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Abstract

In this paper we show how one can combine thep-adic Rankin-Selberg product
construction of Hida with freeness results of Hecke modulesof Wiles to establish
interesting congruences between special values of L-functions. These congruences
is a part of some deep conjectural congruences that follow from the work of Kato
on the non-commutative Iwasawa theory of the false Tate curve extension.

1 Introduction

LetE be an elliptic curve defined overQ andp a rational prime. In the classical setting
of cyclotomic Iwasawa theory for elliptic curves one is concerned with the study of the
twists of the elliptic curve by finite order character that factor through the cyclotomic
Zp extensionQcyc ⊂ ∪n≥0Q(µpn), whereµpn is the group of thepn-th roots of unity.
The aim of the theory is to obtain a link between the analytically definedL functions
attached toE, and its twists, and the arithmetic properties of the elliptic curve over
the cyclotomic tower. The cyclotomic Main Conjecture for elliptic curves gives to
this conjectural link a very precise form. We note that much has already been proven
towards this Main Conjecture by Kato [19], and Skinner and Urban have announced a
complete proof for semi-stableE, subject to proving certain results about the Galois
representations attached to automorphic forms.

One of the key ingredients of the above Main Conjecture are the p-adicL func-
tions. These are usually realized asp-adic measures over Galois groups, which, when
evaluated at finite order characters, interpolate canonically modified values of theL
function. Their construction usually involves two steps. The first one is to find proper
transcendental numbers, usually called periods, such thatthe ratio of theL values over
these periods gives an algebraic number. The second step is to prove that these values,
or a slight modification of them, have the desired interpolation and integrality proper-
ties.

Lately there has been great interest in extending the classical Iwasawa theory to
a non abelian setting, that is to replace theZp extension by more generalp-adic Lie
extensions whose Galois group is non-abelian. In fact in [5]a precise analogue of the
Main Conjecture in this non abelian setting for a large family of p-adic Lie groups has
been stated.
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One of the extensions that is of particular interest is the socalled “false Tate curve”
extensions. That is extensions of the form,QFT := ∪n≥0Q(µpn , pn√

m) for somep-
power free integerm > 1. Note that the Galois group is the semi-direct productZp ⋉
Z×

p . There is a conjectural theory forp-adicL functions that should exist in this setting.
In a work with V.Dokchitser [4] we have addressed the first of the above mentioned two
steps, that is algebraicity of the critical values of theL functions involved.

In order to make things more explicit let us fix some more notation. We writeE for
an elliptic curve defined overQ andNE for its conductor. As we already mentioned we
consider the extensionsQFT,n := Q(µpn , pn√

m) andQFT = ∪n≥0QFT,n. We write
ρ for an Artin representation that factors throughQFT andNρ for its conductor. Let
us also writeL(E, ρ, s) for theL function attached toE twisted byρ. We consider the
value ofL(E, ρ, s) at the critical points = 1. The fact that the Artin representationsρ
factor through the false Tate curve allowed us to establish the analyticity ofL(E, ρ, s)
at s = 1 and then our main result in [4] is concerned with the algebraic properties of
these values. Let us writeΩ±(E) for the Néron periods attached to the elliptic curve
E. Then we have shown that

L(E, ρ, 1)

Ω+(E)dim(ρ+)Ω−(E)dim(ρ−)
∈ Q.

for all Artin representationsρ that factor throughQFT . Actually we did more. Namely,
involving also the period that should correspond to the “Artin motive”M(ρ) attached
to ρ we established the period conjecture of Deligne that gives aprecise description of
the number field where this value lies.

Let us now move to the second step that we mentioned above, that is thep-adic
properties of these values. From now on we will assume that the elliptic curve has
good ordinary reduction atp. We start by stating a conjectural congruence between
theseL values for different Artin representations. We define the quantityR(ρ) as

R(ρ) := ep(ρ)u
−vp(Nρ) Pp(ρ̂, u

−1)

Pp(ρ, w−1)
· L{p,q|m}(E, ρ, 1)

Ω+(E)dim(ρ+)Ω−(E)dim(ρ−)

whereep(ρ) is a local epsilon factor ofρ suitably normalized,Pp(ρ,X) is the usual
characteristic polynomial associated toρ atp andu,w arep-adic numbers defined by,

1− apX + pX2 = (1− uX)(1− wX), u ∈ Z×
p and p+ 1− ap = #Ep(Fp)

Hereρ̂ is the dual representation but in our false Tate curve setting it is easy to see that
ρ̂ ∼= ρ. Finally the subscript{p, q|m}means that we have removed the Euler factors at
these primes. Then we state,

Conjecture: For eachn ≥ 1, letχn be a character ofGal(QFT,n/Q(µpn)) of exact
orderpn. Write ρn for the induced representation ofχn toGal(QFT,n/Q) andσn for
the representation induced toGal(QFT,n/Q) from the trivial one overQ(µpn). Then,
the valuesR(ρn) andR(σn) arep-adically integral and satisfy

|R(ρn)−R(σn)|p < 1
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or more generally
|R(ρn ⊗ ψ)−R(σn ⊗ ψ)|p < 1

whereψ is a finite order character ofGal(Qcyc/Q) and| · |p normalized as|p|p = p−1.
Let us comment a little bit more on this conjecture and its connection to non com-

mutative Iwasawa theory. The definition of the quantityR(ρ) describes the interpo-
lation properties that the conjectural, as in [5], non-abelian p-adicL-function should
satisfy. Indeed the authors in [5] have conjectured the existence of an element in the
K1 of the Iwasawa algebra associated to this extension that interpolates suitably mod-
ified, as above, values ofL(E, ρ, 1) and plays the role of the non-abelianp-adicL
function in their theory. Note that the representationsρn andσn are defined overQ
and are congruent modulop that is if we consider their reduction modulop then their
semi-simplifications are isomorphic. Hence the existence of the non-abelianp-adicL
function would imply that its values should be alsop-adically close.

There is almost nothing known concerning the construction of this object for a
generalp-adic Lie extension. However in the setting that we are interested in, the false
Tate curve extension, Kato in [18] has related the existenceof this non-abelian object
with congruences between classical abelianp-adicL functions over various fields of the
extension. We take some time to explain this as it will help usmotivate the results that
appear in this paper. LetG be the Galois group of the false Tate curve extension and
Λ(G) = Zp[[G]] the Iwasawa algebra ofG. We setU (n) := ker(Z×

p → (Z/pnZ)×).
The main result of Kato in [18] is the construction of an injective homomorphism

θG : K1(Λ(G))→
∏

n≥0

Zp[[U
(n)]]×

and the explicit description of the image. In order to make this last statement a lit-
tle bit more precise we write, forn ≥ m ≥ 0, Nm,n : Zp[[U

(m)]] → Zp[[U
(n)]]

for the canonical norm map,φ be the ring homomorphismZp[[Z
×
p ]] → Zp[[Z

×
p ]] in-

duced by the rising to the powerp map onZ×
p . Then the result of Kato says that

θG(K1(Λ(G))) = (an)n≥0 with

∏

0<i≤n

Ni,n(ci)
pi ≡ 1 mod p2n

with cn = bnφ(bn−1)
−1 andbn = anN0,n(a0)

−1. The elementsan have an arithmetic
meaning, they are abelianp-adicL functions. More precisely if we writeρn for the
Artin representation ofG induced from a character ofpn order of the Galois group
Gal(Q(µpn , pn√

m)/Q(µpn)), then the elementsan are the abelianp-adicL-functions
interpolating the valuesL(E⊗ ρn⊗χ, 1), for χ Dirichlet characters of the cyclotomic
extension ofQ.

The conjectural congruences that we have written above correspond to the case of
n = 1 of Kato’s congruences after evaluating the abelianp-adicL functions at the
characterψ. There is computational support for these conjectures; initially by Balister
[1] and much more vastly by the Dokchitser brothers [11]. In the first part of this
work [3] we have showed the existence of the abelianp-adicL-functionsan appeared
in Katos’s congruences and proved the above conjectural congruences up to an issue
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of periods. Namely there we have used not the motivic periodsthat are stated in the
congruences but automorphic periods, the so called Eichler-Shimura-Harder periods,
that appear quite natural in the so called modular symbol construction. There we came
across to a rather deep problem, namely the relation of theseautomorphic periods as
one use the functorial properties of theL-functions and especially base-change. We
say a little bit more on this at the last section of this paper.Finally we note that in
[7] an inductive argument was used to show how these congruences(for n = 1) can
provide congruences forn > 1 in the form conjectured by Kato but unfortunately not
modulo the rightp power.

Our aim in this paper is to tackle the conjectural congruences insisting on getting
the right motivic periods. We achieve that for the case wherep = 3 but we also discuss
possible extensions for the case ofp > 3. We need to impose some further conditions
onE, other of technical nature which we believe can be removed and other that seem
important. Namely from now on we assume that (a) The curveE is semi-stable and
if we consider the minimal discriminant∆E =

∏

q|NE
qiq thenp does not divideiq

for all q. Note that the last condition means that the conductor ofE is equal to the
Artin conductor of the modp representation obtained byE. (b) We assume thatm
that appear in the false Tate extension is power free with(m,NE) = (m, p) = 1 and,
(c) a rather important assumption, thatE has no rational subgroup of orderp, that is
the associated modulop representation is irreducible. Finally we mention here that as
our aim here is to address the issue of motivic versus automorphic periods we focus on
proving the above conjectures forψ = 1. However we lay all important constructions
so that everything can be extend to the caseψ being not trivial.

Our proof can be divided into two parts. Let us writef ∈ S2(Γ0(NE); Q) for
the rational newform that we can associate toE. In the first part we rely on the work
of Hida of the construction of a p-adic Rankin-Selberg product initiated in [13] and
generalized in [14]. We can associate a newformg of weight one to the Artin repre-
sentationρ and an Eisenstein seriesE of weight one withσ. Using them, we construct
p-adic measuresdµf,g anddµf,E overZ×

p that are congruent modulop, in the sense
that their values at every finite character ofZ×

p are congruent. These measures interpo-
late,p-adically, twists of the critical values of the Rankin-Selberg productsD(f, g, s)
andD(f, E , s) by finite order characters. Evaluating these measures at thetrivial char-
acter we get a first form of congruences betweenD(f, g, 1) andD(f, E , 1). Under the
semi-stable assumption we can easily relate the Rankin-Selberg product to the twists
of the elliptic curveE.

However we do not yet get the congruences stated in the theorem above. We need
to work further two things. First, in order to establish the congruences between the
measures above, we had to clear a denominatorc(f,m) that depends solely onf and
m. Hence we get congruences after multiplying with this constant c(f,m). Second,
the periods that we use to get the rationality of the Rankin-Selberg product are closely
related to the Petersson inner product< f, f >. These periods may not be equal to
our periodsΩ+(E) andΩ−(E) up to ap-adic unit. These two problems are related.
That is, the reason that the denominatorc(f,m) appears in ourp-adic interpolation is
the fact that the Petersson inner product is not the proper automorphic period in order
to getp-adically integral ratios of the formL−values

aut. periods .
In the second part we show, under the assumptions of the theorem, that indeed
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this is the case. This part relies heavily on the work of Wiles. We make use of two
of his important results in [28]. The first one is an extensionof a theorem of Mazur
[24] on the freeness, over a completed Hecke algebra, of the first cohomology group
of modular curves after localizing it at a proper maximal ideal. The second one is an
extension of a theorem of Ihara on the study of maps between Jacobians of modular
curves of different levels. Here we would like to mention howhelpful was for us the
paper of Darmon, Diamond and Taylor [6] reviewing the work ofWiles.

