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ABSTRACT
We use a combination of observations and simulation to study the relationship between star-
forming galaxies and the intergalactic medium at z ≈ 3. The observed star-forming galaxy
sample is based on spectroscopic redshift data taken from a combination of Very Large
Telescope (VLT) Lyman-break galaxy (LBG) Redshift Survey (VLRS) data and Keck Low-
Resolution Imaging Spectrometer (LRIS) observations in fields centred on bright background
quasi-stellar objects (QSOs), whilst the simulation data is taken from the Galaxies–Intergalactic
Medium Interaction Calculation (GIMIC). In the simulation, we find that the dominant peculiar
velocities are in the form of large-scale coherent motions of gas and galaxies. Gravitational
infall of galaxies towards one another is also seen, consistent with expectations from linear
theory. At smaller scales, the root-mean-square (RMS) peculiar velocities in the simulation
overpredict the difference between the simulated real- and z-space galaxy correlation functions.
Peculiar velocity pairs with separations smaller than 1 h−1 Mpc have a smaller dispersion and
explain the z-space correlation function better. The Lyα auto- and cross-correlation functions
in the GIMIC simulation appear to show infall smaller than implied by the expected βLyα ≈ 1.3
(McDonald et al.). There is a possibility that the reduced infall may be due to the galaxy-wide
outflows implemented in the simulation. The main challenge in comparing these simulated
results with the observed Keck + VLRS correlation functions comes from the presence of
velocity errors for the observed LBGs, which dominate at �1 h−1 Mpc scales. When these
are taken into account, the observed LBG correlation functions are well matched by the high
amplitude of clustering, shown by higher mass (M∗ > 109 M�) galaxies in the simulation.
The simulated cross-correlation function shows similar neutral gas densities around galaxies
to those seen in the observations. The simulated and observed Lyα z-space autocorrelation
functions again agree better with each other than with the βLyα ≈ 1.3 infall model. Our overall
conclusion is that, at least in the simulation, gas and galaxy peculiar velocities are generally
towards the low end of expectation. Finally, little direct evidence is seen in either simulation or
observations for high transmission near galaxies due to feedback, in agreement with previous
results.

Key words: galaxies: high-redshift – intergalactic medium.

1 IN T RO D U C T I O N

The effect of feedback via supernovae and active galactic nucleus
(AGN) driven winds is thought to be a key factor in the pro-

� E-mail: pimpunyawat.tummuangpak@durham.ac.uk

cess of galaxy formation and evolution. Cosmological models of
galaxy formation require efficient injection of feedback from su-
pernovae (SNe) and AGNs to regulate the star formation activity
and thus replicate the observed galaxy stellar mass function (e.g.
White & Rees 1978; White & Frenk 1991). Similarly, cosmologi-
cal simulations, for example those of Springel & Hernquist (2003),
Schaye et al. (2010) and Scannapieco et al. (2012), have shown that
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supernova feedback is fundamental to recreating cosmic star-
formation history. It is also evident that simulations lacking some
sort of feedback struggle to reproduce realistic disc galaxies (e.g.
Weil, Eke & Efstathiou 1998; Schaye et al. 2010; McCarthy et al.
2012b; Scannapieco et al. 2012) and that powerful galactic winds
are required to produce the observed metal enrichment of the inter-
galactic medium (IGM) (e.g. Cen & Ostriker 1999; Theuns et al.
2002; Aguirre et al. 2005; Oppenheimer & Davé 2006).

In terms of observing the effects of feedback at high red-
shift, Adelberger et al. (2003, hereafter A03) presented the cross-
correlation between z ∼ 3 galaxies and the IGM (as traced by
quasar sightlines) and claimed an observed lack of absorbing gas
within ∼0.5 h−1 Mpc. They interpreted this as evidence of strong
galactic winds removing H I gas from the vicinity of these star-
forming galaxies. The work was based on Keck High Resolution
Echelle Spectrometer (HiRES; R ∼ 40 000) spectra of eight back-
ground quasars at z ≈ 3 combined with 431 Lyman-break galaxies
(LBGs) from the survey of Steidel et al. (2003). Following the re-
sults of A03, Adelberger et al. (2005a, hereafter A05) updated the
result with greater numbers of galaxies, this time centred at z ∼ 2.
Based on this new sample, A05 found an increase in Lyα absorp-
tion down to scales of r ∼ 0.5 h−1 Mpc of LBG positions, with
no evidence for H I gas having been removed from the vicinity
of these galaxies. Indeed, Crighton et al. (2011) surmised that the
cross-correlation at such small scales would likely be affected by
uncertainties in galaxy redshifts in the A03 data. It is therefore still
unclear to what extent galactic winds have an effect on this probe
of galaxy surroundings.

In addition to the above evidence for gas outflows, gas infall down
to galaxy scales is also predicted in models of galaxy formation (e.g.
White & Rees 1978; Kereš et al. 2005; Dekel & Birnboim 2006;
Kereš et al. 2009; Dekel et al. 2009; van de Voort et al. 2012).
Gas inflow is expected to be coherent down to the virial radius of
a massive galaxy (≈140 kpc), below which scale the situation is
more complicated due to shocks and the gas pressure becoming
more important. Gas flow infall into galaxies along filaments is
also expected in secular models of galaxy formation, where the
gas accretion rate may not be simply dictated by merging rates in a
hierarchical model (Dekel et al. 2009). Rakic et al. (2012) presented
a study of the galaxy–Lyα cross-correlation at z≈ 2.4 using 15 fields
of the Keck Baryonic Structure Survey (KBSS). They saw fingers-
of-God on sub-500 kpc scales and evidence for infall on ∼8 Mpc
scales.

In order to constrain models of galaxy formation, it is imper-
ative to provide extensive observations of the IGM via hydrogen
and metal absorption lines and thus identify and probe the infall
and outflow processes. As such, we are undertaking a large galaxy
survey centred on distant bright quasars in the form of the Very
Large Telescope (VLT) LBG Redshift Survey (VLRS). Bielby et al.
(2011) presented the first stage of the galaxy survey, comprising
≈1000 z ∼ 3 galaxies within ∼30 arcmin of z > 3 quasars. Using
this sample, Crighton et al. (2011) performed a cross-correlation
analysis between the galaxy positions and the Lyα forest of the
available quasar spectra in the fields, finding increased absorption
within ∼5 h−1 Mpc of galaxy positions. This result was consistent
with the results of A03 and A05, but lacked the galaxy numbers
to probe the ∼0.5 h−1 Mpc scales at which A03 claimed to see the
effects of galaxy winds. Since then, the VLRS has been extended
to incorporate ∼2000 LBGs within nine separate fields containing
bright z > 3 quasars (Bielby et al. 2013), comparable in number to
the only other equivalent surveys at this redshift (e.g. Rakic et al.
2012; Rudie et al. 2012).

A number of authors have provided complimentary analysis of
such galaxy–gas correlations at z ∼ 3 using smoothed particle hy-
drodynamical simulations (e.g. Croft et al. 2002; Kollmeier et al.
2003; Bruscoli et al. 2003; Desjacques et al. 2004; Desjacques,
Haehnelt & Nusser 2006; Rakic et al. 2013). Partly prompted by
the first survey of LBGs in bright quasar fields, Croft et al. (2002)
and Kollmeier et al. (2003) both investigated possible explanations
for the enhancement in the gas profile around LBGs reported by A03
and the distribution of gas around high-redshift galaxies in general,
using smoothed-particle hydrodynamics (SPH) simulations. Croft
et al. (2002) found that the absorption profiles around high-redshift
galaxies increase monotonically with decreasing distance from the
galaxies in their simulations. Similarly, Kollmeier et al. (2003) pre-
sented results consistent with Croft et al. (2002), showing that,
based on their SPH simulations, photoionization cannot explain the
observed reduction in absorption presented by A03.

More recently, Rakic et al. (2013) used the OverWhelmingly
Large Simulation (OWLS), comparing analysis of OWLS with their
own observational results (Rakic et al. 2012). As with previous sim-
ulation work, the authors find a continuous increase in absorption
with decreasing distance from a galaxy, consistent with their obser-
vations. They go on to analyse the 2D H I Lyα absorption profile
and claim a good match between their observations and the simu-
lation, with the gas distribution on scales of ∼8 Mpc being consis-
tent with large-scale gas infall into the potential wells occupied by
galaxies.

In this article, we update the work of Crighton et al. (2011),
adding the galaxy redshifts of Bielby et al. (2011) and also
Steidel et al. (2003) in conjunction with the available high-resolution
quasar spectra in these survey fields. This work thus combines the
higher galaxy sampling rate of the Steidel et al. (2003) survey with
the wide fields of the VLRS and provides a galaxy sample that
can probe the full range of scales from a few hundred kpc to tens
of Mpc. This large range of scales is imperative for distinguish-
ing between models of gas inflow and outflow in 2D galaxy–Lyα

cross-correlation analysis. In addition to extending the previous
observational results, we also incorporate a hydrodynamical simu-
lation, the Galaxies–Intergalactic Medium Interaction Calculation
(GIMIC: Crain et al. 2009), into our analysis in order to interpret
the observations.

This article is organized as follows. Observational data from the
VLT LBG Redshift Survey and Keck LBG observations of Steidel
et al. (2003) are described in Section 2. Section 3 describes the
GIMIC simulations. The simulated galaxy clustering results and
their interpretation are shown in Section 4, while the galaxy–IGM
cross-correlation is presented in Section 5. Section 6 presents an
analysis of the Lyα autocorrelation in both the observations and
the simulation. Our discussion and conclusions are presented in
Sections 7 and 8 respectively.

Throughout this work, we adopt a cosmology consistent with the
GIMIC simulation (and hence the Millennium simulation, Springel
et al. 2005). This corresponds to {�m, ��, �b, ns, σ8,H0, h} =
{0.25, 0.75, 0.045, 1, 0.9, 100, 0.73}. As we are working in both
real and redshift space in this article, it is prudent to note the con-
ventions on coordinates that we use here. For real-space separations
between two points we use r, whilst in redshift space we use s. Where
a plot shows results in both real and redshift space (i.e. where we
show simulation results), we denote the distance axis with r. For the
observed data, all distances are of course measured in redshift space
and so separations are denoted by s in any plots primarily show-
ing observational data. We denote the transverse and line-of-sight
coordinates as σ and π respectively, regardless of whether these
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are in real or redshift space. All coordinates are given in comoving
coordinates in this article unless stated otherwise.

2 O BSERVATIONS

In this work, we use a combination of spectroscopically identified
z ∼ 3 star-forming galaxies and high-resolution spectral observa-
tions of the Lyα forest of z � 3 quasars. The galaxy data are a
combination of the VLRS data presented by Bielby et al. (2011,
2013), and the publicly available Keck LBG data presented by
Steidel et al. (2003). These two data sets are based on different ob-
serving strategies, whereby the VLRS offers coverage across large
fields of view, whilst the Keck sample covers relatively small sep-
arations (�8–10 Mpc) with higher sampling rates of the galaxy
population. The quasar spectra with which we trace the distribu-
tion of H I within the fields have all been obtained from archival
VLT Ultraviolet and Visual Echelle Spectrograph (UVES) and Keck
HiRES observations. In this section, we give details of all data and
reduction processes used for the quasar spectra.

2.1 LBG observations

The VLRS currently provides ∼2000 spectroscopic galaxy red-
shifts within nine fields centred on z � 3 quasars (Bielby et al.
2011, 2013). The redshifts were obtained using the VLT VIsible
MultiObject Spectrograph (VIMOS) instrument (Le Fèvre et al.
2003) with the LR_Blue grism, giving a resolution of R ∼ 180 and
velocity accuracies of σ v ≈ 350 km s−1. In total, the survey covers
an area of ∼2.6 deg2 and provides galaxy data in the foreground of
the following nine high-redshift quasars: Q0042−2627 (z = 3.29),
J0124+0044 (z = 3.84), Q0301−0035 (z = 3.23), HE0940−1050
(z = 3.05), J1201+0116 (z = 3.23), PKS2126−158 (z = 3.28),
Q2231+0015 (z = 3.02), Q2348−011 (z = 3.02) and Q2359+0653
(z = 3.23). The spectroscopic galaxy sample is predominantly lim-
ited to R < 25 (Vega), although a number of fainter galaxies (R <

25.5 Vega) are present in the sample, where slit allocation during
the VIMOS observations could be optimized by their inclusion.

The LBG redshifts were identified using Lyα emission lines and
interstellar medium (ISM) absorption lines, where visible. For both
the Lyα and ISM features, it is necessary to correct the measured
redshift for intrinsic velocity effects, due to these features being
affected by outflowing gas (e.g. A03: Steidel et al. 2010). As such,
the VLRS galaxy redshifts have been corrected according to the
prescription given by Steidel et al. (2010).

The Keck survey provides a sample of ∼940 LBGs observed
using the Keck Low-Resolution Imaging Spectrometer (LRIS) in-
strument (Oke et al. 1995). The quasars from six (Q0201+1120,
Q0256−0000, Q0302−0019, B0933+2854, Q2233+1341 and
Q1422+2309) out of the 17 Keck fields are available to us through
the public archive; taking only those galaxies in fields around these
six Keck quasars, the number of LBGs is reduced to 308. The Keck
LBGs are limited to R = 25.5 (AB).

