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Abstract 

We address statistical issues in attributing revenue to marketing channels and inferring the 

importance of individual channels in customer journeys towards an online purchase. We describe 

the relevant data structures and introduce an example. We suggest an asymmetric bathtub shape 

as appropriate for time-weighted revenue attribution to the customer journey, provide an 

algorithm, and illustrate the method. We suggest a modification to this method when there is 

independent information available on the relative values of the channels. To infer channel 

importance, we employ sequential data analysis ideas and restrict to data which ends in a 

purchase. We propose metrics for source, intermediary, and destination channels based on two- 

and three-step transitions in fragments of the customer journey. We comment on the 

practicalities of formal hypothesis testing. We illustrate the ideas and computations using data 

from a major UK online retailer. Finally, we compare the revenue attributions suggested by the 

methods in this paper with several common attribution methods. 
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Keywords: Sequential analysis; Metrics; Clickstream; Digital marketing; E-commerce; Path to 

conversion. 

1  Introduction 

This paper concerns statistical analysis of the routes to online purchase – known as conversion – 

by customers at a retail internet site. Prior to conversion, consumers typically visit several 

websites, including multiple visits to the final retail site, for purposes including searching, 

browsing and knowledge building (Moe, 2003). A typical example might begin with a customer 

searching for a product, narrowing down on product details, using shopping comparison sites to 

compare prices, checking for availability of vouchers, and so forth. This is the customer journey, 

also known as the  clickstream. Retailers use a variety of online marketing channels to raise 

brand awareness and drive conversions; therefore, it is possible for a consumer to interact with 

multiple marketing channels prior to conversion. The customer journey is recorded via cookies 

stored on the consumer’s computer. Usually, some fraction of the sale revenue is attributed to 

steps in the journey. Simplistically, these are monetary rewards for sites which funnel customer 

traffic towards the final retailer. These sites are classified as marketing channels of various 

kinds: display campaigns, direct email advertisements, social media such as Facebook, and so 

forth. One fundamental problem is to decide which fraction of revenue should be attributed to 

each marketing channel: in the UK, this is the weighted attribution problem; in the USA it is 

better known as the multi-touch attribution problem. More detailed descriptions of the process 

may be found in Abhishek et al. (2012) and Xu et al. (2012). 
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In 2012, total spend on digital advertising in the UK alone amounted to £ 5416 million, with 

annual growth of around 13% (Internet Advertising Bureau UK, 2013). In the USA, 

corresponding spend is presently around $40000 million (Dalessandro et al., 2012). Around 58% 

of UK spend is on pay-per-click (PPC) advertisements via search engines such as Google, Bing, 

and Yahoo. The remaining spend is on other digital marketing channels. This sector of the 

economy is already of major importance, and growing, but many aspects are poorly understood, 

including our area of interest, the customer journey. Industry evidence is that around 65% of 

conversion journeys contain more than one visit to the final retail site, and about 81% contain 

interactions with more than one marketing channel. There is enormous interest in determining 

which channels are relevant to the final purchase. One reason is that the different marketing 

channels might be stages in, or different aspects of, an advertising campaign, and where it is 

desired to measure the value of each aspect in contributing to the final purchase decision. 

Understanding the true value of each kind of marketing channel should lead to better budget 

planning, to identification of crucial steps in the journey, and to improved exploitation of 

emerging channels. 

1.1  The attribution problem 

Existing methods for attributing conversions to marketing channels range from the simplistic to 

detailed algorithms. The most basic methods attribute the conversion to a single step in the 

journey, typically the first step in the journey (“first click wins”) or the last step prior to 

conversion (“last click wins”). These underestimate the importance of channels which might 

only appear as intermediate in the journey, but which may in fact be crucial to the conversion. 
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Multi-channel attribution assigns a proportion of the conversion revenue to each step in the 

journey. A recent survey suggests that 30% of retailers use single-source attribution, 34% use a 

multiple-source method, and 11% use an algorithm-based approach (Osur et al., 2012), with 

attribution depending on inferred measure of channel relevance Shao and Li (2011); Abhishek et 

al. (2012); Xu et al. (2012). Many current multi-channel models are subjective with weights 

assigned on a marketer’s experience rather than data analysis. 

There is no industry standard for attributing revenue and no single measure exists for comparing 

the many different methods available. Dalessandro et al. (2012) recommends these properties of 

a good attribution model: (1)  fairness – attribution should be based on the channel’s ability to 

influence conversions; (2)  data-driven – attribution should be based on statistical principles, but 

should also utilise a retailer’s knowledge of the marketplace; (3)  interpretability – the attribution 

model should be transparent and sufficiently simple to be understood and implemented by all. 

We propose methods which satisfy these criteria, and which also takes into account temporal 

features in the journey. We propose a method for dealing with attribution when we have no 

information about the relevance of different channels to conversion behaviour, and a 

modification of the method when we do have such information. 

1.2  The channel relevance problem 

Current algorithm-based methods use converting and non-converting journeys in order to 

determine the probability of each channel leading to a conversion (Shao and Li, 2011). Abhishek 

et al. (2012) view the journey as a funnelling process whereby customers are influenced by 

typically narrower funnels at each step by the marketing material. They address the likelihood to 
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convert at each stage and then derive a valuation based on the increment that each step has on the 

consumer’s probability to convert. They use data from an online campaign for a large car 

manufacturer and construct a hidden Markov model to relate advertising stages to conversion 

behaviour. This is useful for tightly-defined advertising campaigns. Xu et al. (2012) view the 

journey as a Markov process with a special structure – mutually exciting point processes – and so 

fit models which result in a measure of each channel’s value as well as allowing prediction of 

conversion rate. Both these methods require conversion and non-conversion histories. These 

arise because each advertising stimulus can be assessed as leading definitely to a conversion or, 

in a time-censored sense, to a non-conversion. 

Our interest is in data which is less clean. We consider only journeys which end in a conversion 

for a particular retailer, from whatever source. we cannot consider non-converting journeys as 

we have no data concerning them, as is standard in data of this kind. We cannot analyse journeys 

which end at a different retailer. We may analyse fragments of journeys in which a customer 

visits a particular retailer, but does not make purchase, but doing so requires many quite deep 

assumptions which reflect factors concerning a particular retailers position within the 

marketplace. In other words, we may analyse only what we have observed and there is no 

element of experimental design involved - for that, the methods described in Abhishek et al. 

