by all. We propose methods which satisfy these criteria,
and which also takes into account temporal features in the journey. We propose a method for dealing with
attribution when we have no information about the relevance of different channels to conversion behaviour,
and a modification of the method when we do have such information.

1.2 The channel relevance problem

A number of algorithm-based methods use converting and non-converting journeys in order to determine
the probability of each channel leading to a conversion (Shao and Li, 2011). Abhishek et al. (2012) view
the journey as a funnelling process whereby customers are influenced by typically narrower funnels at each
step by the marketing material. They address the likelihood to convert at each stage and then derive
a valuation based on the increment that each step has on the consumer’s probability to convert. They
use data from an online campaign for a large car manufacturer and construct a hidden Markov model to
relate advertising stages to conversion behaviour. This is useful for tightly-defined advertising campaigns.
Xu et al. (2012) view the journey as a Markov process with a special structure – mutually exciting point
processes – and so fit models which result in a measure of each channel’s value as well as allowing prediction
of conversion rate. Both these methods require conversion and non-conversion histories. These arise because
each advertising stimulus can be assessed as leading definitely to a conversion or, in a time-censored sense,
to a non-conversion.

Our interest is in data which is less clean. We consider only journeys which end in a conversion for a
particular retailer, from whatever source. we cannot consider non-converting journeys as we have no data
concerning them, as is standard in data of this kind. We cannot analyse journeys which end at a different
retailer. We may analyse fragments of journeys in which a customer visits a particular retailer, but does
not make purchase, but doing so requires many quite deep assumptions which reflect factors concerning a
particular retailers position within the marketplace. In other words, we may analyse only what we have
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observed and there is no element of experimental design involved - for that, the methods described in
Abhishek et al. (2012); Xu et al. (2012) are more appropriate.

For an introduction to statistical methods to discover statistically surprising patterns in sequences see
for example Agrawal and Srikant (1995); Zaki (2000a,b); Wang and Yang (2005); however this is not central
to our problem of inferring channel relevance. The main focus in Agrawal and Srikant (1995) is to find
customer journeys which have a specified minimum level of support, each such journey being classified as
a sequential pattern; a subsidiary focus is on which items are purchased as part of the same journey. See
Hahsler et al. (2005) for a more recent discussion of mining of association rules and a computer package
providing tools. The problem of predicting the next step in a journey conditional on the observed history
is also much studied, but is not relevant here. For predicting from a clickstream history, see for example
Gunduz and Ozsu (2003); Gunduz-Oguducu and Ozsu (2006). There is also a literature on exploring
web navigation behaviour; these tend to focus on website analytics. Berendt and Spiliopoulou (2000), for
example, use knowledge of local web infrastructure with sequential pattern analysis to assess site design.
Other researchers have used Markov and Hidden Markov models to construct predictions for customer
browsing behaviour; see Jamalzadeh (2012) for an overview.

In Section 2 we describe the relevant data structures and introduce an example. In Section 3 we suggest
an asymmetric bathtub shape as appropriate for time-weighted revenue attribution to the customer journey,
provide an algorithm, and illustrate the method. In Section 4 we suggest a modification to this method
when there is independent information available on channel relevance. In Section 5 we address the problem
of inferring channel relevance from data, and suggest metrics in Section 6. We illustrate the methodology
in Section 7. In Section 8, we compare the revenue attributions suggested by the methods in this paper
with several common attribution methods.

2 Preliminary processing of data

2.1 Data Collection

We suppose that web analytics tools have been used to collect information about a customer’s journey
subsequent to a conversion. Pixel tracking is used to record each visit a user makes to a website. The
marketing channel and time of each visit is recorded, along with conversion details such as sale type, sale
ID, and revenue. Visits may be categorised at the marketing channel level (e.g. direct, PPC, organic
search) or at a more granular level (e.g. search term, keyword, category). We make no inferences regarding
journeys which may be artificially shortened via users either deleting or refusing permission to store cookies.
Impressions, or views, of an advertisement may also be included in the journey sequence and assigned a
value similarly to visits.

A visit duration window is applied to multiple visits from the same channel: subsequent visits are not
recorded if they occur within a given timeframe thereby reducing the influence of click fraud and user
behaviour (e.g. page refresh, navigation confusion). Industry standards set the visit duration window at 10
minutes for marketing channels. Furthermore, a maximum time between a visit and conversion is imposed,
and will be referred to as the cookie window. The choice of cookie window is subjective, but guided by
industry expertise. For retail, 31 days is commonly employed.

We exclude journeys reaching a terminus such as site registration or booking an appointment. We
assume where necessary that abandonment of a journey without conversion is final within a given time
period. This is an approximation as some customers do continue their journeys after long breaks. Note
that some journeys which do not end in online conversion may end in offline conversion, with customers
visiting a store to purchase a product identified online. This is presently excluded from our analysis.

Mathematically we will view the different possible visits as nodes in a sequence. The definition of what
constitutes a visit source depends on the requirements of the retailing company. Sometimes this will be at a
very fine level of detail, such as named weblinks. At other times the sources may have been classified by the
retailer into a smaller number of channel categories such as ‘direct’, ‘email’, etc, as it deems appropriate.
This is the case in the example we discuss in Section 7.
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2.2 Data Processing

Suppose we observe a sequence of customer visits to a retail website made at times T1, T2, . . . , Tk. We make
an assumption that visits that occur further back in time than a specified amount Tmax are not relevant
to the current conversion. Analysis of the journey database allows a retailer-specific Tmax to be set. The
journey lengths, Tk − T1, of all journeys in the database are analysed, with the 90th percentile chosen as
Tmax. Journeys where Tk − T1 > Tmax are truncated at the visit T ∗, where T ∗ ≤ Tmax.

