
Initiation of the West Antarctic Ice Sheet and estimates of total
Antarctic ice volume in the earliest Oligocene

Douglas S. Wilson,1 David Pollard,2 Robert M. DeConto,3 Stewart S.R. Jamieson,4

and Bruce P. Luyendyk5

Received 14 June 2013; revised 25 July 2013; accepted 28 July 2013; published 27 August 2013.

[1] Reconstructions of Antarctic paleotopography for the late
Eocene suggest that glacial erosion and thermal subsidence
have lowered West Antarctic elevations considerably since
then, with Antarctic land area having decreased ~20%. A
new climate-ice sheet model based on these reconstructions
shows that the West Antarctic Ice Sheet first formed at the
Eocene-Oligocene transition (33.8–33.5Ma, E-O) in concert
with the continental-scale expansion of the East Antarctica
Ice Sheet and that the total volume of East and West
Antarctic ice (33.4–35.9 × 106 km3) was >1.4 times greater
than previously assumed. This larger modeled ice volume is
consistent with a modest cooling of 1–2°C in the deep ocean
during the E-O transition, lower than other estimates of ~3°C
cooling, and suggests the possibility of substantial ice in the
Antarctic interior before the Eocene-Oligocene boundary.
Citation: Wilson, D. S., D. Pollard, R. M. DeConto,
S. S. R. Jamieson, and B. P. Luyendyk (2013), Initiation of the
West Antarctic Ice Sheet and estimates of total Antarctic ice volume
in the earliest Oligocene, Geophys. Res. Lett., 40, 4305–4309,
doi:10.1002/grl.50797.

1. Introduction

[2] The Eocene-Oligocene (E-O) global climate transition
from a warm (greenhouse) Earth to a cooler (icehouse) climate
has long been recognized as being associated with growth of a
significant ice sheet on Antarctica that extended to sea level
[Shackleton and Kennett, 1975]. One main line of evidence
for this is a positive shift in deep-ocean benthic foraminifera
δ18O of +1.0–1.5‰ [Miller et al., 1987; Shackleton and
Kennett, 1975]. As marine records have been studied with
increasing resolution, the transition has been recognized to
span only 300–400 kyr [Coxall et al., 2005; Katz et al.,
2008; Pusz et al., 2011; Zachos et al., 1996].
[3] A positive δ18O shift can be explained by both a de-

crease in ocean temperature and an increase in ice volume.
Therefore, substantial effort has been devoted to interpreting

separate proxy records of temperature [e.g., Liu et al., 2009]
and sea level (ice volume) in order to determine their relative
importance [e.g., Miller et al., 2008a; Miller et al., 2008b].
The general consensus is that the ice volume increase at the
E-O is comparable to or larger than the volume of present
Antarctic ice (25.4 × 106 km3, BEDMAP [Lythe et al.,
2001]). Previous numerical model simulations of E-O ice
growth assuming West Antarctica was mostly submarine as
it is today fell significantly short of this volume
(~20× 106 km3 [DeConto and Pollard, 2003b]), leading to
the following question: Where was the missing ice?
Subsequent studies seemed to rule out the Northern
Hemisphere [DeConto et al., 2008], suggesting that the
modeling assumptions for Antarctica might be incorrect or that
the ocean cooled more than indicated in proxy temperature
studies [e.g., Liu et al., 2009].
[4] The primary factor limiting ice volume in previous E-O

glaciation models was the use of modern Antarctic bedrock
topography (adjusted for the removal of ice) as a boundary
condition. The use of the present topography ignores the
significant long-term processes of landscape evolution
including glacial erosion, thermal subsidence, and tectonics,
which are likely to have significantly lowered the topogra-
phy. Recognizing this, recent process-based reconstructions
of E-O topography [Wilson and Luyendyk, 2009; Wilson
et al., 2012] suggest that after accounting for glacial erosion
and thermal subsidence, much of West Antarctica lay above
sea level (Figure 1) and was therefore capable of supporting
terrestrially grounded ice, even when ocean temperatures
were likely too warm to support buttressing ice shelves and
a marine-based West Antarctic Ice Sheet. Acknowledging
large uncertainties in restoring eroded material to its original
position, Wilson et al. [2012] offer maximum and minimum
bedrock elevation reconstructions, with differences domi-
nated by limited knowledge of the volume of post-Eocene
sediment deposited around the Antarctic continental margin.
Here we report on the implications of these topographic
models for growth of Antarctic ice in the earliest Oligocene.