(2012); Xu et al. (2012) are more appropriate. 

For an introduction to statistical methods to discover statistically surprising patterns in sequences 

see for example Agrawal and Srikant (1995); Zaki (2000a,b); Wang and Yang (2005); however 

this is not central to our problem of inferring channel relevance. The main focus in Agrawal and 
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Srikant (1995) is to find customer journeys which have a specified minimum level of support, 

each such journey being classified as a sequential pattern; a subsidiary focus is on which items 

are purchased as part of the same journey. See Hahsler et al. (2005) for a more recent discussion 

of mining of association rules and a computer package providing tools. The problem of 

predicting the next step in a journey conditional on the observed history is also much studied, but 

is not relevant here. For predicting from a clickstream history, see for example Gunduz and Ozsu 

(2003); Gunduz-Oguducu and Ozsu (2006). There is also a literature on exploring web 

navigation behaviour; these tend to focus on website analytics. Berendt and Spiliopoulou (2000), 

for example, use knowledge of local web infrastructure with sequential pattern analysis to assess 

site design. Other researchers have used Markov and Hidden Markov models to construct 

predictions for customer browsing behaviour; see Jamalzadeh (2012) for an overview. 

In Section 2 we describe the relevant data structures and introduce an example. In Section 3 we 

suggest an asymmetric bathtub shape as appropriate for time-weighted revenue attribution to the 

customer journey, provide an algorithm, and illustrate the method. In Section 4 we suggest a 

modification to this method when there is independent information available on channel 

relevance. In Section 5 we address the problem of inferring channel relevance from data, and 

suggest metrics in Section 6. We illustrate the methodology in Section 7. In Section 8, we 

compare the revenue attributions suggested by the methods in this paper with several common 

attribution methods. 
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2  Preliminary processing of data 

2.1  Data Collection 

Web analytics tools are used to collect information about a customer’s journey prior to 

conversion. Pixel tracking is used to record each visit a user makes to a website. The marketing 

channel and time of each visit is recorded, along with conversion details such as sale type, sale 

ID, and revenue. Visits may be categorised at the marketing channel level (direct, PPC, organic 

search, etc.) or at a more granular level (search term, keyword, category, etc.). We make no 

inferences regarding journeys which may be artificially shortened via users either deleting or 

refusing permission to store cookies. 

A visit duration window is applied to multiple visits from the same channel: subsequent visits are 

not recorded if they occur within a given timeframe thereby reducing the influence of click fraud 

and user behaviour (e.g. page refresh, navigation confusion). Industry standards set the visit 

duration window at 10 minutes for marketing channels. Furthermore, a maximum time between a 

visit and conversion is imposed, and will be referred to as the cookie window. The choice of 

cookie window is subjective, but guided by industry expertise. For retail, 31 days is commonly 

employed. 

We exclude journeys reaching a terminus such as site registration or booking an appointment. 

We assume that abandonment of a non-converting journey is final within a given time period. 

This is an approximation as some customers do continue their journeys after long breaks. Some 
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journeys which do not end in online conversion may end in offline conversion, with customers 

visiting a store to purchase a product identified online. This is presently excluded from our 

analysis. The definition of what constitutes a visit source depends on the requirements of the 

retailing company. Sometimes this will be at a fine level of detail, such as named weblinks. At 

other times the sources may have been classified by the retailer into a smaller number of channel 

categories such as ‘direct’, ‘email’, etc, as it deems appropriate. This is the case in the example 

we discuss in Section 7. 

2.2  Data Processing 

Suppose we observe a sequence of customer visits to a retail website made at times kTTT ,,, 21  . 

We make an assumption that visits that occur further back in time than a specified amount maxT  

are not relevant to the current conversion. Analysis of the journey database allows a retailer-

specific maxT  to be set. The journey lengths, 1TTk − , of all journeys in the database are analysed, 

with the th90  percentile chosen as maxT . Journeys where maxk TTT >1−  are truncated at the visit 

*T , where maxTT ≤* . 

We assume that time gaps larger than a specified amount ∆T  imply separate journeys. Thus, if 

any adjacent times satisfy ∆− TTT ij > , we end one journey at iT  and start another at jT . All 

transition times ( ij TT − ) within the journey database are analysed, with ∆T  set at the th90  

percentile. For the purposes of this article we consider only one value for ∆T , however, it is 

understood that ∆T  may vary depending on the sequence of marketing channels. Journey 
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fragments prior to iT  are not considered in this article. A maximum number of visits maxV  might 

also be imposed, in that journeys with number of visits exceeding maxV  are assumed to be due to 

tracking discrepancies and are removed from the analysis. 

Imposing a maxT  and ∆T  results in left-censoring of the data. The main implication is that data 

concerning the first click is lost. The implicit assumption is that 1T  is either genuinely the start of 

a new journey, or a click made in the same journey but with the preceding click so distant in time 

that it is deemed irrelevant. For analysis of journeys which end in conversion, the use of a time 

gap threshold may result in early parts of the journey being discarded. For data where conversion 

behaviour is an outcome, journeys might be separated into non-converting and converting 

fragments, and the correlation between the two may be lost. 

2.3  Example 

Consider the fragment of data shown in Table 1. Data are taken from a sample of customer 

conversions made on a leading multichannel retail website. Each journey has a starting time 1T , 

and a number of visits in sequence with time recorded. Also shown is the amount of conversion, 

the revenue attributed to each journey. These data are reported to two decimal places, but shown 

rounded in the table. A maximum journey length maxT  of 30 days was used, and visits made 

before maxT  are removed. A time gap threshold of 14=∆T  days was also used, and fragments of 

any journey with at least such a time gap were discarded. Each customer journey is analysed 

separately and only time since start of journey is assumed relevant. Thus, we fix 0=1T  for each 
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journey. A maximum number of visits in the journey was also set at 11=maxV ; journeys with 

more than 11 visits were removed. More than 95 %  of journeys in the database contained 11 

visits or fewer. It is, of course, possible to explore the implications of different choices of maxT  

and so forth, but this is outside the scope of this paper. 