We also make the assumption that time gaps larger than a specified amount T∆ imply separate journeys.
Thus, if any adjacent times satisfy Tj − Ti > T∆, we end one journey at Ti and start another at Tj . All
transition times (Tj −Ti) within the journey database are analysed, with T∆ set at the 90th percentile. For
the purposes of this article we consider only one value for T∆, however, it is understood that T∆ may vary
depending on the sequence of marketing channels. Journey fragments prior to Ti are not considered in this
article.

A maximum number of visits Vmax might also be imposed, in that journeys with number of visits
exceeding Vmax are assumed to be due to tracking discrepancies and are removed from the analysis.

Imposing a Tmax and T∆ results in left-censoring of the data. The main implication is that data
concerning the first click is lost. In analysing such data, the implicit assumption is that T1 is either
genuinely the start of a new journey, or a click made in the same journey but with the preceding click so
distant in time that it is deemed irrelevant. For analysis of journeys which end in conversion, the use of
a time gap threshold may result in early parts of the journey being discarded. For data where conversion
behaviour is an outcome, journeys might be separated into non-converting and converting fragments, and
the correlation between the two may be lost.

2.3 Example

Table 1: Journeys and conversion revenues for 25 customers, minimum two-step journeys with S = 11.
Figures given are times of visit rounded to the nearest minute and starting time arbitrarily at T1 = 0 for
each customer.

i T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 Revenue
1 0 19 70 106 106 869
2 0 113 309
3 0 0 0 37 37 114 50
4 0 0 118 329
5 0 1 7 7 7 122 122 280
6 0 84 137 322
7 0 53 111 144 144 144 196
8 0 13 13 14 137 142 147 148 100
9 0 0 136 149 149 149 149 149 244
10 0 25 77 79 79 79 167 167 167 167 167 378
11 0 0 50 169 494
12 0 172 205
13 0 178 178 178 340
14 0 52 179 179 370
15 0 0 180 180 136
16 0 0 79 181 1289
17 0 33 39 191 160
18 0 198 213
19 0 14 27 99 115 120 125 204 249
20 0 6 139 145 150 153 153 167 206 163
21 0 77 216 216 218 218 218 330
22 0 90 117 121 151 151 241 243 243 247 247 95
23 0 6 126 251 251 251 251 150
24 0 263 263 270
25 0 20 22 23 23 153 247 272 239
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Consider the fragment of data shown in Table 1. Data are taken from a sample of customer conversions
made on a leading multichannel retail website. Each journey has a starting time T1, and a number of
visits in sequence with time recorded. Also shown is the amount of conversion, the revenue attributed to
each journey. These data are reported to two decimal places, but shown rounded in the table. The focus
of analysis for this data set is the route to conversion. A maximum journey length Tmax of 30 days was
used, and visits made before Tmax are removed. A time gap threshold of T∆ = 14 days was also used, and
fragments of any journey with at least such a time gap were discarded. Each customer journey is analysed
separately and only time since start of journey is assumed relevant. As such, we fix T1 = 0 for each journey.
A maximum number of visits in the journey was also set at Vmax = 11; journeys with more than 11 visits
were removed. More than 95% of journeys in the database contained 11 visits or fewer. It is, of course,
possible to explore the implications of different choices of Tmax and so forth, but this is outside the scope
of this paper.

The data subset contains visits from a number of channels which may be split into varying degrees
of granularity. Natural search channels may be split by search partner (e.g. Google, Bing) or category
(e.g. brand, non-brand). Affiliate channels may be categorised according to type (e.g. cashback, voucher
codes); this is particularly important for understanding the value of marketing campaigns within the context
of attribution and budget forecasting. Visits via individual comparison sites are also included. Finally,
for account optimisation, PPC visits may be split at the keyword level, where keyword can be broadly
interpreted as meaning a search word or phrase. Identifying keywords which have a strong influence on
likely final conversion is a crucial aspect of digital marketing performance. Visits which are not classified
into a specific channel are classed as “unlisted referrers” and could be excluded from the attribution model,
or assigned a weight of zero; for discussion see Section 8.

This sample of data exhibits features typical of the problem. Journeys vary in length of time. Significant
time can be spent on one visit, or the journey can be relatively time-homogeneous. There are two two-step
journeys. Instances where successive visits are within the same minute as the previous click (for example,
see journey 3 in Table 1) represent visits either by a different channel or search query and are not to
be interpreted as page refresh errors. Single visit journeys are assigned revenue and removed from the
attribution database after data cleaning.

3 Naive time-weighted Revenue allocation

Suppose we observe the customer journey X(1) → X(2) → . . . → X(k), 2 ≤ k ≤ S, with conversion at node
X(k) resulting in revenue R, and where S is some truncating choice. Suppose we visit node X(i) at time
Ti, so that the journey begins at T1 and ends at Tk. Suppose also that we have no information concerning
the relative importance of nodes in the journey. The problem is to attribute the revenue to the nodes in
the journey, or equivalently to value each node. There are many views as to how we might do this. One is
to attribute all revenue to the last node in the journey, known as last click wins. This corresponds to the
view that the journey itself is irrelevant and that the customer would have arrived at node X(k) irrespective
of starting point. Another view is to attribute all revenue to the first node in the journey, known as first

click wins. This corresponds to the view that once the journey has started at X(1) the journey will end
inexorably with a conversion at node X(k). A third view is that all nodes in the journey count equally
towards the final conversion, in which case revenue might be attributed equally to each node. There are
many other views which suggest that clicks closer to conversion should have a higher weighting. These lead
to weights based on monotonically rising functions, for example positive linear and exponential.