Let us just mention that we tried to apply the same ideas forp > 3. Here in order
to bring things to the previous setting we use the fact that the base-change property
for automorphic representations ofGL(2) has been proved for cyclic extensions [23].
Using this, we can work the congruences over the totaly real field F := Q(µp)

+.
However we face two problems. First the fact that we work witha prime that ramifies
in F puts restrictions on the freeness results that we need. Second we need to relate our
defined automorhic periods overF with the ones overQ, and even stronger we need
the relation to be up top-adic units a problem much of the same nature that we face in
our work [3]. We do not have an answer to these questions yet.

Acknowledgements: The author would like to thank Professor John Coates for sug-
gesting to work on Kato’s congruences and for recommending to consider the use of
the Rankin-Selberg method and itsp-adic version.

2 Basic Notations

Let H be the complex upper half plane. If we denote byGL+
2 (R) the two by two real

matrices with positive determinant, then we consider the action of them onH by liner

fractional transformations,z 7→ α(z) = az+b
cz+d , forα =

(

a c
b d

)

∈ GL+
2 (R). We let

k ≥ 1 be an integer and we define an action ofGL+
2 (R) on functionsf : H→ C by

f 7→ (f |k[α])(z) = det(α)k/2(cz + d)−kf(α(z))

for α =

(

a c
b d

)

∈ GL+
2 (R). We denote bySL2(Z) the two by two matrices

with determinant 1 and integral entries. For a positive integerN we have the standard
notations for the subgroups ofSL2(Z),

Γ(N) = {γ ∈ SL2(Z) | γ ≡
(

1 0
0 1

)

mod N}

Γ0(N) = {γ ∈ SL2(Z) | γ ≡
(

∗ ∗
0 ∗

)

mod N}

Γ1(N) = {γ ∈ Γ0(N) | γ ≡
(

1 ∗
0 1

)

mod N}

We writeMk(Γ1(N)) (resp. Sk(Γ1(N))) for the space of modular forms (resp.
cusp forms) of weightk with respect toΓ1(N). We writeMk(Γ0(N), χ) (respSk(Γ0(N), χ)
for modular forms (resp. cusp forms) with respect toΓ0(N) and Nebentypeχ.
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Let us consider a cusp formf ∈ Sk(Γ0(N), χ) and a modular formg ∈Ml(Γ0(N), ψ),
for some integersk andl where we moreover assumek > l. Let us write their Fourier
expansions at∞ cusp asf(z) =

∑∞
n=1 a(n, f)qn andg(z) =

∑∞
n=0 a(n, g)q

n with
q = e2πız. We also definefρ(z) =

∑∞
n=1 a(n, f)qn ∈ Sk(Γ0(N), χ̄). We consider

the quantitiesL(f, g, s) :=
∑∞

n=1 a(n, f)a(n, g)n−s and their Rankin-Selberg con-
volution,D(f, g, s) := LN (χψ, 2s + 2 − k − l)L(f, g, s) where we have removed
the Euler factors atN fromL(χψ, s). If we assume thatf andg are actually normal-
ized eigenforms and if we write theirL functionsL(f, s) =

∏

q{(1−α(q, f)q−s)(1−
β(q, f)q−s)}−1 andL(g, s) =

∏

q{(1−α(q, g)q−s)(1−β(q, g)q−s)}−1 then we have
that

D(f, g, s) =
∏

q

{(1− α(q, f)α(q, g)q−s)(1 − α(q, f)β(q, g)q−s)×

(1− β(q, f)α(q, g)q−s)(1 − β(q, f)β(q, g)q−s)}−1

3 p-adic modular forms and measures

In this section we introduce the needed background in order to obtain thep-adic version
of the Rankin-Selberg convolution. For all this backgroundwe follow Hida’s papers
[13, 14]. We letp be a prime number and we fix an embeddingQ →֒ Qp →֒ Cp, where
Cp is thep-adic completion ofQp under the normalizedp-adic absolute value| · |p with
|p|p = p−1. For any subringR ⊆ Q we consider theR-modules,

Mk(Γ0(N), ψ;R) := {f ∈Mk(Γ0(N), ψ) | f(z) =
∑

n≥0

a(n, f)qn, a(n, f) ∈ R}

Mk(Γ1(N);R) := {f ∈Mk(Γ1(N)) | f(z) =
∑

n≥0

a(n, f)qn, a(n, f) ∈ R}

Moreover we defineSk(Γ0(N), ψ;R) = Sk(Γ0(N), ψ) ∩Mk(Γ0(N), ψ;R) and sim-
ilar for Sk(Γ1(N);R). For a modular formf ∈ Mk(Γ1(N); Q) it is known that
one can define thep-adic norm off , |f |p := supn≥0|a(n, f)|p. Let nowK0 be
any finite extension ofQ and writeK for the closure ofK0 in Cp. We define the
spaceMk(Γ0(N), ψ;K) (resp. Mk(Γ1(N);K)) to be thep-adic completion of the
spaceMk(Γ0(N), ψ;K0) (resp. Mk(Γ1(N);K0) with respect to the norm| · |p in-
sideK[[q]] where we considerq as indeterminant. Then it is known by the work
of Deligne and Rapoport [8] that,Mk(Γ0(N), ψ;K) = Mk(Γ0(N), ψ;K0) ⊗K0 K,
Mk(Γ1(N);K) = Mk(Γ1(N);K0) ⊗K0 K. Moreover it is known that the definition
of Mk(Γ1(N);K) andMk(Γ0(N), ψ;K) is independent of the choice of the dense
subfieldK0. Let us now writeOK for thep-adic ring of integers ofK. Then we define
thep-adic integral modular forms as,

Mk(Γ0(N), ψ;OK) := {f ∈Mk(Γ0(N), ψ;K) | |f |p ≤ 1} = Mk(Γ0(N), ψ;K)∩OK [[q]],

Mk(Γ1(N);OK) := {f ∈Mk(Γ1(N);K) | |f |p ≤ 1} = Mk(Γ1(N);K) ∩ OK [[q]]
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Definition 1 (p-adic modular forms). Let A be eitherK or OK . We consider the
spaces,

Mk(N ;A) := ∪∞n=0Mk(Γ1(Np
n);A) and Mk(N,ψ;A) := ∪∞n=0Mk(Γ0(Np

n), ψ;A)

Then we define the space ofp-adic modular forms ofΓ1(N), resp. ofΓ0(N) and
characterψ, as the completion of the above spaces with respect to the norm | · |p. We
denote them byMk(N ;A), resp.Mk(N,ψ;A).

We note that all the above discussion can be done consideringcusp forms instead
of modular forms. In particular we can consider alsop-adic cusp forms which we will
denote bySk(N,A) andSk(N,ψ;A).

Remark 1 For our later use, we mention that the spaceMk(N,A) is actually inde-
pendent ofk for k ≥ 2, so we may also write justM(N ;A), see [14].

Now we are going to definep-adic Hecke operator that extend the usual ones when
restricted to the space of classical modular forms. For any integern prime toN we

consider a matrixσn ∈ Γ0(N), such thatσn ≡
(

n−1 o
0 n

)

mod N . It follows by

the work of Deligne and Rapoport [8] that the actionf 7→ f |kσn onMk(Γ1(N);K) is
integral, that is it preserves the integral spaceMk(Γ1(N);OK). We “define” the Hecke
operatorsT (ℓ) andS(ℓ), for every primeℓ, acting onMk(Γ1(N);K) by describing
their action on theq-expansion,

a(n, T (ℓ)f) =

{

a(ℓn, f) + ℓk−1a(n
ℓ , f |kσℓ), if ℓ is prime toN ;

a(ℓn, f), otherwise.

a(n, S(ℓ)(f)) =

{

ℓk−2a(n, f |kσℓ), if ℓ is prime toN ;
0, otherwise.

Note that these definitions are consistent with the ones on the classical elliptic modular
forms. We define the Hecke algebraHk(Γ0(N), ψ;A), resp.Hk(Γ1(N);A)), forA ei-
therK orOK as theA-subalgebra ofEndA(Mk(Γ0(N), ψ;A)), resp.EndA(Mk(Γ1(N);A)),
generated byT (ℓ) andS(ℓ) for all primesℓ. Similarly we definehk(Γ0(N);ψ;A) and
hk(Γ1(N);A) when we restrict the action to the space of cusp forms. Actually one has
thatHk(Γ0(N), ψ;A) = Hk(Γ0(N), ψ; Z) ⊗Z A and similarly for the other spaces.
Finally we note that whenp|N the action of the Hecke operators isp-adically integral
i.e. |Tf |p ≤ |f |p for everyT ∈ Hk(Γ1(N);OK).

We now definep-adic Hecke algebras. Notice that we have theOK-surjective ho-
momorphisms induced by restriction of the Hecke operators,

Hk(Γ0(Np
m), ψ;OK)→ Hk(Γ0(Np

n), ψ;OK) for m ≥ n ≥ 1

Hk(Γ1(Np
m);OK)→ Hk(Γ1(Np

n);OK) for m ≥ n ≥ 1

Definition 2 We define the space ofp-adic Hecke algebrasHk(N,ψ;OK) (resp.Hk(N ;OK))
by the projective limit,lim←−nHk(Γ0(N), ψ;OK) (resp. lim←−nHk(Γ1(N);OK)). Simi-
larly we define the spaceshk(N,ψ;OK) andhk(N ;OK).
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By definition this operators act on the spacesMk(N ;A) andMk(N,ψ;A) for A
equal toK orOK . However the fact they arep-adically integral allow us to extend their
action to the space ofp-adic modular formsMk(N ;A) andMk(N,ψ;A). Our next
step is to define Hida’s ordinary idempotente attached to the Hecke operatorT (p). We
start with a general lemma,

Lemma 1 For any commutativeOK-algebraR of finite rank overOK and for any
x ∈ R the limit limn→∞ xn! exists and gives an idempotent ofR.

Proof See [16] (p.201) .

Definition 3 We define an idempotenten inHk(Γ0(Np
n, ψ;OK) and inHk(Γ1(Np

n;OK)
by the limiten = limm→∞ T (p)m!. Moreover we define an idempotent inHk(N ;OK)
and inHk(N,ψ;OK) by taking the projective limite = lim←−nen.

We will be interested in the spaceeMk(N,ψ;OK), usually called the ordinary part
ofMk(N,ψ;OK) and denoted byM

◦
k(N,ψ;OK). Actually this space is not that large

as the following lemma indicates,

Lemma 2 (Hida) LetC(ψ) be the conductor of the characterψ. Define positive in-
tegersN ′ andC(ψ)′ by writing N = N ′pr andC(ψ) = C(ψ)′pt with (N ′, p) =
(C(ψ)′, p) = 1. Lets := max(t, 1). Then,

eMk(N,ψ;OK) ⊂Mk(Γ0(N
′ps), ψ;OK)

Proof: See [13].