The data subset contains visits from a number of channels which may be split into varying 

degrees of granularity. Natural search channels may be split by search partner (e.g. Google, 

Bing) or category (e.g. brand, non-brand). Affiliate channels may be categorised according to 

type (e.g. cashback, voucher codes); this is particularly important for understanding the value of 

marketing campaigns within the context of attribution and budget forecasting. Visits via 

individual comparison sites are also included. Finally, for account optimisation, PPC visits may 

be split at the keyword level, where keyword can be broadly interpreted as meaning a search 

word or phrase. Identifying keywords which have a strong influence on likely final conversion is 

a crucial aspect of digital marketing performance. Visits which are not classified into a specific 

channel are classed as “unlisted referrers” and could be excluded from the attribution model, or 

assigned a weight of zero; for discussion see Section 8. 

This sample of data exhibits features typical of the problem. Journeys vary in length of time. 

Significant time can be spent on one visit, or the journey can be relatively time-homogeneous. 

There are two two-step journeys. Instances where successive visits are within the same minute as 

the previous click (for example, see journey 3 in Table 1) represent visits either by a different 

channel or search query and are not to be interpreted as page refresh errors. Single visit journeys 

are assigned revenue and removed from the attribution database after data cleaning. 

D
ow

nl
oa

de
d 

by
 [

D
ur

ha
m

 U
ni

ve
rs

ity
 L

ib
ra

ry
],

 [
D

av
id

 A
. W

oo
ff

] 
at

 0
0:

28
 1

3 
N

ov
em

be
r 

20
13

 



ACCEPTED MANUSCRIPT 

ACCEPTED MANUSCRIPT 
11 

3  Naive time-weighted Revenue allocation 

Suppose we observe the customer journey )((2)(1) kXXX →→→  , Sk ≤≤2 , with conversion 

at node )(kX  resulting in revenue R, and where S is some truncating choice. Suppose we visit 

node )(iX  at time iT , so that the journey begins at 1T  and ends at kT . Suppose also that we have 

no information concerning the relative importance of nodes in the journey. The problem is to 

attribute the revenue to the nodes in the journey, or equivalently to value each node. There are 

many views as to how we might do this. One is to attribute all revenue to the last node in the 

journey, known as  last click wins. This corresponds to the view that the journey itself is 

irrelevant and that the customer would have arrived at node )(kX  irrespective of starting point. 

Another view is to attribute all revenue to the first node in the journey, known as  first click wins. 

This corresponds to the view that once the journey has started at (1)X  the journey will end 

inexorably with a conversion at node )(kX . A third view is that all nodes in the journey count 

equally towards the final conversion, in which case revenue might be attributed equally to each 

node. There are many other views which suggest that clicks closer to conversion should have a 

higher weighting. These lead to weights based on monotonically rising functions, for example 

positive linear and exponential. 

In discussion with digital marketing experts at the collaborating company, none of these views is 

felt to be reasonable. Instead, they suggest the following plausible structure. We value recent 

clicks highly, especially the most recent click. We value the initiating click highly, but less 

highly than the last click. We value intervening clicks not highly if they are quite distant in time, 
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and less than the initiating click. We regard clicks close in time to the last click as being highly 

relevant. This suggests that the shape of value which we wish to allocate to clicks in the journey 

might have an asymmetric bathtub shape, with the rim of the bath lower at the left-hand side. 

Such bathtub shapes are common in survival analysis, through representing hazard functions. We 

now consider how to construct such a shape for this application. 

3.1  Theory 

The beta distribution is of the form 1<<0,)(1=)( 11 xxkxxf ba −− − , where k is a normalising 

parameter which is of no interest in this context. The parameter choices 1<<<0 ba  lead to 

asymmetric U-shaped distributions with a higher rim at the right-hand side. Other parameter 

choices can lead to J-shaped and unimodal distributions. Although the distribution is defined on 

the interval (0,1) , it is trivial to transform journey time ),( 1 kTT  to (0,1)  and back again. In fact 

we will transform not to (0,1)  but to ),1( εε −  to avoid infinities at the asymptotes. Experience 

shows that a good choice is 0.01=ε . The minimum of the distribution occurs at 

 ,
2

1=
−+

−
ba

aγ  (1) 

so that )(= γθ f  will be the smallest possible weight given to any click. 

We need to make choices about the relative values of clicks. Let Lθ  be the relative value of the 

last click in the journey as compared to the first click in the journey. Let Fθ  be the relative value 
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of the first click in the journey as compared to θ , potentially the value assigned to the least 

valuable click in the journey. 

The choices of Fθ  and Lθ  will depend on context. In discussion with our marketing collaborator, 

it was felt appropriate to deem the last click as worth about four times as much as the first click, 

and the first click as worth about twice the minimum value we would wish to assign. That is, 

4=Lθ  and 2=Fθ , so that the last click is worth θθθ 8=FL , eight times as much as the least 

valuable click. Such choices are unavoidable. For example, the judgement that all clicks should 

be evenly weighted corresponds to 1== LF θθ . Similarly, where there is an attribution which 

rises linearly in value from first click to last click, the underlying choice is 1=Fθ  and Lθ  is 

proportional to the slope of the chosen line. 

Given these assumptions, we now generate parameter values for our beta distribution. We have 

 (1 )= = ,
( )L

f a b v
f

θ − ε
⇒ +

ε
 (2) 

where 1)(1/log/log= −εθLv . Note that 0>v  in order to obtain a higher rim at the right-hand 

side. We have also 

 1 1( ) 1= = ( ) ( ) ,
( ) 1

b v b
F

f
f

θ
γ γ γ

+ − −ε ε − ε
−

 (3) 

where we can re-express γ  via (1,2) as 2)1)/(2(= −+−+ vbvbγ . This gives a highly non-linear 

equation in b, which may be solved numerically. The constraints of the numerical solution are 
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that vb −1<<0 . This follows as we require 1<a  to guarantee a U-shape. An algorithm for 

attributing revenue to a channel is as follows. 

     (i)  Choose Fθ  and Lθ . Fix = 0.01ε . Compute v. 

    (ii)  Solve (3) for b and determine a via (2). 

   (iii)  For Journey J with revenue JR , transform the click times kTTT ,,, 21   linearly to ( ,1 )ε − ε . 

This gives transformed time values 1 2= , , , = 1kT T T∗ ∗ ∗ε − ε . Evaluate )(= ∗
ii Tfw  for each 

transformed time. The proportion of revenue attributed to the channel clicked at time iT  is ii Rw∗ , 

where 

 
1

= .i
i k

ii

ww
w

∗

=∑
 

There mays be journeys for which all recorded click times are the same, perhaps because of 

rounding. In this case the rescaling to (0,1)  fails and it is simplest to give equal weight to all 

clicks in such journeys. 