In discussion with digital marketing experts at the collaborating company, none of these views is felt
to be reasonable. Instead, they suggest the following plausible structure. We value recent clicks highly,
especially the most recent click. We value the initiating click highly, but less highly than the last click.
We value intervening clicks not highly if they are quite distant in time, and less than the initiating click.
We regard clicks close in time to the last click as being highly relevant. This suggests that the shape of
value which we wish to allocate to clicks in the journey might have an asymmetric bathtub shape, with the
rim of the bath lower at the left-hand side. Such bathtub shapes are common in survival analysis, through
representing hazard functions. We now consider how to construct such a shape for this application. A
simple asymmetric bathtub shape, constructed using a beta distribution, is shown in Figure 1 for Journey
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10 of Table 1.

3.1 Theory

The beta distribution is of the form f(x) = kxa−1(1−x)b−1, 0 < x < 1, where k is a normalising parameter
which is of no interest in this context. The parameter choices 0 < a < b < 1 lead to asymmetric U -shaped
distributions with a higher rim at the right-hand side. Other parameter choices can lead to J-shaped and
unimodal distributions. Although the distribution is defined on the interval (0, 1), it is trivial to transform
journey time (T1, Tk) to (0, 1) and back again. In fact we will transform not to (0, 1) but to (ǫ, 1 − ǫ) to
avoid infinities at the asymptotes. Experience shows that a good choice is ǫ = 0.01. The minimum of the
distribution occurs at

γ =
a− 1

a+ b− 2
, (1)

so that θ = f(γ) will be the smallest possible weight given to any click.
We need to make choices about the relative values of clicks. Let θL be the relative value of the last click

in the journey as compared to the first click in the journey. Let θF be the relative value of the first click in
the journey as compared to θ, potentially the value assigned to the least valuable click in the journey.

The choices of θF and θL will depend on context. In discussion with our marketing collaborator, it was
felt appropriate to deem the last click as worth about four times as much as the first click, and the first click
as worth about twice the minimum value we would wish to assign. That is, θL = 4 and θF = 2, so that the
last click is worth θLθF = 8θ, eight times as much as the least valuable click. Such choices are unavoidable.
For example, the judgement that all clicks should be evenly weighted corresponds to θF = θL = 1. Similarly,
where there is an attribution which rises linearly in value from first click to last click, the underlying choice
is θF = 1 and θL is proportional to the slope of the chosen line.

Given these assumptions, we now generate parameter values for our beta distribution. We have

θL =
f(1− ǫ)

f(ǫ)
⇒ a = b+ v, (2)

where

v =
log θL

log (1/ǫ− 1)
.

Note that v > 0 in order to obtain a higher rim at the right-hand side. We have also

θF =
f(ǫ)

f(γ)
= (

ǫ

γ
)b+v−1(

1− ǫ

1− γ
)b−1, (3)

where we can re-express γ via (1,2) as

γ =
b+ v − 1

2b+ v − 2
.

This gives a highly non-linear equation in b, which may be solved numerically. The constraints of the
numerical solution are that 0 < b < 1 − v. This follows as we require a < 1 in order to obtain a U -shape.
An algorithm for attributing revenue to a channel is thus as follows.

(i) Choose θF and θL. Fix ǫ = 0.01. Compute v.

(ii) Solve (3) for b and determine a via (2).

(iii) For Journey J with revenue RJ to attribute, transform the click times T1, T2, . . . , Tk linearly to (ǫ, 1−ǫ).
This gives transformed time values T ∗

1 = ǫ, T ∗

2 , . . . , T
∗

k = 1 − ǫ. Evaluate wi = f(T ∗

i ) for each
transformed time. The proportion of revenue attributed to the channel clicked at time Ti is w∗

iRi,
where

w∗

i =
wi

∑k
i=1wi

.
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Figure 1: Simple bathtub model for click value, with clicks for Journey 10 marked.
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There may be journeys for which all recorded click times are the same, perhaps because of rounding. In
this case the rescaling to (0, 1) fails and it is simplest to give equal weight to all clicks in such journeys.

The steepness of the bath rims is governed by ǫ, for which we suggested an appropriate default value
of 0.01. Smaller values of ǫ imply steeper behaviour at the asymptotes, with the consequence that the last
click will be valued relatively more than the penultimate click, and the first click relatively more than the
second click. If this level of detail is deemed worth pursuing, the implications of different values of ǫ can
be shown to digital marketing staff and an appropriate alternative value chosen, but this needs to take into
account the proximity of clicks in unscaled time.

3.2 Example

Table 2: Weights and revenue attributions for Journey 10 of those shown in Table 1.

i Time of click, Ti Weight, w∗

i Revenue attributed

1 0.00 0.042 16.03
2 25.05 0.023 8.56
3 77.18 0.022 8.31
4 79.05 0.022 8.36
5 79.09 0.022 8.36
6 79.09 0.022 8.36
7 167.25 0.169 63.71
8 167.26 0.169 63.92
9 167.27 0.170 64.13
10 167.27 0.170 64.13
11 167.27 0.170 64.13

1.000 378.00

For our data set we choose θF = 2 and θL = 4. Solving with these choices we obtain a = 0.739 and
b = 0.437. The curves obtained are shown in Figure 2 for journeys 2,3,10,25. For journey 10, the weights and
revenue attribution are shown in Table 2. The revenue attributions for all journeys are shown in Table 3.
Note that attributions must now be accumulated over channels (or at a more granular level depending on
purpose); for example the clicks at T1 and T2 for a journey could correspond to the same channel. One
feature evident in this data set is multiple clicks close in time, and so which attract similar revenues. In
principle it is not difficult to provide more sophisticated methods which could take into account subjective
judgements concerning clicks close in time. For example, one might wish to discount all but the most recent
of a group of clicks occurring in a narrow time range.