2. Methods

[5] We use forward modeling to predict the earliest
Oligocene equilibrium ice sheet configuration for both the
minimum and maximum Wilson et al. [2012] reconstructions
and, for contrast, the modern ice-free rebounded ALBMAP
v1 topography [Le Brocq et al., 2010] used in previous
models. The Wilson et al. [2012] reconstruction starts with
the BEDMAP [Lythe et al., 2001] topography modified for
new data available inWest Antarctica; for our purposes, differ-
ences between BEDMAP, ALBMAP, and the most recent
BEDMAP2 [Fretwell et al., 2013] topography are very minor.
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[6] For each of the topographic reconstructions, we simu-
late ice growth using a 3-D ice sheet-shelf model on a
20 km grid [Pollard and DeConto, 2009; Pollard and
DeConto, 2012]. Model parameters include surface mass bal-
ance derived from GENESIS v3 global climate model
(GCM) climate simulations, a slab mixed-layer ocean, E-O
global paleogeography, CO2 at 2.5 × PAL (preindustrial at-
mospheric level), and constant, average orbital parameters
[Alder et al., 2011; DeConto and Pollard, 2003a;
Thompson and Pollard, 1997]. Subice basal conditions are
largely unknown in the Paleogene, so the friction coefficient
for basal sliding is set everywhere for hard bedrock condi-
tions, with one exception explained below. Assuming warm
Southern Ocean temperatures, floating ice is assumed to melt
instantly, which precludes the buttressing effect of ice
shelves. For modern simulations, ice-free rebounded bed
topography is obtained from the ALBMAP v1 data set [Le
Brocq et al., 2010]. The climate and ice sheet models are
coupled asynchronously, in a more direct way than in
DeConto and Pollard [2003a]. Starting from no ice and an
initial GCM simulation, the ice sheet model is run for
40 kyr; then, a 30 year GCM climate run with the current
ice extent determines new temperature and precipitation
boundary conditions for the next 40 kyr ice sheet iteration.
The models are very close to equilibrium, and the ice sheet
is essentially fully grown after three or four iterations, i.e.,

after 120 to 160 kyr of ice model integration. These simula-
tions are only intended to predict the steady state ice volume
averaged over orbital cycles, not the details of the growth.
[7] Predicting the isotopic change (Δδ18O) of the ocean for a

given volume of ice requires knowledge of the isotopic com-
position of the ice. In this study, we calculate the internal dis-
tribution of δ18O in the equilibrated ice sheet. Lagrangian flow
trajectories are traced backward in small increments from each
internal grid cell to the ice surface, repeatedly interpolating the
3-D velocities to the current trajectory point. The δ18O of pre-
cipitation at the surface location is then assigned to the grid
cell, under the assumption that δ18O is a conservative tracer.
This method is related to the semi-Lagrangian advection of
depositional provenance labels in Clarke et al. [2005] but is
simpler because it assumes that the ice sheet is fully equili-
brated with a constant climate. Both methods avoid the spuri-
ous diffusion that would result by advecting the internal δ18O
distribution forward as a tracer.
[8] Precipitation in the highest central region of the ice

sheet is isotopically lightest, and ice accumulating in the cen-
tral region spends the most time in the ice sheet. This corre-
lation between composition and residence time yields a
bulk composition for the ice about 10–11‰ lighter than the
average precipitation. As in DeConto et al. [2008], δ18O of
precipitation falling on the ice sheet surface is provided by
the isotopic capability in the GENESIS GCM [Mathieu

Figure 1. (top) Reconstructed ice-free topography from ALBMAP modern topography [Le Brocq et al., 2010] and mini-
mum and maximum estimates for E-O topography from Wilson et al. [2012], along with corresponding modeled E-O ice
sheets in (middle) map view and (bottom) cross section. Greater area of land above sea level in the reconstructed topography
accommodates significantly greater ice volume than modern ice-free rebounded topography because in the latter, much of
West Antarctica is submerged and the (assumed) warm E-O ocean does not allow the growth of any marine ice.
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et al., 2002]. Compared to modern observed δ18O in precip-
itation over Antarctica, the GCM values are biased positively
(too heavy) by about 10‰ [Mathieu et al., 2002]. Here we
assume that the same bias applies for the E-O model and sub-
tract 10‰ from all GCM Antarctic values.