The steepness of the bath rims is governed by ε , for which we suggested an appropriate default 

value of 0.01. This value was chosen in consultation with colleagues within the collaborating 

company, by showing the implications of different values. Smaller values of ε  imply steeper 

behaviour at the asymptotes, with the consequence that the last click will be valued relatively 

more than the penultimate click, and the first click relatively more than the second click. If this 

level of detail is deemed worth pursuing, the implications of different values of ε  can be shown 
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to digital marketing staff and an appropriate alternative value chosen, but this needs to take into 

account the proximity of clicks in unscaled time. 

3.2  Example 

For our data set we choose 2=Fθ  and 4=Lθ . Solving with these choices we obtain 0.739=a  

and 0.437=b . The curves obtained are shown in Figure 1 for journeys 2,3,10,11. For journey 

10, the weights are calculated as 0.170=,0.023,=0.041,= *
11

*
2

*
1 www  . The revenue attributions 

for all journeys are shown in Table 2. Note that attributions must now be accumulated over 

channels (or at a more granular level depending on purpose); for example the clicks at 1T  and 2T  

for a journey could correspond to the same channel. One feature evident in this data set is 

multiple clicks close in time, and so which attract similar revenues. It is not difficult to provide 

more sophisticated methods which could take into account subjective judgements concerning 

clicks close in time. For example, one might wish to discount all but the most recent of a group 

of clicks occurring in a narrow time range. We have not explored yet possible interactions 

between patterns of time behaviour and channel relevance. However, there is already some work 

on classifying customers entering websites on the basis of time and browsing behaviour using 

hidden Markov models, for example Jamalzadeh((2012)), and it may be possible to combine 

such a classification with channel relevance. D
ow
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4  Informed revenue allocation 

In this section we discuss weighted attribution when we also have information about the relative 

importance of different nodes. Judgements about relative importance may be made directly. For 

example, in the context of online marketing a company might wish to value PPC channels more 

highly than natural search or email marketing. Where there is data available on converting and 

non-converting journeys, measures of channel value can relate directly to probability of 

conversion (Shao and Li, 2011; Abhishek et al., 2012; Xu et al., 2012). Where we have data only 

on converting journeys, we provide a method in Section 5 to infer channel relevance based on 

sequential data analysis of journey fragments. 

Whether channel value is inferred or specified, we suppose that the relative values of the n 

channels are nuuu ,,, 21  , where 
=1

= 1n
ii

u∑ . There are different possible ways of merging 

weights due to time and weights due to channel value. The simplest is to compound the two sets 

of weights and then re-normalize. Thus, suppose that )((2)(1) ,,, kaaa   are the weights suggested 

by time of click for a k-step journey. These weights are derived using the bathtub method of 

Section 3, the linear method, or any other desired method. Let )(iu  be the value of the thi  node 

clicked. The compounded weight for the node clicked on the thi  step of the journey is then 

 ( ) ( )
( )

( ) ( )1

= .i i
i k

j jj

u a
a

u a
∗

=∑
 (4) 
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Thus, an attribution to the node clicked on step i of the journey which is both time-weighted and 

value-weighted is given by multiplying weight ∗
)(ia  by journey revenue. 

5  Inferring node value using sequential analysis 

We now address how we can determine the relevance of different channels in a customer journey 

which ends in a sale. Clearly, the final nodes in the journey are important, but time-weighted 

attribution of revenue will emphasize these anyway. Therefore in what follows, we will derive 

relevance of node independently of early or late position in the journey. The proportion of nodes 

visited across all journeys offers a simple measure of relevance. However, the key is to measure 

the importance of a node in terms of moving from one to another. Thus, we need to focus on the 

probabilities of transition. Thus, suppose the customer journey includes the sequence 

CBA →→ . The questions to answer are: how relevant is the intermediary node B, and would 

the customer have reached C from A regardless? Ideally we would like to represent customer 

journeys using probabilistic networks such as Bayesian belief networks; however these are 

inadequate for the task, partly because they are directed networks and partly because their 

inherent Markov properties cannot handle multinode histories. 

5.1  Principles and notation 

We employ a notation based on that of Agrawal and Srikant (1995). Our concern is with 

journeys which interact with a fixed number, n, of nodes nXXX ,,, 21   in some order. In 

common with the digital marketing community, we call these interactions clicks or visits. The 
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journeys may contain loops, repeated fragments, and so forth. There may or may not be single-

click journeys. We described cleaning of the data in Section 2, noting that journeys are typically 

left-censored to the most recent S steps, so that S is the maximum sequence length. Let A → B 

mean the direct transition from node A to node B. Let A ⇒ B mean any one-step or two-step 

transition from A to B. The notation B  means any node except node B. Let N{ij} be the number 

of times the direct transition Xi → Xj occurs. We extend the notation to longer sequences, so that 

N {ijk} is the number of times the subsequence kji XXX →→  appears. 

5.1.1  Cyclic sequences 

Ideally we want to deal with uniquely classified nodes, for example a unique landing page within 

a retail website. In this situation it makes sense to treat a sequence )( BAA →→  as equivalent 

to the sequence BA → , such that the sequence then contains no immediate loops, and we do not 

distinguish between one interaction and more than one interaction with the node. This principal 

seems to extend naturally to subsequences. That is, )( BABA →→→  might be considered 

equivalent to )( BA → . Ultimately this is the restriction that the sequence not be cyclic. 

However, there are difficulties in working with this interpretation. First, checking for cyclicity is 

non trivial (Wang and Yang, 2005). Secondly, if the journey is actually cyclic, we need to decide 

which part of the journey to disregard. In determining channel relevance, the possible nodes in 

many examples happen to be crude bins representing channel type rather than a granular 

classification. Therefore it is perfectly feasible to observe a journey such as A → A, for example 
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from one shopping comparison site to another. Thus in the remainder of this account we make no 

sequence restrictions and allow sequences to be cyclic. 