4 Informed revenue allocation

In this section we discuss weighted attribution when we also have information about the relative importance
of different nodes. Judgements about relative importance may be made directly. For example, in the context
of online marketing a company might wish to value PPC channels more highly than natural search or email
marketing. A number of researchers, see for example Shao and Li (2011); Abhishek et al. (2012); Xu
et al. (2012), have provided measures of channel value relating directly to probability of conversion. This
requires data on converting and non-converting journeys. Where we have data only on converting journeys,
we provide a method in Section 5 to infer channel relevance based on sequential data analysis of journey
fragments.

Whether channel value is inferred or specified, we suppose that the relative values of the n channels are
u1, u2, . . . , un, where

∑n
i=1 ui = 1. There are different possible ways of merging weights due to time and

weights due to channel value. The simplest is to compound the two sets of weights and then re-normalize.
Thus, suppose that a(1), a(2), . . . , a(k) are the weights suggested by time of click for a k-step journey. These
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Figure 2: Value of clicks for journeys 2,3,10,25. Beta function parameters are a = 0.739, b = 0.437. Last
click is worth θL = 4 times as much as first click. First click is worth θF = 2 times as much as the minimum
possible.
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Table 3: Revenue attributions for 25 customer journeys. Figures given are attributions of revenue to the
channel clicked at that time, rounded to the nearest integer.

i T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 Revenue
1 86 45 52 342 344 869
2 62 247 309
3 6 6 6 3 3 25 50
4 55 55 219 329
5 24 21 15 15 15 95 95 280
6 58 33 231 322
7 14 7 10 55 55 55 196
8 8 5 5 5 10 13 23 32 100
9 11 11 12 42 42 42 43 43 244
10 16 9 8 8 8 8 64 64 64 64 64 378
11 76 76 38 304 494
12 41 164 205
13 26 104 104 105 340
14 39 20 156 156 370
15 14 14 54 55 136
16 198 197 102 792 1289
17 26 14 14 106 160
18 43 170 213
19 30 18 16 16 16 17 17 119 249
20 17 12 10 11 11 11 11 13 66 163
21 17 9 47 48 69 70 70 330
22 5 3 3 3 3 3 10 12 12 21 21 95
23 8 6 4 33 33 33 33 150
24 30 120 120 270
25 26 16 16 16 16 15 30 106 239

weights are derived using the bathtub method of Section 3, the linear method, or any other desired method.
Let u(i) be the value of the ith node clicked. The compounded weight for the node clicked on the ith step
of the journey is then

a∗(i) =
u(i)a(i)

∑k
j=1 u(j)a(j)

. (4)

Thus, an attribution to the node clicked on step i of the journey which is both time-weighted and value-
weighted is given by multiplying weight a∗(i) by journey revenue.

5 Inferring node value using sequential analysis

We now address how we can determine the relevance of different channels in a customer journey which ends
in a sale. Clearly, the final nodes in the journey are important, but time-weighted attribution of revenue
will emphasize these anyway. Therefore in what follows, we will derive relevance of node independently of
early or late position in the journey. The proportion of nodes visited across all journeys offers a simple
measure of relevance. However, the key is to measure the importance of a node in terms of moving from one
to another. Thus, we need to focus on the probabilities of transition. Thus, suppose the customer journey
includes the sequence A → B → C. The questions to answer are: how relevant is the intermediary node
B, and would the customer have reached C from A regardless? Ideally we would like to represent customer
journeys using probabilistic networks such as Bayesian belief networks; however these are inadequate for
the task, partly because they are directed networks and partly because their inherent Markov properties
cannot handle multinode histories.
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5.1 Principles and notation

We employ a notation based on that of Agrawal and Srikant (1995). Our concern is with journeys which
interact with a fixed number, n, of nodes X1, X2, . . . , Xn in some order. In common with the digital
marketing community, we call these interactions clicks or visits. The journeys may contain loops, repeated
fragments, and so forth. There may or may not be single-click journeys. We described cleaning of the data
in Section 2, noting that journeys are typically left-censored to the most recent S steps, so that S is the
maximum sequence length. Let A → B mean the direct transition from node A to node B. Let A ⇒ B
mean any one-step or two-step transition from A to B. The notation B̄ means any node except node B.
Let N{ij} be the number of times the direct transition Xi → Xj occurs. We extend the notation to longer
sequences, so that N{ijk} is the number of times the subsequence Xi → Xj → Xk appears.

5.1.1 Cyclic sequences

Ideally we want to deal with uniquely classified nodes, for example a unique landing page within a retail
website. In this situation it makes sense to treat a sequence (A → A → B) as equivalent to the sequence
A → B, such that the sequence then contains no immediate loops, and we do not distinguish between
one interaction and more than one interaction with the node. This principal seems to extend naturally
to subsequences. That is, (A → B → A → B) might be considered equivalent to (A → B). Ultimately
this is the restriction that the sequence not be cyclic. However, there are difficulties in working with this
interpretation. First, checking for cyclicity is non trivial (Wang and Yang, 2005). Secondly, if the journey is
actually cyclic, we need to decide which part of the journey to disregard. In determining channel relevance,
the possible nodes in many examples happen to be crude bins representing channel type rather than a
granular classification. Therefore it is perfectly feasible to observe a journey such as A → A, for example
from one shopping comparison site to another. Thus in the remainder of this account we make no sequence
restrictions and allow sequences to be cyclic.