2.2 Quasar data

We have analysed publicly available archival spectroscopy for 16
quasars in the redshift range 2.9 � z � 3.6, with an additional quasar
spectrum provided by our own X-Shooter observations to make a
total of 17 quasar sightlines. The publicly available data are all high-
resolution (R � 30 000), high signal-to-noise (S/N � 20) spectra
observed using either the UVES instrument (Dekker et al. 2000) on
the VLT or the HiRES instrument (Vogt et al. 1994) on the Keck

telescope. Full details of the reduction of UVES and HiRES quasar
spectra for 11 of the quasars used here are provided by Crighton et al.
(2011). The remaining six spectra were all observed with the Keck
HiRES instrument and were reduced following an identical method
to that used for the two Keck quasars of Crighton et al. (2011), using
the MAKEE package.1 Briefly, this encompassed basic flat-fielding
and bias subtraction, followed by the use of SPIM2 to splice the
echelle orders and combine individual observations. This involved
producing template spectra constructed by combining the individual
observations, masking bad regions of the CCDs and rescaling. A
template was applied to rescale the original observations. We divide
out the continuum for each individual observation, then multiply this
normalized flux by a continuum fit to the template. After scaling
each order of each observation individually, we combined them to
get the final spectrum.

In addition to the publicly available quasar spectra, we
also include a spectrum from our own observations using the
X-Shooter instrument (Vernet et al. 2011) on the VLT for the
quasar Q2359+0653. These data were reduced using the X-Shooter
pipeline package; see Bielby et al. (in preparation) for details. The
full list of quasars used in this study is provided in Table 1.

3 G I MI C SI MULATI ONS

3.1 Overview

We simulate both Lyα spectra and galaxies for comparison with ob-
servational data using a hydrodynamical cosmological simulation.
Our main aims are to study the real- and redshift-space auto- and
cross-correlation functions. We wish to ascertain whether we can
detect the effects of peculiar velocities, in order to understand more
about gas outflow and infall around galaxies, for (a) LBG–LBG
pairs (b) Lyα–Lyα pairs and (c) the LBG–Lyα forest. The results
will then be used to interpret the observable 1D and 2D correlation
functions ξ (r) and ξ (σ , π ) in terms of both simulation and observa-
tional results. As outlined earlier, σ denotes the distance transverse
to the line of sight, π denotes the line-of-sight distance and r is
the (real-space) vector combination of the two coordinates, thus
r = √

σ 2 + π2. When working in redshift space we use s in place
of r.

We use the GIMIC simulation, which is a cosmological hydrody-
namical resimulation of selected volumes of the Millennium sim-
ulation (Springel et al. 2005). GIMIC is designed to overcome the
issues in simulating large cosmological volumes (L � 100 h−1 Mpc)
at high resolution (mgas � 107h−1 M�) to z = 0 by taking a number
of smaller regions with ‘zoomed’ initial conditions (Frenk et al.
1996; Power et al. 2003; Navarro et al. 2004). These individual re-
gions each have approximate radii of 18 h−1 Mpc, outside which the
remainder of the Millennium simulation volume is modelled with
collisionless particles at much lower resolution.

GIMIC was run using the TreePM SPH code GADGET3, which
is an update of the GADGET2 code (Springel 2005). The cosmo-
logical parameters adopted were �m = 0.25, �λ = 0.75, �b =
0.045, h0 = 100 h km s−1 Mpc−1, h = 0.73, σ 8 = 0.9 and ns = 1
(where ns is the spectral index of the primordial power spectrum).

Radiation cooling and stellar evolution were implemented as de-
scribed in Wiersma et al. (2009), whilst star formation was han-
dled as described by Schaye & Dalla Vecchia (2008) and supernova

1 www2.keck.hawaii.edu/inst/common/makeewww
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Table 1. List of quasars used in this study.

Quasar RA Dec. z Mag. Instrument
J2000

Q2359+0653 00:01:40.6 +07:09:54 3.23 V = 18.5 X-Shooter
Q0042−2627 00:44:33.9 −26:11:19 3.289 B = 18.5 HIRES
WHO91 0043−265 00:45:30.5 −26:17:09 3.44 R = 18.3 HIRES
J0124+0044 01:24:03.8 +00:44:32 3.83 g = 19.2 UVES
Q0201+1120 02:03:46.7 +11:34:45 3.610 G = 20.1 HIRES
Q0256−0000 02:59:05.6 +00:11:22 3.364 G = 18.2 HIRES
Q0301−0035 03:03:41.0 −00:23:22 3.230 g = 17.6 HIRES
Q0302−0019 03:04:49.9 −00:08:13 3.281 G = 17.8 HIRES
B0933+2845 09:33:37.2 +28:45:32 3.428 G = 17.5 HIRES
HE0940−1050 09:42:53.5 −11:04:25 3.06 B = 17.2 UVES
J1201+0116 12:01:44.4 +01:16:11 3.233 g = 17.7 HIRES
Q1422+2309 14:24:38.1 +22:56:01 3.620 G = 16.5 HIRES
Q2129−1602 21:29:04.9 −16:02:49 2.90 R = 19.2 HIRES
PKS2126−158 21:29:12.2 −15:38:40 3.268 V = 17.3 UVES
Q2231+0015 22:34:08.9 +00:00:01 3.02 r = 17.3 UVES
Q2233+1341 22:36:27.2 +13:57:13 3.209 G = 20.0 HIRES
Q2348−011 23:50:57.9 −00:52:10 3.023 r = 18.7 UVES

feedback was implemented following the prescription of Dalla Vec-
chia & Schaye (2008).

The GIMIC simulations are particularly well suited to the study
of ∼L∗ galaxies. As shown in Crain et al. (2009), the implementation
of efficient (but energetically feasible) feedback from SNe largely
prevents overcooling on the mass scale of L∗ galaxies and is key to
the reproduction of the observed X-ray scaling relation presented
in that study. Indeed, GIMIC accurately reproduces the rotation
speeds and star-formation efficiencies of z = 0 disc galaxies for
109 � M < 1010.5 M�, although galaxies with M∗ � 1011 M�
do still suffer from some overcooling (McCarthy et al. 2012b).
Moreover, Font et al. (2011) demonstrated that L∗ galaxies in GIMIC
exhibit satellite luminosity functions and stellar spheroid surface
brightness distributions that are comparable to those of the Milky
Way and M31, whilst McCarthy et al. (2012a) further demonstrated
that this correspondence also extends to their global structure and
kinematics.

In terms of reproducing the Lyα forest, Theuns et al. (1998)
conducted simulations across a range of resolutions (i.e. gas particle
masses) in order to evaluate the effect of resolution on such studies.
They found convergence of the mean effective optical depth (at
z = 3) in their SPH simulations at gas particle masses of �1.4 ×
108 h−1 M�, whilst column density distributions were found to
be consistent given gas particle masses of �1.8 × 107 h−1 M�.
Both of these limits are significantly higher than the GIMIC gas
particle mass of 1.45 × 106 h−1 M� (Crain et al. 2009), indicating
that resolution effects are not an issue for our work in terms of
the Lyα forest. In terms of the selected dark matter (DM) haloes,
the dark matter particle masses in GIMIC are 6.6 × 106 h−1 M�,
which is �2 orders of magnitude lower than any halo mass we will
be considering in this study.

In this work, we focus on the Lyα forest, i.e. NH I � 1017 cm−2.
In this regime, the gas is optically thin, such that radiative transfer
implementations such as that of Altay et al. (2011) are not necessary.

An area of interest for this study is the effect of supernova (SN)
feedback on the local environment of galaxies. GIMIC contains an
implementation of SN feedback based on the generation of winds
as follows. First, after a delay corresponding to the maximum life-
time of a star that undergo core-collapse SNe, newly formed star
particles impart a randomly directed 600 km s−1 kick to, on aver-

age, η = 4 of its neighbours. Here, η is the mass loading (defined
as η ≡ ṁwind/ṁ∗) and its value for GIMIC was chosen to match
the global star-formation rate density (SFRD) to observational data.
The 600 km s−1 initial kick is not equivalent to measured outflow
velocities, given that it is a ‘launch’ velocity and is not necessarily
what observations measure. In addition, the particles that receive
this wind kick are never decoupled from the hydrodynamical calcu-
lations, as is done in e.g. Springel & Hernquist 2003; Oppenheimer
& Davé 2008; Kereš et al. 2009; Hirschmann et al. 2013, and so
they are subject to significant deceleration as they travel into either
the host galaxy disc or halo. We also note that the above simulations
specifically direct the applied wind kicks perpendicular to the plane
of the host galaxy, as opposed to the randomly orientated wind kicks
used in GIMIC. Ultimately, the lack of decoupling and the isotropic
nature of the wind kicks in GIMIC means that the values of the
launch velocity and mass loading used in GIMIC are necessarily
higher than in the above studies. We note that the wind launch ve-
locity used in GIMIC is consistent with the higher end of the Lyα

wind velocities reported by Pettini et al. (2001) and Shapley et al.
(2003), lending the value some legitimacy.

In the work presented here, we use the ‘0σ ’ GIMIC region, which
is identified as having a mean density at z = 1.5 equal to the mean
density of the Universe at that epoch. In addition, we use only
one snapshot of this region, chosen to be at a redshift of z = 3.1
in order to provide a suitable comparison to our z ∼ 3 observed
population of star-forming galaxies. All the analysis is limited to a
sphere of radius 16 h−1 Mpc in order to negate the effects of particles
being ‘moved’ out of the analysis region when moved to redshift
space. Given a limiting radius of 16 h−1 Mpc, the same number of
M∗ > 108 h−1 M� galaxies are present in the region regardless of
whether redshift-space distortions (RSD) are applied or not.

3.2 Simulated galaxy population

3.2.1 Identifying the galaxy population

The galaxy population is identified in the simulation, based on first
identifying the dark matter haloes using a friends-of-friends (FoF:
Davis et al. 1985) algorithm. A group-finding algorithm then locates
the nearest dark matter halo for each baryonic (gas or star) particle

MNRAS 442, 2094–2115 (2014)

 at D
urham

 U
niversity L

ibrary on D
ecem

ber 9, 2014
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


2098 P. Tummuangpak et al.

Figure 1. Distribution of total halo and galaxy stellar masses for the two
GIMIC galaxy selections, M∗ > 108 h−1 M� (top) and M∗ > 109 h−1 M�
(bottom). The blue histograms in each panel show the number of galaxies
as a function of stellar mass, whilst the black histograms show the number
of galaxies as a function of total halo mass. The dotted vertical lines show
the mean halo mass, Mhalo = 1010.5 h−1 M� and Mhalo = 1011.4 h−1 M�
for the low- and high-mass cuts respectively. The shaded light blue region
in the lower panel shows the observed 1σ range in stellar masses of z ≈ 3
LBGs from Shapley et al. (2005). See the online paper for a colour version
of this figure.

and identifies the particle with this halo. The SUBFIND algorithm
(Springel et al. 2001; Dolag et al. 2009) is then used to identify self-
bound substructures within the haloes, with which star particles are
associated and defined as galaxies.

We use cuts in stellar mass to define our simulated galaxy sam-
ples. In the first instance, we take galaxies with stellar masses of
M∗ > 108 h−1 M�. This is intended as a large sample that is not rep-
resentative of the z ∼ 3 population sampled by present observations,
but acts as a comparison data set for a second more representative
sample. Taking our limiting radius within the GIMIC volume of
16 h−1 Mpc radius, this low-mass cut gives a sample of 4070 galax-
ies from the snapshot at z = 3.06 in the 0σ density region. The
distributions of galaxy stellar mass (blue histogram) and host halo
mass (black histogram) for this sample are shown for reference in
the top panel of Fig. 1. The mean galaxy stellar mass is M∗ =
108.9 h−1 M� (blue vertical dashed line), whilst the mean host
halo mass is Mhalo = 1010.5h−1 h−1 M� (black vertical dashed line).

With our second simulated galaxy sample, we aim to mimic
the observed LBG samples more closely and specifically to re-
produce the observed clustering. The M∗ > 109 h−1 M� cut used
above provides a simulated galaxy sample with a clustering signal
well matched to the observed clustering of LBGs (see Section 4).
Bielby et al. (2013) present measurements of the clustering of the
VLRS spectroscopic z ∼ 3 galaxy sample, estimating a cluster-
ing length of r0 = 3.83 ± 0.24 h−1 Mpc and typical halo mass of
1011.57±0.15 h−1 M�. Similarly, Adelberger et al. (2005b) measure
r0 = 4.0 ± 0.6 h−1 Mpc and halo mass of 1011.5±0.3 h−1 M� for a
comparable sample of z ∼ 3 LBGs. We thus vary the stellar mass
constraints on the galaxy selection to match these clustering/mean

halo mass results (where the total masses for the GIMIC galaxies
are available from the SUBFIND algorithm). We show the cluster-
ing results in Section 4, whilst the resulting stellar and halo mass
distributions are shown in the lower panel of Fig. 1. We find that
a stellar mass cut of M∗ > 109 h−1 M� reproduces the observed
clustering well and gives a mean halo mass for the simulated galax-
ies of Mhalo = 1011.4 h−1 M�, marginally lower than the observed
samples but consistent at the ∼1σ level.

The mean of the galaxy stellar masses is M∗ = 109.9 h−1 M�
(blue vertical dotted line). This M∗ > 109 h−1 M� cut gives a
sample of 287 simulated galaxies within 16 h−1 Mpc of the cen-
tre of the GIMIC volume, equating to a space density of ρg ∼
5 × 10−3 h3 Mpc−3 (for comparison, Adelberger et al. 2005b mea-
sure a space density of ρg = 4 ± 2 × 10−3 h3 Mpc−3 for the Keck
LBG sample).

The cyan shaded region in the lower panel of Fig. 1 shows the
standard deviation range around the mean galaxy stellar mass de-
rived from the observations of Shapley et al. (2005) (i.e. M∗ =
1010.32 h−1 M�, with a standard deviation of σ log(M∗) = 0.51 dex).
The galaxy stellar mass of the GIMIC selection overlaps the range
of the observed galaxies, but extends further to lower stellar masses
(i.e. M∗ < 109.5 h−1 M�). We note that the Shapley et al. (2005)
result is based on Ks observations and that 23 per cent of their UV
selected sample is not included in the stellar mass distribution due
to not being detected in the Ks observations. This bias against LBGs
that are fainter in the Ks band means that the Shapley et al. (2005)
stellar mass distribution lacks some of the lower-mass population,
but is unlikely to explain the entire discrepancy between the GIMIC
stellar masses and the observed mean galaxy stellar mass. Further to
this, Crain et al. (2009) calculate the galaxy stellar mass functions
from the GIMIC simulation suite and compare them with observa-
tions at z = 2, showing that the simulated galaxy mass functions
have a significantly steeper slope at M∗ � 9–10. They surmise that
this reflects a reduction in the efficiency of SN feedback in the
simulation for low-mass galaxies.