6  Metrics based on three-step transitions 

We must take into account at least three-step transitions. This is already challenging; dealing 

with all possible four-step transitions, where we would have to consider all possible intermediary 

pairs of nodes, is daunting. Thus we restrict attention to two steps and three steps. We will ignore 

whether fragments of a journey occur early or late. We will remove single-step journeys from 

consideration as these are not informative for transitions. For each sequence we now construct 

two-step and three-step fragments as follows. Take as an example the sequence: 

DEBCBA →→→→→ . This contains these two-step fragments: 

 , , , , ,A B B C C B B E E D→ → → → →  

and these three-step fragments: 

 .,,, DEBEBCBCBCBA →→→→→→→→  

A journey with length s contains 1−s  two-step fragments, 2−s  three-step fragments, and 

1)/2( −ss  transitions of different lengths. By breaking down journeys into fragments we are 

losing much information, particularly about more complicated journeys. 
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6.1  A metric for intermediary node value 

A natural metric for the relevance of a node B in journeys from A to C is the proportion of such 

journeys which pass through B, which we estimate by the observed proportion: 

 { }
{ } { } { }= .ABC

N ABC
N AC N ABC N ABC

Λ
+ +

 

This is the observed conditional probability that any two- or three-step journey from A to C 

passes through B, )|( CACBAP ⇒→→ . If this value is small, it suggests that B is not an 

important way of reaching C from A. If this value is large, it suggests that B is an important 

intermediary. More formally, for a (source, intermediary, destination) triple this metric is: 

 { }
{ } { }1

= , = 1, , , = 1, , , = 1, , .ijk n

j

N ijk
i n j n k n

N ik ijk
=

Λ
+ ∑

    

A general measure of the value of node jX  is then given by averaging over all source and 

destination nodes: 

 .,1,=,=
1=1=

njijk

n

k

n

i
j Λ∑∑λ  (5) 

Note that these measures do not sum to unity: 

 
{ }

{ }
1

=1 =1 =1
= 1, = ,

1

n
n n n

jik
j ik

j i k ik

N ijkv v
v N ik

λ =≤
+

∑∑ ∑∑  (6) 
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where ikv  is the ratio of indirect to direct transitions for node pair ),( ki . This sum depends on 

the total number of direct two-step transitions and the total number of exactly three step 

transitions for each node pair. Thus, a normalized metric is given by 

 ./=~
1=

j

n

j
jj λλλ ∑  (7) 

As a simple average, (7) does not take into account the volumes of journeys between pairs. As 

such, a refinement is to weight according to volume. Typically we deem the destination node to 

be more relevant than the source node so that it can be appropriate to weight according to the 

volume of destination nodes. It is trivial to weight according to other choices of volume. Let kz  

be the number of two-step journeys which end at node k, and let 0z  be their sum, i.e. the total 

number of two-step journeys. That is, 

 { } .=;=
1=

0
1=

k

n

k

n

i
k zzikNz ∑∑  

Then 0/=~ zzz kk  is the proportion of two-step journeys which end at node kX , with 1=~
kz∑ . 

This gives a relative measure of the volume of destination node kX . Now a plausible measure of 

the value of intermediary node jX  is 

 ,=~,~=
1

1=1= ∑
∑∑

=

Λ n

j j

j
jijkk

n

k

n

i
j

r

r
rzr  (8) 
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where the latter is normalized. If we also wanted to take into account the value of the source 

node iX  via some weight iy~  with 1=~
iy∑ , then (8) is easily extended to 

 .=~,~~=
1

*

*
*

1=1=

*

∑
∑∑

=

Λ n

j j

j
jijkki

n

k

n

i
j

r

r
rzyr  (9) 

In our later example, we use (8), so that the normed value jr~  is our principal metric for 

determining the relevance of intermediary node j. 

6.2  Metrics for the journey relevances of initiating and terminating 

nodes 

We may develop similar metrics to value different features of a journey. The two most useful are 

as follows. The proportion of journeys from B to C which are preceded by A is estimated by their 

observed proportion: 

 { } { }./= BCNABCNABCΦ  

If this value is small, it suggests that A is not an important way of starting CB →  journeys. Note 

that this metric ignores direct AC transitions, and so can’t be used as a measure of the importance 

of A in the journey to C alone. The proportion of journeys from A to B which continue on to C is 

estimated by: 

 { } { }./= ABNABCNABCΨ  
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A high proportion suggests that most customers did not find B a suitable place to stop. A high 

proportion could also imply that B is a natural way of getting to C. For each of these metrics, we 

may weight and normalize according to volume as desired. 

6.3  Hypothesis tests and tests of uniformity 

Conditional on ending at kX  and starting at iX  we have { } { } { }kjiNijkNikN ++  possible 

journeys of which N {ijk} went through jX . This is like imagining that someone at iX  wants to 

get to kX  but isn’t sure how to get there. We might then assume that the total number who end 

up at kX  via jX  is binomial ),( pNb  with parameters { } { } { }kjiNijkNikNN ++=  and unknown 

probability p estimated as ijkλ . This leads naturally to a standard error for the estimate as 

 { } { } { }.
)(1

=
kjiNijkNikN

s ijkijk
ijk ++

− λλ
 (10) 

We can do this for each node separately, and for all 2n  combinations of beginning and ending 

nodes. However this ignores a degree of correlation between the measures. Instead, conditional 

on N being fixed, we can treat the outcomes as multinomial for a fixed starting and ending pair. 

The outcomes then are all routes which pass through an intervening node plus the direct route 

transitions. Thus, for any pair of nodes iX , kX , let { } { }ijkNikNN
j∑+= . This is the total 

number of routes from iX  to kX  either direct or via one intervening node. Now let 0p  be the 

probability that a route starting at iX  and determined to get to kX  goes directly, and jp  the 
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probability that such a route passes through node jX . These probabilities may be routinely 

estimated using the multinomial distribution. A test of uniformity is given by a Chi-squared test. 

