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A generalised compartmental method for investigating the spread of socially determined

behaviour is introduced, and cast in the specific context of societal smoking dynamics
with multiple peer influence. We consider how new peer influence terms, acting in both

the rate at which smokers abandon their habit, and the rate at which former smokers

relapse, can affect the spread of smoking in populations of constant size. In particular, we
develop a three-population model (comprising classes of potential, current, and former

smokers) governed by multiple incidence transfer rates with linear frequency dependence.

Both a deterministic system and its stochastic analogue are discussed: in the first we
demonstrate that multiple peer influence not only modifies the number of steady-states

and nature of their asymptotic stability, but also introduces a new kind of non-linear
‘tipping-point’ dynamic; while in the second we use recently compiled smoking statistics

from the Northeast of England to investigate the impact of systemic uncertainty on the

potential for societal ‘tipping’. The generality of our assumptions mean that the results
presented here are likely to be relevant to other compartmental models, especially those

concerned with the transmission of socially determined behaviours.
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1. Introduction

The modelling of epidemic outbreaks and spread of disease has been investigated

for centuries. Early studies tried to explain the dispersion of bubonic plague and

cholera through observational analysis of mortality data; one of the first math-

ematical attempts being Daniel Bernoulli’s seminal 1766 work on smallpox.5 In

1927, Kermack and McKendrick introduced a deterministic compartmental model

to characterise the behaviour of population subgroups during an epidemic.16 Due

to the relative simplicity of their approach, and its success in describing histori-

cal outbreaks, it has been widely applied and modified to incorporate new groups,

behaviours and stochastic aspects. Indeed, though developed to predict the spread

of infectious disease, recent years have seen a general movement amongst authors
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who—keen to capitalise on the success of the compartmental method—are adapt-

ing epidemiology approaches to model the transmission of ‘infectious’ behavioural

patters in human society, especially those considered addictive or undesirable, such

as cigarette smoking and binge drinking.9,19,22,23,28,31,34 The status of smoking as

a high profile public health risk35 means that modelling societal smoking dynamics

in terms of behaviour transmission is particularly topical.19,31

In this article we generalise a basic compartmental ‘behaviour transmission’

model to include incidence terms describing multiple ‘peer influence’ effects, that

is, the tendency for individuals to follow social norms: either passively, through

‘peer imitation’; or actively, in response to encouragement (‘peer pressure’)11,27.

Though frequently cited as important factors in the spread of many behavioural

trends, these kinds of influences tend to feature in mathematical models only as

part of initial uptake (cf. infection)10,19,22,23,31; their impact on other aspects of

behavioural transmission is rarely considered, and then limited to rates of behaviour

relapse (see, for example, the heroin and bulimia models of White-Comiskey34 and

González et al.9 respectively). Indeed, to our knowledge, the effect of peer influence

on the rate at which individuals abandon a given practice is yet to be considered, an

omission we shall give special attention. Note that we use the term ‘peer influence’

in a broad sense to mean the effect on a given individual of the behaviour of those

with whom he or she has contact—be they relatives, friends, colleagues, teachers,

students, strangers, etc.—and no particular group is assumed.

As a working example, we develop a three population compartmental model

to describe the spread of cigarette smoking, a context in which we expect peer

influence to play a significant role in the rate of both uptake and cessation of

habit11,27: intuitively one imagines that smokers will be more eager to give up

smoking if censured by popular opinion, just as former smokers are more likely to

relapse when in regular contact with people who smoke. However, while cast in

terms of smoking, our model is quite general, and likely to find application in other

kinds of behavioural transmission systems (e.g., those in references [9, 22, 23, 34]).

Given the need to discuss a number of deterministic and stochastic aspects,

what follows is broadly speaking divided into two parts. We begin by developing

the underlying deterministic model (§2), describing its basic properties exclusive

of generalised peer influence in §3, where we determine the system’s steady-states

and their linear stability. The new peer influence terms are added to the model in

§4, a generalisation which we show leads to very different steady-state character-

istics (when compared to the results in §3), and novel ‘tipping-point’ behaviour,

whereby small changes to certain parameters can force dramatic shifts in system

dynamics. To determine the systemic uncertainty in our model, and to better assess

the potential for societal ‘tipping’, we analyse the model stochastically in §5; this

section includes an investigation into the sensitivity of both the deterministic and

stochastic methods. Further developments and generalisations of the model, and fu-

ture possibilities for combined deterministic and stochastic approaches to modelling

behavioural transmission dynamics are considered in section 6.
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2. Three Population Compartmental Model

The basic approach in what we describe as ‘behaviour transmission dynamics’ is

to divide a total population of N individuals into several classes analogous to the

susceptible (S), infective (I), and recovered (R) sub-populations of conventional

SIR epidemic models.12,14,16,24 The dynamics of behavioural transmission are then

characterised by how the sizes of these populations change with time. Our model

of smoking dynamics follows in this tradition, and is in fact adapted from the four

population approach of Sharomi and Gumel.31 In our case, however, we use three

populations, ‘potential smokers’ X, ‘current smokers’ Y , and ‘former smokers’ Z,

omitting Sharomi and Gumel’s fourth class of ‘permanent quitters’ (this does not

imply that smokers cannot permanently cease smoking, it simply means that we

assume any former smoker has some finite probability of relapse).a In this way,

with total population N = X + Y + Z, we employ the following model

dX

dt̂
= µ̂N − µ̂X − β̂X

(
Y

N

)
, (2.1a)

dY

dt̂
= β̂X

(
Y

N

)
+ α̂Z − γ̂Y − µ̂Y, (2.1b)

dZ

dt̂
= γ̂Y − α̂Z − µ̂Z, (2.1c)

where µ̂ is the rate at which individuals both enter and exit the total population

(comparable to birth and death-rates); β̂ is the rate that potential smokers (X)

take up smoking following contact with a current smoker (Y ); γ̂ is the proportion

of current smokers (Y ) who ‘give up’ smoking in time t̂; and α̂ is the proportion of

former smokers (Z) who ‘relapse’ to smoking at time t̂. Notice that the β̂X(Y/N)

term, which describes initial smoking uptake, has a linear proportionality to (Y/N),

an effect reflecting the epidemiology convention that overall incidence of ‘infection’ is

determined partly by the likelihood that a susceptible X interacts with an infective

Y , and thus the density Y/N (the law of mass action24).

The rates themselves have been treated as single parameters; however, they

should be understood as representing the combined effect of multiple mechanisms:

those that act to increase the number of smokers by enhancing α̂ and β̂, and sup-

pressing γ̂ (such as advertising, media presence, and celebrity endorsement); and

those that act to reduce the number of smokers by suppressing α̂ and β̂, and en-

hancing γ̂ (such as health campaigns and governmental policy). Indeed, one of the

main purposes of this article is to examine the effect of peer influence on these rates

more explicitly by including incidence terms in both γ̂ and α̂. Note that the use of

identical entry and exit rates µ̂ is justified providing we assert a relatively young

aTo prevent our notation becoming problem specific, we have chosen not to adopt that of Sharomi

and Gumel, who used P for the class of potential smokers, S for the class of smokers, and Q for the

class of former smokers (‘quitters’).31 This choice should also help to avoid confusion between the
infective class S in the smoking problem, and the susceptible class S in other SIR compartmental

models (see, for example, references [12, 14, 16, 24]).
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population with negligible death rate (cf. Sharomi and Gumel,31 and others19,23).