We also note that the simulation was performed with a relatively
high value for σ 8 (a value of σ 8 = 0.9, which originated from a
combined analysis of the Two-degree-Field Galaxy Redshift Survey
(2dFGRS) and Three-Year Wilkinson Microwave Anisotropy Probe
(WMAP3): Springel et al. 2005) when compared with the present
observed constraints (σ 8 = 0.83 ± 0.01: Planck Collaboration et al.
2013) and so, for a given mean halo mass (and galaxy stellar mass),
we would expect a higher clustering amplitude from the simulation
compared with the observations. This is indeed seen, as although,
the mean halo mass and mean galaxy stellar mass are lower in the
simulated sample than the observed samples, the clustering ampli-
tude (r0 = 4.16 h−1 Mpc) is marginally higher than the observed r0

values from both Bielby et al. (2013) and A05.
All combined, the GIMIC M∗ > 109 h−1 M� simulated galaxies

provide a population that is consistent with the observed LBG pop-
ulation in number density and clustering, although the M∗ profiles
extend to somewhat lower stellar masses than observed (at least in
K-band detected samples).

3.2.2 Velocity field of the simulated galaxies

The distribution of M∗ > 109 h−1 M� galaxies in real (black aster-
isks) and redshift space (squares) is shown in Fig. 2. Throughout
this work, we use the x and y coordinates within the simulation as
the transverse to the line-of-sight coordinates and z as the line-of-
sight coordinate, in either real or redshift space. Fig. 2 illustrates the
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Figure 2. The distribution of M∗ > 109 h−1 M� simulated galaxies in the
x–z plane in real (black asterisks) and redshift space (open squares), where
the z-direction is the redshift/line-of-sight dimension in this work. The
dashed circle shows the volume limit that we place on the simulation data,
given by a radius of 16 h−1 Mpc from the volume centre.

measured positional shifts in the z-direction given by the peculiar
velocities of the galaxies within the simulation. It is evident from this
plot that there is an overall large-scale ‘bulk’ motion directed in the
positive redshift direction due to the motion of the zoomed region
with respect to the full 500 h−1 Mpc Millennium volume. Measur-
ing the distribution of the galaxy velocities, we find an average
velocity 〈v〉 = 93 km s−1 with a standard deviation of 128 km s−1

for the M∗ > 109 h−1 M� galaxy sample and 〈v〉 = +94 km s−1

with a standard deviation of 125 km s−1 for the M∗ > 108 h−1 M�
galaxy sample.

We show the pairwise velocity (〈w2
z 〉1/2) distributions (solid black

histograms) of galaxies in Fig. 3 (where wz is the line-of-sight veloc-
ity difference between two objects). For the M∗ > 108 h−1 M� and
M∗ > 109 h−1 M� galaxy samples, we find 〈w2

z 〉1/2 = 172 km s−1

and 〈w2
z 〉1/2 = 176 km s−1, respectively. The dashed histograms

show the distribution for only those pairs within 1 h−1 Mpc of
each other, thus isolating the intrahalo velocity dispersion and ex-
cluding the effect of the halo–halo velocity dispersion. This is im-
portant when considering the effect of the velocity dispersion on the
galaxy–galaxy clustering measurement. The standard deviations of
the pairwise velocities for pairs within 1 h−1 Mpc are 104 and
142 km s−1 for M∗ > 108 h−1 M� and M∗ > 109 h−1 M� galax-
ies, respectively. None of these standard deviations includes redshift
uncertainties, due to measurement errors that affect the observed
galaxy redshifts.

3.3 Simulating the Lyα forest spectra

We generate spectra along the z-direction through the GIMIC vol-
ume. The sightlines were extracted using SPECWIZARD.2 The trans-
mission is given by T = e−τ , where τ is the optical depth along

2 Developed by J. Schaye, C. Booth and T. Theuns; see Theuns et al. (1998)
for details.

Figure 3. The distribution of pairwise velocities (wz, solid histograms)
for the GIMIC galaxy samples. The top panel shows the distribution for
the M∗ > 108 h−1 M� galaxy cut and the lower panel that for the M∗ >

109 h−1 M� cut. Given that the effect of pairwise velocities will be dominant
at small scales (i.e. �1 h−1 Mpc), we also show the distributions in each case
for only those pairs separated by r < 1 h−1 Mpc (dashed histograms in both
panels). The resulting RMS pairwise velocities are indicated in each case
and the separation limit gives smaller values of the RMS pairwise velocity
in both cases.

the line of sight. We use a spectral resolution full width at half-
maximum (FWHM) of 7 km s−1 to convolve each spectrum, a
signal-to-noise ratio of 50 per pixel and pixels of width 2.8 km s−1,
which are typical values for our UVES and HIRES quasar spectra.
The sightlines were generated parallel to the z-axis with random x
and y positions. We constructed 200 sightlines, with each sightline
being constrained not to extend beyond 16 h−1 Mpc from the centre
of the GIMIC volume in order to avoid any edge effects in terms
of the gas extent (see Fig. 4). The average transmission, T̄r , for real
space is 0.69, while T̄z for redshift space is 0.72. This difference
is likely due to an infall of saturated absorption lines towards each
other in redshift space, which results in an overall increase in the
measured transmission. This will cause the average transmissivity
over the full spectrum to increase in redshift space, as seen. Some
hint of this effect can be seen in Fig. 5, in which we show a num-
ber of examples of the flux from each sightline compared in real
(black lines) and redshift space (dashed lines). These values for the
mean transmission at z ∼ 3 are consistent with the observed values
at the ∼1 − 2σ level: for example, McDonald et al. (2000) mea-
sure a value of T̄ (z = 3) = 0.684 ± 0.023, whilst measurements of
the effective optical depth by Faucher-Giguère et al. (2008) give
T̄ (z = 3) = 0.680 ± 0.020.

Using SPECWIZARD, we calculate the optical depth weighted line-
of-sight (LOS) peculiar velocities for each pixel in our 200 spectra.
The distribution of the peculiar velocities is given in Fig. 6. As
with the galaxy population, the gas traced by the simulated spectra
shows the bulk motion in the positive z-direction, with a mean
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Figure 4. The position of M∗ > 109 h−1 M� galaxies (diamonds) and 200
Lyα sightlines (circles) projected on to the x–y plane (i.e. equivalent to an
on-sky projection).

Figure 6. The distribution of LOS optical depth weighted peculiar veloci-
ties measured within each pixel in each of the GIMIC simulated spectra. This
illustrates the underlying dynamics present in the spectra. The LOS peculiar
velocity distribution shows a mean peculiar velocity of 〈v〉 = 110 km s−1

with a standard deviation of 120 km s−1.

Figure 5. Examples of absorption spectra from the simulated quasar sightlines. The black solid profiles show T = e−τ in real space, whilst the dashed line
shows T in redshift space. A cut is imposed on the simulated spectra at r = 16 h−1 Mpc from the centre of the simulation volume. Sections of the spectra that
lie outside this sphere are shown in light grey.
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Figure 7. (a) Galaxy autocorrelation functions for 287 simulated M∗ > 109 h−1 M� galaxies compared with the observed LBGs, with the GIMIC real-space
result shown by asterisks, the GIMIC redshift-space result shown by blue diamonds and the observed result of Bielby et al. (2013) given by brown triangles.
The pink curve shows the power-law fit to the GIMIC real-space clustering, whilst the grey dot–dashed line shows the real-space clustering derived from the
observed sample. The pink dashed line is the predicted ξ (s), assuming a real-space fit with 〈w2

z 〉1/2 = 176 km s−1 and β = 0.35. The blue solid line is the
same, except with a r < 1 h−1 Mpc pairwise dispersion of 〈w2

z 〉1/2 = 142 km s−1. The brown line is the RSD model with velocity errors added to allow
comparison with Keck+VLRS LBG ξ (s). (b) The same for 4070 simulated M∗ > 108 h−1 M� galaxies with real-space fit γ = 1.52, r0 = 2.41 h−1 Mpc.
The ξ (s) predictions now assume the appropriate pairwise velocity dispersion of 〈w2

z 〉1/2 = 172 km s−1 (pink dashed line) and 〈w2
z 〉1/2 = 104 km s−1 (blue

solid line). The bottom panels present ξ (s)/ξ (r) with jackknife error bars. The dotted line represents the predicted Kaiser boost with (a) βgal = 0.35, giving
ξ (s)/ξ (r) = 1.26 for M∗ > 109 h−1 M� galaxies, and (b) βgal = 0.53, giving ξ (s)/ξ (r) = 1.41 for M∗ > 108 h−1 M� galaxies. See the online paper for a
colour version of this figure.

peculiar velocity of 〈v〉 = 110 km s−1 and a standard deviation of
120 km s−1. The standard deviation of the gas peculiar velocity
is comparable to that measured for the galaxy samples (≈125–
130 km s−1).

4 G A L A X Y C L U S T E R I N G

4.1 1D correlation function

4.1.1 Estimator

Bielby et al. (2013) presented a clustering analysis of the LBG data
used in this study (combining the VLRS and Keck data). In this
section, we compare the observed galaxy clustering presented by
Bielby et al. (2013) with results obtained using the galaxy popu-
lation within the GIMIC simulation. In so doing, we may confirm
how representative the GIMIC galaxy population is of the observed
z ≈ 3 LBG population in terms of intrinsic clustering properties and
the effects of the galaxy velocity field on galaxy clustering.

We calculate the real- and redshift-space functions, ξ (r) and ξ (s),
of the GIMIC z = 3.06 galaxy samples using the Davis & Peebles
(1983) estimator:

ξ (r) = NR

NG

〈DD(r)〉
〈DR(r)〉 − 1, (1)

where 〈DD(r)〉 is the average number of galaxy–galaxy pairs and
〈DR(r)〉 is the number of galaxy–random pairs at the separation
r. The factor NR/NG is the ratio of the number of random to the
number of data points.

We estimate the errors in the autocorrelation results using jack-
knife estimates based on splitting the simulation into equal-volume

octants and excluding each octant in turn to create eight jackknife
realizations of the data. The correlation functions are then fitted
using a power law of the form

ξ (r) =
(

r

r0

)−γ

, (2)

where γ is the slope of clustering ξ (r) and r0 is the clustering length.

4.1.2 Simulated real-space galaxy correlations

Fig. 7 shows the results for the simulated galaxy–galaxy correlation
function with (a) M∗ > 109 h−1 M� and (b) M∗ > 108 h−1 M�
simulated galaxies. The diamonds show results from galaxies in
redshift space, while the pink asterisks show results from galaxies in
real space. The integral constraint, I, is included in the data in order
to compensate for the effect of the limited field sizes (as described
in Bielby et al. 2013). The estimated integral constraints are I =
0.21 and I = 0.11 for M∗ > 109 h−1 M� and M∗ > 108 h−1 M�
galaxies, respectively. The pink lines represent power-law fits to the
real-space correlation function based on equation (2). The power-
law parameters for the fits to the clustering are given in Table 2.
These power-law results give good fits to the real-space clustering
results and there is little sign of a double power law or two-halo
break in the clustering for either of the samples. However, we note
that, in z ∼ 3 galaxies, the break between the one-halo and two-
halo terms is measured to be at ∼0.1 arcmin (Hildebrandt et al.
2009), which corresponds to ≈0.14 h−1 Mpc at z = 3. Any break is
therefore expected to be at scales smaller than those that we consider
in Fig. 7, scales at which we have little sensitivity with which to
probe for any possible break.
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Table 2. Results for the power-law fits to the 1D galaxy autocorrelation functions.

Sample r0 ( h−1 Mpc) γ Bias βgal

GIMIC M∗ > 108 h−1 M� 2.41 ± 0.24 1.52 ± 0.10 1.85 ± 0.12 0.35 ± 0.04
GIMIC M∗ > 109 h−1 M� 4.16 ± 1.16 1.56 ± 0.26 2.80 ± 0.18 0.23 ± 0.08
VLRS (Bielby et al. 2013) 3.83 ± 0.24 1.60 ± 0.09 2.59 ± 0.13 —

4.1.3 Simulated ξ (s)/ξ (r) and infall

In the lower panels of Fig. 7 we show the ratio between real- and
redshift-space clustering results from the simulation in order to
highlight the signatures of RSD in the redshift-space correlation
function. Here the errors are again constructed from the jackknife
realizations. At scales above r ∼ 1.5–2 h−1 Mpc, we see the effects
of dynamical infall, which acts to boost the clustering signal in the
redshift-space measurement by ξ (s)/ξ (r) ∼ 1.2–1.4. From linear
theory (Kaiser 1987; Hamilton 1992), we expect to see a ‘Kaiser
boost’ given by

ξ (s) =
(

1 + 2

3
βgal + 1

5
β2

gal

)
ξ (r), (3)

where βgal is the dynamical infall parameter. For galaxies,
βgal ≈ �0.6/b, where b is the linear galaxy bias and is given by
b = √

ξgal/ξDM (here ξ gal is the galaxy clustering and ξDM is the
dark matter clustering in real space, Kaiser 1987). At z ≈ 3, we pro-
ceed via the volume-averaged clustering amplitude, ξ̄ (8), to evalu-
ate both galaxy and dark matter clustering and derive the bias: see
equations (17) and (18) of Bielby et al. (2013).