However, the test: npppH ===: 100   versus the alternative that at least one ip  differs is not 

so interesting. This is because we would generally expect a much higher probability 0p  for the 

direct transition. Therefore, attention could more reasonably focus on the hypotheses such as 

 ,>:or,=:or,===: 000210 δij
j

n pHppHpppH ∑  

i.e. that the indirect transition probabilities are all equal, or that the indirect transitions are as 

important as the direct, or that individual proportions ip  exceed some threshold δ . Tests on 

linear contrasts of multinomial proportions are considered in Goodman (1965), who also 

constructs simultaneous confidence intervals for them. This is summarised as method )(2 NS  of 

Hou et al. (2003) who considers the performance of a number of similar constructions. A 

problem is the number of tests we would need to carry out: if there are n nodes, we would need 

to carry out 2n  tests for each set of hypotheses, which would be correlated, and then it is 

doubtful that we would wish to analyse the results of all of these in detail, as well as being 

difficult to control the false discovery rate for such multiple tests. Finally, the nature of the data 

implies very unbalanced sample sizes. Some of the pairs could be associated with such large 

volumes of data that spuriously small p-values result, whereas for others there may be no or little 

data. As such, an effect-size approach (Wooff and Jamalzadeh 2013) may be more useful. A 

graphic such as Figure 4 can also be a useful visual cue as to intermediary node relevance for 

specific source and destination pairs. 
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7  Computation and illustration 

As an example, we explore data from a major UK online retailer. This records 58667 journeys of 

which 27420 are single-click and 31247 have at least two clicks. 17841 journeys have at least 

three clicks. We limit to the most recent 19=S  steps of any journey. Each click is classified as 

belonging to one of nine channels as shown in Table 3. This shows that a high proportion of 

single-click journeys for this retailer at this time were branded natural search, coded as NatB. 

We now take every journey and count all the pair occurrences. The counts are shown in Table 4. 

There are 83387 pairs. Again, the Nat B node dominates, and there are several nodes which carry 

little traffic. The conditional bivariate transition matrix, plotted in Figure 2, shows the proportion 

being received by each receiving node given the sending node, i.e. )sendertheis|( iji XXXP → . 

Probabilities across rows sum to one. (Interpreting columns is not sensible.) There are two 

obvious deductions we make from Figure 2. First, there is a high probability of clicking on the 

same kind of channel, i.e. AA → , regardless of where you start. This is evidenced by a strong 

diagonal pattern. Secondly, there are high conditional probabilities of ending in nodes Aff and 

Nat B regardless of starting node, as evidenced by high probabilities in those columns. 

Understanding of such patterns is useful for marketing design and so forth, but is not our focus 

here. 

We next address journey triples. There are 9=n  possible intermediary nodes for each sender 

and receiver. Table 5 counts the number of triples where the intermediary node is NatB. There 

were overall 94 journeys NatBNatAff →→  and no journeys BanBNatList →→ . 
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We may assess whether the starting and ending nodes of two-step patterns resemble in frequency 

the starting and ending nodes of three-step patterns. To do this, count for each pair of nodes ki, , 

the number of direct transitions N {ik} and the number of indirect transitions { }ijkN
j∑  via any 

intermediary node. Table 6 shows the number of indirect transitions. The mean ratio of indirect 

to indirect transitions is 66%. A Cochran-Mantel-Haenszel test for structural differences between 

Table 6 and Table 4 is strongly significant; so that we might conclude that the two tables have 

different patterns. However, the statistical significance is partly the result of very large sample 

sizes. Indirect transitions to Aff, Comp, Un, tend to occur relatively less than average, and 

indirect transitions to Ban, List, PPC, tend to occur relatively more than average. Examination of 

Pearson residuals under an assumption of conditional independence shows that these are 

relatively weak effects. 

7.1  Metrics and visual tools 

We now apply the metrics suggested earlier. We take as an example direct and indirect routes 

from =A Aff to =C  Nat. Table 7 shows the counts and calculations for CA ⇒ ; in all there are 

81=nn×  such tables to construct for this data set. A visualization of the flows for this pair is 

shown in Figure 3. The top node is the source node =A Aff. 10.3% of all journeys begin with 

this node, which is drawn with area proportional to 10.3% as a visual cue to its importance as a 

starting node. The destination node, =C Nat, is drawn with area proportional to 7.8%, reflecting 

the volume of clicks for this node. Shown are the direct and indirect routes. The area of central 

nodes is not meaningful, these are simple labels. The widths of lines connecting nodes shows 

how much traffic is flowing between them. The thickest width is between =A Aff and =B Aff, 
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representing 2749 clicks from A to B which then proceed to another node. The text at the bottom 

gives the proportion of journeys reaching the destination directly and indirectly. We see that 

most of the routes from Aff to Nat are direct, with smaller contributions via Aff, Nat, NatB, and 

PPCB. 145 of the three-step transitions from Aff via Aff went on to Nat, and these 145 clicks 

represented 14.74% of the direct and indirect transitions from Aff to Nat. To avoid cluttering the 

graphic, we avoid drawing flow from intermediary routes if it is less than 2.5% (as an arbitrary 

threshold) of the number of all routes from Aff to Nat. One immediate conclusion is that 

although there are many routes from Aff to an intermediary, few of these then continue to Nat. 

We can explore several such graphs in parallel; however the task becomes daunting as we need 

to explore 2n  graphs in all. 

Figure 4 summarises the more important journeys via intermediary nodes. For each 

(source,destination) pair, a stars plot is shown. This shows the proportion of journeys via each 

kind of intermediate node. To avoid clutter, we show only intermediary nodes accounting for at 

least 10% of the journey, and bear in mind that we do not show directly the proportion of direct 

transitions, which can be inferred by the absence of segments showing indirect transitions. The 

colour and angle of segments is the same for each intermediary. From such a plot we may 

discern a number of features, depending on the particular example. Here, for example, we note 

that PPC appears to be an important intermediary for destination PPC; NatB is an important 

intermediary whenever the source or destination node is NatB; and Aff is an important 

intermediary whenever the source or destination node is Aff. 
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For specified (source, destination) pairs we may compute simultaneous confidence intervals 

(Goodman 1965) for the multinomial proportions of direct and indirect journeys. These intervals 

correct a chosen level of significance (here, 10%) depending on the number of intervals 

constructed. Table 8(a) shows such intervals for the journeys from Aff to Nat, with indirect 

journey counts { },51, jN  given by column 4 of Table 6 and direct journey count { } 579=1,5N  

from Table 4. As we pointed out earlier, we would need to compute 81 such tables to generate 

confidence intervals for all possible two-step and three-step journeys for this example, and this is 

partly why a summary measure for overall channel relevance is useful. 