Definition 4 We say that a normalized eigenformf0 ∈ Sk(Γ0(N0)ψ) is an (p-) ordi-
nary form if,

1. The levelN0 of the formf is divisible byp.

2. The Fourier coefficienta(p, f0) is ap-adic unit.

The following lemma is proved in [13] (p. 168),

Lemma 3 Letf ∈ Sk(Γ0(N), ψ) be a newform withk ≥ 2 and|a(p, f)|p = 1. Then,
there is a unique ordinary formf0 of weightk and characterψ such thata(n, f) =
a(n, f0) for all n not divisible byp. Moreover,f0 is given by,

f0(z) =

{

f(z), if p dividesN ;
f(z)− wf(pz), otherwise.

wherew is the unique root ofX2−a(p, f)X+ψ(p)pk−1 = 0 with |w|p < 1. Moreover
in the second case i.e.(p,N) = 1 we have thatN0 = Np and thata(p, f0) = u where
u is thep-adic unit root of the above equation.
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Let us now consider a surjectiveK-linear homomorphismΦ : hk(Γ0(N0), ψ;K)→
K that is induced by an ordinary formf0 by sendingT (n) 7→ a(n, f0). Let us more-
over assume that this map is split (we will show later that in the case of interest this will
be true) and induces an algebra direct decomposition,hk(Γ0(N0), ψ;K) ∼= K ×A for
some summandA and let us denote by1f0 the idempotent corresponding to the first
summand isomorphic toK. We now consider the linear formℓf0 : Sk(N0, ψ;K)→ K
defined by,ℓf0(g) := a(1, 1f0e g). Note that, by lemma 2, the linear form is well de-
fined.

Proposition 1 (Hida’s linear operator) Assume thatK0 contains all the Fourier co-
efficients of the ordinary formf0. Then, the linear formℓf0 has values inK0 on
Sk(Γ0(N0p

n), ψ;K0) for everyn ≥ 0. Furthermore, forg ∈ Sk(Γ0(N0p
n), ψ;K0)

we have

ℓf0(g) = a(p, f0)
−npn(k/2)< hn, g >N0pn

< h, f0 >N0

whereh = fρ
0 |k
(

0 −1
N0 0

)

, hn(z) = h(pnz).

Proof See [13] p.175.

We note that if we consider a constantc(f0) ∈ OK such thatc(f0)1f0 ∈ hk(Γ1(N0);OK)
then we have an integral valued linear formc(f0)ℓf0 : Sk(N0, ψ;OK) → OK as the
Hecke operators arep-adically integral

p-adic modular forms valued measures: Now we are going to definep-adic mea-
sures associated withp-adic modular formsM(N ;OK) for someN relative prime to
p. Note that it follows from remark 1 that we do not need to specify the weight.

We letX to be ap-adic space that consists of some copies ofZp and of a finite
product of finite groups. For our applications laterX is going to be justZ×

p
∼= (1 +

pZp) × (Z/pZ)×. Let us writeC(X ;OK) for the space of continuous functions of
X with values inOK andLC(X ;OK) for the space of locally constant functions on
X . A measureµ on X with values in the spaceM(N ;OK) is just anOK-linear
homomorphism fromC(X ;OK) toM(N ;OK).

Let us consider the spaceZN := Z×
p ×(Z/NZ)× and for an elementz ∈ ZN let us

write zp for the projection ofz to the first component. We can define an action ofZN

on the spaceMk(Γ1(Np
r);OK) by f 7→ f |z := zk

pf |kσz with σz as defined above.
This action can be extended toM(N,OK) (see [14] p. 10).

Definition 5 (see [14]) We say that ap-adic measureµ : C(X ;OK) → M(N ;OK)
is arithmetic if the following three conditions are satisfied,

1. There exists positive integerk such that for everyφ ∈ LC(X ;OK),

µ(φ) ∈Mk(Np∞;OK)

We will callk the weight ofµ.
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2. There are continuous actionZN × X → X and a finite order characterξ :
ZN → O×

K such thatµ(φ)|z = zk
pξ(z)µ(φ(z · x)) for everyφ ∈ C(X ;OK),

wherek the weight ofµ. We then say that the arithmetic measure is of character
ξ.

We say that the measure is cuspidal ifµ actually takes values inS(N ;OK).

We are interested in attaching arithmetic measures to a given modular form. Given
a modular formf ∈ Mk(Γ0(N), χ;OK) with q-expansionf(z) =

∑

n≥0 a(n, f)qn

we can associate a measuredµf onX := Z×
p by,

dµf (φ) 7→
∑

n≥1

φ(n)a(n, f)qn, φ ∈ C(X ;OK)

where we define the action ofZN onZ×
p by z·x 7→ z2

px. From the following lemma due
to Shimura we conclude thatdµf is an arithmetic measure of weightk and character
χ.

Lemma 4 Letg =
∑∞

n=0 b(n, g)q
n ∈ Mk(Γ0(N), ω) andφ an arbitrary function on

Ym =Z/NpmZ. Defineg(φ) :=
∑∞

n=0 φ(n)b(n, g)qn. Then for anyγ =

(

a b
c d

)

∈
Γ0(N

2p2m), we have the following transformation formula,

g(φ)|kγ = ω(d)g(φa)

whereφa(y) = φ(a−2y) for all y ∈ Ym =Z/NpmZ.

Proof See [13] (p. 190)

By a result of Hida in [14] (p. 24 corollary 2.3) it follows that actually the measure
µf , onZ×

p , is cuspidal.

Eisenstein measure and convolution: Of particular importance for us is the exis-
tence, which follows from [21], of the following arithmeticmeasure of weight one,
dE : C(ZL;OK)→ S̄(L;OK) defined by,

2

∫

ZL

φ(z)dE =
∞
∑

n=1

(n,p)=1









∑

d|n

(d,L)=1

sgn(d)φ(d)









qn ∈ OK [[q]]

We call this the Eisenstein-Katz measure. For a general arithmetic measureµg of Z×
p

associated to a modular form of weightℓ and characterψ we can define a convolution
operation, see for example [13, 26], ofµg anddE. We consider the action ofZL on
C(Z×

p ;OK) by (z ⋆ φ)(x) := ψ(z)zℓ
pφ(z2

px) for z ∈ ZL andφ ∈ C(Z×
p ;OK). For a

given integerk ≥ ℓ and a finite order characterχ : ZL → C× we define the arithmetic
measure(µg ∗ dE)χ,k : C(Z×

p ;OK)→ S(L;OK) as
∫

Z
×
p

φ(x)(µL
g ∗ dE)χ,k :=

∫

Z
×
p

∫

ZL

χ(z)zk−1
p (z−1 ⋆ φ)(x)dE(z)dµL

g (x)
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4 p-adic Rankin-Selberg convolution

Now we have collected all the needed background from the theory of p-adic modular
forms and measures to introducep-adic Rankin-Selberg convolution. In this section we
state and prove a simplified version, sufficient for our purposes, of a theorem of Hida,
as for example stated in [14] theorem 5.1.

Letf ∈ Sk(Γ0(N), χ) be a normalized eigenform with|a(p, f)|p = 1 and(N, p) =
1. Write f0 ∈ Γ0(Np), χ) for the corresponding ordinary form. We recall that

f0 = f − χ(p)pk−1

u f |[p] wheref |[p](z) := f(pz) andu the root ofX2 − a(p, f)X +
χ(p)pk−1 = 0 which is ap-adic unit. Letg ∈ Mℓ(Γ0(Jp

α), ψ) with (J, p) = 1 and
k > ℓ. Consider the cuspidal arithmetic measureµg onX := Z×

p that we can attach
to g from the previous section. Now we assume that we can attach tof0 a linear form
ℓf0 : Sk(N ;OK) → K as in the previous section. We also consider a constantc(f)
such thatc(f)ℓf takes integral values. Then we have,

Theorem 1 (p-adic Rankin-Selberg convolution) With notation as above, there is a
measureµf×g : Z×

p → OK such that for any finite order characterφ onZ×
p ,

∫

Z
×
p

φdµf×g = c(f)(−1)kta(p, f0)
1−βpβℓ/2p

2−k
2 β D(f0, µg(φ)|ℓτβ , ℓ)

2k+ℓπℓ+1ık+ℓ < fρ
0 |k τNp, f0 >Np

where,
t = (−1)kl.c.m(N, J)Nk/2Jℓ/2Γ(ℓ)

andβ is such thatµ(φ) ∈Mℓ(Γ1(Jp
β)) andτβ =

(

0 −1
Jpβ 0

)

Remark 2 This is a special case of a more general result of Hida. First of all us-
ing Shimura’s differential operators he can show that the above p-adic measure in-
terpolates the rest of the critical values of the Rankin-Selberg L-function i.e.D(ℓ +
m, f0, µ(φ)|ℓτβ) for 0 ≤ m ≤ k − ℓ. Second, and most important, Hida can construct
p-adic measures that interpolate families of modular forms (usually calledΛ-adic mod-
ular forms), in both variables of the Rankin-Selberg product (under some ordinarity
assumptions also on the second variable).

We give the proof of the above theorem following Hida as in [14] (page 76). The
explicit construction of the measureµf×g is important for our purposes.

Proof: Let us denote byL the least common multiple ofN andJ . We consider the
Eisenstein-Katz measuredE : C(ZL;OK) → S(L;OK) that we have introduced in
the previous section. Recall that is defined as,

2

∫

ZL

φ(z)dE =

∞
∑

n=1

(n,p)=1









∑

d|n

(d,L)=1

sgn(d)φ(d)









qn ∈ OK [[q]]



4 P -ADIC RANKIN-SELBERG CONVOLUTION 12

andZL = Z×
p × (Z/LZ)×. We also modify the arithmetic measureµg by defining

a new one,µL
g (φ) := µg(φ) | [L/J ] where [L/J ] : S(J ;OK) → S(L;OK), as

[L/J ](
∑

n≥1 a(n, g)q
n) 7→ ∑

n≥1 a(n, g)q
n L

J , and henceµL
g is again an arithmetic

measure of weightℓ and characterψ. Recall that we have defined an action ofZL on
Z×

p asz ·x 7→ z2
px and by the previous section we can consider the convoluted measure

(µL
g ∗ dE)χ,k, which we recall is defined by,

∫

Z
×
p

φ(x)(µL
g ∗ dE)χ,k :=

∫

Z
×
p

∫

ZL

χ(z)zk−1
p (z−1 ⋆ φ)(x)dE(z)dµL

g (x)

Now we define the measureµf×g as,
∫

Z
×
p

φdµf×g := c(f) ◦ ℓf0 ◦ TrL/N ◦ e(
∫

Z
×
p

φ(µL
g ∗ dE)χ,k)

HereTrL/N : M(L;OK) → N(N ;OK) is the trace operator, see [26]. We do
not need to give its detailed definition but just mention thatwhen restricted to the
classical modular forms satisfy the usual property; forf ∈ Sk(Γ1(N);OK) and
g ∈ Mk(Γ1(L));OK) we have that,< f, T rL/Ng >N=< (L/N)kf |[L/N ], g >L.
Let nowφ be a finite order character onZ×

p . We compute the value of our measure on
φ. We have,

∫

Z
×
p

φ(µL
g ∗ dE)χ,k =

∫

Z
×
p

∫

ZL

χ(z)zk−1
p (z−1 ⋆ φ)(x)dE(z)dµL

g (x) =

=

∫

Z
×
p

∫

ZL

χ(z)zk−1
p ψ(z)−1z−ℓ

p φ(zp)
−2φ(x)dE(z)dµL

g (x) =

=

∫

Z
×
p

∫

ZL

χ(z)zk−ℓ−1
p ψ(z)−1φ(zp)

−2φ(x)dE(z)dµL
g =

=

(

∫

Z
×
p

φ(x)dµL
g

)

·
(∫

ZL

χψ−1(z)φ−2(zp)z
k−ℓ−1
p dE(z)

)