Assuming the power law fitted to ξ (r) for the set of
M∗ > 108 h−1 M� galaxies, we find ξ̄g(8) = 0.33 ± 0.02, giving
b = 1.85 ± 0.12 and βgal = 0.53 ± 0.07. At separations of 1 < r <

8 h−1 Mpc, we find a mean amplitude ratio of 1.26 ± 0.03, which
equates to an infall parameter of 0.35 ± 0.04. This is lower by ≈2.5σ

than the estimate based on the bias. For the M∗ > 109 h−1 M� sim-
ulated galaxy case, the above power-law parameters fitted to ξ (r)
give ξ̄g(8) = 0.75 ± 0.05 which, with ξ̄DM(8) = 0.088, gives bias
b = 2.80 ± 0.18. Taking �m(z = 3.0) = 0.98 gives βgal = 0.35 ±
0.02. The measured Kaiser boost from ξ (s)/ξ (r) is 1.21 ± 0.06,
which equates to an infall parameter (based on equation 3) of
βgal = 0.23 ± 0.08, consistent with what we would expect from
the bias at the ≈1.5σ level.

Overall, for both samples we find that the measurements based
on the ξ (s)/ξ (r)(r) Kaiser boost appear to result in marginally lower
values of β than would be expected from the linear theory prediction
based on β = �0.6/b, but only at a ∼1–2σ level.

4.1.4 Simulated galaxy correlations and velocity dispersion

At smaller separations (r < 1 h−1 Mpc) for both high- and low-mass
simulated galaxies, the galaxy–galaxy ξ (s) in redshift space has a
lower amplitude than ξ (r). This turn-over of the real-space correla-
tion function is the result of z-space smoothing due to the pairwise
velocity dispersion, 〈w2

z 〉1/2. We model the effects of the pairwise
velocity dispersion on the clustering results using a Gaussian profile
to the velocity dispersion, following previous work (e.g. Hawkins
et al. 2003; da Ângela et al. 2005):

f (wz) = 1√
2π〈w2

z 〉1/2
exp

(
−0.5

|wz|2
〈w2

z 〉1/2

)
. (4)

Using the pairwise velocity dispersions derived from Fig. 3
(i.e. 〈w2

z 〉1/2 = 176 km s−1 and 〈w2
z 〉1/2 = 172 km s−1 for the M∗ >

109 h−1 M� and M∗ > 108 h−1 M� samples respectively – pink
dashed lines in both panels), we find that the reduction of the real-
space clustering at small scales is overpredicted compared with
the measurements of ξ (s). As illustrated in Fig. 3, however, we
note that the measured pairwise velocity dispersion is separation-
dependent. The discrepancy is therefore likely the result of the
effect of small-scale peculiar motions on the clustering function,
being dominated by galaxies within ∼1 h−1 Mpc of each other,
whereas the initial pairwise velocity histogram presented in Fig. 3
includes pairwise velocities between galaxies across all separation
scales within the simulation. If we thus limit the histogram of pair-
wise velocities to only those pairs within 1 h−1 Mpc of each other
(dashed histograms in Fig. 3), we retrieve pairwise velocity disper-
sions of 〈w2

z 〉1/2 = 142 km s−1 and 〈w2
z 〉1/2 = 104 km s−1 for the

M∗ > 109 h−1 M� and M∗ > 108 h−1 M� samples, respectively.
Using these values in the RSD model, we find improved agree-
ment between the model (solid blue line in Fig. 7) and the galaxy
autocorrelation function measured from the GIMIC simulations. Ul-
timately, the appropriate velocity dispersion for modelling the RSD
effects on the galaxy clustering is the velocity dispersion present
within groups, whilst the peculiar velocity measured from the sim-
ple histogram case included the imprint of the velocity dispersion
of galaxy groups as well as the dispersion within groups. Taking
the histogram of only pairs of galaxies within ∼1 h−1 Mpc of each
other effectively measures the intragroup peculiar velocities. We
conclude that ξ (s) is better described on sub-Mpc scales with the
intragroup velocity dispersion appropriate for these scales.

4.2 Simulated and observed correlation functions compared

Bielby et al. (2013) report the best-fitting scale-length and slope
for the observed Keck + VLRS LBG–LBG semi-projected wp(σ )
for the data as r0 = 3.83 ± 0.24 h−1 Mpc, with a slope of
γ = 1.60 ± 0.09. Within the reported errors, the clustering of our
M∗ > 109 h−1 M� sample reproduces the observed survey cluster-
ing very well in terms of both clustering length and slope. As would
be expected, the M∗ > 108 h−1 M� sample gives a somewhat lower
clustering length than the observational data, but does at least have
a consistent slope within the quoted errors.

We now apply the measured 〈w2
z 〉1/2 from the observations of

Bielby et al. (2013) to our correlation functions measured from
GIMIC. Bielby et al. (2013) measured 〈w2

z 〉1/2 = 420 km s−1, which
includes both the intrinsic velocity dispersion and the velocity er-
rors in measuring the galaxy redshifts. The measured ξ (s) from
Bielby et al. (2013) is shown in Fig. 7 (brown triangles) and a
model based on the GIMIC ξ (r) combined with the observational
〈w2

z 〉1/2 = 420 km s−1 is given by the brown solid line. By intro-
ducing the observationally measured pairwise velocity errors to the
GIMIC M∗ > 109 h−1 M� result, we find that the GIMIC clustering
measurement reproduces the measured LBG clustering well.

4.3 2D correlation function

We now turn to the 2D galaxy autocorrelation functions, in or-
der to investigate the impact of galaxy velocities on clustering
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measurements within the simulation further. In the 2D correlation
function, ξ (σ , π ), we parametrize the line-of-sight separation be-
tween two galaxies by π and the transverse separation by σ . We
calculate ξ (σ , π ) using the same methods as used for the 1D corre-
lation functions and with the same samples.

4.3.1 Simulations

Figs 8 and 9 show the 2D galaxy autocorrelation function, ξ (σ , π ),
for M∗ > 108 h−1 M� and M∗ > 109 h−1 M� simulated galaxies

Figure 8. The 2D autocorrelation function ξ (σ , π ) results based on the sim-
ulated M∗ > 108 h−1 M� galaxies. The top panels show ξ (σ , π ) measured
in real space (left panel) and redshift space (right panel), with a clear shift
in the contours in the line-of-sight (π ) direction at small scales, showing the
effect of peculiar velocities. Large-scale bulk motions are also in evidence
via the flattening of the ξ = 0.2 contour at π ∼ 10 h−1 Mpc. The lower
panels show the error contours over the same scales.

Figure 9. As in Fig. 8, but for the GIMIC M∗ > 109 h−1 M� galaxy
sample.

respectively (both with the integral constraint added). In both cases,
the top left panel shows the real-space measurement and the top right
panel shows the redshift-space measurement. The bottom panels
show the respective error contours for the ξ (σ , π ) measurements.

Taking the M∗ > 108 h−1 M� results first, the effects of the RSD
are clearly visible in the top panels of Fig. 8, where the redshift-
space ξ (σ , π ) contours are more extended at scales of �4 h−1 Mpc,
whilst being flattened at scales of �4 h−1 Mpc in comparison with
the real-space result. In terms of the latter, the shift in position of
the ξ = 0.5 and ξ = 0.2 contours from the left to right panels is
clear evidence of the Kaiser boost.

We now fit this ξ (σ , π ) result with a model based on incorpo-
rating the infall parameter, β, and convolving this with the velocity
dispersion (e.g. Hawkins et al. 2003; da Ângela et al. 2005):

ξ (σ, π ) =
∫ ∞

−∞
ξ ′(σ, π − wz(1 + z)/H (z))f (wz) dwz, (5)

where ξ ′ is given by

ξ ′(σ, π ) =
(

1 + 2βgal

3
+ β2

gal

5

)
ξ0(r)P0(μ)

+
(

4
βgal

3
+ 4β2

gal

7

)
ξ2(r)P2(μ)

+8β2
gal

35
ξ4(r)P4(μ), (6)

where Pl(μ) are Legendre polynomials, μ = cos (θ ) and θ is the
angle between r and π . ξ 0(r), ξ 2(r) and ξ 4(r) are the monopole,
quadrupole and hexadecapole components of the linear ξ (r). In
general they are given by (Matsubara & Suto 1996)

ξ2l(r) = −1l

r2l+1

(∫ r

0
x dx

)l ( d

dx

1

x

)l

xξ (x). (7)

The effect of RSDs is affirmed when fitting this RSD model, as
shown by the lower panels of Fig. 10. The fitting is performed by
applying the RSD model to the power-law fit given in Fig. 7(b)
(i.e. r0 = 2.41 h−1 Mpc and γ = 1.52). We fit the model first to the
real-space ξ (σ , π ) in order to constrain any geometric effects on
the 2D clustering that may mimic RSD. The model fitting applied
in real space gives best-fitting parameters of 〈w2

z 〉1/2 = 0+30
−0 km s−1

and βgal = 0.00+0.06
−0.00, consistent with this measurement having been

made in real space. Performing the same fitting to the redshift-
space result returns best-fitting values of 〈w2

z 〉1/2 = 160+45
−35 km s−1

and βgal = 0.47 ± 0.22. From the measured bias for the galaxy
sample of b = 1.85, we predicted an infall parameter value for
this galaxy sample of βgal = 0.53 ± 0.03. Additionally, from the
ratio of ξ (s)/ξ (r), we find βgal = 0.35, which again is within the
1σ errors of the 2D fitting result. As for the velocity dispersion,
we find that the result is >1σ higher than the result for the 1D
clustering measurement (〈w2

z 〉1/2 = 104 km s−1), but is consistent
with the intrinsic velocity dispersion measured from the galaxy
sample directly (〈w2

z 〉1/2 = 172 km s−1).
Turning to the M∗ > 109 h−1 M� galaxy sample, the top panels

of Fig. 9 show ξ (σ , π ) in real (left panel) and redshift (right panel)
space (with the lower panels showing the error contours). The χ2

contours for the fits to the real- and redshift-space measurements are
shown in the top panels of Fig. 10. The fitting was again made based
on the ξ (r) power-law fit (i.e. r0 = 4.16 h−1 Mpc and γ = 1.56).
The best fit for real space is βgal = 0.00+0.04

−0.00 and velocity dispersion
〈w2

z 〉1/2 = 0+60
−0 km s−1 with reduced χ2 = 0.7. In redshift space, we
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Figure 10. The top panels show the RSD fitting results in real (left)
and redshift space (right) for the GIMIC M∗ > 109 h−1 M� galaxy sam-
ple. The real-space fitting is consistent with the lack of velocity effects
in the data, giving best-fitting parameters of 〈w2

z 〉1/2 = 0+60
−0 km s−1 and

βgal = 0.00+0.04
−0.00. In the redshift-space measurement, we find a velocity dis-

persion of 〈w2
z 〉1/2 = 210+90

−70 km s−1. The large-scale motion is constrained

as βgal = 0.00+0.24
−0.00. The lower panels show the best-fitting parameters to

the real- and redshift-space results using the RSD model described in the
text for the GIMIC M∗ > 108 h−1 M� galaxy sample. Fitting to the real-
space result gives parameters consistent with the null velocity field, with
〈w2

z 〉1/2 = 0+30
−0 km s−1 and βgal = 0.00+0.06

−0.00 (left panel). Applying the same
model to the redshift-space ξ (σ , π ) we, retrieve best-fitting parameters of
〈w2

z 〉1/2 = 160+45
−35 km s−1 and βgal = 0.47 ± 0.22 (right panel), consistent

with the simulated velocity field.

found βgal = 0.00+0.24
−0.00 and 〈w2

z 〉1/2 = 210+90
−70 km s−1 with reduced

χ2 = 0.7.
The bias of b = 2.80 suggests a value of βgal ≈ �0.6

m /b =
0.35 ± 0.02, which is >1σ different from the best-fitting parameter
given by the ξ (σ , π ) fitting. The fitted value of βgal = 0.00+0.24

−0.00 is,
however, consistent at the ≈1σ level with the βgal = 0.24 implied by
the ratio of ξ (s)/ξ (r). In terms of the velocity dispersion fitting pa-
rameters, the 1D and 2D fitted 〈w2

z 〉1/2 values (〈w2
z 〉1/2 = 142 km s−1

and 〈w2
z 〉1/2 = 210+90

−70 km s−1 respectively) are consistent at ∼1σ ,
although the 2D result is again higher than the 1σ result. The fitting
results are summarized in Table 3.

In summary, the analysis of ξ (σ , π ) from the simulation has
shown that we may determine RSD effects using the 2D clustering
consistently (at the ∼1σ level) with the analysis of the 1D clustering.
There is some tension for the M∗ > 109 h−1 M� sample, where
the best-fitting βgal is zero, however this is still consistent with

Table 3. Results for the power-law fits to the 2D galaxy auto-
correlation functions.

Sample βgal 〈w2
z 〉1/2 (km s−1)

VLRS (Bielby et al. 2013) 0.38 ± 0.19 420+140
−160

GIMIC M∗ > 108 h−1 M� 0.47 ± 0.22 160+45
−35

GIMIC M∗ > 109 h−1 M� 0.00+0.24
−0.00 210+90

−70

the 1D clustering analysis at the 1σ level. In all cases, the model
successfully constrains the real-space clustering to be consistent
with there being no RSD effects. In addition, the infall-parameter
results are consistent with the linear theory analysis at the 1σ level
in the case of the M∗ > 108 h−1 M� sample and the 2σ level for
the M∗ > 109 h−1 M� sample.

Further to this, we have shown that the GIMIC galaxy population
has properties consistent with observations of LBGs at z ∼ 3. For
example, Bielby et al. (2013) presented the results for ξ (σ , π ) for
z ∼ 3 LBGs, finding β(z = 3) = 0.38 ± 0.19, with r0 = 3.83 ±
0.24 h−1 Mpc and γ = 1.60 ± 0.09. The M∗ > 109 h−1 M� galaxy
clustering gives consistent values for all three of these parameters
at the 1σ level. Unfortunately, the small-scale velocity field for the
observations is dominated by redshift errors, rather than the intrinsic
galaxy peculiar velocities, so we have no suitable z ∼ 3 data to
compare our small-scale results with. However, the results obtained
from the simulation for 〈w2

z 〉1/2 are instructive for observational
analyses.