7.2  Channel relevance 

Table 8(b) shows the relative value of nodes from three perspectives. The first represents the 

volume of two-step journeys starting at a node. The second represents the volume of two-step 

journeys ending at a node. The third shows the relative value of a node as an intermediary using 

the formulae derived to (8). The main interpretation is that NatB is important in the journey, but 

not quite so much as would be believed simply looking at source and destination information. On 

the other hand, channel Aff has a slightly more important role than source and destination 

information suggests. Otherwise there are few major differences between channels for this 

retailer. Comparisons made at a finer level of detail, for example product keyword, would be 

expected to reveal stronger differences. 
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8  Comparison of weighted attribution mechanisms 

Using the data of Section 5, Figure 5 shows the total revenue attributions to eight channels for 

58667 journeys for seven attribution methods: (1) the bathtub method described in Section 3 with 

4=Lθ  and 2=Fθ ; (2) first click wins; (3) last click wins; (4) equal weighting of all clicks – this 

corresponds to 1=Lθ  and 1=Fθ ; (5) linear with last click valued at four times first click – this 

corresponds to 4=Lθ  and 1=Fθ ; (6) exponential with last click valued at four times first click; 

and (7) the bathtub method additionally weighted according to channel value using metric jr~  (8), 

and with weights shown in Table 8(b). These weights are then compounding with time using 

(4) . For this online retailer, all attribution methods yield similar results. Of note is that first-

click-wins (2) tends to undervalue the Aff channel, whereas last-click-wins (3) tends to 

overvalue it; this is expected as the the nature of affiliate sites is to target consumers at the end of 

their journey that have already made the decision to buy and to provide a reward (e.g. cashback) 

for the purchase. Natural search (Nat and NatB) and PPC (PPC and PPCB) clicks can be 

assumed to be part of all stages of the buying journey (browsing, researching and buying) and 

therefore are expected to be rewarded similarly independent of the attribution model. It should be 

noted that an exception to this is that the bathub/value method (7) tends more highly to reward 

the NatB channel as it was found to be the most important intermediary channel in a typical 

journey: see the final column of Table 8(b), suggesting that NatB is perhaps more a navigational 

click rather than a conversion driver. 
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We would expect to see larger differences between attribution models in other contexts, and this 

is our experience in the collaborating company. From a marketing perspective, it is better to 

understand the impact of attribution models at a more granular level, especially for PPC accounts 

which are optimised daily at a keyword level. For these, using single-source attribution models 

tends to reward certain types of keywords only (branded and highly specific keywords), and 

tends to undervalue generic keywords that appear in the browsing and researching phase of the 

the journey. In testing, we have found that our bathtub method (in contrast to first-click-wins, 

last-click-wins, and even-weighting) assigns more revenue to research-type keywords and 

shopping affiliates. Thus, these keywords carry more weight in our optimisation procedures, and 

this in turn has lead to extra revenue generation. This advantage has become more clear over 

time, as evidence has accumulated from the daily optimisations. 

9  Discussion 

In this paper we offer a sensible revenue attribution mechanism based on appropriate time-

weighting of clicks. We have also shown how the method may be modified when there is 

separate information available on the quality of visitable channels. There is unavoidably a 

subjective element in choosing an appropriate shape for time-weighted attribution. This is the 

same problem faced by Bayesian statisticians in choosing an appropriate prior. This is an 

uncomfortable fact for major retailers, who often naively expect that there is a single “right” 

answer. The choice of attribution shape and parameters such as Lθ , the ratio of last click to first 

click value, depend on the aims of the attribution. If a retailer wishes only to prioritize last-click-

wins, then that is the “right” answer for them. Ultimately, the right attribution scheme is the one 
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which produces the most traffic or revenue to the retailer, which is tested by designing 

experiments in which groups of search terms are allocated to different attribution schemes and 

the subsequent effect on traffic and revenue measured. 

At the suggestion of a referee we ran a test to explore sensitivity of the bathtub shape to 

variations in choice of the key parameters. We ran 1000 simulations drawing independently 

(4,0.6)NL :θ , (2,0.3)NF :θ , 2)(0.01,0.00N:ε . There is not much difference in the resulting 

shapes: variation in Lθ  has the largest impact, as would be expected, and variation in ε  the least 

impact. 

The deep question is whether a specified channel actually matters. We have provided a metric 

based on three-step transitions in order to measure this importance. Statistical sequential pattern 

analysis of this kind is highly challenging: one aim of future work is to examine longer journey 

fragments. A second future theme is to explore the roles of intermediary nodes in determining 

conversion behaviour; however we would need to collect meaningful data about non-converting 

journeys in order to do this, and this would require being careful about the assumptions for non-

converting journeys. 

If we do have information available on converting and non-converting journeys, it will be 

interesting and possible to compare the channel relevance methods proposed here with those 

proposed by Abhishek et al. (2012) Xu et al. (2012). We have not taken into account the value of 

conversion; for example it may be that some nodes are relevant only for low-revenue 

conversions. 
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Figure  1: Value of clicks for journeys 2,3,10,11. Beta function parameters are 0.739=a , 

0.437=b . Last click is worth 4=Lθ  times as much as first click. First click is worth 2=Fθ  

times as much as the minimum possible. 
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Figure  2: Transition probability given that current state is the sending node. 
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Figure  3: Relevance of intermediate nodes in journeys from Aff to Nat. Line widths indicate 
volume. Low volumes are omitted. 
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Figure  4: Relevance of intermediate nodes in all journeys. Journeys less than 10% as a 
proportion are omitted. The colour and angle of segments is the same for each intermediary node 
B. 
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Figure  5: Comparison of total revenue attributions to eight channels for 58667 journeys for 
seven attribution methods. 
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Table  1: Journeys and conversion revenues for eleven customers, minimum two-step journeys 
with 11=S . Figures given are times of visit rounded to the nearest minute and starting time 
arbitrarily at 0=1T  for each customer. 

 

  i 1T    2T    3T    4T    5T    6T    7T    8T    9T    10T    11T    Revenue  

 1   0     19     70   106   106               869  

2   0   113                     309  

3   0      0      0    37    37   114              50  

4   0      0   118                   329  

5   0     1      7    7     7   122   122           280  

6   0    84   137                   322  

7   0    53   111   144   144   144             196  

8   0    13     13     14   137   142   147   148         100  
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9   0     0   136   149   149   149   149   149         244  

10   0    25     77    79     79     79   167   167   167   167   167   378  

11   0    20     22    23     23   153   247   272         239  
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Table  2: Revenue attributions for eleven customer journeys. Figures given are attributions of 
revenue to the channel clicked at that time, rounded to the nearest integer. 