6 Metrics based on three-step transitions

We must take into account at least three-step transitions. This is already challenging; dealing with all
possible four-step transitions, where we would have to consider all possible intermediary pairs of nodes,
is daunting. Thus we restrict attention to two steps and three steps. We will ignore whether fragments
of a journey occur early or late. We will remove single-step journeys from consideration as these are not
informative for transitions. For each sequence we now construct two-step and three-step fragments as
follows. Take as an example the sequence:

A → B → C → B → E → D.

This contains these two-step fragments:

A → B, B → C, C → B, B → E, E → D,

and these three-step fragments:

A → B → C, B → C → B, C → B → E, B → E → D.

Thus a journey with length s contains s− 1 two-step fragments and s− 2 three-step fragments. Clearly by
breaking down journeys into fragments we are losing much information, particularly about more complicated
journeys.

6.1 A metric for intermediary node value

We now propose a metric for channel relevance. A natural metric for the relevance of a node B in journeys
from A to C is the proportion of such journeys which pass through B, which we estimate by the observed
proportion:

ΛABC =
N{ABC}

N{AC}+N{ABC}+N{AB̄C}
.
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This is the observed conditional probability that any two- or three-step journey from A to C passes through
B, P (A → B → C|A ⇒ C). If this value is small, it suggests that B is not an important way of reaching C
from A. If this value is large, it suggests that B is an important intermediary. More formally, for a (source,
intermediary, destination) triple this metric is:

Λijk =
N{ijk}

N{ik}+
∑n

j=1N{ijk}
, i = 1, . . . , n, j = 1, . . . , n, k = 1, . . . , n.

A general measure of the value of node Xj is then given by averaging over all source and destination nodes:

λj =
n
∑

i=1

n
∑

k=1

Λijk, j = 1, . . . , n. (5)

Note that these measures do not sum to unity:

n
∑

j=1

λj =
n
∑

i=1

n
∑

k=1

vik
1 + vik

≤ 1, vik =

∑n
j=1N{ijk}

N{ik}
, (6)

where vik is the ratio of indirect to direct transitions for node pair (i, k). This sum depends on the total
number of direct two-step transitions and the total number of exactly three step transitions for each node
pair. Thus, a normalized metric is given by

λ̃j = λj/
n
∑

j=1

λj . (7)

As a simple average, (7) does not take into account the volumes of journeys between pairs. As such, a
refinement is to weight according to volume. Typically we deem the destination node to be more relevant
than the source node so that it can be appropriate to weight according to the volume of destination nodes.
It is trivial to weight according to other choices of volume. Let zk be the number of two-step journeys which
end at node k, and let z0 be their sum, i.e. the total number of two-step journeys. That is,

zk =
n
∑

i=1

N{ik}; z0 =
n
∑

k=1

zk.

Then z̃k = zk/z0 is the proportion of two-step journeys which end at node Xk, with
∑

z̃k = 1. This gives a
relative measure of the volume of destination node Xk. Now a plausible measure of the value of intermediary
node Xj is

rj =
n
∑

i=1

n
∑

k=1

z̃kΛijk, r̃j =
rj

∑n
j=1 rj

, (8)

where the latter is normalized. If we also wanted to take into account the value of the source node Xi via
some weight ỹi with

∑

ỹi = 1, then (8) is easily extended to

r∗j =
n
∑

i=1

n
∑

k=1

ỹiz̃kΛijk, r̃∗j =
r∗j

∑n
j=1 r

∗

j

. (9)

In our later example, we use (8), so that the normed value r̃j is our principal metric for determining the
relevance of intermediary node j.

6.2 Metrics for the journey relevances of initiating and terminating nodes

We may develop similar metrics to value different features of a journey. The two most useful are as follows.
The proportion of journeys from B to C which are preceded by A is estimated by their observed proportion:

ΦABC = N{ABC}/N{BC}.

12



If this value is small, it suggests that A is not an important way of starting B → C journeys. Note that
this metric ignores direct AC transitions, and so can’t be used as a measure of the importance of A in the
journey to C alone. The proportion of journeys from A to B which continue on to C is estimated by:

ΨABC = N{ABC}/N{AB}.

A high proportion suggests that most customers did not find B a suitable place to stop. A high proportion
could also imply that B is a natural way of getting to C. For each of these metrics, we may weight and
normalize according to volume as desired.

6.3 Hypothesis tests and tests of uniformity

Conditional on ending at Xk and starting at Xi we have N{ik} + N{ijk} + N{ij̄k} possible journeys of
which N{ijk} went through Xj . This is like imagining that someone at Xi wants to get to Xk but isn’t
sure how to get there. We might then assume that the total number who end up at Xk via Xj is binomial
b(N, p) with parameters N = N{ik}+N{ijk}+N{ij̄k} and unknown probability p estimated as λijk. This
leads naturally to a standard error for the estimate as

sijk =

√

λijk(1− λijk)

N{ik}+N{ijk}+N{ij̄k}
. (10)

We can do this for each node separately, and for all n2 combinations of beginning and ending nodes. However
this ignores a degree of correlation between the measures. Instead, conditional on N being fixed, we can
treat the outcomes as multinomial for a fixed starting and ending pair. The outcomes then are all routes
which pass through an intervening node plus the direct route transitions. Thus, for any pair of nodes Xi,
Xk, let N = N{ik}+

∑

j N{ijk}. This is the total number of routes from Xi to Xk either direct or via one
intervening node. Now let p0 be the probability that a route starting at Xi and determined to get to Xk

goes directly, and pj the probability that such a route passes through node Xj . These probabilities may
be routinely estimated using the multinomial distribution. A test of uniformity is given by a Chi-squared
test. However, the test: H0 : p0 = p1 = . . . = pn versus the alternative that at least one pi differs is
not so interesting. This is because we would generally expect a much higher probability p0 for the direct
transition. Therefore, attention could more reasonably focus on the hypotheses such as