In this way, summation of equations (2.1) gives

dN

dt̂
=

dX

dt̂
+

dY

dt̂
+

dZ

dt̂
= 0, (2.2)

i.e., the total population size N is constant. Consequently, after assuming constant

µ̂, we may define a set of dimensionless parameters

x =
X

N
, y =

Y

N
, z =

Z

N
, so that x+ y + z = 1, (2.3a)

α =
α̂

µ̂
, β =

β̂

µ̂
, γ =

γ̂

µ̂
and t = µ̂t̂, (2.3b)

and a normalised basic model constrained to two dimensions (z = 1− x− y), viz

dx

dt
= F (x, y) = (1− x)− βxy, (2.4a)

dy

dt
= G(x, y) = βxy − (γ + 1)y + α(1− x− y), (2.4b)

dz

dt
= H(y, z) = γy − (α+ 1)z, (2.4c)

where the form of the final (redundant) equation has been included for completeness.

3. Basic Properties of the Model

Before proceeding to the generalised model, which includes terms to describe multi-

ple peer influence effects in rates of cessation and relapse (see §4), we first consider

its basic properties exclusive of the new effects. The relevant steady-states and their

linear stability are summarised in §3.1 and §3.2 respectively.

3.1. Existence of Steady-States

In steady-state with parameter labels x = x0, y = y0 and z = z0, we clearly require

F (x0, y0) = G(x0, y0) = H(y0, z0) = 0. Solving equations (2.4) subject to this

restriction we obtain the possible equilibrium solutions

either: x0 = 1, y0 = 0 and z0 = 0, (3.1)

or: x0 =
1

(βy0 + 1)
, y0 =

1

β

[
(1 + α)β

(α+ γ + 1)
− 1

]
and z0 =

γy0
(α+ 1)

. (3.2)

Notice here that the first set of solutions, those in equations (3.1), define a

‘smoking-free equilibrium’ (S.F.E.) with y0 = 0; while the second set, those in

equations (3.2), correspond to a possible ‘smoking-present equilibrium’ (S.P.E.)

with y0 > 0 provided

R =
(1 + α)β

(1 + α+ γ)
> 1 ⇔ β > 1 +

γ

(1 + α)
⇒ β > 1, (3.3)



July 31, 2013 17:35 WSPC/INSTRUCTION FILE Bissell-Caiado

COMPARTMENTAL MODELLING OF SOCIAL DYNAMICS 5

where R is the reproduction number. Indeed, when this condition is satisfied, equa-

tions (3.2) give the physical solutions

(βy0 + 1) = R ⇒ x0 =
1

R
< 1, and y0 =

1

β
(R− 1) > 0. (3.4)

The reproduction number determines how any given smoking ‘epidemic’ will

spread: if R is less than unity, then no smoking-present equilibria exist and the

‘infection’ will die out (in this case the S.P.E. is unphysical since it would require

x0 > 1 and y0 < 0); while if R is greater than unity then smoking-present equilibria

are permitted, with larger R implying that a greater fraction of the population will

be affected (x → 0 as R → ∞). As discussed in the introduction, therefore, one

form of intervention to reduce the spread of smoking is to manipulate the rates such

that R is kept as small as possible, i.e., by suppressing α and β, and enhancing γ.b

When we generalise the model to incorporate multiple peer influence mechanisms

in §4, the rates of relapse α and cessation γ will be modified to include linear

incidence terms, and thereby become functions of the population fractions x, y and

z. As we shall see, this innovation will mean that equations (3.2) have the potential

to specify multiple steady-states with R ≡ R(x0, y0).

3.2. Stability Exclusive of Generalised Peer Influence

The stability of the basic model (excluding peer influence in α and γ) may be

deduced from our later and more general analysis in §4, and for present purposes it

is sufficient simply to summarise the main results. The stability of the smoking-free

equilibrium is determined by the inequalities

stable S.F.E. when R ≤ 1 (3.5a)

and unstable S.F.E. for R > 1, (3.5b)

meaning that for a smoking-present equilibrium to exist (R > 1), the S.F.E. must

be unstable. If the S.P.E. does exist, then it is linearly asymptotically stable. A

supplementary derivation of these results is included for reference in Appendix A.

4. Incorporating Generalised Peer Influence

The basic model of smoking dynamics described by equations (2.4) assumes that

interactions between smokers and potential smokers can result in generation of new

smokers through the recruitment incidence term βxy. We now generalise this idea

to the rates of relapse and cessation in a similar way by introducing incidence terms

into the constant rates α and γ; this seems reasonable given that:

• Former smokers (z) are more likely to revert to smoking following interac-

tions with current smokers (y), i.e., lending αz some additional rate ∝ yz.

bNotice that ∂R/∂α = γβ/(1+α+γ)2 > 0; the variations of R with β and γ are clear by definition.
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• Both potential (x) and former (z) smokers (i.e., non-smokers) may well

coerce current smokers (y) into ‘giving-up’, thereby introducing ∝ xy and

∝ yz incidence terms into γy.

On the basis of these assumptions, we therefore redefine α and γ such that

α = a+ νy and γ = c+ ηz + (η + ε)x, with a, c, ν, η, ε ∈ R+, (4.1)

which gives αz = az + νyz and γy = cy + (η + ε)xy + ηyz,

where a and c are ambient rates of smoking relapse and cessation respectively; ν

is the rate that former smokers relapse due to interactions with current smokers

(y); η is the rate that current smokers ‘give-up’ smoking due to interactions with

former smokers (z); and (η + ε) is the rate that current smokers ‘give-up’ smoking

due to interactions with potential smokers. By taking ε ∈ R+, we tacitly assume

that individuals who have never smoked (potential smokers) will have greater co-

ercive effect per capita on the rate at which current smokers stop smoking.c As

before, these rates combine multiple effects: both those that are expected to in-

crease the number of smokers (such as advertising and celebrity endorsement), and

those that might reduce them (e.g., health campaigns and governmental policy).

Indeed, with respect to the new peer influence terms, it seems natural that former

smokers would be more likely to ‘relapse’ following contact with current smokers

when smoking itself is given a ‘positive profile’. And vice versa, current smokers

will be more readily coerced into abstinence by non-smokers given broad societal

intolerance to smoking. Note that α and γ retain ambient constant components, a

and c respectively, since even without the effects of generalised peer influence, we

expect some former smokers to ‘relapse’ (due to either addiction or societal effects,

such as advertising) and some current smokers to ‘quit’ (in response to government

campaigns, for example).