Evaluating the Eisenstein measure we get,
∫

ZL

χψ−1(z)φ−2(zp)z
k−ℓ−1
p dE = Ek−ℓ,Lp(χψ

−1φp) | ıp

whereφp(z) = φ−2(zp) and,

Em,M (θ) :=
1

2
LM (1−m, θ) +

∞
∑

n=1









∑

0<d|n

(d,Mp)=1

θ(d)dm−1









qn

an Eisenstein series inMm(Γ0(M), θ). We consider now the projection to the ordinary
part. By the propertye(f · g|ıp) = e(f |ıp · g) (see [14], p.24) and sinceµL

g (φ)|ıp =
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µL
g (φ) as it is measure overZ×

p we have that,

e(

∫

Z
×
p

φ(µL
g ∗ dE)χ,k) =

(

∫

Z
×
p

φ(x)dµL
g

)

· Ek−ℓ,Lp(χψ
−1φp)

Applying the explicit formula for the linear formℓf0 and after writingh := (
∫

Z
×
p
φ(µL

g ∗
dE)χ,k ∈ Sk(Γ0(Np

β)), χ) we have,

∫

Z
×
p

φdµf×g = c(f)a(p, f0)
1−βp(β−1)(k/2)< (fρ

0 |k τNp) | [pβ−1], T rL/N(h) >Npβ

< fρ
0 |k τNp, f0 >Np

We claim the equality,

< (fρ
0 |k τNp) | [pβ−1], T rL/N(h) >Npβ= (L/N)k/2pk(1−β)/2 < fρ

0 | τLpβ , h >Lpβ

Indeed by the property of the trace operator that we described above we have,

< (fρ
0 |k τNp) | [pβ−1], T rL/N(h) >Npβ= (L/N)k < (fρ

0 |k τNp) |
[Lpβ−1/N ], h >Lpβ

= (L/N)k/2pk(1−β)/2 < fρ
0 | τLpβ , h >Lpβ

Hence the evaluation of the measure now reads as,

∫

Z
×
p

φdµf×g = c(f)a(p, f0)
1−βp(β−1)(k/2) (L/N)k/2pk(1−β)/2 < fρ

0 | τLpβ , h >Lpβ

< fρ
0 |k τNp, f0 >Np

We note that we can write ,

µL
g (φ) = (−1)ℓ(L/J)−ℓ/2(µg(φ)|ℓτJpβ )|ℓτLpβ

The following proposition, which is taken from [14] p. 63 allow us to conclude the
proof.

Proposition 2 Leth1 ∈ Sk(Γ0(Lp
β), ψ) andh2 ∈Mℓ(Γ0(Lp

β), ξ). Then,

D(h1, h2, ℓ) = t′ < hρ
1|kτLpβ , (h2|ℓτLpβ )(Ek−ℓ,Lp(ξψ)) >Lpβ

wheret′ := 2k+ℓπℓ+1(Lpβ)
1
2 (k−ℓ−2)(

√
−1)ℓ−k(Γ(ℓ))−1

5 Towards the congruences

In this section we obtain a first form of the congruences claimed in the introduction.
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5.1 The casep = 3

We start with some generalities. LetK/Q be a quadratic imaginary extension of
discriminantD and non-trivial characterǫD. Let χ∗ : A×

K/K
× → C× be a fi-

nite order Hecke character corresponding by class field theory to a Galois character
χ : Gal(K(fχ)/K) → C× where fχ the conductor ofχ andK(fχ) the ray class
field for the ideal fχ. We will also writeχ for the ideal character corresponding to
χ∗. Consider the seriesgχ(z) =

∑

a⊂OK
χ(a)qN(a) if χ is not the trivial character

whereq = e2πız andχ(a) = 0 if (a, fχ) 6= 1. In caseχ is the trivial character we
defineg1(z) = 1

2L(0, ǫD) +
∑

a⊂OK
qN(a). By automorphic induction we have that

gχ(z) ∈ M1(Γ0(|D|N(f), ǫDχ|Z) where byχ|Z we mean the character obtained by
restrictingχ to ideals inZ. Moreover it is known that forχ non-trivial we have that
gχ(z) ∈ S1(Γ0(|D|N(f), ǫDχ|Z) is a primitive form.

Let us writep for the prime number 3. We consider the fieldQ(µp)/Q) and we
write p for the unique prime abovep in it. Let us now denote byχ any of the two
non-trivial character of the cyclic cubic extensionQ(µp, p

√
m)/Q(µp) for m a power

free integer and(m, p) = 1. Note thatχ ≡ 1 mod p. We consider the induced
representationρ := IndK

Q (χ), a two dimensional Artin representationρ : S3
∼=

Gal(Q(µp, p
√
m)/Q) → GL2(Z). We write gρ for the corresponding newform ob-

tained from the discussion above withgρ ∈ S1(Γ0(m
2pr), ǫpχ|Z) wherer = 1 if χ

does not ramify atp andr = 3 if it does. Note that actuallyχ|Z is the trivial character.
Finally let us also writegσ for the Eisenstein seriesg1. Then,gσ ∈M1(Γ0(p), ǫp).

We associatep-adic arithmetic measures to our modular formsgσ and gρ. We
modify gσ and consider the modular formgσ(m)

:= gσ | ım ∈ M1(Γ0(m
2p, ǫp), with

ım the trivial character modulom, i.e we remove the “Euler factors” at the primes
dividing m. We now consider the associated arithmetic measures onZ×

p . For φ ∈
C(Z×

p ; Zp) we have,

dµρ : φ 7→
∞
∑

n=1

φ(n)a(n, gρ)q
n

dµσ(m)
: φ 7→

∞
∑

n=1

φ(n)a(n, gσ(m)
)qn

Note that by construction we have that for anyφ ∈ C(Z×
p ,Zp),

∫

Z
×
p

φdµρ ≡
∫

Z
×
p

φdµσ(m)
mod p

where the meaning of the congruences here is term by term i.e.φ(n)a(n, gρ) ≡
φ(n)a(n, gσm

) mod p for all n.
Let nowE/Q be an elliptic curve overQ with conductorN and with good ordi-

nary reduction atp. Recall that we are assuming thatE[p] is an irreducibleGQ-module
and moreover the Artin conductor of the representationρE,p : GQ → Aut(E[p]) is
equal toN = NE . Let us writef ∈ S2(Γ0(N); Q) for the primitive form associated
to E. The assumption of the good ordinary reduction atp implies that|a(p, f)|p = 1
wheref(z) =

∑

n≥1 a(n, f)qn and of course that(N, p) = 1. Let us now write
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f0 ∈ S2(Γ0(Np); Q) for the ordinary form that we can associate tof by lemma 3
and f̃0 ∈ S2(Γ0(Npm

2); Q) for the normalized eigenform that we obtain after re-
moving the Euler factors atq|m, that is f̃0 = f0|ım. We now consider the map
h2(Γ0(Nm

2p); Zp) → Zp induced byT (n) 7→ a(n, f̃0). Later we will prove that
actually this map, under our assumptions, induces a decomposition,

h2(Γ0(Nm
2p); Qp) = Qp ⊕A

Let us write1f̃0
for the idempotent attached to the first summand. Moreover wecon-

sider a constantc(f,m) ∈ Zp, defined up top-adic units, such thatc(f,m)1f̃0
∈

h2(Γ0(Nm
2p; Zp). Let us now writeL for Nm2. We denote bydE2,id = dE :

C(ZL; Zp) → S(L; Zp) the Eisenstein-Katz measure onZL. Recall also that for any
arithmetic measuredµ : C(Z×

p ; Zp)→ S(M ; Zp) withM | Lwe have defined another
arithmetic measuredµL with values inS(L,Zp) by applying the operator[L/M ].

Lemma 5 Letφ ∈ C(Z×
p ;O×

K) be a character of finite order. Consider the measures
dµL

gχ
∗ dE anddµL

σ(m)
∗ dE. Then we have,

∣

∣

∣

∣

∣

∫

Z
×
p

φ (dµL
gρ
∗ dE)−

∫

Z
×
p

φ (dµL
σ(m)
∗ dE)

∣

∣

∣

∣

∣

p

< 1

Proof By the calculations we did in the previous section for the proof of Hida’sp-adic
Rankin-Selberg theorem we have,

∫

Z
×
p

φ (dµL
gσ
∗ dE) = (

∫

Z
×
p

φdµL
gρ

)(

∫

ZL

ǫp(z)φp(z)dE)

and similarly,
∫

Z
×
p

φ (dµL
gσ(m)

∗ dE) = (

∫

Z
×
p

φdµL
gσ(m)

)(

∫

ZL

ǫp(z)φp(z)dE)

with φp(z) = φ−2(zp). The lemma now follows from the facts thatdE is an integral
measure and|µL

gσ
(φ)−µL

gσ(m)
(φ)|p < 1 as the operator[N ] preserves congruences.

Now we are ready to prove a first type of congruences. Let us writeu for a(p, f0)
and definew by uw = p. We have,

Theorem 2 Consider the quantities,

R(ρ) := c(f,m)α(ρ)
Pp(ρ, u

−1)

Pp(ρ, w−1)

D{p,q|m}(f, gρ, 1)

π2i < f̃0|τLp, f̃0 >Lp

and

R(σ) := c(f,m)α(σ)
Pp(σ, u

−1)

Pp(σ,w−1)

D{p,q|m}(f, gσ, 1)

π2i < f̃0|τLp, f̃0 >Lp

where,α(ρ) := ep(ρ)u
−vp(Nρ), α(σ) := ep(σ)u−vp(Nσ) with σ := 1 ⊕ ǫp the Artin

representation induced by the trivial character,ep(·) local epsilon factor andvp(Nρ)
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the p-adic valuation of the conductor of the Artin representation. Then with the as-
sumptions as aboveR(ρ) andR(σ) arep-adic integers and,

R(ρ) ≡ R(σ) mod p.

Here we would like to remind the reader that under the assumption of the elliptic curve
being semi-stable we have thatD(s, f, gρ) = L(Ef , ρ, s).

Proof We claim that for any characterφ ∈ C(Z×
p ;O×) we have that,

|
∫

Z
×
p

φdµf̃0,gρ
−
∫

Z
×
p

φdµf̃0,gσ(m)
|p < 1

By definition we have,
∫

Z
×
p

φdµf̃0,gρ
= c(f,m)ℓf̃0

◦ e(
∫

Z
×
p

φ (dµL
gρ
∗ dE))

∫

Z
×
p

φdµf̃0,gσ
= c(f,m)ℓf̃0

◦ e(
∫

Z
×
p

φ (dµL
gσ
∗ dE))

Note that the trace operator is now just the identity. By the definition of the linear form
ℓf̃0

we have thatc(f,m)ℓf̃0
(e h) = a(1, c(f,m)1f̃0

e h) for h ∈ S(L; Zp). But we
have that|e h|p ≤ |h|p and also|c(f,m)1f̃0

e h|p ≤ |e h|p and hence by lemma 5 we
establish the claim. Now in order to obtain the congruences we evaluate both measures
at the trivial characterıp modulop and hence we have,

∫

Z
×
p

ıpdµf̃0,gρ
≡
∫

Z
×
p

ıpdµf̃0,gσ(m)
mod p

We now work both sides of the above equation. We start with theleft hand side. By
theorem 1 we have,

∫

Z
×
p

ıpdµf̃0,gρ
= c(f,m)utpβ/2u−β D(f̃0, µgρ

(ıp, 1)|1τβ)

π2i < f̃0|2τLp, f̃0 >Lp

whereβ is such thatµgρ
(ıp) = gχ|ıp ∈ S1(Γ1(m

2pβ). We consider the Rankin-
Selberg productD(f̃0, µgρ

(ıp)|1τβ , 1) = D(f̃0, gρ|ıp)|1τβ , 1). We will write g for
gρ andM for m2. Let us assume first that the characterχ is not ramified abovep
and henceβ = 2. We can write in this caseg|ıp = g − a(p, g)g|[p] = g − g|[p]
asa(p, g) = 1. We applyτMp2 =