5 G A L A X I E S A N D T H E IG M

As discussed earlier, the relationship between the galaxy population
and the IGM is key to understanding galaxy growth and evolution.
Galaxies require large haloes of gas in order to grow to the large
masses we observe at the present day, whilst the supply and reg-
ulation of the flow of gas into galaxies dictates the distribution of
galaxy masses we observe.

From observations of galaxy winds with speeds of �300 km s−1

for the LBG population (e.g. via the offset nebulae and interstellar
medium spectral features), it is evident that outflowing material
exists in these star-forming galaxies (e.g. Pettini et al. 2001; Shapley
et al. 2003; Bielby et al. 2011). A number of authors have thus
attempted to detect the effects of such outflows on the distribution
of gas around the z ∼2–3 star-forming galaxy population via the
Lyα forest observed in the spectra of background sightlines (e.g.
A03; A05; Crighton et al. 2011; Rudie et al. 2012; Rakic et al.
2012).

In this section, we perform an analysis of the cross-correlation
between galaxies and the Lyα forest using both the VLRS observa-
tional data and the GIMIC simulation. We apply the same dynamical
models as in the previous sections to the cross-correlation analy-
sis. In the case of the galaxy–Lyα cross-correlation, the relation
between redshift- and real-space correlations will become (Moun-
trichas, Sawangwit & Shanks 2009)

ξ (s)/ξ (r) =
[

1 + 1

3
(βgal + βLyα) + 1

5
βgalβLyα

]
. (8)

The linear bias of the gas obtained from b2 = ξLyα/ξDM is
b ≈ 0.3 (see Section 6), but this is not the bias required to assess the
effect of gas infall via βLyα . This is because of the non-linear relation
F = e−τ between Lyα transmission and optical depth, τ , where most
of the physics in the Lyα forest is contained in τ . According to Mc-
Donald et al. (2000,2003), the infall parameter βLyα = �0.6

m × bη/bδ

and bη and bδ have to be determined from simulations. McDonald
(2003) found results for βLyα = 1–1.6, depending on the resolution
of the simulations. We therefore take βLyα = 1.3 as our estimate
of the gas dynamical infall parameter. McDonald (2003) did not
use the RSD techniques used here, so this and the fact that we
are using a higher resolution SPH simulation make it interesting
to check whether linear theory with their βLyα fits our simulated
data. McDonald et al. (2000) argue that the form of the flux correla-
tion function is proportional to the mass correlation function in the
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linear regime. Following McDonald (2003), we shall assume that
we can take account of ‘finger-of-God’ velocity dispersions in the
usual way by convolving the transmission correlation function with
a Gaussian of the appropriate dispersion.

We perform the LBG–Lyα cross-correlation using the normalized
pixel flux values along the quasar sightlines, where the normalized
flux or transmissivity is given by

T = T̄ (z = 3)

T̄ (z)

f

fcon
, (9)

where f is the observed flux at a given wavelength/Lyα redshift and
fcon is the flux continuum at that wavelength/Lyα redshift. Follow-
ing A03, our derived values of T incorporate a renormalization to
remove the redshift evolution from the normalized flux based on T̄ ,
which is given by

T̄ (z) = 0.676 − 0.220(z − 3), (10)

where z is the redshift of a given pixel (McDonald et al. 2000). We
do not include the forest at wavelengths below the intrinsic Lyβ

emission of the quasars, in order to avoid regions contaminated by
Lyβ absorption lines. Thus, only the spectrum between the Lyβ

and Lyα is used in this calculation. We also excluded the wave-
length range within 20 Å of the intrinsic Lyα emission to avoid any
proximity effects from the quasars.

We then use the transmissivity of the Lyα forest as calculated
above to perform the LBG–Lyα cross-correlation function. The
LBG–Lyα cross-correlation function is calculated from

〈T (s)〉 = 〈DT (s)〉
N (s)

, (11)

where 〈DT(s)〉 is the number of galaxy–Lyα pairs weighted by the
normalized transmissivity for each separation. N(s) is the number
of LBGs that contribute to the cross-correlation function at each
separation.

5.1 Observed LBG–Lyα cross-correlation

5.1.1 1D cross-correlation, 〈T(s)〉
In Fig. 11, we present the latest result for the LBG–Lyα cross-
correlation from the VLRS (left panel: asterisks). This covers a

broad range of scales, measuring to separations of s ≈ 20 h−1 Mpc.
Errors on the data points are calculated by taking the standard
deviation of the 〈T(s)〉 measure across all the individual galaxies
contributing to a given bin, divided by the square root of the number
of galaxies contributing to that bin. We see an overall continuous
decrease in Lyα transmission down to the minimum scale probed of
s = 0.25 h−1 Mpc (although this smallest bin contains only a single
galaxy).

We also show the LBG–Lyα transmissivity correlation function
for the publicly available Keck data that we incorporate into our 2D
analysis (centre panel: pink diamonds) and the A05 result combined
with our own VLRS result (right panel: blue circles). In each panel,
we also show the results of A03 (grey triangles) and A05 (grey
squares). We note in passing that our own reductions of the Keck
sample HIRES data give results consistent with the A03 LBG–Lyα

results. At separations below s ≈ 5 h−1 Mpc, the combined sample
has the same trend as A05, with no evidence for a turn-up at s <

1 h−1 Mpc, a feature that was claimed by A03 to be evidence for
feedback. With the larger sample of LBGs close to quasar sightlines
compared with Crighton et al. (2011), we have now strengthened
the evidence against feedback strongly decreasing Lyα absorption
on s � 1 h−1 Mpc scales around galaxies.

5.1.2 2D cross-correlation, ξ (σ , π )

We now use the latest VLRS data sample of ≈2000 LBGs alongside
the Keck-based LBG–Lyα data set to measure the 2D LBG–Lyα

cross-correlation, ξ (σ , π ). By combining these two surveys, we can
compare the correlation functions for a wider range of separations
than would otherwise be possible (the VLRS giving 2–3 times the
coverage on the σ scale compared with the Keck data). The LBG–
Lyα ξ (σ , π ) from the Keck+VLRS sample is presented in Fig. 12.

In order to fit the RSD model to these data, we first need an esti-
mate of the real-space autocorrelation function. The double power-
law fit to 〈T(s)〉 is unsuitable, as it contains within it the imprint
of the RSD effects. We therefore follow the usual route to estimat-
ing the real-space clustering and calculate the projected correlation
function, wp(σ ). This is calculated by integrating the 2D correlation
function along the line-of-sight direction, π :

wp(σ ) = 2
∫ ∞

0
ξ (σ, π ) dπ. (12)

Figure 11. The mean Lyα transmissivity as a function of distance, s, from galaxies in observed z ≈ 3 samples. The left-hand panel shows the result for the 11
sightlines observed as part of the VLRS alone, the central panel shows the result for the six sightlines observed with Keck and the right-hand panel shows the
result for the VLRS result combined with the result of A05. The lower panels in each case show the number of galaxy–sightline pairs within a given separation.
In each of the panels, we also show the results of A03 (grey diamonds) and A05 (grey squares) for comparison. In the right-hand panel, we also show the result
of a double power-law fit to the VLRS + Keck data (curve), the parameters for which are given in Table 4. We also show in the right-hand panel the 〈T(s)〉
result from the GIMIC analysis given by the green shaded region. See the online paper for a colour version of this figure.
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Figure 12. The left-hand panels show the LBG–Lyα ξ (σ , π ) and jackknife errors in ξ (σ , π ) for the combined Keck+VLRS data. The right-hand panel
shows the result of fitting the ξ (σ , π ) model to the data, with best-fitting parameters given by βLyα = 0.33+0.23

−0.33 and 〈w2
z 〉1/2 = 190 ± 90 km s−1 (assuming an

underlying double power-law form as given in Table 4 and with βgal = 0.38).

Figure 13. The observed LBG–Lyα wp(σ )/σ result based on the
VLRS+Keck galaxy and quasar sightline data set (filled blue cirlces).
A double power-law fit is shown, the parameters for which are given in
Table 4.

The result is shown in Fig. 13. At small scales (σ � 2 h−1 Mpc),
the clustering measurement will have a flatter slope due to the satu-
ration of Lyα lines in the forest and so we fit the wp(σ ) measurement
with a double power law. This is only marginally necessary given
the error estimates for the measured wp(σ ) data points and is in part
motivated by the analysis of the simulated sightlines that follows.
Each power law takes the form

wp(σ )

σ
= Cξ (σ ) = C

( r0

σ

)γ

, (13)

where C is given by

C = �
(

1
2

)
�

(
γ−1

2

)
�

(
γ

2

) . (14)

The resulting best-fitting parameters assuming this double power
law are given in Table 4. We then use this fit as the basis with which
to fit for RSD in the ξ (σ , π ) measurement. As in the galaxy–galaxy
autocorrelation analysis, we use a model incorporating a Gaussian
form for the effects of pairwise velocities, characterized by 〈w2

z 〉1/2,
but now with the large-scale infall characterized by a combination
of βLyα and βgal (where βgal is constrained by the autocorrelation
results). The model is identical to that described earlier, except that
equation (6) is now replaced by

ξ ′(σ, π ) =
(

1 + βgal + βLyα

3
+ βgalβLyα

5

)
ξ0(r)P0(μ)

+
(

2
βgal + βLyα

3
+ 4βgalβLyα

7

)
ξ2(r)P2(μ)

+8βgalβLyα

35
ξ4(r)P4(μ), (15)

where Pl(μ) are again Legendre polynomials, μ = cos (θ ) and θ is
the angle between r and π . ξ 0(r), ξ 2(r) and ξ 4(r) are the monopole,
quadrupole and hexadecapole components of the linear ξ (r) and are
given in equation (7).

The resulting �χ2 contours for this fit are shown in the right-
hand panel of Fig. 12, with the best-fitting result given by βLyα =
0.33+0.23

−0.33 and 〈w2
z 〉1/2 = 190 ± 90 km s−1 (given βgal = 0.38).

As discussed, McDonald (2003) predict a value for the infall
parameter for the Lyα forest at z = 3 of βLyα = 1.3 ± 0.3. Our

Table 4. Results for the power-law fits to the 1D galaxy–Lyα cross-correlation functions.

Sample s0, s ( h−1 Mpc) γ s s0, l ( h−1 Mpc) γ l βLyα

VLRS – from ξ (s) 0.08 ± 0.04 0.47 ± 0.10 0.49 ± 0.32 1.47 ± 0.91 —

Sample r0, s ( h−1 Mpc) γ s r0, l ( h−1 Mpc) γ l βLyα

VLRS – from wp(σ ) 0.020+0.074
−0.018 0.37+0.45

−0.14 0.59+0.90
−0.20 1.10 ± 0.74 —

GIMIC M∗ > 108 h−1 M� 0.10 ± 0.07 0.46 ± 0.22 0.51 ± 0.39 1.25 ± 0.61 0.27 ± 0.05
GIMIC M∗ > 109 h−1 M� 0.16 ± 0.09 0.46 ± 0.19 0.61 ± 0.34 1.18 ± 0.43 0.31 ± 0.07

MNRAS 442, 2094–2115 (2014)

 at D
urham

 U
niversity L

ibrary on D
ecem

ber 9, 2014
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


VLT LBG Redshift Survey – IV 2107

measured value of βLyα = 0.33 is more than 3σ lower than this
predicted value. Comparing this with other observations, Slosar
et al. (2011) report a range of 0.44 < βLyα < 1.20, at central redshift
z = 2.25, from the analysis of Baryon Oscillation Spectroscopic
Survey (BOSS) quasar spectra. This is consistent at the 1σ level
with our result, although at a lower redshift.

Predicting the velocity dispersion, we take the pairwise veloc-
ity dispersion measured for the galaxies (〈w2

z 〉1/2 = 420 km s−1:
Bielby et al. 2013), which includes both the intrinsic dispersion
and the velocity measurement errors, and combine this with the
predicted velocity dispersion measured from the GIMIC simulation
earlier (120 km s−1). As the galaxy measurement is a ‘pairwise’
velocity, we thus need to divide this by

√
2 and therefore would

expect 〈w2
z 〉1/2 = √

2972 + 1202 = 320 km s−1 for the galaxy–Lyα

〈w2
z 〉1/2. The result obtained from the LBG–Lyα ξ (σ , π ) is

consistent with this predicted value within the 2σ contours.
We shall return to these Keck+VLRS results for compari-
son with the results from the GIMIC simulations described
below.

This measurement of the 2D LBG–Lyα cross-correlation is one
of only a few such measurements and the only one to give a
full parametrized model fitting to the RSD. Rakic et al. (2012)
and Turner et al. (2014) show the 2D LBG–H I pixel–optical-
depth (POD) cross-correlation, giving estimated velocity disper-
sions of 〈w2

z 〉1/2 ∼ 240 and ∼260 km s−1 respectively. There are
significant differences between our analysis and the work of these
two authors, not least that they analyse a broader range in opti-
cal depth by including higher order Lyman series lines, but we
note that our measured velocity dispersion is consistent with their
results.

5.2 LBG–Lyα cross-correlation from simulations

As with the data, we compute the LBG–Lyα cross-correlation using
the methods described above. We note, however, that the renormal-
ization to z = 3, given by equation (10), is redundant here given that
the simulated gas and galaxies are all at the same epoch already.