Incorporating the new peer influence rates of equation (4.1) into our basic model

(2.4), we arrive at the augmented system

dx

dt
= F (x, y) = (1− x)− βxy, (4.2a)

dy

dt
= G(x, y) = βxy − (c+ 1)y − (η + ε)xy + (ν − η)yz + a(1− x− y), (4.2b)

dz

dt
= H(y, z) = cy + (η + ε)xy − (ν − η)yz − (a+ 1)z. (4.2c)

In the following sections we explore this modified model by demonstrating the exis-

tence of new steady-states and assessing their asymptotic stability. Before proceed-

ing, however, it is worth making some general remarks about solutions: first, our

assumption of constant total population is maintained, i.e., x+ y + z = 1; second,

equations (3.1) and (3.2) continue to define the smoking-free and smoking-present

cThis assumption may be relaxed (i.e., ε < 0 is also physically permitted), so long as incidence

with potential smokers continues to enhance the cessation rate γ, that is, provided (η + ε) > 0.
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equilibria respectively; and third, for smoking-present equilibria (S.P.E.) to exist,

we still require R > 1, and consequently—because α and γ remain positive—the

inequality β > 1 (see equation (3.3)), though with the new peer influence terms

R ≡ R(x, y) is a function of the population densitite (see equation (4.5)). These

points will be important when we come to establish whether-or-not algebraically de-

rived steady-states are actually physically permitted. Notice that the basic model

may be recovered from our augmented system, that is equations (4.2) reduce to

equations (2.4), when ν, η, ε vanish and we have constant γ = c and α = a.

4.1. Stability of the New Smoking Free Equilibrium

With new definitions for α and γ it is important to reconsider the stability of the

smoking-free equilibrium (x0, y0) = (1, 0), and we now proceed to do so. The linear

stability of a given equilibrium (x0, y0) may be determined in the usual way by

considering the behaviour of perturbations to the steady-state values of the form

x1 = x̃1e
λt and y1 = ỹ1e

λt, where x̃1, ỹ1 and λ are constant, and |x̃1|, |ỹ1| � 1.8,24

Indeed, after setting x = x0 +x1, y = y0 +y1, Taylor expanding F (x, y) and G(x, y)

in equations (4.2), and discarding non-linear terms, we have(
∂xF ∂yF

∂xG ∂yG

)(
x1
y1

)
= λ

(
x1
y1

)
, where J(x0, y0) =

(
∂xF ∂yF

∂xG ∂yG

)
(4.3)

is the Jacobian matrix associated with model (4.2), and the partial derivatives

∂xF = ∂F/∂x etc. are evaluated at (x, y) = (x0, y0). In this way we see that the λ

coefficients determining stability are the eigenvalues of J(x0, y0), and may be found

when non-trivial solutions to equation (4.3) exist, i.e., from the determinant∣∣∣∣∂xF − λ ∂yF

∂xG ∂yG− λ

∣∣∣∣ = 0. (4.4)

In particular, these eigenvalues describe whether perturbations ∝ eλt on (x0, y0) ei-

ther exponentially diverge from the steady-state (instability with λ > 0), or asymp-

totically converge back to equilibrium (asymptotic stability with λ < 0). In principle

one can also derive inequalities governing asymptotic stability when λ = 0, a case to

which we refer throughout as marginal stability, by examining second-order terms

(or higher) in the Taylor expansion of model (4.2). However, stochasticity in realistic

situations means the probability of the system exactly fulfilling marginally stable

conditions will vanish, and consequently—while we do comment on which states are

marginal—here we shall restrict ourselves to simply observing that a formal assess-

ment of second-order stability requires a more detailed analysis of the non-linear

terms. Note that marginal stability typically corresponds to cases where the linear

stability of a steady-state changes polarity, or when two steady-states of opposing

stability converge and annihilate (as with the ‘tipping points’ discussed in §4.5).8

In our augmented model R ≡ R(x0, y0) is a function of both x0 and y0, that is,

R(x0, y0) =

(
1 + α(y0)

)
β(

1 + α(y0) + γ(x0, y0)
) =

(1 + a+ νy0)β(
1 + a+ c+ νy0 + η(1− y0) + εx0

) , (4.5)



July 31, 2013 17:35 WSPC/INSTRUCTION FILE Bissell-Caiado

8 J. J. BISSELL, C. C. S. CAIADO, M. GOLDSTEIN, AND B. STRAUGHAN

(see equation (3.3), note that α and γ remain positive in the generalised system),

so it is useful to define a smoking-free reproduction number R0 such that

R0 = R(1, 0) =
(1 + a)β

(1 + a+ c+ η + ε)
> 0, (4.6)

i.e., R(x0, y0) corresponding to the S.F.E. (x0, y0) = (1, 0). Indeed, doing so means

that the Jacobian matrix associated with the S.F.E. may be written

J(x0, y0) = J(1, 0) =

(
−1 −β

(1− ϕ) β(1− ϕ/R0)

)
, where ϕ = (1 + a), (4.7)

which has eigenvalues λ given by solutions to the characteristic polynomial

λ2 +
1

R0
[R0 + β(ϕ− 1)− β(R0 − 1)]λ− βϕ

R0
(R0 − 1) = 0. (4.8)

Several possibilities exist for the values of the coefficients in this quadratic, and we

consider them in turn. Firstly, if R0 = 1, then either

λ = 0 or λ = −(1 + aβ), (4.9)

in which case the linear stability of the S.F.E. is marginal. Secondly, when R0 > 1,

then it is possible for the set of square brackets in equation (4.8) to be zero, that is

R0 + aβ = β(R0 − 1) ⇒ λ± = ±
(
βϕ

R0

)1/2

(R0 − 1)1/2, (4.10)

so that the S.F.E. is unstable by λ+ > 0. [Note: R0 < 1 is not possible here since

R0 + aβ = β(R0 − 1) would then imply a contradiction.] In all other circumstances

the eigenvalues of the Jacobian matrix defined in equation (4.7) are given by

λ± = − 1

2R0
[R0+aβ−β(R0−1)]

{
1∓

(
1 +

4βR0ϕ(R0 − 1)

[R0 + aβ − β(R0 − 1)]2

)1/2
}
. (4.11)

There are thus two final possibilities for the stability of the smoking-free equi-

librium depending upon whether R0 is greater than or less than unity. First, if

R0 > 1, then the term in curly brackets {1 ∓ (. . . )1/2} changes sign with the po-

larity of the ‘∓’ symbol; in this case, the eigenvalues are of opposite sign, and the

S.F.E. is unstable by either λ+ or λ−, whichever is positive. Second, if R0 < 1,

then the term in square brackets is positive and the real part of the term in curly

brackets obeys 0 < <{1∓ (. . . )1/2} < 2; thus, both <{λ+} and <{λ−} are negative

and the S.F.E. is stable. Combining the above results, the linear stability of the

smoking-free equilibrium may be summarised as:

stable S.F.E. when R0 ≤ 1 (4.12a)

and unstable S.F.E. for R0 > 1, (4.12b)

where marginal stability applies if R0 = 1. These inequalities are consistent with

those given in §3.2 and derived directly in Appendix A, that is, we recover our

previous results when ν, η and ε vanish, for which α = a, γ = c and R0 = R.
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4.2. Existence of New Smoking Present Equilibria