(

0 −1
Mp2 0

)

to the above equation and we

use the fact thatg ∈ Γ1(Mp) is a primitive form of levelMp and hence satisfies

g|1
(

0 −1
Mp 0

)

= W (g)gρ = W (g)g, asg has rational coefficients. The quantity

W (g) is usually called the root number ofg. We have,

(g|ıp)|1τMp2 = g|1τMp2 − g|[p]|1τMp2 =
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= g|1
(

0 −1
Mp 0

)(

p 0
0 1

)

− p− 1
2 g|1

(

p 0
0 1

)(

0 −1
Mp2 0

)

=

= W (g)g|1
(

p 0
0 1

)

− p− 1
2 g|1

(

0 −1
Mp 0

)(

p 0
0 p

)

=

= p
1
2W (g)g|[p]−W (g)p−

1
2 g = −p− 1

2W (g)(g − pg|[p])
Hence we get that,

D(f0, (g|ıp)|1τMp2 , 1) = −p− 1
2W (g)(1−a(p, f0))D(f0, g, 1) = p−

1
2W (g)uPp(g, u

−1)D(f0, g, 1)

Moreover we note thatD(f̃0, g, 1) = Pp(g, w
−1)−1D{p,q|m}(f, g, 1) where we have

removed the Euler factor atp and q|m from the primitive Rankin-Selberg product
D(f, g, 1). Also, Balister in [1] p.17 has computed the local epsilon factors ofρ from
where we getep(ρ) = p

1
2Wp(g) andWq(g) = 1 for q|m and hence we conclude,

∫

Z
×
p

ıpdµf̃0,gρ
= c(f,m)utep(ρ)u

−1 Pp(ρ, u
−1)

Pp(ρ, w−1)

D{p,q|m}(f, g, 1)

π2i < f̃0|2τLp, f̃0 >Lp

∈ Zp

The case whereχ is ramified atp is easier asg|ıp = g sincePp(ρ,X) = 1 and hence
we can use directly the action ofτMp3 . Hence also in this case we get,

∫

Z
×
p

ıpdµf̃0,gρ
= c(f)utep(ρ)u

−3 D{p,q|m}(f, g, 1)

π2i < f̃0|2τLp, f̃0 >Lp

∈ Zp

We now work the right hand side of the congruences. We have that,

E1(ǫp)(z) := gσ(z) =
1

2
L(0, ǫp) +

∞
∑

n=1

(
∑

0<d|n

ǫp(d))q
n ∈M1(Γ0(p), ǫp)

where we write, as always,ǫp for the non-trivial character ofGal(Q(µ3)/Q). We
consider now the imprimitive Rankin-SelbergL-functionD(f̃0, g1|ım|ıp|1τm2p2 , 1)

whereτm2p2 =

(

0 −1
m2p2 0

)

. We can consider each prime separately, i.e. first

we consider the quantityD(f̃0, g1|ıp|τp, 1) with τp =

(

0 −1
p2 0

)

and then the

quantityD(f̃0, g1|ıq|τq, 1) with τq =

(

0 −1
pq2 0

)

for q|m. Let assume this and

do the calculations and at the end we return to this point. As before we can write
E1(ǫp) | ıp = E1(ǫp)− E1(ǫp)|1[p]. Working as above we have,

E1(ǫp) | ıp |
(

0 −1
p2 0

)

= p−
1
2W (E1(ǫp))(E1(ǫp)− pE1(ǫp) | [p])

Hence we have,

D(f̃0, E1(ǫp)|ıp|1τp, 1) = p−
1
2W (E(ǫp))a(p, f̃0)(1− a(p, f̃0)−1)D(f̃0, E1(ǫp), 1)
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But for the Eisenstein seriesE1(ǫp) we know thatD(f̃0, E1(ǫp), 1) = L(f̃0, 1)L(f̃0, ǫp, 1)

or equivalentlyD(f̃0, E1(ǫp), 1) = (1− a(p, f̃0)p−1)−1L{p}(f̃ , 1)L{p}(f̃ , ǫp, 1). Re-

call that we have definedu := a(p, f̃0) = a(p, f0) anduw = p we finally get,

D(f̃0, E1(ǫp, 1)|ıp|1τp) = p−
1
2W (E(ǫp))u

1− u−1

1− w−1
L{p,q|m}(f, 1)L{p,q|m}(f, ǫp, 1)

We now consider a primeq | m. Now we write justg for g1 = E1(ǫp). As q 6= p,
we haveg | ıq = g − a(q, g)g | [q] + ǫp(q)g | [q2]. Now we apply the oper-

ator τq =

(

0 −1
q2p 0

)

. Doing the calculations as before we getg|ıq |1 τq =

q−1ǫp(q)W (g)(g− ǫp(q)a(q, g)qg | [q]+ ǫp(q)q
2g | [q2]). But note that sinceL(s, f̃0)

has no Euler factors atq | m we have thatD(s, f̃0, g|[qr]) = 0 for any r ≥ 1. So
we obtainD(f̃0, g|ıq | τq, 1) = q−1ǫp(q)W (g)D(f̃0, g, 1). Putting all together and
noticing thatq−1ǫp(q) ≡ 1 mod p andWq(g) = 1 we get,

∫

Z
×
p

ıpdµf,gσm
= c(f,m)utep(σ)u−1 Pp(σ, u

−1)

Pp(σ,w−1)

D{p,q|m}(f, gσ, 1)

π2i < f̃0|2τLp, f̃0 >Lp

∈ Zp

The fact that|ut|p = 1 allows us to conclude the proof of the theorem. Let us now also
justify our claim that we can work each prime separately. Forsimplicity we do the case
of m = q but we will become obvious how one obtains the general case. So with g as
above we have,

g|ipq = (g − g|[p])− a(q, g)((g − g|[p]))|[q] + ǫp(q)((g − g|[p]))[q2]

Now we apply the operatorτp2q2 . We claim that only the termǫp(q)((g−g|[p]))[q2]|1τp2q2

will survive after considering the Rankin-Selberg convolution with f̃0. Indeed as̃f0 has
no Euler factors atm its Rankin-Selberg convolution with a formg′ with a(n, g′) = 0
if (n, q) = 1, will be trivial. Consider now,g|[qipj ]|τp2q2 with i = 0, 1, 2 andj = 0, 1.
Then,

g|[qipj ]|τp2q2 =
1

(qipj)
1
2

g|1
(

qipj 0
0 1

)(

0 −1
p2q2 0

)

=

=
1

(qipj)
1
2

g|1
(

0 −1
p 0

)(

pq2 0
0 qipj

)

=
1

(qipj)
1
2

W (g)g|1
(

qipj 0
0 qipj

)(

p1−jq2−i 0
0 1

)

=

=
1

(qipj)
1
2

W (g)g|1
(

p1−jq2−i 0
0 1

)

= (
p1−jq2−i

(qipj)
)

1
2W (g)g|[p1−jq2−i]

So we see that ifi 6= 2 thenD(1, f̃0, g|[qipj ]|τp2q2) = 0. Moreover we see from

the above computations that the termǫp(q)((g− g|[p]))[q2] equalsǫp(q)
q p−

1
2W (g)(g−

pg|[p]), which concludes our claim. Now it is not hard to check that our argument
extends to the general case. One has again to observe that only terms of the form
g′|[m2] will survive after the Rankin-Selberg convolution.
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5.2 The casep > 3

Let us fix some notation first. Let us writeK := Q(µp) andF := Q(µp)
+, a totally

real field and[K : F ] = 2. Moreover we writep for the unique prime abovep in F and
ǫp for the non-trivial character ofK/F . Let us also denote byχ a non-trivial character
of the cyclic extensionK( p

√
m)/K of degreep for somepth power free integerm.

Moreover we writeρ := IndF
K(χ) andR := IndQ

F (ρ) = IndQ
K(χ). Also we write

σ := IndF
K(1) = 1 ⊕ ǫp andΣ = IndQ

K(1) = ⊕p
r=1θ

r for some characterθ of
Gal(K/Q). Our aim is to establish congruences between the quantities

Q(R) := ep(R)u−vp(NR) Pp(R, u
−1)

Pp(R,w−1)

LS(E/Q, R, 1)

(Ω(E)+Ω(E)−)
p−1
2

Q(Σ) := ep(Σ)u−vp(NΣ) Pp(Σ, u
−1)

Pp(Σ, w−1)

LS(E/Q,Σ, 1)

(Ω(E)+Ω(E)−)
p−1
2

whereS is the set of primes consisting ofp andq|m. From the inductive properties
of theL functions we note the equalitiesLS(E/Q, R, 1) = LS(E/Q, IndQ

K(χ), 1) =

LS(E/Q, IndF
KInd

Q
F (χ), 1) = LS(E/F, IndF

K(χ), 1) = LS((E/F, ρ, 1) and also in
the same wayLS(E/Q,Σ, 1) = LS(E/F, σ, 1). Of course here the setS contains
the primes ofOF andOK abovem and of coursep. Moreover as the inductive prop-
erties hold for Euler factors we can also conclude thatPp(R,X) = Pp(ρ,X) and
Pp(Σ, X) = Pp(σ,X). For the local epsilon factors and the conductor we know that

they are inductive in degree zero and so we have that,ep(R)
ep(Σ) =

ep(ρ)
ep(σ) . We now consider

the quantities,

Q(ρ) := ep(ρ)u
−vp(Nρ) Pp(ρ, u

−1)

Pp(ρ, w−1)

LS(E/F, ρ, 1)

(Ω(E)+Ω(E)−)
p−1
2

Q(σ) := ep(σ)u−vp(Nσ) Pp(σ, u
−1)

Pp(σ,w−1)

LS(E/F, σ, 1)

(Ω(E)+Ω(E)−)
p−1
2

Let us now writef ∈ S2(Γ0(N),Z) for the primitive cusp form that we can associate to
E and byπf the corresponding cuspidal automorphic representation, i.e.L(E/Q, s) =
L(f, s) = L(πf , s). Notice that asF/Q is cyclic we can consider the base change of
πf from Q to F , a cuspidal automorphic representationπφ of GL(2,AF ) such that

L(πφ, s) =
∏

p−1
2

r=1 L(πf ⊗ ηr, s) for a finite order Hecke characterη that corresponds
to a Galois character that generatesGal(F/Q)∨. Let us writeφ for the Hilbert modular
form of parallel weight two that we attach toπφ in the canonical way that we have
described in the introduction.

By automorphic induction for degree two extensions we can associate a Hilbert
modular formgρ ∈ S1(NK/F (fχ)p, ǫp) to ρ (the character is justǫp asχ is anti-
cyclotomic), and an Eisenstein seriesEσ ∈M1(p, ǫp) to σ. From now on we will write
M for the idealNK/F (fχ) of OF . Note that as we assume thatE is semi-stable we
have thatL(E/F, χ, 1) = D(φ, gρ, 1) andL(E/F, σ, 1) = D(φ,Eσ, 1). Moreover
we write φ0 for the “ordinary” Hilbert modular form that one can attach to φ such
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thatC(q, φ0) = C(q, φ) if q 6= p andC(p, φ0) is thep-adic unit root of the equation
x2 − C(p, φ) + p = 0. Note thatC(p, φ) = a(p, f). Finally by φ̃0 we denote the
Hilbert modular form that we obtain fromφ0 by removing the Euler factors abovem.