3. Results

[9] Our model results confirm that the volume of the nascent
Antarctic ice sheet was a direct function of land area above sea
level. Predicted ice volumes are 22.7 × 106 km3 for rebounded
ALBMAP, 33.4 × 106 km3 for the reconstructed minimum
E-O topography, and 35.9 × 106 km3 for the reconstructed
maximum E-O topography (Figure 1 and Table 1, columns
A–C). Corresponding apparent sea level drops (terminology
of Pekar et al. [2002]), accounting for displacement effect of
below sea level ice but neglecting isostatic adjustment and
simply assuming 3.65 × 108 km2 ocean area, are 56.8, 83.4,
and 89.5m, respectively. The maximum topography model
has basal sliding coefficients increased in the low-elevation
Weddell Sea drainage, appropriate for minimally consolidated
sediments. A control run with rebounded ALBMAP topogra-
phy and modern climate GCM, allowing floating ice shelves,
predicts present-day ice volume of about 7% greater than
observed (Table 1, column D). A similar slightly high bias
may be present in our E-O results.

4. Discussion and Conclusions

[10] Our modeling results indicate that a predecessor of the
modern West Antarctic Ice Sheet developed at the E-O tran-
sition as a result of that subcontinent being largely above sea
level at that time. Most prior interpretations based on data on
and around the Antarctic Peninsula have found that it
initiated in either the middle Miocene [Barker and
Camerlenghi, 2002] or at the E-O transition [Birkenmajer
et al., 2005; Ivany et al., 2006]. We believe our model results
resolve this issue in favor of the E-O interpretation. Most pre-
vious ice sheet models of Cenozoic Antarctica ice treated the
landscape as a passive element of the glacial system and used
present bed topography, isostatically adjusted for the re-
moval of modern ice [e.g., Cristini et al., 2012; DeConto
and Pollard, 2003b; Huybrechts, 1993; Jamieson et al.,
2010]. However, the larger E-O ice sheets simulated here
are the direct result of accounting for the significant

topographic change experienced across the continent,
particularly in West Antarctica.
[11] Several recent studies have tried to reconcile conflicting

proxy records for environmental changes across the E-O tran-
sition, with the main uncertainty resulting from the depen-
dence of the δ18O record on both water temperature and ice
volume. For a continental shelf site in Alabama, Katz et al.
[2008] interpreted data including benthic δ18O, Mg/Ca, and
foraminiferal abundances as a proxy for local water depth to
indicate a global apparent sea level drop of ~105m (equivalent
to growth of ~45× 106 km3 of ice), assuming ice composition
at �45‰. Liu et al. [2009] focused on direct temperature
proxies and found a drop of 5°C for surface waters at high
northern latitudes. Their modeling studies indicated that this
surface cooling would correspond to 3–5°C of deepwater
cooling. Pusz et al. [2011] studied deepwater records from
the South Atlantic (Ocean Drilling Program Sites 1090 and
1265), making an effort to correct the Mg/Ca temperature
proxy for biases resulting from changes in carbonate ion con-
centration. They determined a two-step cooling history with a
2°C cooling early in the transition (~33.9Ma) and a less cer-
tain cooling of ~1.5°C late in the transition (~33.5Ma).
Assuming ice δ18O composition of �45 to �50‰, they
inferred that the earliest Oligocene ice sheet was close to the
modern volume.
[12] To compare our results to previous proxy estimates,

we compute benthic cooling from the ocean Δδ18O predicted
from ice volume and composition, and a cooling coefficient
of 4°/‰ (Table 1). The resulting predictions are less than
the 3°C minimum cooling interpreted by Liu et al. [2009]
and Pusz et al. [2011], even allowing for a possible bias that
our models overpredict ice volume by up to 10%. The
disagreement is smallest for an isotopically heavy ice sheet
and the minimum reconstructed topography. One source of
uncertainty in ice volume reconstructions is the assumed hard
bedrock basal conditions. It is possible that a deep, deform-
able regolith layer covered most of the continent in the
Eocene and took several million years to erode after the ice
sheet formed [DeConto and Pollard, 2003b]. A more de-
formable bed would lead to predictions of lower ice volume
and more benthic cooling for a given δ18O shift.
[13] Another possibility is that there were significant ice

sheets covering high elevations for much of the late
Eocene, so the change in ice volume and resultant δ18O shift
over the E-O transition would be smaller. The simulation of
DeConto and Pollard [2003b], assuming steadily declining