The smoking-present equilibria (x, y) = (x0, y0) defined by equations (3.2) exist

whenever the value of the reproduction number R exceeds unity (R > 1); indeed,

if this condition holds then equations (3.4) give (see §3):

x0 =
1

R(x0, y0)
, and y0 =

1

β

(
R(x0, y0)− 1

)
. (4.13)

A useful approach to calculating the steady-states, therefore, is first to solve for

(R−1), thereby inferring possible solutions whenever (R−1) is positive. Substituting

the steady state values of equation (4.13) into equation (4.5) we find

(R− 1)2 − Λ(R− 1)− ϕβ2

R0∆
(R0 − 1) = 0, (4.14)

with Λ =

[
(β − 1)− β

∆
(1 + a+ c)

]
, and ∆ = (ν − η). (4.15)

Notice by equation (4.2b) that ∆ describes the difference between: i) the rate ν

at which former smokers (z) relapse following contact with current smokers (y); and

ii) the rate η at which current smokers cease smoking due to contact with former

smokers. In any given interaction between a current and a former smoker, it seems

justifiable to assume that the former smoker is more likely to start smoking again

than the current smoker is to stop; consequently, we take

∆ > 0. (4.16)

Solving the quadratic for (R− 1) in equation (4.14), we have

(R± − 1) =
1

2
Λ

{
1±

[
1 +

4ϕβ2(R0 − 1)

∆R0Λ2

]1/2}
, for Λ 6= 0 (4.17a)

and (R+ − 1) =

[
ϕβ2(R0 − 1)

∆R0

]1/2
, for Λ = 0. (4.17b)

Notice that for equation (4.17a) to predict real, physical solutions (something we

shall explore further in §4.5) we require

S =

[
1 +

4ϕβ2(R0 − 1)

∆R0Λ2

]
≥ 0 (4.18)

where we call S the realness parameter. In equation (4.17b) the condition for real,

physical solutions is R0 ≥ 1, which incidentally means that S ≥ 1.

Assuming S ≥ 0, equations (4.17) indicate that whether-or-not (R − 1) is

positive—i.e., whether-or-not smoking-present equilibria obtain—depends on the

signs of Λ and (R0 − 1); the possibilities may be summarised as follows:

• Λ < 0: For negative Λ the condition (R±− 1) > 0 is only possible provided

the term in curly brackets ‘{. . . }’ in equation (4.17a) is also negative, which

requires R0 > 1. For these conditions only the S.P.E. corresponding to R−
is permitted, and converges on the marginal S.F.E. (R− → R0) as R0 → 1.
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• Λ = 0: A single S.P.E. corresponding to R+ is permitted provided R0 > 1;

this S.P.E. converges on the marginal S.F.E. (R+ → R0) as R0 → 1.

• Λ > 0: For positive Λ the S.P.E. corresponding to R+ are always physi-

cally permitted, while those corresponding to R− only obtain provided the

square-bracketed term in equation (4.17a) is less than unity, i.e., R0 < 1;

for these conditions we have that R− → R0 as R0 → 1.

As we shall see in the following section, it transpires that these S.P.E possibilities

(either zero, one or two steady-states) may be tabulated in terms of the S.P.E. linear

stability (see table 1). Before discussing them further, therefore, we must consider

the Jacobian matrix associated with the new peer-influence model.

4.3. Stability of the New Smoking Present Equilibria

After some manipulation, the Jacobian matrix associated with the smoking-present

equilibria (should they exist) may be written

J(x0, y0) =

 −R −β/R

R

[
1− ϕ

R0
− ∆

β2
(R− 1)

]
β

R

[
1− ϕ− ∆

β2
R(R− 1)

] , (4.19)

As in §4.1, the linear stabilities of the equilibria are then determined by solving

for the eigenvalues λ of J(x0, y0), with λ < 0 and λ > 0 implying stability and

instability respectively, viz

λ± = − 1

2Rβ
[βR2 +aβ2 +R(R−1)∆]

1∓

√
1−

8βR2∆(R− 1)[(R− 1)− 1
2Λ]

[βR2 + aβ2 +R(R− 1)∆]2

 .

(4.20)

For physical solutions we require (R − 1) > 0, so the first square bracketed term

here is positive, and the eigenvalues’ signs depend only on whether the square root

is greater than or less than unity. More specifically, if [(R− 1)− 1
2Λ] < 0, then the

eigenvalues have opposite polarity with λ+ > 0, while if [(R − 1) − 1
2Λ] > 0, then

<{λ±} < 0. Thus, the linear stability of the S.P.E. may be neatly summarised:

stable S.P.E. when [(R− 1)− 1
2Λ] ≥ 0 (4.21a)

and unstable S.P.E. for [(R− 1)− 1
2Λ] < 0, (4.21b)

where the equality [(R−1)− 1
2Λ] = 0 corresponds to marginal stability with λ− = 0.

However, by the steady-state solutions to R given in equation (4.17a) we find

[(R± − 1)− 1
2Λ] = ±1

2
Λ

[
1 +

4ϕβ2(R0 − 1)

∆R0Λ2

]1/2
= ±1

2
Λ
√
S, (4.22)

so that the stability of the possible S.P.E. (x0, y0) = (x±, y±) are linked directly

to the sign of Λ and the reproduction number (R+ or R−) with which they are

associated. [Remember: equation (3.4) gives x± = x0(R±) and y± = y0(R±)].

Indeed, by the inequalities (4.21), equation (4.22) means that the states (x+, y+) and



July 31, 2013 17:35 WSPC/INSTRUCTION FILE Bissell-Caiado

COMPARTMENTAL MODELLING OF SOCIAL DYNAMICS 11

Sign of Λ
Stability of S.F.E.

Stable (R0 < 1) Marginal (R0 = 1) Unstable (R0 > 1)

Λ < 0 no S.P.E. solution R− = 1 (Marginal) R− > 1 (Stable)

Λ = 0 no S.P.E. solution R± = 1 (Marginal) R+ > 1 (Stable)

Λ > 0
R+ > 1 (Stable) R+ > 1 (Stable)

R+ > 1 (Stable)
R− > 1 (Unstable) R− = 1 (Marginal)

Table 1. The possible smoking-present equilibria (S.P.E.) tabulated in terms of their associated
reproduction number R assuming S ≥ 0, with their stability (in parenthesis) according to the sign

of Λ and the linear stability of the smoking-free equilibrium (S.F.E.). Here ‘no S.P.E.’ means that

no S.P.E. exist, i.e., either R± < 1 or <{R+} = 0, while single entries imply that the S.P.E. is
unique. The pathological solutions R = 1 are identical to the S.F.E (x0, y0) = (1, 0), and represent

bifurcation points at which S.P.E. emerge (or disappear) following increases or decreases to R0.