5.2.1 Coherent motion of gas and galaxies

In the top panels of Fig. 14, we show the Lyα mean transmissivity as
a function of sightline–galaxy separation for the M∗ > 108 h−1 M�
(left panel) and M∗ > 109 h−1 M� (right panel) galaxy samples
and for three combinations of the gas and galaxies from the GIMIC
simulation: galaxies in real space with Lyα in redshift space (r − z,
green diamonds); galaxies in redshift space with Lyα in real space
(z − r, yellow triangles); and both the galaxies and Lyα in redshift
space (z − z, squares). As in previous plots of 〈T(s)〉, the results
are scaled to the mean transmissivity at z = 3 (i.e. T̄ (z = 3) =
0.676). It is interesting to note that the decrease to smaller scales
is enhanced as we go from the r − z (or z − r) combination to the
z − z combination. If we assume that random Gaussian motions
dominate galaxy peculiar motions, then this is a surprising result.
The same effect is seen for both the M∗ > 108 h−1 M� and M∗ >

109 h−1 M� galaxy samples. This is, however, simply the result of
a large (∼100 km s−1) bulk flow of material within the simulation
volume, i.e. the analysis has not been performed in the mean rest
frame of the particles in the box. Indeed, this bulk motion is clearly
evident in Fig. 2.

The lower panels of Fig. 14 again show the galaxy–Lyα mean
transmissivity as a function of sightline–galaxy separation for the

Figure 14. The transmissivity profile, 〈T(r)〉, around simulated galaxies within GIMIC for the M∗ > 108 h−1 M� (left-hand panels) and M∗ > 109 h−1 M�
(right-hand panels) galaxy samples. The top panels show the cross-correlation calculated using combinations of the galaxies in real space with the gas in
redshift space (diamonds), the galaxies in redshift space with the gas in real space (triangles) and both galaxies and gas in redshift space (squares). The
lower panels show the same redshift-space galaxy–Lyα cross-correlation (squares) compared with the real-space cross-correlation (black asterisks). For both
the M∗ > 108 h−1 M� (left) and M∗ > 109 h−1 M� (right) results, we show a double power-law fit to the real-space result and this fit convolved with the
predicted RSDs (i.e. βLyα = 1.3 with 〈w2

z 〉1/2 = 139 km s−1 and βgal = 0.53 for the M∗ > 108 h−1 M� sample; 〈w2
z 〉1/2 = 156 km s−1 and βgal = 0.35 for

the M∗ > 109 h−1 M� sample). All error bars were calculated using the jackknife method.
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M∗ > 108 h−1 M� (left panel) and M∗ > 109 h−1 M� (right panel)
galaxy samples, but this time for combinations of both galaxies and
Lyα in real space (r − r, blue asterisks) and both galaxies and Lyα

in redshift space (z − z, red squares).
Focusing on the M∗ > 108 h−1 M� galaxies, we see that both

the r − r and z − z results show the same trends. At a distance
r > 5 h−1 Mpc, the measured 〈T(r)〉 increases towards the mean
value. As separations decrease below 5 h−1 Mpc, the transmissivity
decreases, indicating an increase in the H I density as we approach
the galaxy. In terms of the effects of RSD, at separations of r ∼
1–6 h−1 Mpc we see that the galaxy–Lyα transmissivity correla-
tion function in redshift space lies lower than the real-space cross-
correlation function. This behaviour is suggestive of the impact of
coherent infall on the measured z − z cross-correlation function.

To investigate this further, we perform a fit to the correlation func-
tion using a power-law form given by 〈T (r)〉 = (1 − (r0/r)γ ) T̄ (z =
3). We first attempted a single power-law fit, but found that this failed
to match both the large- and small-scale trends. This is primarily due
to the non-linear nature of the relationship between the normalized
flux measurement and the gas density, whereby, given a high enough
column density of neutral hydrogen, the absorption line will reach
zero flux and saturate. At this point, the normalized flux no longer
gives a measure of increasing gas density and simply asymptotes
to a value of zero. This has a significant effect on our measure of
〈T(r)〉, where close to galaxies the increasing mean gas density leads
our measure of 〈T(r)〉 to turn over. We approximate this behaviour
with a double power-law function: one power law fitted to the large-
scale trend (i.e. r � 1.6 h−1 Mpc) and another to approximate the
small-scale curtailing of 〈T(r)〉. For the M∗ > 108 h−1 M� sam-
ple, we find best-fitting parameters of r0, s = 0.10 ± 0.07 h−1 Mpc,
γ s = 0.46 ± 0.22, r0, l = 0.51 ± 0.39 h−1 Mpc and γ l = 1.25 ±
0.61 (where subscript ‘s’ denotes the small-scale power law and
subscript ‘l’ denotes the large-scale power-law parameters). This fit
is plotted as the solid black curve in the lower left panel of Fig. 14
(and is summarized in Table 4).

As a first step in analysing the RSD effects on the cross-
correlation, we transform this fitted real-space fit to the GIMIC
M∗ > 108 h−1 M� sample cross-correlation with our RSD model
and some reasonable estimates of what we may expect the RSD pa-
rameters to be. For the galaxy coherent large-scale motion, we have
a value of βgal = 0.53 derived from the galaxy–galaxy autocorrela-
tion. For the Lyα coherent large-scale motion, we take βLyα = 1.3 as
predicted by the simulations of McDonald (2003). Finally, for the
velocity dispersion parameter, we take 〈w2

z 〉1/2 =
√

(104/
√

2)2+1202=
139 km s−1, i.e. combining the measured galaxy velocity dispersion
(from Fig. 3) and Lyα velocity dispersion (from Fig. 6) in quadra-
ture. The result is given by the black dashed line in the lower left
panel of Fig. 14.

We perform an identical analysis with the M∗ > 109 h−1 M�
sample, fitting a double power law to the real-space 〈T(r)〉, finding
best-fitting parameters of r0, s = 0.16 ± 0.09 h−1 Mpc, γ s = 0.46 ±
0.19, r0, l = 0.61 ± 0.34 h−1 Mpc and γ l = 1.18 ± 0.43 (shown
by the solid black curve in the lower right panel of Fig. 14). The
RSD model based on this double power-law fit is shown by the
dashed black line in the lower right panel of Fig. 14 and is based
on parameter values of βgal = 0.35, βLyα = 1.3 and 〈w2

z 〉1/2 =√
(142/

√
2)2 + 1202 = 156 km s−1.

It is evident that the selected parameters do not provide a good
fit to the redshift-space results from the GIMIC simulation in ei-
ther case. For both the M∗ > 108 h−1 M� and M∗ > 109 h−1 M�
samples, the model overpredicts the effects of the coherent infall (at

scales of �2 h−1 Mpc) and the velocity dispersion at smaller scales.
We investigate this further in the following sections.

5.2.2 Dynamical infall in ξ (r)

To better visualize any distortions in the cross-correlation, we calcu-
late the function ξ (r) = 1 − 〈T (r)〉/T̄ (z = 3). The results for ξ (r)
are shown in the top panels of Fig. 15. The points and curves are
the same as given in the lower panels of Fig. 14 (except trans-
formed from 〈T(r)〉 to ξ (r)) and again the M∗ > 108 h−1 M� and
M∗ > 109 h−1 M� samples are shown in the left- and right-hand
panels respectively. The models used for the curves are identi-
cal to those given in the previous section, but we now see more
clearly why a single power law is unable to provide a good fit
to the real-space data points in both the M∗ > 108 h−1 M� and
M∗ > 109 h−1 M� cases. It is also clearer in these plots how
the βLyα , 〈w2

z 〉1/2 = 139 km s−1/〈w2
z 〉1/2 = 156 km s−1 RSD models

provide a poor fit to the redshift-space ξ (s) results (red squares). The
model lies at ∼1σ above the data at all points above ∼1 h−1 Mpc,
whilst it also overpredicts the effects of small-scale velocity dis-
persion. This is the case for both the M∗ > 108 h−1 M� and
M∗ > 109 h−1 M� samples.

It is the βLyα = 1.3 value that is proving too high here, re-
sulting in the model tending to overpredict the galaxy–Lyα cross-
correlation function. In the lower panels of Fig. 15, we show
the ratio ξ (s)/ξ (r). We measure a weighted average of the ra-
tio over scales of 1 ≥ r ≥ 12 h−1 Mpc of 〈ξ (s)/ξ (r)〉 = 1.29 ±
0.02 and 〈ξ (s)/ξ (r)〉 = 1.24 ± 0.03 for the M∗ > 108 h−1 M� and
M∗ > 109 h−1 M� samples respectively. Via equation (3), these
values correspond to βLyα = 0.27 ± 0.05 (M∗ > 108 h−1 M�) and
βLyα = 0.31 ± 0.07 (M∗ > 109 h−1 M�).

From the ξ (s) measurement, we are thus able to place constraints
on a measure of the infall of gas towards galaxies via the βLyα

quantity, consistently obtaining βLyα ∼ 0.3 for both of our galaxy
samples. We now move to the 2D cross-correlation function to
evaluate whether we obtain consistent results with a 2D analysis.

5.2.3 Dynamical Infall in ξ (σ , π )

We now analyse the properties of the 2D cross-correlation function,
ξ (σ , π ). This is calculated in the same way as ξ (r), whilst again
we estimate errors in the results using the jackknife method. The
GIMIC galaxy–Lyα ξ (σ , π ) results are presented in Fig. 16 for
the M∗ > 108 h−1 M� galaxy sample and Fig. 17 for the M∗ >

109 h−1 M� sample. In each case, the top left panel shows ξ (σ , π )
in real space and the top right panel in redshift space, with the lower
panels showing the associated error profiles on the same scale. The
dashed long-dashed lines show the r − r double power-law fit to the
data, which we use as the input model for our RSD model fitting to
the ξ (σ , π ) contours, in which we ascertain the best-fitting values
for the parameters βLyα and 〈w2

z 〉1/2.
We fit both the real- and redshift-space ξ (σ , π ) using the

same basic model and limited to a maximum separation of
r = 12 h−1 Mpc (minimizing the impact of the limited simula-
tion size on the results). By first fitting to the real-space results,
we provide a baseline test of whether the analysis successfully
yields βLyα = 0 and 〈w2

z 〉1/2 = 0 km s−1 for the case of no pe-
culiar velocities. The χ2 fitting contours for the real-space mea-
surements are shown in the left-hand panels of Fig. 18 (with the
top panel showing the fit to the M∗ > 109 h−1 M� measurement
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Figure 15. The top panels show the LBG–Lyα cross-correlation function, ξ (r), as derived from the 〈T(r)〉 profiles shown in Fig. 14. Results for the
M∗ > 108 h−1 M� sample are shown in the left-hand panels and the M∗ > 109 h−1 M� sample in the right-hand panels. In each case, we show the same fits
as shown in Fig. 14 (solid black curves) and the subsequent redshift-space distorted predictions based on a value of βLyα = 1.3 (dashed black curves). The
lower panels show the ratio of the redshift-space cross-correlation functions, ξ (s), to the real-space cross-correlation functions, ξ (r). The dashed black lines
in both lower panels shows the large-scale prediction for ξ (s)/ξ (r) assuming βLyα = 1.3. The solid black lines and grey regions show the weighted mean of
ξ (s)/ξ (r) measured at r > 1 h−1 Mpc and the 1σ errors on the weighted mean.

Figure 16. The top two panels show the GIMIC galaxy–Lyα ξ (σ , π ) results
(shaded map and solid black contours) based on the M∗ > 108 h−1 M�
galaxy sample in real space (top-left panel) and in redshift space (top-right
panel). We show the underlying double power-law model derived from the
real-space correlation function (i.e. with no RSD modelling) by the long-
dashed blue contours (identical in the top two panels). The RSD models
that best fit the ξ (σ , π ) results (based on this input model) are shown by the
short-dashed green contours. Errors were calculated based on a jackknife
analysis and are shown in the lower panels.

Figure 17. As in Fig. 16, but for the M∗ > 109 h−1 M� sample.

and the lower panel showing the fit to the M∗ > 108 h−1 M� mea-
surement). Starting with the M∗ > 108 h−1 M� real-space result,
we find best-fitting parameters entirely consistent with the lack
of RSD effects on the ξ (σ , π ) measurement, with βLyα = 0+0.06

−0.00

and 〈w2
z 〉1/2 = 0+50

−0 km s−1. For the M∗ > 109 h−1 M� measure-
ment, we find βLyα = 0+0.08

−0.00 and 〈w2
z 〉1/2 = 50 ± 25 km s−1. These
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Figure 18. The �χ2 contours for the RSD model fitting to the 2D galaxy–
Lyα cross-correlation are shown. The top panels show the fitting results for
the M∗ > 109 h−1 M� galaxy sample in real space (left) and redshift space
(right). In real space, we find best-fitting parameters of βLyα = 0.00+0.08

−0.00 and
〈w2

z 〉1/2 = 50 ± 25 km s−1. For the redshift-space ξ (σ , π ), the best-fitting
parameters are βLyα = 0.51 ± 0.12 and 〈w2

z 〉1/2 = 48 ± 7 km s−1. The lower
panels show the results for the M∗ > 108 h−1 M� GIMIC sample. The best
fit for the real-space sample (left panel) is βLyα = 0.00+0.06

−0.00, 〈w2
z 〉1/2 =

0+50
−0 km s−1. For the redshift-space ξ (σ , π ), we find βLyα = 0.28 ± 0.10,

〈w2
z 〉1/2 = 73 ± 9 km s−1.

best-fitting models are shown by the short dashed contours in Figs 16
and 17. For the M∗ > 108 h−1 M� sample, the analysis successfully
identifies the lack of any velocity information in the result; how-
ever, the M∗ > 109 h−1 M� results appears to show a ∼2σ signal
for a non-zero 〈w2

z 〉1/2, corresponding to some small-scale velocity
dispersion. The cause of this is evident from the contour plot of ξ (σ ,
π ) in the top left panel of Fig. 17, where an extension along the π

axis is clearly visible at small σ . This extension is at the ∼2σ level
according to the jackknife errors and, given that there are no veloc-
ity offsets in this realization, the non-zero result is likely caused by
statistical fluctuations at these small σ scales. The fact that a zero
velocity dispersion is found for the M∗ > 108 h−1 M� sample, in
which we have more galaxies, seems to support this conclusion.
However, this is important to factor into the analysis when reapply-
ing the model fitting to the redshift-perturbed simulated galaxies.