We can extend all that we did above for the case ofp = 3 to the more general
setting ofp > 3, where now instead of working with elliptic modular forms wework
with Hilbert modular forms. In particular we could introduce the notion of ap-adic
Hilbert modular form as in Hida [15] using theq-expansion principle or their moduli
interpretation as in Katz [22]. However as we said in the introduction we do not have
yet a theorem for the general case for reasons that will explain later. So in this section
we restrict ourselves to just state the following theorem, aproof of which can be found
in [2]. It will be enough in order to address the issues that prevent us from proving a
general theorem forp > 3.

Theorem 3 Letγ be the power ofp in the level ofEσ andβ the power ofp in the level
of gρ. Consider the quantities,

Q(ρ) := C(p, φ0)
−(β−1)p

β
2

D(φ̃0, gρ|ıp
|τMpβ , 1)

i
p−1
2 πp−1 < φ̃0|τLp, φ̃0 >Lp

Q(σ) := C(p, φ0)
−(γ−1)p

γ
2

D(φ̃0,Eσ|ıMp
|τMpγ , 1)

i
p−1
2 πp−1 < φ̃0|τLp, φ̃0 >Lp

Then there exists a well-determined constantc(φ,m) ∈ Op depending only onφ and
m such that, bothc(φ,m)Q(ρ) andc(φ,m)Q(σ) arep-adically integral and,

c(φ,m)Q(ρ) ≡ c(φ,m)Q(σ) mod p

6 Congruences between special values

In this section our aim is to obtain a better understanding ofthe nature of the con-
stantc(f,m) appearing in theorem 2 and its relation with the choice of ourperiods.
Vaguely speaking, we show that the reason that this constantappears is that the Pe-
tersson inner product is not the right choice to obtain integral values of the ratio (L-
values)/(automorphic periods) and this constant measuresthis failure.

We start by showing that our maph2(Γ0(Npm
2); Zp) → Zp given byT (n) 7→

a(n, f̃0), under the assumptions stated in the introduction, inducesa decomposition of
the form,h2(Γ0(Npm

2); Qp) = Qp × A. This will be done by showing that actually
factors through a local ring ofh2(Γ0(Npm

2); Zp) that is reduced. Then our next goal
is to relate the quantityc(f,m) to the periods< f̃0|τNΣ , f̃0 >, with NΣ = NEm

2p
that appear in the congruences of theorem 2. Namely we will show that there is a
period determinant, we call itΩ(f)Σ for Σ the set of primes dividingm, such that
c(f,m)Ω(f)Σ =< f̃0|τNΣ , f̃0 >, up to ap-adic unit.

In order to conclude the theorem we will show that actually the quantityΩ(f)Σ is
independent ofm and the primep. Hence we are reduced down to the primitive form
f and the existence of a strong parametrization ofE by X0(N) allow us to obtain a
relation with the Néron periods.
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As we mentioned in the introduction, in this section we rely on Wiles’ deep results
in [28]. Indeed the local ring through which our map factors is nothing else than the
reduced algebraTΣ, using Wiles’ notation, that he eventually proves to be isomorphic
to some universal deformation rings that classify Galois representations with some
predetermined properties that deform a fixed modular modp representation. Actually
for our purposes we need the minimal level i.e.Σ = ∅, to be the conductor of the
elliptic curve and this is the reason for imposing the assumption that the level of the
elliptic curve is the same with the conductor of the reduced (mod 3) representation.

Then we define the module of congruences using this reduced local ring. It mea-
sures congruences between our modified formf̃0 and other normalized eigenforms.
The annihilator of this module will be eventually the quantity c(f,m). We will compare
this module of congruences with what may be called the cohomological module of con-
gruences. Under our assumptions, Wiles’ results on the freeness ofH1(X0(NΣ),Zp)m

as ah2(Γ0(Npm
2); Zp)m-module, where here we writem for the maximal ideal that

corresponds to the form that one obtains reducingf̃0 modulo p, will give that ac-
tually the two modules are isomorphic. This will relatec(f,m) to the periods<
f̃0|τNΣ , f̃0 >. Then again a deep result of Wiles, the generalization of theso-called
“Ihara’s lemma” will essentially say that this relation does not depend on the change of
level that we have introduced tof by removing the Euler factors atm and modifying
the one atp. Hence we can reduce our study to the initial levelN where the modularity
of the elliptic curve provides us the way to obtain the relation with Néron periods.

We would like here to mention that in this section we have benefited the most from
the article of Darmon, Diamond and Taylor [6] based on Wiles’fundamental paper
[28]. Most of the constructions and proofs here are minor modifications, mainly just
restricting their constructions to our specific case, of theones done in their paper.

Structure of Hecke algebras: In this section we collect some well known facts
about the structure of the integral Hecke algebrah2(Γ0(N); Z) and its completion
h2(Γ0(N); Zp) at some primep. Our main reference is [6]. We fix a finite exten-
sionK of Qp and we denote byOK the ring of integers. We writeλ for the maximal
ideal inOK andk for O/λ. Let us moreover fix algebraic closuresK andk of K and
k. We consider the Hecke algebras (a)h2(Γ0(N);OK) = h2(Γ0(N); Z) ⊗Z OK , (b)
h2(Γ0(N);K) = h2(Γ0(N);OK)⊗OK

K and (c)h2(Γ0(N); k) = h2(Γ0(N);OK)⊗OK

k. From the going-up and going-down theorems we have that the maximal prime ide-
als m ⊂ h2(Γ0(N);OK) are above the primeλ i.e. m ∩ OK = (λ) and for the
minimal primesp, p ∩ OK = (0). Moreover we have the isomorphism ([6], p.90)
h2(Γ0(N);OK)

∼→∏

m h2(Γ0(N);OK)m where the product is over the finitely many
maximal ideals ofh2(Γ0(N);OK).

Let f ∈ S2(Γ0(N);K) be a normalized eigenform and consider the K-algebra
homomorphismλf : h2(Γ0(N);K)→ K, that sendsT (n) 7→ a(n, f). Using this we
can associate withf a maximal ideal ofh2(Γ0(N);K) by ker(λf ) which depends only
on theGK conjugacy class off . In the same way we can associate a maximal ideal
of h2(Γ0(N); k) to a normalized eigenformg ∈ S2(Γ0(N); k). We usually writef
for the reduction moduloλ of a formf with integral Fourier expansion. The following
proposition is taken from [6], p. 90.
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Proposition 3 Let us denote byS2(N ;K)(GK) the normalized eigenforms inS2(Γ0(N);K)
up toGK conjugacy and byS2(N ; k)(Gk) the normalized eigenforms inS2(Γ0(N); k)
up toGk conjugacy. Then the elements inS2(N ;K)(GK) (resp inS2(N ; k)(Gk))
are in bijection with the maximal ideals ofh2(Γ0(N);K) (resp maximal ideals of
h2(Γ0(N); k)) which in turn are in bijection with the minimal primes ofh2(Γ0(N);OK)
(maximal primes ofh2(Γ0(N);OK)}).

Finally we note that if we letm be a maximal ideal inh2(Γ0(N);OK) and consider
the maximal idealsp ⊂ h2(Γ0(N);K) with p ∩ h2(Γ0(N);OK) ⊂ m then we have
an isomorphismh2(Γ0(N);OK)m ⊗OK

K
∼→ ∏

p h2(Γ0(N);K)p. We also men-
tion what the Atkin-Lehner theory implies for the Hecke ringh2(Γ0(N);K) under the
assumption that the fieldK contains all the coefficients of all the primitive forms of
conductor dividingN and trivial character. Let us denote byP(N) the set of primitive
forms of conductor dividingN . Then we have that,S2(Γ0(N);K) = ⊕f∈P(N)SK,f

whereSK,f is theK-linear span of{f(αz) : α | N/Nf} with Nf the conductor
of the primitive formf . For eachf =

∑

n≥0 a(n, f)qn in P(N) we denote by
h2(Γ0(N);K)[f ] the image ofh2(Γ0(N);K) in EndK(SK,f ). We consider the poly-
nomial ring,AK,f = K[uf,q : ∀q | N/Nf ] and the idealIK,f ⊂ AK,f generated by

the polynomialsPf,q(uf,q) = u
vq(N/Nf )−1
f,q (u2

f,q − a(q, f)uf,q + 1(Nf )q) where we
write vq(N/Nf ) for the valuation atq. We now prove the following, which is a version
of lemma 4.4 of [6],

Lemma 6 There is an isomorphism ofK-algebrasφ : h2(Γ0(N);K)
∼→∏

f∈NAK,f/IK,f

defined by,

φ(T (q))f :=

{

a(q, f), if (q,N/Nf ) = 1;
uf,q mod IK,f , otherwise.

Proof We define theK-algebra homomorphism,Θf : AK,f → h2(Γ0(N);K)[f ] by
uf,q 7→ T (q). Notice that the polynomialPf,q is the characteristic polynomial of the
operatorT (q) acting on the space spanned by the forms{f(αqiz) : i = 1, . . . , vq(N/Nf )}
for eachα dividingN/Nfq

vq(N/Nf ). That implies thatIK,f is in the kernelΘf . Hence,
we have the following surjection, which we denote byΘ,

Θ :
∏

f

AK,f/IK,f ։

∏

f

h2(Γ0(N);K)[f ]

But sinceh2(Γ0(N);K) →֒ ∏

f h2(Γ0(N);K)[f ] the following counting argument
establishes the isomorphism,

dimK(h2(Γ0(N);K)) = dimKS2(Γ0(N),K) =
∑

f

σ0(N/Nf) =
∑

f

dimKAK,f/IK,f

with σ0(n) =
∑

0<d|n 1.

Reduced Hecke algebras: Recall that we are interested in theK-algebra homomor-
phismh2(Γ0(Npm

2),K)→ K that corresponds to a normalized eigenform that arises
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from an ordinary primitive formf of conductorN after “removing” the Euler factors
at the primes dividingm and modifying the Euler factor atp by keeping only thep-adic
unit part. In this section we are going to show that under someassumptions onf , that
we now describe, this homomorphism factors through a local ring h2(Γ0(Nm

2p,O)m

that is reduced. We recall that if we writeρf := ρf,p : GQ → GL2(Zp) for thep-adic
representation attached tof , then we assume that the reduced, mod p, representation
ρ := ρ mod p, is irreducible. Let us now writeN(ρ̄) for the Artin conductor of̄ρ.
Then we also assume thatN(ρ̄) = N . Finally f is the normalized primitive form
corresponding to an elliptic curveE, which we assume has good ordinary reduction at
p.

As we have already mentioned in the introduction we will showthat our local ring
h2(Γ0(Npm

2),O)m is isomorphic to some reduced ringTΣ that appear in Wiles’
work. For the purposes of this section we do not really need toestablish this iden-
tification as we can work only with the full Hecke algebra. However in order to make
some remarks when we later consider the casep > 3, of course in a Hilbert modular
form setting, we will refer to this identification.