(x−, y−) have opposite stability. Naturally, whether S.P.E. actually exist depends on

there being physical solutions to equation (4.17a), and—as we discussed in §4.2—

this too is determined by the values of Λ and (R0 − 1). Consequently, it is possible

to tabulate the steady-states in accordance with both their own linear stability and

the stability of the smoking-free equilibrium. Demarcating solution space in this

way, as we have done in table 1, demonstrates several key features:

• Stable S.F.E. and S.P.E. can coexist for the same set of parameters, that

is, the system can exhibit bi-stability. This contrasts with results from the

basic model, where the existence of the S.P.E. was predicated on the insta-

bility of the smoking-free equilibrium (see §3.2 and Appendix A).

• If the S.F.E. is stable (R0 < 1), and if Λ > 0, then provided the realness

parameter is positive (S > 0) two S.P.E. will exist (see §4.2 and §4.5), with

R+ ↔ R− as S → 0. Conversely, if S < 0 when R0 < 1 and Λ > 0, then

solutions converge on a globally asymptotically stable S.F.E. (see §4.4).

• For Λ ≤ 0 and R0 < 1 no smoking-present equilibria exist. In this case, the

smoking-free equilibrium is globally asymptotically stable (see §4.4).

• When the S.F.E. is unstable (R0 > 1) then S > 1 > 0 is assured, and a

single, stable smoking-present equilibrium exists; this is agrees with results

from the basic model when generalised peer influence is excluded (see §3.2).

• For each condition based on the sign of Λ, the marginally stable S.F.E.

(R0 = 1) marks the bifurcation point for emergence or disappearance of

smoking-present equilibria as R0 is either increased of decreased.

Finally, observe (as expected) that equation (4.20) is consistent with our earlier

statement asserting unconditional linear asymptotic stability of the S.P.E. when

peer influence is excluded from α and γ (see §3.2). Indeed, taking ν, η, ε→ 0, such
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that α = a, γ = c, equation (4.20) becomes

<{λ±} < −
p1
2

(1∓ 1) ≤ 0, where p1 = R+
αβ

R
> 0, (4.23)

an expression which may be compared with equation (A.6) in Appendix A.

4.4. Global Stability in Case of a Single Steady-State

Before proceeding to our numerical and stochastic discussion of the new model

(see §4.5, §4.6, and §5), it is worth reconsidering the stability of the smoking-free

equilibrium when it is the only physical steady-state, i.e., for those situations when

both R0 < 1, and either S < 0 or Λ ≤ 0, meaning no S.P.E. exist (see table 1).

In these cases, inequalities (4.12) indicate that the S.F.E. is locally asymptotically

stable; we now argue for the stronger condition that such stability is global.

Though model (4.2) describes the time dependence of three sub-populations,

our constant total population condition x+ y + z = 1, which asserts x, y, z ∈ [0, 1],

means that our system is effectively two dimensional in x and y, with a domain D

of physically permitted solutions given by (see figure 1)

D = {(x, y) ∈ R2
≥0 : x+ y ≤ 1}, with R≥0 = {x ∈ R : x ≥ 0}. (4.24)

It may be shown that D is invariant (see Appendix B), meaning that solutions stay

within the domain. In addition, our system is plane autonomous, that is,

dx

dt
≡ ẋ = F (x, y) and

dy

dt
≡ ẏ = G(x, y) (4.25)

with F (x, y) and G(x, y) as single valued, continuous Lipschitz functionsd on D

(see equations (4.2)), so that by Picard’s Theorem solutions with initial conditions(
x(0), y(0)

)
= (x̃, ỹ) trace out unique trajectories

(
x(t), y(t)

)
in the phase-plane.

Notice also that the nulcline y = (1 − x)/βx associated with ẋ = 0 divides D into

two regions: one for which ẋ > 0, and another for which ẋ < 0 (see figure 1). These

features may be used to argue for global stability as follows.

Since we are assuming conditions permitting only one steady-state, excepting

the S.F.E. located at (1, 0) there can be no points on ẋ = 0 at which ẏ = 0, meaning

that the sign of ẏ cannot change on ẋ = 0. Consequently, because ẏ is negative at

the intercept of y = (1− x) and y = (1− x)/βx, that is,

ẏ = −
(

(β − 1)

β

)(
c+

(η + ε)

β

)
< 0 for (x, y) =

(
1
β ,

(β−1)
β

)
, (4.26)

we have ẏ < 0 for all trajectories crossing ẋ = 0. These trajectories traverse ẋ = 0

vertically downwards and, because y = (1 − x)/βx is a monotonically decreasing

dThe following Lipschitz conditions may be shown to hold for (x, u) ∈ D and (x, v) ∈ D:

|F (x, u)− F (x, v)| ≤ β|u− v|, |G(x, u)−G(x, v)| ≤ (1 + a+ c+ η + ε+ β + 3∆)|u− v|.
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Fig. 1. Phase-space sketch indicating how an arbitrary trajectory (curve with arrow) starting at

(x̃, ỹ) converges on (1, 0) provided the S.F.E. is the only physical steady-state, i.e., R0 < 1 and

either Λ ≤ 0 or S < 0. The nulcline corresponding to ẋ = 0, namely y = (1 − x)/βx, divides D
into two regions of ẋ with opposing sign (cf. figure 7).

function of x, take solutions
(
x(t), y(t)

)
from the regions of D where ẋ < 0 to the

region where ẋ > 0; trajectories traversing D in the opposite sense are forbidden.

Now suppose our initial conditions are such that (x̃, ỹ) is in the region of D for

which ẋ < 0; because ẋ is negative, the solution trajectory points in the direction

of decreasing x towards the curve ẋ = 0 where ẏ < 0, and thence into the region for

which ẋ > 0 (see figure 1). Further, by our argument in the preceding paragraph,

solutions beginning in or passing through this region (for which x(t) is monotonically

increasing, ẋ > 0) cannot cross ẋ = 0, and are therefore subject to the conditions

0 ≤ y(t) < min

{
(1− x(t)),

(1− x(t))

βx(t)

}
, ẋ(t) > 0, and x(t)→ 1. (4.27)

Hence, when the smoking-free equilibrium is the only permitted steady-state its

globally asymptotic stability is assured, that is, (x, y)→ (1, 0) (see figure 1).

4.5. Preliminary Numerical Discussion

Our main discussion of systemic parameter sensitivity forms part of the stochastic

analysis in the following section (§5.2); nevertheless, it is instructive at this stage

to consider a few numerical features of the model within the purely deterministic

framework, especially variations in the number of steady-state solutions. To this

end we focus on the impact of the new peer influence terms in ε, η and ν, adopting

nominal values for the overall rates similar to those considered by Sharomi and

Gumel,31 specifically α ∼ β ∼ γ ∼ 6. Naturally, our peer influence assumptions

mean that α and γ are functions of x, y and z, and for this reason the values for

a, ν, c, η and ε will be chosen to ensure that α ∼ β ∼ γ ∼ 6 is maintained for

characteristic population densities based on recently compiled smoking statistics

for the Northeast of England,15 i.e., (x, y, z) ≈ (0.4, 0.3, 0.3). Of particular interest
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is the region of parameter space for which Λ > 0 and R0 < 1, since in this case

the system exhibits bi-stability (see table 1); we shall set the ambient rates to

a = c = 0.5, such that these conditions on Λ and R0 are satisfied, and consider each

incidence parameter, ε, η and ν, in turn (§4.5.1, §4.5.2 and §4.5.3 respectively).