H0 : p1 = p2 = . . . = pn, or H0 : p0 =
∑

j

pj , or H0 : pi > δ,

i.e. that the indirect transition probabilities are all equal, or that the indirect transitions are as important
as the direct, or that individual proportions pi exceed some threshold δ. Tests on linear contrasts of
multinomial proportions are considered in Goodman (1965), who also constructs simultaneous confidence
intervals for them. This is summarised as method S2(N) of Hou et al. (2003), who considers the performance
of a number of similar constructions. A problem is the number of tests we would need to carry out: if there
are n nodes, we would need to carry out n2 tests for each set of hypotheses, which would be correlated, and
then it is doubtful that we would wish to analyse the results of all of these in detail. Finally, the nature
of the data implies very unbalanced sample sizes. Some of the pairs could be associated with such large
volumes of data that spuriously small p-values result, whereas for others there may be no or little data.
As such, an effect-size approach (Wooff and Jamalzadeh, 2013) may be more useful. A graphic such as the
stars plot shown later can also be a useful visual cue as to intermediary node relevance for specific source
and destination pairs.

7 Computation and illustration

As an example, we explore data from a major UK online retailer. This records 58667 journeys of which
27420 are single-click and 31247 have at least two clicks. 17841 journeys have at least three clicks. We limit
to the most recent S = 19 steps of any journey. Each click is classified as belonging to one of nine channels
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Channel Code Freq Prob

Affiliates Aff 3841 0.1401
Banner Ban 62 0.0023
Price Comparison Comp 818 0.0298
Listed Referrer List 96 0.0035
Natural Search (Other) Nat 1954 0.0713
Natural Search (Brand) NatB 14081 0.5135
Pay-per-click PPC 2174 0.0793
Pay-per-click (Brand) PPCB 2543 0.0927
Unlisted Referrer Un 1851 0.0675

All 27420 1.0000

Table 4: Single-click-journey probabilities

Receiver, k
Sender, i Aff Ban Comp List Nat NatB PPC PPCB Un

Aff 4374 53 289 24 579 1892 467 516 400
Ban 52 40 15 2 24 162 37 28 71

Comp 476 25 342 3 194 528 183 144 62
List 40 3 7 35 18 189 20 30 23
Nat 1052 32 208 26 2199 2239 682 483 277

NatB 3172 174 511 144 2023 29320 1586 1924 1385
PPC 939 44 262 25 839 2161 2719 666 288

PPCB 857 45 135 27 434 2148 499 2955 506
Un 567 87 61 13 222 1122 251 344 6387

Table 5: Bivariate transition counts, N{ik}
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Receiver, k
Sender, i Aff Ban Comp List Nat NatB PPC PPCB Un

Aff 274 8 33 7 94 577 68 57 29
Ban 4 6 2 0 0 83 5 6 13

Comp 38 5 34 0 30 177 23 19 4
List 1 0 1 9 8 92 3 5 7
Nat 102 9 29 8 350 829 113 86 50

NatB 701 88 144 82 678 14549 527 555 410
PPC 100 14 34 4 138 789 346 97 21

PPCB 120 7 23 7 81 723 79 323 47
Un 40 7 5 4 36 394 33 34 174

Table 6: Counts of transitions from sender to receiver via the NatB node (B), Xi → NatB → Xk.

as shown in Table 4. This shows that a high proportion of single-click journeys for this retailer at this time
were branded natural search, coded as NatB.

We now take every journey and count all the pair occurrences. The counts are shown in Table 5 and
plotted in Figure 3, with area proportional to count. There are 83387 pairs. Again, the NatB node
dominates, and there are several nodes which carry very little traffic. The conditional bivariate transition
matrix, plotted in Figure 4, shows the proportion being received by each receiving node given the sending
node, i.e. P (Xi → Xj |Xi is the sender). Probabilities across rows sum to one. (Interpreting columns is
not sensible.) There are two obvious deductions we make from Figure 4. First, there is a high probability
of clicking on the same kind of channel, i.e. A → A, regardless of where you start. This is evidenced by
a strong diagonal pattern. Secondly, there are high conditional probabilities of ending in nodes Aff and
NatB regardless of starting node, as evidenced by high probabilities in those columns. Understanding of
such patterns is useful for marketing design and so forth, but is not our focus here.

We next address journey triples. There are n = 9 possible intermediary nodes for each sender and
receiver. Table 6 counts the number of triples where the intermediary node is NatB. There were overall
94 journeys Aff → NatB → Nat and no journeys List → NatB → Ban.

We may assess whether the starting and ending nodes of two-step patterns resemble in frequency the
starting and ending nodes of three-step patterns. To do this, count for each pair of nodes i, k, the number
of direct transitions N{ik} and the number of indirect transitions

∑

j N{ijk} via any intermediary node.
Table 7 shows the number of indirect transitions, and Table 8 shows the proportions vik of indirect transitions
to direct transitions obtained by dividing Table 7 by Table 5. On average this ratio is 66%. We can carry
out a Cochran-Mantel-Haenszel test to test for differences between these two tables. This test is strongly
significant; we conclude that the two tables have different patterns. However, the statistical significance
is partly the result of very large sample sizes. Indirect transitions to Aff , Comp, Un tend to occur
relatively less than average, and indirect transitions to Ban, List, PPC tend to occur relatively more
than average. Examination of residuals shows that these are weak effects.