Table 1. Results Summarya

(A) Rebounded ALBMAP
Topography, E-O

climate

(B) E-O Minimum Topography
[Wilson et al., 2012], E-O

climate

(C) E-O Maximum Topography
[Wilson et al., 2012], E-O

climate

(D) Rebounded ALBMAP
Topography, Modern

Climate

Ice volume (106 km3) 22.7 33.4 35.9 28.0
Apparent sea level drop (m) 56.8 83.4 89.5 66.0
Modeled mean ice δ18O (‰) �42.1 �44.6 �45.4 �43.2
Change in ocean δ18O (‰),
case 1, no Eocene ice

0.67 1.05 1.14 n.a.

Benthic cooling (°C), case 1 2.5 1.0 0.6 n.a.
Change in ocean δ18O (‰), case
2, 7 × 106 km3 Eocene ice

0.46 0.82 0.97 n.a.

Benthic cooling (°C), case 2 3.4 1.9 1.3 n.a.

aModels A, B, and C are plotted in Figure 1. Model D is a validation test (allowing floating ice shelves), predicting 28.0 × 106 km3 ice volume, compared
with 26.2 × 106 km3 observed. Volumes account for projection distortion. Two cases of predicted deep-ocean cooling follow from contrasting assumptions
with and without significant ice already present in the late Eocene, both assuming observed foraminiferal Δδ18O =+1.3‰. n.a. = not applicable.
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CO2 through the E-O transition, shows East Antarctica cov-
ered with ice at elevations above about 1400m (CO2 = 2.96
× PAL; their Figure 3b) before the continent became fully
glaciated at CO2 = 2.8 × PAL (their Figure 3d). These precur-
sory, high-elevation ice caps fluctuated between about 5 and
9 × 106 km3 (their Figure 2a) in response to orbital forcing.
The corresponding δ18O variability of 0.1‰ would be at
about the noise level in the benthic isotope record. The
rebounded land area above 1400m covers 2.0 × 106 km2 in
BEDMAP and 2.1 to 2.3 × 106 km2 in the reconstructed
models, so over 80% of the continent remains below
1400m. This enabled a two-phase ice volume expansion,
with initial substantial ice accumulating on high-elevation
terrain before long-term cooling triggered the albedo and
height-mass balance feedbacks that led to extremely rapid
continental ice growth at the end of the E-O transition.
[14] Recalculating deep sea temperatures assuming a

preexisting 7 × 106 km3 Eocene ice sheet results in 1–2°C of
cooling (Table 1, case 2) at the E-O transition, which is closer
to observations. At the same time, substantial ice volume
prior to the main transition reduces the potential eustatic
sea level fall during the transition, making the fit with avail-
able sea level estimates worse. Although there has been only
passing mention of stable Antarctic ice sheets in the late
Eocene [e.g., Zachos et al., 1996; Zachos et al., 2001], we
suggest that potential high-elevation ice sheets of significant
volume need to be considered in reconciling the various
proxy records for the E-O transition, which should include
glaciohydroisostatic adjusted sea level estimates [Stocchi
et al., 2013]. The presence of localized ephemeral or stable
late Eocene ice sheets with cold-based, nonerosive cores
and warm-based valley glaciers extending from mountain
ridges is consistent with analysis of the topography of the
Gamburtsev Subglacial Mountains [Rose et al., 2013].
[15] Fully resolving the conflicting proxy contributions is

beyond the scope of this paper, especially considering the
limited understanding of the uncertainties in each proxy.
Our results show that greater reconstructed Antarctic land
area for the late Eocene implies that “missing ice” is no lon-
ger a problem. Future work will focus on resolving whether
our E-O transition ice volumes are too large, whether the ini-
tial ice sheet was isotopically heavier than we assume, or
whether the volume of high-elevation late Eocene ice caps
was larger than the current evidence suggests. An earliest
Oligocene Antarctic ice volume larger than the modern ice
sheet is consistent with a large sea level drop and modest
benthic cooling.
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