4.5.1. Scanning over ε

We begin by taking [ν, η] = [11, 5] and scan over ε ∈ (0, 5), since with (x, y, z) ≈
(0.4, 0.3, 0.3) this choice gives α = c+νy ∼ 6 and γ = ηz+(η+ ε)x ∼ 6 as required.

As we discuss below, because these values yield Λ = 3 > 0, the change in the number

of steady-states with ε which we plot in figure 2 may be understood by referring to

the final row of table 1.

For ε < 2 we have R0 > 1, implying an unstable S.F.E. and—by equation

(4.17a) and inequlity (4.21a)—a single stable S.P.E. given by R+ > 1 (the second

solution R− < 1 is non-physical); this is the steady-state (x+, y+) corresponding

to the third column (final row) in table 1. At ε = 2 we find R0 = R− = 1, so the

stability of the S.F.E. becomes marginal and heralds the emergence of a new S.P.E.

given by (x−, y−), while the S.P.E. (x+, y+) remains stable; the conditions in this

case correspond to those in the second column (final row) of table 1.

Now suppose that ε is increased such that ε > 2, but remains less than some

critical value εc. With ε > 2 we find R0 < 1, so the S.F.E. is now stable; but we

also have R− > 1, implying the full emergence of a second unstable S.P.E. (x−, y−)

to complement the stable solution (x+, y+). These conditions equate to those in the

first column (final row) of table 1. However, notice from figure 2 that as ε tends

towards εc (≈ 4.3 for our chosen parameters), the two S.P.E. solutions meet at a

single equilibrium R+ = R−. As may be seen from equations (4.17a) and (4.18),

such convergence reflects the dependence of (R±−1) = 1
2Λ
{

1± S1/2
}

on the value

of the ‘realness parameter’ S: as ε approaches the critical value εc, the magnitude

of S tends towards S(εc) = 0. This solution is particular important because it

represents the point at which the S.P.E. determined by R± become complex, i.e.,

S(ε > εc) < 0, and therefore forbidden; for these conditions (S < 0) the only

physical solution is the stable smoking-free equilibrium given by R0 < 1. [Note:

The stability of the S.P.E. at ε = εc is marginal, anticipating an approaching shift

in the equilibrium solution.]

4.5.2. Scanning over η

We scan over η ∈ (0, 5) in a similar way to that described above, with the other

parameters fixed at [ν, ε] = [11, 5]. This time Λ is a function of our scanning variable

η; however, the inequality Λ(η) > 0 holds over the entire range, so the conditions

correspond to those in the final row of table 1 as before. In fact, the results in

this case are qualitatively similar to those listed in §4.5.1 (compare figures 2 and

3): first, for η < 2, we have R0 > 1, R− < 1 and R+ > 1, implying both an
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Fig. 2. Left: Solutions for the steady-state reproduction numbers R0 (S.F.E.) and R± (S.P.E.)
as a function of ε at fixed [ν, η] = [11, 5]. The critical value εc, when R+ = R−, represents a

possible smoking ‘tipping point’ beyond which the S.P.E. become complex, and therefore unphys-

ical (see §4.6 and right-hand plot). Right: Steady-state ‘current smoker’ population densities y±
corresponding to the R± (S.P.E.) reproduction numbers (‘thick’ curves), with the S.F.E. y0 = 0

indicated by the ‘thin’ curves (both solid and dashed). The point at which the S.F.E. is only

marginally stable (white circle) is also shown. Here the solid curves are linearly stable states,
while the dashed curves are either linearly unstable, or (as is the case when y− < 0) unphysical.

unstable S.F.E., and a single stable S.P.E. (third column); second, for η = 2, we

have R0 = R− = 1 and R+ > 1, implying a marginally stable S.F.E., and a single

stable S.P.E. (second column); third, for 2 < η < ηc, where ηc is some critical value,

we have R0 < 1, R− > 1 and R+ > 1, implying a stable S.F.E., an unstable S.P.E.,

and a stable S.P.E. respectiveley (first column) . At the critical value ηc (≈ 4.6 for

our chosen parameters), the two S.P.E. merge to a marginally stable steady-state,

beyond which (η > ηc) solutions become complex and therefore unphysical.

4.5.3. Scanning over ν

Finally we consider ν ∈ (10, 15) with [η, ε] = [5, 5], a range ensuring ∆ = (ν−η) > 0

as required by inequality (4.16). In this case R0 = 0.75 is constant (R0 is indepen-

dent on ν), and, since Λ > 0, all solutions correspond to those of the first column

(final row) of table 1; indeed, for ν greater than the its critical value νc (the value

at which which R+ = R−), both stable and unstable S.P.E. obtain. However, in a

similar fashion to that described above, decreasing ν below νc destroys the S.P.E.

as the realness parameter S goes negative and solutions become complex (see figure

3). Notice here that the transition from three to one steady-state solutions occurs

by reducing ν, reflecting its status as the peer influence term which encourages

smoking relapse; this contrasts with the shift to a single S.F.E. for increasing ε and

η, since these terms describe coercion of smokers (by non-smokers) to abstain.

4.6. ‘Tipping Points’ in Societal Smoking Dynamics

As discussed in section 4.4, when the S.F.E. is the only physical steady state (R0 <

1, and either S < 0 or Λ ≤ 0) it is also globally asymptotically stable, so that the
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Fig. 3. Solutions for the steady-state reproduction numbers R0 (S.F.E.) and R± (S.P.E.) as a
function of both η at fixed [ν, ε] = [11, 5] (left, cf. figure 2), and ν at fixed [η, ε] = [5, 5] (right). The

critical values ηc and νc are those for which R+ = R−, and represent possible smoking ‘tipping

points’ beyond which the S.P.E. become complex, and therefore unphysical (see §4.6).

existence of critical values νc, εc and ηc indicates possible discontinuous ‘tipping

points’ in societal smoking dynamics.e

To see this consider both the left and right-hand plots in figure 2, starting at ε =

1, for which only the S.P.E. associated with R+ is stable and the density of smokers

given by equation (4.13) exceeds half the population, i.e., y+ = [R+(ε)−1]/β ≈ 0.55.

If we increase ε to its critical value (εc ≈ 4.3 for our chosen parameters), the S.P.E.

remains stable until the point y+ = [R+(εc) − 1]/β ≈ 0.25 when approximately a

quarter of the population are smoking; however, further increase to ε will destroy

the S.P.E. (see §4.5.1), and the system must reconfigure to the remaining steady-

state, i.e., the smoking-free equilibrium (see §4.4 and figure 4). In this way, the

critical value becomes a societal ‘tipping point’: if εc is reached, then even very

small increments to the success with which potential smokers x encourage or coerce

smokers into abstinence (the term in ε) lead to total smoking cessation (S.F.E.).