 

  i 1T    2T    3T    4T    5T    6T    7T    8T    9T    10T    11T    Revenue  

 1   86    45    52   342   344               869  

2   62   247                     309  

3    6      6     6      3      3   25              50  

4   55    55   219                   329  

5   24    21     15     15     15   95   95           280  

6   58    33   231                   322  

7   14      7     10    55     55   55             196  

8    8     5      5     5     10   13   23    32         100  

9   11    11    12    42    42   42   43    43         244  
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10   16     9     8     8      8     8   64    64   64   64   64   378  

11   26    16    16    16    16   15   30   106         239  
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Table  3: Single-click-journey probabilities 

 

  Channel  Code  Freq  Prob 

 Affiliates Aff 3841 0.1401 

Banner  Ban    62 0.0023 

Price Comparison  Comp  818 0.0298 

Listed Referrer  List    96 0.0035 

Natural Search (Other)  Nat 1954 0.0713 

Natural Search (Brand)  NatB 14081 0.5135 

Pay-per-click  PPC 2174 0.0793 

Pay-per-click (Brand)  PPCB 2543 0.0927 

Unlisted Referrer  Un 1851 0.0675 
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 All   27420 1.0000 
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Table  4: Bivariate transition counts, N {ik} 

 

   Receiver, k 

Sender, i  Aff   Ban   Comp   List   Nat   NatB   PPC   PPCB   Un  

 Aff   4374     53   289   24   579   1892   467   516   400  

Ban      52     40     15    2    24     162      37     28     71  

Comp    476     25   342    3   194     528    183   144     62  

List      40      3      7    35    18     189      20     30     23  

Nat   1052     32   208    26   2199   2239   682    483   277  

NatB   3172   174   511   144   2023   29320   1586   1924   1385  

PPC     939     44   262    25     839     2161   2719     666     288  

PPCB     857     45   135    27    434     2148    499   2955     506  
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Un     567     87     61    13    222     1122     251     344   6387  
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Table  5: Counts of transitions from sender to receiver via the Nat B node (B), 
ki XBNatX →→ . 

 

   Receiver, k 

Sender, i  Aff  Ban  Comp  List  Nat  NatB  PPC  PPCB   Un 

 Aff  274     8      33     7   94   577   68   57    29 

Ban     4     6       2     0    0     83    5   6    13 

Comp    38     5     34     0   30   177    23   19     4 

List      1     0       1     9    8     92      3    5    7 

Nat  102     9      29     8  350   829  113   86    50 

NatB  701   88   144   82  678  14549  527  555  410 

PPC  100   14     34     4  138    789  346   97    21 

PPCB  120    7     23     7    81    723    79  323    47 
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Un    40    7      5     4    36    394    33   34  174 
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Table  6: Counts of transitions from sender to receiver via any intermediary node, { }ijkN
j∑ . 

 

   Receiver, k 

Sender, i   Aff   Ban   Comp   List   Nat   NatB   PPC   PPCB   Un  

 Aff   2400     44   187     21   405   1249   339   333   231  

Ban       30     29    12      1     14     115     30    21    52  

Comp    226     17   200      2   134      305    124    83    38  

List     18      3      3     25     13     132     15    24    14  

Nat    529     23   130     19   1470   1367    512   321   161  

NatB   1551   134   314   117   1399   18188   1136   1209   775  

PPC     501     36   164     13     584    1326   1742    447   173  

PPCB    471     33     90     22     281    1240     362   1828   289  
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Un    292     60     36    9    146      710     177    238   4626  

 

D
ow

nl
oa

de
d 

by
 [

D
ur

ha
m

 U
ni

ve
rs

ity
 L

ib
ra

ry
],

 [
D

av
id

 A
. W

oo
ff

] 
at

 0
0:

28
 1

3 
N

ov
em

be
r 

20
13

 



ACCEPTED MANUSCRIPT 

ACCEPTED MANUSCRIPT 
52 

Table  7: Metric calculations for the relevance of intermediary nodes, for source node =i Aff and 
destination node =k Nat. 

 

  Node  Transition count Metric, % 

j N{ij}  N{jk}   N{ijk}   { }ijkN
k∑    ijkΛ    ijkΦ    ijkΨ   

 Aff   4374   579   145   2749   14.7   25.0     3.3  

Ban       53     24       1       25     0.1    4.2     1.9  

Comp    289   194     16     142     1.6    8.2     5.5  

List      24    18       1      15     0.1   5.6     4.2  

Nat    579   2199     89     332     9.0   4.0   15.4  

NatB   1892   2023     94   1147     9.6   4.6     5.0  

PPC    467     839     21     264     2.1   2.5     4.5  

PPCB    516     434     27     326     2.7   6.2     5.2  
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Un    400     222     11     209     1.1   5.0     2.8  

 

D
ow

nl
oa

de
d 

by
 [

D
ur

ha
m

 U
ni

ve
rs

ity
 L

ib
ra

ry
],

 [
D

av
id

 A
. W

oo
ff

] 
at

 0
0:

28
 1

3 
N

ov
em

be
r 

20
13

 



ACCEPTED MANUSCRIPT 

ACCEPTED MANUSCRIPT 
54 

 Table  8: (a) The proportion of journeys from Aff to Nat via intermediary nodes, and directly, 
with simultaneous 90% confidence intervals. (b) The value of nodes as sources, destinations, and 
intermediaries as calculated by (8). 

 

    (a)   (b) 

Node   Mean  Confidence Interval Value of node as: 

    Lower   Upper   Source   Destination   

Intermediary  

 Aff   0.147   0.120   0.178   0.103   0.138   0.169  

Ban   0.001   0.000   0.008   0.005   0.006   0.016 

Comp   0.016   0.008   0.030   0.024   0.022   0.035 

List   0.001   0.000   0.008   0.004   0.004   0.009 

Nat   0.090   0.069   0.116   0.086   0.078   0.086  

NatB   0.095   0.074   0.122   0.483   0.477   0.420 
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PPC   0.021   0.012   0.036   0.095   0.077   0.075  

PPCB   0.027   0.016   0.044   0.091   0.085   0.095  

Un   0.011   0.005   0.023   0.109   0.113   0.095  

Direct   0.588   0.547   0.628       
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