The χ2 contours for the model fits to the redshift-space ξ (σ , π )
results are shown in the right-hand panels of Fig. 18, where the top
panels show the results for the M∗ > 109 h−1 M� galaxy sample
and the lower panels show the results for the M∗ > 108 h−1 M�
sample.

For the M∗ > 108 h−1 M� galaxies, we find best-fitting param-
eters of βLyα = 0.28 ± 0.10 and 〈w2

z 〉1/2 = 73 ± 9 km s−1, whilst
for the M∗ > 109 h−1 M� sample we find βLyα = 0.51 ± 0.12 and
〈w2

z 〉1/2 = 48 ± 7 km s−1. The first thing to note is that the mea-
surements for βLyα , which should be the same, given they both
represent the gas motion, are consistent at the ≈1σ level between
the two samples. Further to this, we can perform a comparison with
our results from the ξ (r) analysis as a consistency check of the
analysis. From ξ (s)/ξ (r), we measured values of βLyα = 0.27 ±

Table 5. Results for the power-law fits to the 2D galaxy–Lyα

cross-correlation functions.

Sample βLyα 〈w2
z 〉1/2 (km s−1)

VLRS+Keck 0.33+0.33
−0.23 190 ± 90

GIMIC M∗ > 108 h−1 M� 0.28 ± 0.10 73 ± 9
GIMIC M∗ > 109 h−1 M� 0.51 ± 0.12 48 ± 7

0.05 and βLyα = 0.31 ± 0.07 from the M∗ > 108 h−1 M� and
M∗ > 109 h−1 M� samples respectively. Collating all the measure-
ments of βLyα thus far, the βLyα values are all in strong agree-
ment between the ξ (r) M∗ > 108 h−1 M� and M∗ > 109 h−1 M�
results and the ξ (σ , π ) M∗ > 108 h−1 M� result, whilst the ξ (σ , π )
M∗ > 109 h−1 M� result shows some small tension at the ∼1.5σ

level.
Now looking to the velocity dispersion results, we find a

significant difference between the M∗ > 108 h−1 M� and M∗ >

109 h−1 M� ξ (σ , π ) results. In itself this is not unexpected, given
that the galaxy population contributes to this parameter. However,
we would expect the M∗ > 109 h−1 M� sample to show a higher ve-
locity dispersion than the M∗ > 108 h−1 M� sample, which is not
the case. In addition, the M∗ > 109 h−1 M� redshift-space mea-
surement is itself consistent with the M∗ > 109 h−1 M� real-space
measurement, suggesting that we are not actually able to measure
the velocity dispersion in this case. Given the small number of pairs
at small separations in the M∗ > 109 h−1 M� galaxy–Lyα cross-
correlation, this is likely due to the stochastic nature of the signal
we are measuring at these small scales. As discussed in Section
5.2.1, based on the measured galaxy and gas velocity distributions
we would expect 〈w2

z 〉1/2 ≈ 139 km s−1 and 〈w2
z 〉1/2 ≈ 156 km s−1

for the M∗ > 108 h−1 M� and M∗ > 109 h−1 M� samples respec-
tively. This is clearly not the case from our measurements. The
explanation may be due to the gas motion being very coherent with
the galaxies at small scales. Should the gas and galaxies be moving
together in such a way, this could reduce the measured velocity dis-
persion between the two in the cross-correlation analysis, for ξ (s)
as well as ξ (σ , π ). The fitting results are summarized in Table 5.

5.2.4 Simulation and observation compared

We next compare the simulated results for galaxy–Lyα 〈T(s)〉 with
the Keck+VLRS data as shown in the right-hand panel of Fig. 11.
The GIMIC result for the M∗ > 109 h−1 M� sample in redshift
space is shown by the shaded green curve, which follows the obser-
vational data points well. The GIMIC result falls to lower values of
〈T(s)〉 at small scales than the observational result, although only at
the ≈1σ level, a potential sign of the effect of observational velocity
errors on the data points.

We now compare the simulated results for galaxy–Lyα ξ (σ , π )
with the six Keck quasar + VLRS data as shown in Fig. 12. We
have seen that the observed best-fitting parameters for the Keck +
VLRS data are βLyα = 0.33+0.33

−0.23, 〈w2
z 〉1/2 = 190 ± 90 km s−1, with

this measurement of the infall parameter being ≈3σ lower than the
predicted value of βLyα = 1.3. As we have shown above, the best-
fitting value for βLyα from the simulated galaxy samples covers a
range of βLyα ≈ 0.3–0.5. This simulated βLyα value is consistent
within the error estimates of our VLRS observations, but not the
theoretically motivated βLyα = 1.3. We also note that both the
minimum value of 〈w2

z 〉1/2 = 297 km s−1 from LBG velocity error
and the 〈w2

z 〉1/2 = 320 km s−1 value including the full simulated
〈w2

z 〉1/2 = 120 km s−1 are consistent with the data at the ≈1–2σ
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level. We conclude that, while the Keck+VLRS βLyα and 〈w2
z 〉1/2

estimates are low compared with the initial expectation from theory,
they are consistent with the similarly low values of these parameters
estimated from ξ (r) and ξ (σ , π ) in the GIMIC simulations.

6 AU TO - C O R R E L AT I O N A NA LY S I S
O F T H E IG M

6.1 Lyα 1D autocorrelation function

We now measure the Lyα autocorrelation function in both the ob-
servational data and the simulated sightlines, with the aim of again
comparing the simulated sightline results with observations and
measuring the effect of the velocity field on the clustering. Follow-
ing Crighton et al. (2011), for each pixel in a quasar line of sight,
we calculate

δ = T

T
− 1, (16)

where T and T̄ are the measured and the mean normalized flux. We
then use this to calculate the autocorrelation function:

ξ (�s) = 〈δ(s)δ(s + �s)〉. (17)

For the observational data, we are only able to do this in the
line-of-sight direction, as there are only three pairs of quasars that
can provide transverse separation measurements and these are all
separated by �20 h−1 Mpc. For the simulated sightlines, we sum all
pixels with the separations �s, both parallel and perpendicular to
the line of sight.

Fig. 19 shows the autocorrelation of Lyα pixels along the line
of sight from the observational data. Keck, VLRS and combined
samples are presented by diamonds, red asterisks and blue cir-
cles, respectively. Error bars were estimated by using the jack-
knife method. We first compare these with the result from Crighton
et al. 2011 (cyan triangles), who measured the autocorrelation us-

Figure 19. The autocorrelation of Lyα pixels along the line of sight. The
VLRS, Keck and combined samples are shown by red asterisks, pink dia-
monds and filled circles, respectively. The measurement of Crighton et al.
(2011) is also shown (cyan triangles), as is the BOSS result of Slosar et al.
(2011, black squares).

ing seven high-resolution quasars (resolution FWHM ∼ 7 km s−1).
They all show similar results at small scales. We also show the recent
BOSS results of Slosar et al. (2011, black squares), which probe
scales of �3 h−1 Mpc and are consistent with the VLRS results.

The autocorrelation functions based on the GIMIC simulated Lyα

sightlines are presented in Fig. 20. The real- and redshift-space Lyα

autocorrelation functions are shown by black asterisks and squares
respectively. The VLRS+Keck result from Fig. 19 is replotted (filled
circles) and is found to be consistent with the GIMIC autocorrelation
within the quoted error estimates.

Focusing on the simulation, we again see that the redshift- and
real-space correlation functions are comparable in amplitude and
form. We fit the GIMIC real-space autocorrelation function with a
double power-law form as performed with the galaxy–Lyα cross-
correlation. The resulting fit is given in Fig. 20 (solid black curve).
At small scales, convolving this double power-law fit with a Gaus-
sian of width 120 × √

2 = 170 km s−1, representing the simulation
gas peculiar velocity (see Fig. 3), is seen to overestimate the small-
scale turnover in the redshift-space correlation function.

Based on the power-law fit at r > 0.4 h−1 Mpc (and using the
relation b = √

ξLyα/ξDM), the clustering bias of the Lyα forest is
b ≈ 0.3. Assuming βLyα = �0.6/b, this bias corresponds to βLyα ≈
3.3, which implies ξ (s)/ξ (r) ≈ 5.4. Again, as noted by McDonald
(2003), βLyα has no simple relation to density bias, as for galaxies
βLyα has to be estimated from simulations and the simulations of

Figure 20. Top panel: autocorrelation functions of GIMIC Lyα pixels at
z = 3.06 in the 0σ simulation. Real-space (black asterisks) and redshift-
space (red squares) results are shown. Errors are calculated via the jackknife
method. A double power-law fit to the real-space ξ (r) with r0, s = 0.0018 ±
0.0015, γ s = 0.38 ± 0.14, r0, l = 0.060 ± 0.034, γ l = 1.11 ± 0.21 is
also shown (black line). The red dot–dashed line is the expected result
for the Lyα ξ (s) in redshift space if we convolve the velocity dispersion
〈w2

z 〉1/2 = 170 km s−1 and βLyα = 1.3 with the RSD model. The red solid
curve is a model ξ (s) fitted to the GIMIC z − z result and is given by
parameter values of 〈w2

z 〉1/2 = 32 km s−1 and βLyα = 0.40 (applied to the
double power-law model fit to ξ (r)). Bottom panel: GIMIC ξ (s)/ξ (r) with
jackknife error bars. The dot–dashed line corresponds to ξ (s)/ξ (r) = 2.2 as
predicted from linear theory with βLyα = 1.3, whilst the solid black line and
grey surround show the weighted mean ξ (s)/ξ (r) from the simulation and
its 1σ bounds. See the online paper for a colour version of this figure.
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McDonald et al. implied a range βLyα = 1–1.6. If we therefore take
βLyα = 1.3, then this predicts ξ (s)/ξ (r) = 2.2 from equation (3),
whereas the simulated value in Fig. 20 is ξ (s)/ξ (r) = 1.30 ± 0.14
(solid black line and shaded region in the lower panel of Fig. 20),
which corresponds to βgal = 0.40 ± 0.16. With βLyα = 0.40, the
best-fitting velocity dispersion is 〈w2

z 〉1/2 = 32 ± 7 km s−1. Models
where we fixed βLyα = 1.3 and took 〈w2

z 〉1/2 = 170 km s−1 as ex-
pected from Fig. 6 are strongly rejected (red dash–dotted curve).
With βLyα = 1.3, a best-fitting value of 〈w2

z 〉1/2 = 86+11
−8 km s−1 was

found, although the model was still rejected in a chi-square test.
Whatever value of βLyα is chosen, it appears that the fitted value

of the velocity dispersion is much lower than we measured in
Fig. 6. However, as shown by Crighton et al. (2011), the intrin-
sic width of the Lyα lines convolved with the instrumental response
of the spectrograph can induce artificial autocorrelations at scales
� 0.7 h−1 Mpc, so this effect may contribute to the poor fit of the
peculiar velocity RSD model on small scales.

We note that the RSD model for the Lyα auto- and cross-
correlation assumes spherical symmetry as we move from real
space to redshift space and the Lyα autocorrelation function in-
volves summing along and across quasar lines of sight, which may
not be exactly spherically symmetric. However, we shall see that this
explanation cannot apply to the Lyα ξ (σ , π ), which we calculate
next and which gives consistent results with the ξ (s) analysis.

6.2 Lyα 2D autocorrelation function

For each pixel in the Lyα line of sight, we next calculate the Lyα

ξ (σ , π ) by using

ξ (σ, π ) = 〈DT (σ, π )〉
N (σ, π )

, (18)

where 〈DT(σ , π )〉 is the number of Lyα pairs weighted by the
normalized transmissivity, T, for each separation. N(σ , π ) is the
number of Lyα pixels that contributed to each pair.

The Lyα ξ (σ , π ) results at z = 3.06 for the 0σ simulation are
shown in Fig. 21, with the top left panel showing the result in real
space and the top right panel showing the result in redshift space.
The associated errors are again shown in the lower panels.

Figure 21. The GIMIC Lyα ξ (σ , π ) autocorrelation at z = 3.06 in real (top
left panel) and redshift space (top right panel). The lower panels show the
corresponding jackknife error estimates for the ξ (σ , π ) results.

Figure 22. Results for the model fits to the GIMIC 2D Lyα autocorrelation
functions shown in Fig. 21. The left panel shows the �χ2 contours for the
fit to the real-space ξ (σ , π ), with best-fitting parameters βgal = 0.00+0.09

−0.00

and 〈w2
z 〉1/2 = 46 ± 17 km s−1. The right panel shows the same for the

redshift-space autocorrelation function. Here the best fit is βgal = 0.31 ±
0.17, 〈w2

z 〉1/2 = 69 ± 21 km s−1. The fits are based on the underlying double
power-law function shown in Fig. 20.

Again we fit the RSD model to the GIMIC results and find
〈w2

z 〉1/2 = 46 ± 17 km s−1 and βgal = 0.00+0.09
−0.00 for the real-space

result (see left-hand panel of Fig. 22). For redshift space, the best-
fitting parameters are the same, with βgal = 0.31 ± 0.17 and
〈w2

z 〉1/2 = 69 ± 21 km s−1 (see right-hand panel of Fig. 22). We
again conclude that the effects of infall in the gas in the GIMIC
simulation are much less than predicted from the previous work of
McDonald (2003), with an upper limit of βLyα � 0.6 from ξ (s) and
βLyα � 0.5 from Lyα ξ (σ , π ). Given βgal = 0.31, the gas veloc-
ity dispersion fit of 〈w2

z 〉1/2 = 69 ± 21 km s−1 is close to the sub
1h−1 Mpc value of the velocity dispersion estimated for simulated
galaxies, due to correlated motions.