The role of such critical values in determining system hysteresis, and their presence

in global parameter space, are discussed further in the following subsections.

4.6.1. System Hysteresis

It is in the immediate stages following societal ‘tipping’ to S.F.E. that the hysteresis

effect becomes important. As shown in figure 2, simply reducing ε to its value prior

to ‘tipping’ will not revert the system to a smoking-present equilibrium, because

while the S.P.E. associated with R±(εc) is unstable, the S.F.E. given by R0(εc) < 1 is

stable. In fact, if we assume that solutions always converge to a steady-state, then

as ε is reduced, we expect the system to remain at the smoking-free equilibrium

until ε = 2 is reached; beyond this point the S.F.E. becomes unstable (R0 > 1), and

the system ‘tips’ back to the stable smoking-present equilibrium associated with R+

eThis feature is especially evident in the dependance of S.P.E. on ε (and η), in which case—as we

discuss in §4.6.1—the system has the potential to exhibit hysteresis cycling.
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Fig. 4. Numerical solution of the peer-influence model for β = 6, a = c = 0.5, and a range of ε (top

row with [ν, η] = [11, 5], see §4.5.1), η (middle row with [ν, ε] = [11, 5], see §4.5.2) and ν (bottom
row with [η, ε] = [5, 5], see §4.5.3). Here we have taken initial values for the population densities

(x0, y0, z0) = (0.4, 0.3, 0.3), consistent with current data from the Northeast of England (see the

introduction to §4.5), while the greyscale colourbars indicate the size of each subpopulation at a
given time t. The (white) dashed lines show the critical values—here (εc, ηc, νc) ≈ (4.3, 4.6, 12)—for

which the realness parameter S changes sign, and represent societal smoking ‘tipping points’.

(see figure 2). Naturally, once returned to the S.P.E. given by R+(ε = 2), the system

will remain stable until ε is increased to its critical value ε, thereby completing the

cycle. Given the potential importance of this kind of hysteresis cycle, formal proof

of non-linear stability in the neighbourhood of the S.P.E would form an important

part of any future study (cf. our discussion of global S.F.E. stability when R0 < 1,

and either S < 0 or Λ ≤ 0 in §4.4).

Interestingly, because R0 is not a function of ν, no hysteresis cycle follows vari-
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ations in the peer influence to relapse. If the system ‘tips’ from a stable S.P.E. in

this case (by reducing ν below its critical value ηc, see §4.5.2), then no change to ν

is capable of destabilising the S.F.E. to which it reconfigures, a result which may be

encouraging to those seeking absolute suppression of cigarette smoking. Neverthe-

less, as we shall discuss in the following subsection, R0 can be pushed above unity

by modifying the parameters on which it does depend, thereby rendering the S.F.E.

unstable and a return to the smoking-present equilibrium (which always exist when

R0 > 1, see equation (4.17a)).

4.6.2. General Comments on ‘Global Tipping Points’

So far our discussion of ‘tipping points’ in the generalised peer influence model has

been restricted to describing how the model behaves as a single variable is changed

and the others are held constant. Naturally, in the real world one would expect

parameters to change simultaneously, and for this reason it is appropriate to make

some general remarks about what might be called ‘global tipping points’, those

which occur when more than one parameter is varied.

First, notice that systemic ‘tipping’ from an S.P.E. to S.F.E. requires conditions

for which R0 < 1, Λ > 0 and S > 0, because the system must exhibit bi-stability if

it is to switch from one stable state to another. Indeed, since discontinuous ‘tipping

points’ essentially represent parameter-space transitions from an S.P.E. location

within table 1 (namely the bi-stable state in the first column, final row) to a non-

physical location completely outside the table, they can only occur when S changes

sign from positive to negative. Transitions within the table to positions marked

‘no S.P.E. solution’ do not represent ‘tipping points’: either because the steady-

state would first pass smoothly through an equilibrium with R± = 1, identical to

the marginal S.F.E. (as is the case with transitions from the second column); or

because solutions become non-physical (S goes negative) and ‘leave’ the table before

such a transition can occur (as is the case when Λ changes sign).f

Given these conditions for discontinuous transitions from a stable S.P.E. to a

stable S.F.E., we can make the following general comment about ‘tipping points’ in

six-dimensional global parameter space V = {(β, a, c, ν, η, ε) ∈ R6
+ : (ν − η) > 0}:

assuming that the system is initially at some stable smoking-present equilibrium

(S.P.E.), any path P (t) = P
(
β(t), a(t), c(t), ν(t), η(t), ε(t)

)
through the sub-space

Vs = {(β, a, c, ν, η, ε) ∈ V : Λ(β, a, c, ν, η) > 0, R0(β, a, c, η, ε) < 1} which crosses

the surface S(β, a, c, ν, η, ε) = 0 from a region where S > 0 into S < 0 will take the

system through a discontinuous ‘tipping point’ to a stable smoking-free equilibrium.

In fact, we can go further by giving limits on the population densities (x±, y±)

fA transition from the bi-stable state (R0 < 1, Λ > 0 and S > 0) to the ‘no S.P.E. solution’ given by
R0 < 1 and Λ ≤ 0 requires the value of Λ to pass through zero; however, since S(Λ, R0 < 1)→ −∞
as Λ→ 0+, the solution would ‘tip’ by S changing sign before such a transition could occur.
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corresponding to the marginally stable S.P.E. at the ‘tipping surface’ S = 0. Since

R±(S = 0) =
Λ + 2

2
and 0 < Λ =

[
(β − 1)− β

∆
(1 + a+ c)

]
< (β − 1), (4.28)

with x± = 1/R± and y± = (R± − 1)/β (see equation (4.13)), we have that

2

β + 1
<

2

Λ + 2
= x± < 1, and 0 < y± =

Λ

2β
<

1

2

(
1− 1

β

)
<

1

2
; (4.29)

so the density of smokers (y) must be less than half the total population before

societal tipping to a smoking-free equilibrium can occur.

5. Sensitivity Analysis and Stochastic Modelling

By definition, a deterministic model does not incorporate uncertainty, and for

a given set of initial conditions, it will always return the same output. Conse-

quently, one can extract a number of properties—such as those listed in the previ-

ous sections—which yield valuable information about system behaviour. Neverthe-

less, no matter how sophisticated a deterministic approach might be, it can never

completely represent the system that is being modelled: issues such as uncertainty

derived from randomness, lack of information, parameter sensitivity, and incom-

pleteness of the model itself, are all tacitly excluded. Since we are interested in

using our augmented system (4.2) to model societal smoking dynamics in the real

world, it is now essential that such uncertainty be addressed.