Let us start by fixing a general setting for this section. We write f for a normalized
primitive form of conductorN and trivial character that is ordinary atp. We will
write ρ := ρf for the p-adic representation that we attach tof , and ρ̄ := ρ̄f for
its modp representation. From now on we assume that the local fieldK is always
sufficiently large, in the sense that always contains all theFourier coefficients of the
cusp forms that we consider. We fix a setΣ of primesℓ 6= p that do not divideN . We
define,NΣ := Np

∏

ℓ∈Σ ℓ
2. Moreover we writeNΣ for the set of primitive formsg of

conductor dividingNΣ and trivial character with the property that,

a(q, g) mod λ′ = tr(ρ(Frobq)) ∀q with (q,NΣ) = 1

whereλ′ is the maximal ideal in the fieldKg, the minimalQp extension that con-
tains the coefficients ofg. Notice that if we writeρg for thep-adic representation that
we can attach to the newformg then the above condition gives thatρ ⊗k kg

∼= ρg

whereρg is the unique, up to isomorphism, modp semi-simple representation such
thattr(ρg(Frobq)) = a(q, g) mod λ′ for all (q,N(ρg)p) = 1. Let g ∈ NΣ be any of
our selected primitive forms and for any suchg we consider the normalized eigenform
g′ ∈ S2(Γ0(NΣ)) that is defined by,

1. a(q, g′) = a(q, g) if q does not divideNΣ/Ng

2. a(q, g′) = 0 if q 6= p andq dividesNΣ/Ng

3. a(p, g′) := u(g), thep-adic unit root of the equationX2 − a(p, g)X + p = 0 if
p dividesNΣ/Ng. Note that this makes sense asρ̄ comes from an elliptic curve
with good ordinary reduction atp.

It follows from lemma 4.6 of [6] that the formg′ ∈ S2(Γ0(NΣ); k) is indepen-
dent of g, and more precisely it is characterized by the conditions (1) a(q, g′) =
trρIq

(Frobq) if q = p or q 6∈ Σ, where we writeρIq
for the coinvariant space of

the inertia atq, and (2)a(q, g′) = 0 if q ∈ Σ. We then writem for the maximal
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ideal inh2(Γ0(NΣ);O) that corresponds tog′ by proposition 3. Then we claim that
h2(Γ0(NΣ);O)m ⊗O K is a semi-simpleK-algebra. Indeed we have that,

Proposition 4 There is aK-algebra isomorphism,

φ : h2(Γ0(NΣ);O)m ⊗O K
∼→
∏

g∈NΣ

K

given by

(φ(Tq))g =







a(q, g), if q 6∈ Σ ∪ {p};
0, if q ∈ Σ;
u(g), if q = p.

Proof By lemma 6 we have an isomorphism

h2(Γ0(NΣ);K)
∼→

∏

g∈P(NΣ)

AK,g/IK,g

whereP(NΣ) is the set of primitive forms inS2(Γ0(NΣ);K). Recall also that for a
maximal idealm ⊂ h2(Γ0(NΣ);OK) we have that

h2(Γ0(NΣ);OK)m ⊗OK
K

∼→
∏

p

h2(Γ0(NΣ);K)p

for all prime idealsp ⊂ h2(Γ0(NΣ);K) that restricted toh2(Γ0(NΣ);OK) they are
contained inm. Hence we obtain the following isomorphism,

h2(Γ0(NΣ);OK)m ⊗OK
K

∼→
∏

g∈P(NΣ)

∏

p∈Mg

(AK,g/IK,g)p

whereMg is the set of prime ideals inAK,g/IK,g that their image under the mapΘg

(with notation as in lemma 6) when restricted toh2(Γ0(NΣ);OK) is in m. But if g
is not inNΣ thenMg is empty. Ifg is in NΣ then there is a unique prime ideal in
Mg, call it pg′ , that restricts insidem. Indeed, it is the prime ideal that corresponds to
the normalized eigenformg′ constructed above as we have shown that it is the unique
normalized eigenform inSK,g with the required reduction. This prime ideal is actually
the kernel of the mapAK,g/IK,g → K sendinguf,g 7→ a(q, g′), and after localizing
we obtain(AK,g/IK,g)pg′

∼→ K. Finally the explicit description of the isomorphism
in lemma 6 gives the description of the isomorphismφ.

Now we are going to introduce the algebrasTΣ that appear in Wiles’ work. As we
mentioned, we will not make any direct use of them in the case of p = 3. We consider
theOK -algebraT′

Σ :=
∏

g∈NΣ
OKg

. and we define theOK-subalgebraTΣ ⊂ T′
Σ

generated overOK by the elementsT (q) := (a(q, g))g for all q relatively prime to
NΣ. Note thatTΣ is reduced as we consider only the “good”, i.e. away from the level,
Hecke eigenvalues. In Wiles’ work this algebra is shown to bea deformation ring of the
representation̄ρ. One of the crucial steps in his work is that he identifies thisalgebra
with a localized part of the full Hecke algebra. In our case itfollows from Proposition
4.7 in [6] that there is an isomorphism ofOK-algebras,φ : h2(Γ0(NΣ);OK)m

∼→ TΣ

given byTq 7→ T (q) for all q relatively prime toNΣ.
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Modules of congruences For our primitive formf ∈ S2(Γ0(Nf ; Zp) we are inter-
ested in the mapπΣ : h2(Γ0(NΣ); Zp)→ Zp induced from the normalized eigenform
f ′ = f̃0 = f0|ım, with m =

∏

ℓ∈Σ ℓ. By the universal property of localization, this
map factors as,

πΣ : h2(Γ0(NΣ); Zp)→ h2(Γ0(NΣ); Zp)m → Zp

where the maximal idealm is as in the previous section. If we use the identification
h2(Γ0(NΣ); Zp)m

∼→ TΣ then the map can be realized as the projection to the com-
ponent corresponding tof . Moreover we have shown thath2(Γ0(NΣ); Zp)m

∼= TΣ is
reduced and in particular the mapπΣ induces a splittingh2(Γ0(NΣ); Zp)m ⊗Z Qp =
Qp × A, where we write justQp asf has rational coefficients. Recall that we write
1Qp

for the idempotent corresponding to the copy ofQp. We would like to study its
“denominator” i.e. a quantityc(f,m) such thatc(f,m)1Qp

is integral. For this we now
introduce the notion of the module of congruences.

We start with some general definitions and properties of the module of congruences
as for example are given by Hida in his book, see [17] (page 276). Let us writeh for a
local ringh2(Γ0(N),OK)m for someN . Moreover let us assume thath is reduced and
that we are given a mapφ : h→ OK , such that it induces anK-algebra decomposition,

h⊗OK
K ∼= K ×A

for someK-algebraA. Let us denote by1φ the idempotent that corresponds to the
first summandK. We definea := Ker(h → A) and℘ := Ker(φ). Note also that
Annh(℘) = a.

Definition 6 The module of congruencesC0(h) of φ : h→ OK is defined as,

C0(h) := (h/a)⊗h,φ OK
∼= h

a⊕ ℘
∼= OK/φ(a) ∼= 1φh/a

We now consider the module of congruencesC0(h) for our reduced ringh :=
h2(Γ0(NΣ),Zp)m and our mapπΣ. We will compare it with a “cohomological” mod-
ule of congruences, following the terminology of Hida and Ribet, which we will in-
troduce below. Let us writeX for the compact modular curveX0(NΣ). We consider
the first cohomology groupH1(X,Zp) and we have seen in chapter three that this
as a Hecke module overh2(Γ0(NΣ); Zp). Moreover we consider the standard skew-
symmetric bilinear perfect pairing as for example in [6] page 106,

(· , ·) : H1(X ; Zp)×H1(X ; Zp)→ Zp

Let us defineL := H1(X ; Zp)m, where we have localizedH1(X ; Zp) at the maximal
idealm. This is then anh-module. Let us consider the action of complex conjugation
onH1(X ; Zp) and defineL[+], L[−] for the eigenspaces ofL. We define a cohomo-
logical module of congruences by,

Ccoh(L[+]) := 1Qp
L[+]/1Qp

L[+] ∩ L[+] ∼= L[+]Qp/L[+]Qp
∼= L[+]

L[+][℘]⊕ L[+][a]
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where we have setL[+]Qp := 1Qp
L[+], the projection ofL[+] to the first component

of the decompositionL[+]⊗Zp
Qp = 1Qp

(L[+]⊗Zp
Qp)⊕ (1− 1Qp

)(L[+]⊗Zp
Qp)

induced by the splitting of the Hecke algebra. AlsoL[+]Qp
:= 1Qp

L[+] ∩ L[+] =
L[+][℘] with ℘ anda as in the definition of the module of congruences, the restriction
of L[+] to the first component. Here, as usual,L[+][℘] = {l ∈ L[+] : λ(l) = 0, ∀λ ∈
℘}. Note thatL⊗Zp

Qp = H1(X ; Zp)m⊗Zp
Qp is free of rank two overh⊗Zp

Qp and
henceL[±]⊗Zp

Qp of rank one. In particular we have thatL[+]Qp
is a freeZp-module

of rank one. We fix a basisx+. The same holds forL[−]Qp
and we fix a basisx−.

Lemma 7 For the “cohomological” module of congruences we have,

Ccoh(L[+]) ∼= Zp/((x+, x−))

Proof (See also [6] p. 105 and [17] p. 275) It is enough to show thatL[+]Qp
∼=

HomZp
(L[−]Qp ,Zp) andL[+]Qp ∼= HomZp

(L[−]Qp
,Zp). This follows by the pre-

fect pairing(·, ·) onL. Indeed first we note that complex conjugation acts as(a, bρ) =
−(aρ, b), which explains the eigenspaces. Now let us show thatL[+]Qp ∼= HomZp

(L[−]Qp
,Zp)

as the other claim is obtained similarly. Note that if we consider a basis{x1, x2, · · · }
of L as aZp module such thatx1 = x− then asL is self-dual with respect to(·, ·) there
is a dual basis{x∗−, x∗2, · · · } in L. Taking the projection1Qp

x∗−[+] gives a dual basis
of L[−]Qp

.
We would like to compare the module of congruencesC0(h) andCcoh(L[+]).

Under our assumptions onf , i.e. it is p-ordinary and its modulop representation is
irreducible, we have the following important theorem of Wiles [28].

Theorem 4 (Wiles) Theh-moduleH1(X,Zp)m is free (of rank two).

We can conclude,

Corollary 1 C0(h) ∼= h
℘⊕a
∼= 1Qp h

a
∼= L[+]Qp/L[+]Qp

∼= Ccoh(L[+]) ∼= Zp/((x+, x−)).

Hence the quantity(x+, x−) ∈ Zp annihilates the module of congruences and
in particular we know that(x+, x−)1Qp

∈ h ⊂ h2(Γ0(NΣ),Zp). Hence we can
define, up top-adic units,c(f,m) := (x+, x−). In the next section we will study the
relation ofc(f,m) with the periods< f̃0|τNΣ , f̃0 > that appear in the first form of our
congruences and eventually relate it to the Néron periodsΩ+(E) andΩ−(E).