7.1 Metrics

We now apply the metrics suggested earlier. We take as an example direct and indirect routes from A = Aff

to C =Nat. Table 9 shows the counts and calculations for A ⇒ C; in all there are n×n = 81 such tables to
construct for this data set. A visualization of the flows for this pair is shown in Figure 5. The top node is
the source node A = Aff . 10.3% of all journeys begin with this node, which is drawn with area proportional
to 10.3% as a visual cue to its importance as a starting node. The destination node, C = Nat, is drawn
with area proportional to 7.8%, reflecting the volume of clicks for this node. Shown are the direct and
indirect routes. The area of central nodes is not meaningful, these are simple labels. The widths of lines
connecting nodes shows how much traffic is flowing between them. The thickest width is between A = Aff

and B = Aff , representing 2749 clicks from A to B which then proceed to another node. The text at the
bottom gives the proportion of journeys reaching the destination directly and indirectly. We see that most
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Figure 3: Direct transition frequency as a proportion of all journeys.
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Receiver, k
Sender, i Aff Ban Comp List Nat NatB PPC PPCB Un

Aff 2400 44 187 21 405 1249 339 333 231
Ban 30 29 12 1 14 115 30 21 52

Comp 226 17 200 2 134 305 124 83 38
List 18 3 3 25 13 132 15 24 14
Nat 529 23 130 19 1470 1367 512 321 161

NatB 1551 134 314 117 1399 18188 1136 1209 775
PPC 501 36 164 13 584 1326 1742 447 173

PPCB 471 33 90 22 281 1240 362 1828 289
Un 292 60 36 9 146 710 177 238 4626

Table 7: Counts of transitions from sender to receiver via any intermediary node,
∑

j N{ijk}.

Receiver, k
Sender, i Aff Ban Comp List Nat NatB PPC PPCB Un

Aff 0.55 0.83 0.65 0.88 0.70 0.66 0.73 0.65 0.58
Ban 0.58 0.72 0.80 0.50 0.58 0.71 0.81 0.75 0.73

Comp 0.47 0.68 0.58 0.67 0.69 0.58 0.68 0.58 0.61
List 0.45 1.00 0.43 0.71 0.72 0.70 0.75 0.80 0.61
Nat 0.50 0.72 0.62 0.73 0.67 0.61 0.75 0.66 0.58

NatB 0.49 0.77 0.61 0.81 0.69 0.62 0.72 0.63 0.56
PPC 0.53 0.82 0.63 0.52 0.70 0.61 0.64 0.67 0.60

PPCB 0.55 0.73 0.67 0.81 0.65 0.58 0.73 0.62 0.57
Un 0.51 0.69 0.59 0.69 0.66 0.63 0.71 0.69 0.72

Table 8: Proportion of indirect transitions to direct transitions, vik, for each node pair.
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Node Transition count Metric, %
j N{ij} N{jk} N{ijk}

∑

k N{ijk} Λijk Φijk Ψijk

Aff 4374 579 145 2749 14.7 25.0 3.3
Ban 53 24 1 25 0.1 4.2 1.9
Comp 289 194 16 142 1.6 8.2 5.5
List 24 18 1 15 0.1 5.6 4.2
Nat 579 2199 89 332 9.0 4.0 15.4
NatB 1892 2023 94 1147 9.6 4.6 5.0
PPC 467 839 21 264 2.1 2.5 4.5
PPCB 516 434 27 326 2.7 6.2 5.2
Un 400 222 11 209 1.1 5.0 2.8

Table 9: Metric calculations for the relevance of intermediary nodes, for source node i = Aff and destination
node k = Nat.

of the routes from Aff to Nat are direct, with smaller contributions via Aff , Nat, NatB, and PPCB.
145 of the three-step transitions from Aff via Aff went on to Nat, and these 145 clicks represented
14.74% of the direct and indirect transitions from Aff to Nat. To avoid cluttering the graphic, we avoid
drawing flow from intermediary routes if it is less than 2.5% (as an arbitrary threshold) of the number of
all routes from Aff to Nat. One immediate conclusion is that although there are many routes from Aff

to an intermediary, few of these then continue to Nat.
Figure 6 concerns the same two nodes, but reversed so that we are exploring routes from Nat to Aff .

For these routes, the great majority are direct and a large proportion of the remainder are via B = Aff .
We can try to explore several such graphs in parallel; however the task becomes daunting as we need to
explore n2 graphs in all.

Figure 7 summarises the more important journeys via intermediary nodes. For each (source,destination)
pair, a stars plot is shown. This shows the proportion of journeys via each kind of intermediate node. To
avoid clutter, we show only intermediary nodes accounting for at least 10% of the journey, and bear in mind
that we do not show directly the proportion of direct transitions, which can be inferred by the absence of
segments showing indirect transitions. The colour and angle of segments is the same for each intermediary.
From such a plot we may discern a number of features, depending on the particular example. Here, for
example, we note that PPC appears to be an important intermediary for destination PPC; NatB is
an important intermediary whenever the source or destination node is NatB; and Aff is an important
intermediary whenever the source or destination node is Aff .

For specified (source, destination) pairs we may compute simultaneous confidence intervals (Goodman,
1965) for the multinomial proportions of direct and indirect journeys. These intervals correct a chosen
level of significance (here, 10%) depending on the number of intervals constructed. Table 10 shows such
intervals for the journeys from Aff to Nat, with indirect journey counts N{1, j, 5} given by column 4 of
Table 7 and direct journey count N{1, 5} = 579 from Table 5. As we pointed out earlier, we would need
to compute 81 such tables to generate confidence intervals for all possible two-step and three-step journeys
for this example, and this is partly why a summary measure for overall channel relevance is useful.