As discussed, comparing the VLRS+Keck ξ (s) result (filled cir-
cles) with the GIMIC ξ (s), we found good agreement between the
two within the 1σ errors for the two data sets. However, we do not
calculate the Lyα 2D autocorrelation from the observations, as the
quasar sample does not have a high enough sky density to probe the
on-sky projected profile.

7 D I SCUSSI ON

We have combined the power of the VLRS at large spatial scales
with the statistical power of the Keck sample at smaller scales.
Crighton et al. (2011) included the Keck data in the LBG–Lyα

cross-correlation function by simply using an error-weighted com-
bination of the Keck and VLRS correlation functions. Our aim
here was to combine the two surveys for 2D, ξ (σ , π ) correlation
function analyses at the deeper level of the Lyα fluxes and LBG
positions. We therefore included 940 2.67 ≤ z ≤ 3.25 LBGs from
the Steidel et al. (2003) Keck samples. We also re-reduced six high-
resolution spectra of the quasars in these fields from the ESO and
Keck archives. With ≈3000 galaxies, the combined VLRS and Keck
surveys covering the widest range of spatial scales are ideal to study
the dynamical relationship between galaxies and the IGM at z ≈ 3.

We have also incorporated the GIMIC SPH simulation into our
analysis, in order to aid the interpretation of the correlation function
results. GIMIC was used to create synthetic Lyα spectra and galax-
ies. We study both galaxy clustering and the relationship between
gas and galaxies via the auto- and cross-correlation functions in
both 1D and 2D.
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We have compared the simulated galaxy–galaxy results in real
and redshift space. The simulated galaxy autocorrelation functions,
ξ (r) and ξ (s) (i.e. in real and redshift space), are consistent with
power laws at scales of r � 2 h−1 Mpc. At small distances (r �
1 h−1 Mpc), the LBG–LBG ξ (s) tends to have lower clustering than
ξ (r) in real space, while at larger scales the LBG–LBG ξ (s) re-
sults have higher clustering. Qualitatively, this is as expected from
‘finger-of-God’ effects at sub 1 h−1 Mpc scales and dynamical infall
at larger scales, characterized by the ‘Kaiser boost’. Quantitatively,
the large-scale Kaiser boost for the galaxies is marginally lower than
predicted based on the galaxy bias, but only by ≈1–2σ . At smaller
scales, the peculiar velocity dispersion measured in the simula-
tion overestimates the difference between real- and redshift-space
correlation functions. Similar results have been found by Taruya,
Nishimichi & Saito (2010), who found that at high redshift fitting
finger-of-God damping terms, as we do here, tended to underes-
timate the peculiar velocity dispersion predicted by linear theory.
Certainly, a ‘local’ velocity dispersion measured relative to galaxy
pairs with separations <1 h−1 Mpc produces improved agreement.

From the simulated galaxy 2D autocorrelation function, ξ (σ , π ),
we find values for the galaxy infall parameter, βgal, consistent within
≈1–1.5σ with what would be expected from the measured galaxy
bias. The same is seen for the pairwise velocity dispersion. Overall,
our RSD model is successful in retrieving the properties of the
galaxy velocity field when applied to the clustering measurements
from the simulation, whilst conversely the simulation is shown to
reproduce a realistic galaxy velocity field well.

Following the galaxy autocorrelation analysis, we performed an
analysis of the galaxy–gas cross-correlation. We first analysed the
LBG–Lyα 〈T(s)〉 1D cross-correlation function as calculated di-
rectly from quasar sightline spectra and LBG positions from the
VLRS and Keck surveys. We have re-analysed a subset of six fields
from the eight used in the work of A03 and found good agreement,
observing the small-scale upturn reported in the original work. Our
VLRS results on the other hand, agree with those of A05 (and Rakic
et al. 2012), rather than those of A03, i.e. a continuous decrease in
flux transmissivity around the LBG with no evidence for a spike in
transmissivity. Crighton et al. (2011) noted that such a spike could
still be present but smoothed away by the errors in the LBG veloc-
ities, but this now seems unlikely given the results presented here
and those of A05 and Rakic et al. (2012).

The inclusion of the gas component along with the galaxies allows
us to investigate the effects of gaseous infall on the galaxy–gas dis-
tribution. Fitting an RSD model to the observed VLRS+Keck LBG–
Lyα ξ (σ , π ), we found best-fitting parameters of βLyα = 0.33+0.33

−0.23

and 〈w2
z 〉1/2 = 190 ± 90 km s−1. The large-scale infall measure-

ment is significantly lower than that predicted by McDonald (2003),
i.e. βLyα = 1.3 ± 0.3, whilst the velocity dispersion measurement
is consistent (although lower by ∼1σ ) with the velocity errors in
our galaxy redshifts. Interestingly, the second point here leaves lit-
tle room for any intrinsic velocity dispersion between the gas and
galaxies at small scales. We see similar results when analysing
the simulated galaxy–Lyα cross-correlation. Again, we find
βLyα ≈ 0.3, whilst the velocity dispersion is measured to be
somewhat lower than we might expect for the gas–galaxy veloc-
ity dispersion based on their directly measured individual velocity
profiles (i.e. from Fig. 6). Indeed, these small measurements of
the galaxy–gas velocity dispersion in both our observations and
simulations may be indicative of highly coherent motion between
gas and galaxies at small scales.

From the Lyα autocorrelations ξ (r) and ξ (σ , π ), we see simi-
lar results, again with small differences between real and redshift

space. At small scales, the velocity dispersion needed to fit the
simulated ξ (s) is less than measured directly in the simulation, al-
though this may be partly explained by the intrinsic width of the
Lyα lines contributing artificial autocorrelation below separations
of �0.7 h−1 Mpc. At larger scales, the value of ξ (s)/ξ (r) gives
βLyα = 0.4 ± 0.16 rather than the range given by McDonald (2003),
βLyα ≈ 1–1.6 (but entirely consistent with the results from the
GIMIC cross-correlation).

At larger scales, one possibility to explain the low gas infall rate
may be the presence of feedback in the GIMIC simulations. Galaxy-
wide winds powered with initial velocities of 600 km s−1 are invoked
in the GIMIC simulations and this is a significant amount, since this
corresponds to 6 h−1 Mpc. These winds are modelled by each star
particle that forms, imparting a randomly directed 600 km s−1 kick
to four of its gas particle neighbours. It is possible that this outflow
of the gas could cancel out some of the expected gravitational infall,
particularly in the neighbourhood of a galaxy. However, it remains
to be seen whether enough gas particles are outflowing to explain
the lack of infall in the gas cross- or autocorrelation functions. If
the effects of gas outflow were detectable in the gas dynamics, this
could be a powerful probe, since there is no evidence of feedback
from any spike in transmission due to lower neutral gas density
close to the galaxy.

Studies by Rakic et al. (2012) and Rakic et al. (2013) presented
the LBG–H I cross-correlation at z ∼ 2.4 with observations and
simulations respectively. In both cases, the authors report a signif-
icant measurement of RSD, showing evidence for both small-scale
peculiar velocity effects and large-scale bulk motion of gas in-
falling on to observed and simulated galaxies. Rakic et al. (2013)
find that, in terms of the reported large-scale ‘flattening’, the ob-
servations of Rakic et al. (2012) are consistent with the simulation
results for galaxy samples selected with minimum halo masses
of log(Mmin /M�) = 11.6 ± 0.2. This is consistent with the halo
masses (measured from galaxy clustering) of Trainor & Steidel
(2012), but is significantly higher than the halo masses of the
galaxy samples used here (and those of Bielby et al. 2013, A03
and A05). We are unable to probe this larger halo-mass constraint
given the size limitations of GIMIC; however, we note that our
GIMIC 2D cross-correlation results appear qualitatively consistent
with the results of Rakic et al. (2013) at lower minimum halo
masses. Additionally, Rakic et al. (2013) compared their measure-
ments for different feedback prescriptions, finding that including
AGNs weakened the absorption by H I (within ∼1 Mpc), whilst
increasing the wind mass-loading increased the measured absorp-
tion. The authors do not make any quantitive analysis of the effect
of increasing the wind mass-loading on the presence of large-scale
infall in the cross-correlation analysis. However inspecting their
fig. 4, it is evident that there is indeed some movement in the large-
scale measurement of the gas distribution when the wind mass-
loading is increased (i.e. comparing the ‘REF’ model result with
the ‘WML4’ result). This provides some additional motivation for
the supposition that SNe-driven winds could affect our measurement
of βLyα . An important test of this will be to apply our RSD mod-
elling to a range of simulation runs incorporating different feedback
prescriptions.

Rakic et al. (2012) also investigate the effect of small-scale
random peculiar velocities on their observed cross-correlation,
finding evidence for peculiar velocities between gas and galax-
ies of ∼240 km s−1. Such a large peculiar velocity is not apparent
in the simulation results of Rakic et al. (2013) and neither is it
in our simulation results. Our observations give a measurement of
the velocity dispersion consistent with that reported by Rakic et al.
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(2012); however, this is largely dominated by galaxy redshift errors,
as we have discussed.

The Rakic et al. (2012) results have since been further developed
by Turner et al. (2014), in whose work increased numbers of the
galaxy sample have been observed using the MOSFIRE instrument
at the Keck Observatory (improving redshift accuracies). Turner
et al. (2014) report consistent results with Rakic et al. (2012) for the
galaxy–H I cross-correlation, seeing the same finger-of-God and
large-scale infall effects with their improved redshift errors. It is
difficult to make a quantitive comparison between our results and
those of Rakic et al. (2012, 2013) and Turner et al. (2014), however,
given the different measurements made. Qualitatively, these com-
plementary studies are consistent with the work presented here in
identifying the presence of both large-scale infall and small-scale
peculiar velocity effects in the H I gas around z = 2–3 star-forming
galaxies.

A more direct comparison can be made with the results of Slosar
et al. (2011), who measure the βLyα parameter from the autocorre-
lation of the Lyα forest in BOSS quasar spectra. They find a range
0.44 < βLyα < 1.20, at central redshift z = 2.25. This large range
is, however, consistent at the 1σ level with all other results con-
sidered, i.e. the VLRS+Keck observations, the GIMIC simulation
results and the theoretical prediction from McDonald (2003). In-
terestingly, though, assuming βLyα behaves as βgal it should then
decrease with increasing redshift and we would expect the z = 3
result to be marginally lower than βLyα at z = 2.25, which is what
we find in our study.

8 C O N C L U S I O N S

We have analysed the interaction between galaxies and the IGM
using a large sample of z ∼ 3 LBGs, in combination with spec-
troscopic observations of background quasars. In addition to the
observational data, we employ the SPH GIMIC simulation to anal-
yse the clustering of gas and galaxies.

(1) We analyse the autocorrelation of simulated galaxies in the
GIMIC simulation using two samples: M∗ > 108 h−1 M� and
M∗ > 109 h−1 M�. The M∗ > 109 h−1 M� sample was chosen
to match the clustering amplitude of observed LBGs, while the
M∗ > 108 h−1 M� sample provides a comparison set with higher
numbers and hence better statistics. In the simulated data, the dif-
ference between the real- and redshift-space correlation functions
is too small to be explained self-consistently by the measured pe-
culiar velocity distribution. We suggest that this is the consequence
of a scale dependence in the measurement of the peculiar motions
and that the peculiar motions taken within �1 h−1 Mpc give a more
consistent result.

(2) We have checked for the existence of a transmission spike
near star-forming galaxies in the data and GIMIC simulations,
which could be indicative of the effects of star-formation feedback
on the IGM. For the data, we combined the full VLRS and Keck
LBG–Lyα data sets to study both ξ (r) and ξ (σ , π ) and the LBG–
Lyα correlation functions. We find no evidence for a transmission
spike at small scales and instead find that the gas transmissivity
drops monotonically towards the galaxy, consistent with the den-
sity of neutral gas rising towards the galaxy position. Although the
simulation transmission rises when LBG velocity errors are taken
into account, the simulated and observational results remain in good
statistical agreement.

(3) The redshift-space galaxy–Lyα cross-correlation function in
the simulation is close to the real-space correlation function and to

some extent this is predicted from linear theory applied to the Lyα

forest flux, which has a non-linear relation to optical depth and thus
implies lower rates of dynamical infall of gas into galaxies than
would otherwise apply. We have also considered whether galaxy-
wide outflows may be cancelling out the infall effect.

(4) The observed Lyα autocorrelation function is also consistent
with the simulation. At small scales the difference between real- and
redshift-space correlation functions in the simulation is again less
than predicted, given the peculiar velocity distribution. At larger
scales, we measure the effects of dynamical infall and find them
to be less than predicted, based on the simulations of McDonald
(2003). This may be a residual effect from gas outflows cancelling
out the effects of dynamical infall.

(5) In the simulations, both gas and galaxies show evidence of a
strong bulk motion. This bulk motion is undetectable by observable
correlation functions but may have a connection with the local co-
herence needed to explain why the distribution of peculiar velocities
overestimates the finger-of-God effect.
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Le Fèvre O. et al., 2003, in Iye M., Moorwood A. F. M., eds, Proc. SPIE Conf.

Ser. Vol. 4841, Instrument Design and Performance for Optical/Infrared
Ground-based Telescopes. SPIE, Bellingham, p. 1670

Matsubara T., Suto Y., 1996, ApJ, 470, L1
McCarthy I. G., Font A. S., Crain R. A., Deason A. J., Schaye J., Theuns T.,

2012a, MNRAS, 420, 2245
McCarthy I. G., Schaye J., Font A. S., Theuns T., Frenk C. S., Crain R. A.,

Dalla Vecchia C., 2012b, MNRAS, 427, 379
McDonald P., 2003, ApJ, 585, 34
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