Relations between periods of different levels: The main aim now is to understand
the relation between the quantityc(f,m) and the automorphic periods< f̃0|τNΣ , f̃0 >
that appear in our congruences in theorem 2. Recall that we are considering the ho-
momorphismπΣ : h2(NΣ; Zp)m → Zp corresponding to our normalized eigenform
g := f̃0, arising from the newformf (i.e. g = f0|ım). Let us writeZ(p) for the lo-
calization ofZ at p. Recall that we write℘ for the kernel ofπΣ. Then we have the
inclusion,

H1(X0(NΣ); Z(p))[g] ⊂ H1(X0(NΣ); Zp)m[℘] = L[℘]
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Let us choose a basis{x+, x−} forL[℘] which is in the image ofH1(X0(NΣ); Z(p))[g].
We remind the reader thatp = 3 and so as we are interested in statements up top-
adic units we can keep working with eigenspaces. We considerthe C vector space
H1(X0(NΣ); C)[g]. The classical Eichler-Shimura isomorphism gives,

S2(Γ0; C)⊕ S2(Γ0; C)
∼→ H1(X0(NΣ); C)

where we writeS2(Γ0(NΣ); C) for the space of the anti-holomorphic cusp forms. A
canonical basis ofH1(X0(NΣ); C)[g] is given by,{ωg, ωgρ}whereωg =

∑

a(n, g)qn−1dq
is a holomorphic differential onX andωgρ =

∑

a(n, g)q̄n−1dq̄ an anti-holomorphic.
Note that actually in the case of interestg has rational coefficients, hencegρ = g. We
now define a periodΩ(f)Σ as follows. We letAΣ be the two by two invertible matrix
inGL2(C) such that[ωg, ωg] = [x+, x−]AΣ and we defineΩ(f)Σ := det(AΣ). Then,

Lemma 8 With notation as above we have the following equation,

c(f,m)Ω(f)Σ = (x+, x−)Ω(f)Σ =< g|τNΣ , g >

Proof Just note that the skew-symmetry of the pairing forAΣ =

(

a b
c d

)

gives

(ωg, ωg) = (ax++cx−, bx++dx−) = ad(x+, x−)−cb(x+, x−) = det(AΣ)(x+, x−).
But by the definition of the pairing we have that(ωg, ωg) =

∫

X
ωg|τNΣ

∧ ωg =<
g|τNΣ , g >

Hence in view of theorem 2, in order to conclude the congruences we need to
relate the automorphic periodsΩ(f)Σ with the periodsΩ+(E)Ω−(E). The following
theorem is taken from [6], p.108 and is based on Wiles’ generalization of the so-called
Ihara’s lemma.

Theorem 5 We have, up top-adic units,Ω(f)Σ = Ω(f)Σ=∅ = Ω(f) whereΩ(f) is
the period defined by takingg = f above.

Now we relate the periodΩ(f) with the Néron periodsΩ+(E)Ω−(E), see [12],
p. 255 and [28] p.537. Recall that we consider an elliptic curveE/Q of conductorN
and we writef ∈ S2(Γ0(N); Z) for the primitive form of weight two and conductorN
associated to it. Let us fix a global minimal Weierstrass equation of E overZ and let
denote byωE the Néron differential of this equation. Let us consider the eigenspaces
of H1(E(C),Z) under the action of complex conjugation. We fix generatorsγ+

E and
γ−E for the spacesH1(E(C); Z)+ andH1(E(C); Z)−. Recall that we have defined the
Néron periods as,

Ω(E)± :=

∫

γ±
E

ωE

If we write φ : X0(N)→ E for the strong Weil parametrization ofE/Q then we have
thatφ∗ωE = 2πıcEf(z)dz wherecE ∈ Q× and in particular it has been proved by
Mazur [25] thatcE is ap-adic unit ifp2 ∤ 4N . By Poincaré duality we can pick aZ(p)

basis{c1, c2, . . . , cm} ofH1(X0(N); Z(p)) such that
∫

cj
ℓi = δij for i, j = {1, 2} and

ℓ1, ℓ2 a basis ofH1(X0(N); Z(p))[p]. Then we have,
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det

(
∫

c1
ωf

∫

c1
ω̄f

∫

c2
ωf

∫

c2
ω̄f

)

= det

(
∫

c1
ℓ1

∫

c1
ℓ2

∫

c2
ℓ1

∫

c2
ℓ2

)

Ω(f) = Ω(f)

Moreover we have,
∣

∣

∣

∣

∣

det

(
∫

φ(c1)
ω

∫

φ(c1)
ω̄

∫

φ(c2)
ω

∫

φ(c2)
ω̄

)∣

∣

∣

∣

∣

= 4π2c2E

∣

∣

∣

∣

det

(
∫

c1
ωf

∫

c1
ω̄f

∫

c2
ωf

∫

c2
ω̄f

)∣

∣

∣

∣

= 4π2c2EΩ(f)

And also,
∣

∣

∣

∣

∣

det

(
∫

γ+
E

ω
∫

γ+
E

ω̄
∫

γ−
E

ω
∫

γ−
E

ω̄

)∣

∣

∣

∣

∣

= 2|Ω+(E)Ω−(E)| = 2Ω+(E)Ω−(E)ı−1

where the last equality follows from the fact that we can pickγ±E such thatı−1Ω−(E)
andΩ+(E) are real positive. As

∣

∣

∣

∣

∣

det

(
∫

γ+
E

ω
∫

γ+
E

ω̄
∫

γ−
E

ω
∫

γ−
E

ω̄

)∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

det

(
∫

φ(c1)
ω

∫

φ(c1)
ω̄

∫

φ(c2)
ω

∫

φ(c2)
ω̄

)∣

∣

∣

∣

∣

up top-adic units, we have,

Theorem 6 The relation of the periodΩ(f) with the periodsΩ+(E) andΩ−(E), up
to p-adic units, is given by the equation,

π2ıΩ(f) = Ω+(E)Ω−(E)

Putting all together, theorem 2, lemma 8, theorem 5 and the above theorem we
conclude

Theorem 7 Consider an elliptic curveE as in the introduction. Letm be a power
free positive integer with(m,NE) = (m, p) = 1 with p = 3. Consider the Galois
extensionQ(µp, p

√
m)/Q and letρ be the unique non-trivial two dimensional Artin-

representation that factors throughGal(Q(µp, p
√
m)/Q). Then,

ep(ρ)u
−vp(Nρ) Pp(ρ, u

−1)

Pp(ρ, w−1)

L{p,q|m}(E ⊗ ρ, 1)

Ω+(E)Ω−(E)
≡ ep(σ)u−vp(Nσ) Pp(σ, u

−1)

Pp(σ,w−1)

L{p,q|m}(E ⊗ σ, 1)

Ω+(E)Ω−(E)
mod p

whereσ = 1⊕ ǫp with ǫp the non-trivial character ofQ(µp)/Q andu,w such that,

1− apX + pX2 = (1− uX)(1− wX), u ∈ Z×
p and p+ 1− ap = #Ep(Fp)

Let us remark here that it is easy to see that we could relax ourassumption that
the conductor ofE equals the conductor of the modp representation in the expense of
obtaining the weaker congruences,

R(ρ)
∏

q|Ndiff

Pq(E, ρ, 1) ≡ R(σ)
∏

q|Ndiff

Pq(E, σ, 1) mod p
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whereNdiff the ratio of the conductor ofE over the Artin conductor of the modp
representation. Indeed, instead of considering the eigenformf0|ım we need to consider
the one where we remove the primes that dividem and those that divideNdiff , i.e.
f0|ımNdiff

. It is this eigenform that will induce a homomorphism of the Hecke algebra
that factors through a reduced local ring in case thatNdiff is not one. Then everything
carries as above but eventually we remove also the Euler factors atNdiff as we have
modifiedf in this way.

7 Speculations for the casep > 3

As the title indicates there are no real results in this section. The aim is to give a brief
account of the problems that we face trying to extend our previous results to the case
p > 3, working in the Hilbert modular form setting.

Note that in the previous section the fundamental result of Wiles allowed us to
compare the size of the module of congruences for the Hecke algebra with the cohomo-
logical one which eventually was related to the periods thatwe used. In particular the
crucial results were, first, that the localized first cohomology group was a free Hecke
module over the local ring corresponding to our cusp form andsecond the generaliza-
tion of “Ihara’s lemma” that allowed us to relate the different levels. In the Hilbert
modular form setting, results of this form have be obtained by Diamond in [9] and
Dimitrov [10]. However for both authors it is crucial to assume that they work with a
prime that is unramified in the totally real field.

Moreover there is another difficulty that is related to the automorphic periods that
we can also define in this Hilbert modular forms setting. Indeed using the Eichler-
Shimura-Harder isomorphism we can define periodsΩ(φ)Σ, the analogue ofΩ(f)Σ,
and their relation to the Petersson inner product is governed by the cohomological
module of congruences. However even if we had an Ihara type lemma in this case we
would have still to relateΩ(φ), the minimal level, to the Néron periods up top-adic
units. So we run again into the same question as the one we addressed in our work [3],
that is to understand the behavior of the automorphic periods under base change.

Having stated these problems we would like to speculate a little. Note that in what
we said above we do not really make use of the fact that actually we consider a Hilbert
modular form that is coming from base-change. In what follows we will try to indicate
that perhaps one can avoid working over the totally real fieldand reduce our ques-
tions to the study of the adjoint squareL(ad(f), s) L-function associated tof and its
behavior under twists over the extensionF/Q, F = Q(µp)

+. This also will justify
our choice to underline the identification of the local ringh2(Γ0(NΣ),Zp)m with the
“deformation” ringTΣ, in the previous section. Our exposition is very brief and not
rigorous.

So we keep the same notation as in the previous sections with the obvious ex-
tensions to the Hilbert modular case. That ish is now a local ring of the Hecke
algebra acting on the space of Hilbert cusp forms of levelNpm2 completed atp.
Moreover it is the reduced local ring through which our ordinary normalized cusp
form φ̃0 factors. We writeC0(h) for its module of congruences. As in the ellip-
tic case one can identifyh with the “deformation” ringTΣ. We consider theZ(p)-
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module,C1(h) := (kerπΣ)/(kerπΣ)2. Then by [6] page 117, we have the inequality
|C1(h)| ≥ |C0(h)|. Let us now writeρF for the 3-adic representation obtained from
ρ by restriction toGF and consider its reduction̄ρF modulo 3. Now let us impose the
following conditions onρF ,

1. ρ̄F is absolutely irreducible,

2. (p-ordinary)ρF |Dp

∼=
(

δp ∗
0 ǫp

)

whereδp is an unramified character.

Then it is known by the work of Mazur that there exists a universal deformation
couple(RF , ̺F ), in the terminology of Hida [17], that represents deformations with
prescribed determinant and ramification in a way that we do not make explicit here. As
we indicated in the elliptic case, the algebraTΣ can be interpreted as a deformation
algebra forρ̄F and hence there is a surjectionRF ։ TΣ. This implies the inequality
[6] p.118,|C1(RF )| ≥ |C1(TΣ)| ≥ |C0(TΣ)|. Again by Mazur’s theory one can iden-
tify C1(RF ) with the Pontryagin dual of a properly defined Selmer groupSel(ad(ρF ))
attached toad(ρF ). But we can decomposeSel(ad(ρF )) = ⊕χSel(ad(ρ) ⊗ χ) for
χ ∈ Gal(F/Q)V . So back to our congruences we have a bound for our constant
c(φ,m) by the the sizes of the Selmer groups ofad(ρ) twisted by charactersχ that
factor throughGal(F/Q).

Recall that the periods that appear in our congruences involve the Petersson inner
product< φ̃0|τNΣ , φ̃0 >. We would like to factor this quantity to quantities that are
related with the cusp formf and more important we would like to obtain some con-
trol of the constants that may appear. In the elliptic modular forms case a formula of
Shimura allows one to relate the Petersson inner product< f̃0|τNΣ , f̃0 > to the value
of the adjointL functionL(ad(f), s) ats = 2, in particular they are equal up to powers
of π and modified Euler factors at primes dividingNΣ. This formula can be extended
to the Hilbert modular case, see [27] page 669. One can then use the inductive prop-
erties of theL functions to rewrite the periods< φ̃0|τNΣ , φ̃0 > as a product of the
form

∏

χ L(ad(f)⊗ χ, 2), up to modified Euler factors and powers ofπ. These modi-
fied Euler factors should correspond to the local conditionsthat we have impose to the
above mentioned Selmer group depending on the deformation problem.

Granted all the above speculations, we see that proving the congruences forp > 3
is closely related to the Tamagawa number conjecture for theadjoint squareL function
of f and its twists with characters over the extensionGal(F/Q).
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