7.2 Channel relevance

Table 11 shows the relative value of nodes from three perspectives. The first represents the volume of
two-step journeys starting at a node. The second represents the volume of two-step journeys ending at a
node. The third shows the relative value of a node as an intermediary using the formulae derived to (8).
The main interpretation is that NatB is very important in the journey, but not quite so much as would
be believed simply looking at source and destination information. On the other hand, channel Aff has
a slightly more important role than source and destination information suggests. Otherwise there are few
major differences between channels for this retailer.
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Routes from Aff (i) to Nat (k) via intermediaries (j)
Heaviest flow is 2749 journeys

Aff

Aff Ban Comp List Nat NatB PPC PPCB Un

Nat

58.8414.74 0.1 1.63 0.1 9.04 9.55 2.13 2.74 1.12

DirectAff Ban Comp List Nat NatB PPC PPCB UnVia

%

Figure 5: Relevance of intermediate nodes in journeys from Aff to Nat. Line widths indicate volume.
Low volumes are omitted.

Journey via Mean Lower Upper

Aff 0.1474 0.1206 0.1788
Ban 0.0010 0.0001 0.0086

Comp 0.0163 0.0087 0.0303
List 0.0010 0.0001 0.0086
Nat 0.0904 0.0696 0.1168

NatB 0.0955 0.0740 0.1224
PPC 0.0213 0.0123 0.0368

PPCB 0.0274 0.0169 0.0443
Un 0.0112 0.0052 0.0237

Direct 0.5884 0.5475 0.6281

Table 10: Simultaneous 90% confidence intervals for the proportion of journeys from Aff to Nat via
intermediary nodes, and directly.
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Routes from Nat (i) to Aff (k) via intermediaries (j)
Heaviest flow is 1576 journeys

Nat

Aff Ban Comp List Nat NatB PPC PPCB Un

Aff

66.5413.54 0.06 1.83 0.06 5.82 6.45 2.09 1.9 1.71

DirectAff Ban Comp List Nat NatB PPC PPCB UnVia

%

Figure 6: Relevance of intermediate nodes in journeys from Nat to Aff . Line widths indicate volume.
Low volumes are omitted.

Source Destination Intermediary

Aff 0.1031 0.1383 0.1694
Ban 0.0052 0.0060 0.0156

Comp 0.0235 0.0219 0.0349
List 0.0044 0.0036 0.0090
Nat 0.0863 0.0783 0.0861

NatB 0.4826 0.4768 0.4204
PPC 0.0953 0.0773 0.0754

PPCB 0.0912 0.0850 0.0947
Un 0.1086 0.1127 0.0945

Table 11: The value of intermediary nodes
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Figure 7: Relevance of intermediate nodes in all journeys. Journeys less than 10% as a proportion are
omitted. The colour and angle of segments is the same for each intermediary node B.
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8 Comparison of weighted attribution mechanisms

Using the data of Section 5, Figure 8 shows the total revenue attributions to eight channels for 58667
journeys for seven attribution methods: (1) the bathtub method described in Section 3 with θL = 4 and
θF = 2; (2) first click wins; (3) last click wins; (4) equal weighting of all clicks – this corresponds to
θL = 1 and θF = 1; (5) linear with last click valued at four times first click – this corresponds to θL = 4
and θF = 1; (6) exponential with last click valued at four times first click; and (7) the bathtub method
additionally weighted according to channel value using metric r̃j (8), and with weights shown in Table 11.
These weights are then compounding with time using (4). For this online retailer, all attribution methods
yield similar results. Of note is that first-click-wins (2) tends to undervalue the Aff channel, whereas
last-click-wins (3) tends to overvalue it; this is expected as the the nature of affiliate sites is to target
consumers at the end of their journey that have already made the decision to buy and to provide a reward
(e.g. cashback) for the purchase. Natural search ( Nat and NatB) and PPC ( PPC and PPCB) clicks
can be assumed to be part of all stages of the buying journey (browsing, researching and buying) and
therefore are expected to be rewarded similarly independent of the attribution model. It should be noted
that an exception to this is that the bathub/value method (7) tends more highly to reward the NatB

channel as it was found to be the most important intermediary channel in a typical journey: see the final
column of Table 11, suggesting that NatB is perhaps more a navigational click rather than a conversion
driver.

9 Discussion

In this paper we offer a sensible revenue attribution mechanism based on appropriate time-weighting of
clicks. We have also shown how the method may be modified when there is separate information available
on the quality of visitable channels. There is unavoidably a subjective element in choosing an appropriate
shape for time-weighted attribution. This is the same problem faced by Bayesian statisticians in choosing an
appropriate prior. This is an uncomfortable fact for major retailers, who often naively expect that there is
a single “right” answer. The choice of attribution shape and parameters such as θL, the ratio of last click to
first click value, depend on the aims of the attribution. If a retailer wishes only to prioritize last-click-wins,
then that is the “right” answer for them. Ultimately, the right attribution scheme is the one which produces
the most traffic or revenue to the retailer. This can be tested in principle by designing experiments in which
groups of search terms are allocated to different attribution schemes and the subsequent effect on traffic
and revenue measured.

The deep question is whether a specified channel actually matters. We have provided a metric based
on three-step transitions in order to measure this importance. Statistical sequential pattern analysis of
this kind is highly challenging: one aim of future work is to examine longer journey fragments. A second
theme of future work is to explore the roles of intermediary nodes in determining conversion behaviour;
however we would need to collect meaningful data about non-converting journeys in order to do this, and
this would require being careful about the assumptions of non-converting journeys. We have not taken into
account the value of conversion; for example it may be that some nodes are relevant only for low-revenue
conversions.
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