In the following sections we investigate systemic uncertainty of model (4.2) in

two ways. First (§5.1), we assess parameter sensitivity using Sobol’s variance-based

approach, which can be adapted for both deterministic and stochastic models (see

references [25, 32]); we want to compute the main effects and interactions through

time of each model parameter, thereby investigating both their impact on overall

output, and temporal changes in their effects, especially in the region of possible ‘tip-

ping points’. Second (§5.2), we examine the impact of random fluctuations (noise)

on model (4.2) by constructing an analogous stochastic representation. As with our

deterministic sensitivity analysis (§5.1), the stochastic approach is also assessed in

terms of both parameter uncertainty and sensitivity (§5.3 and §5.4 respectively).

5.1. Sensitivity of the Deterministic Model

Any model can be seen as a simulator that takes a set of inputs and return a

set of outputs. Here our simulator is given by the augmented system of differential

equations (4.2), with input space formed by the variables β, a, c, ν, η, ε and starting

points x(0), y(0), z(0), and a dynamic output space formed by the population sizes

x(t), y(t) and z(t) at each time t > 0. Notice that with x(t) + y(t) + z(t) = 1

our input space is 8-dimensional, while our output space is two-dimensional. In

reference 32, the main effect index for a given input variable φ is defined by the

average of the output variance of its contribution (as determined by varying φ
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alone, holding the other input subspaces fixed) normalised to the model’s total

variance. Letting Pi(t), i = 1, . . . , 8 represent the input space parameters at time t,

and K(t) = {x(t), y(t), z(t)} be the model output at time t, the main effect S(t)ij
of an input parameter Pi on the output Kj (j = 1, . . . , 3) at time t, is thus

Sij(t) =
VarPi

[E−i(Kj(t)|Pi(t))]
Var(Kj(t))

. (5.1)

Here the integral on the numerator of each index can become computationally

expensive as the number of input parameters and the number of time steps required

for accuracy increases. Nevertheless, since paths in the deterministic model vary

smoothly through time, this is not a serious problem, and to estimate the main

effect indices S(t)ij we use a Monte Carlo method based on a 16-dimensional Latin

hypercube design with a correlation-based criterion. The indices show convergence

with around 1000 sample surfaces, where each surface contains 500 time samples

in the interval [0, 10]; each index is calculated at each time step for all 8 input

variables, and independently for each output variable. These results are displayed

in figure 5; note that we omit the higher-order interaction indices since their values

are negligible for all values of t.

As we would expect from a robust model, the start points x(0), y(0) account

for a fairly small amount of the model’s variability. We observe that the population

of potential smokers responds mostly to the initial smoking incidence rate β. The

population of smokers responds strongly both to the ambient rates of relapse a and

cessation c, and moderately to: the initial incidence β; the rate of relapse due to in-

teractions with current smokers ν; and the rate of cessation due to interactions with

former smokers η. Finally, of all the parameters, the population of former smokers

seems most affected through time by the ambient rate of cessation c; however, initial

uptake β and relapse a have some effect too. This analysis also indicates that our

new parameters, those used to generalise the effect of peer influence, are relevant,

and account for a significant part of the output’s variability.

Our above discussion has shown how these three subpopulations respond to ini-

tial conditions and model parameters in an ideal environment with constant popu-

lation size, constant parameters, and no uncertainty. From §4.6.2, we can see that

changes in β seem to be the most relevant when investigating tipping points; indeed,

our model’s behaviour on the ‘tipping surface’ indicates that once a transition from

an S.P.E. to stable S.F.E. (R0 < 1) occurs, substantial changes to either β, a or c

are nedeed to force R0 > 1, destabilise the S.F.E., and change states again. This is

consistent with the indices in figure 5, since the two main subpopulations, potential

smokers and current smokers, are most sensitive to these three parameters (a, c, β).

Having discussed model sensitivity to changes in initial input parameters (which

are then held constant over the duration of simulation), we must also consider how

the system behaves when these parameters and populations are subject to continual

uncertainty; to this end, we now turn our attention to developing a three-population

stochastic analogue of the deterministic model (4.2).
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Fig. 5. Main effects by population for the parameters β, a, c, η, ε, ν (abscissa axis), and starting
points x(0), y(0), and time t ∈ [0, 10] (ordinate axis). The effects are calculated using Sobol’s

decomposition, and standardised by the model’s total variance; the higher a parameter’s effect at

a given time, the more sensitive the corresponding population will be to small variations in said
parameter. As expected for a robust model, its sensitivity to variations in the subpopulation start

points is low relative to the main parameters; this indicates that regardless of the model’s initial

state, in most cases it is possible to implement policies to change the final population distribution.

5.2. Stochastic Analogue of the Deterministic Model

We now consider a stochastic analogue of the deterministic system with generalised

peer influence (model (4.2)). Let {K(t) : t ∈ T} be a stochastic process (where

K = (x, y, z) is a vector representing the populations of potential (x), current (y),

and former (z) smokers, and T is some time interval), and define b : R3 → R3, with

b1 = F (x, y), b2 = G(x, y) and b3 = H(y, z) as in equations (4.2). We then define

the corresponding Wiener process for the three-population deteministic model as

dK(t) = b
(
K(t)

)
dt+BdW (t) (5.2)

where dW (t)/dt represents three-dimensional white noise (i.e., the time derivative

of a Wiener process), B
√

dt =
√
V , and V is a positive definite covariance ma-

trix. Further defining the expected value E
(
dK(t)

)
= b
(
K(t)

)
dt, we say that the

covariance matrix V is given by

Var
(
(dK(t)

)
= E

(
dK(t)(dK(t))′

)
− E

(
dK(t))E(d(K(t)

)′
(5.3)

≈ E
(
dK(t)(dK(t))′

)
, E
(
dK(t))E(d(K(t)

)′ ∈ O((dt)2).
Rewriting the system of equations in the three population model, we have

dX(t) = F (X,Y )dt+B11dW1 +B12dW2 +B13dW3 (5.4)

dY (t) = G(X,Y )dt+B21dW1 +B22dW2 +B23dW3

dZ(t) = H(Y,Z)dt+B31dW1 +B32dW2 +B33dW3
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where W1, W2 and W3 are three independent Wiener processes.

This is an Îto stochastic process and satisfies the Existence and Uniqueness

Theorems (see Kloeden & Platen [17]); moreover, when solutions for the determin-

istic system exist, the trajectories of these stochastic differential equations converge

uniformly on a closed time interval to the deterministic solutions. Therefore, in

near-ideal conditions of low noise and small parameter variability, the mean distri-

bution of this stochastic process is expected to converge to the deterministic paths.

This only means that the underlying behaviour of the stochastic model would be

similar to the deterministic; stochastic paths will most likely differ from the ideal

case when subject to any form of noise.

Figure 6, gives an example of this stochastic system using starting points based

on statistics for the Northeast of England,15 that is, (x, y, z) ≈ (0.4, 0.3, 0.3): the

solid and dashed lines show the underlying deterministic model and a sample

stochastic path respectively, while the patches represent 95% quantiles for each

population. Here the parameters and start points are identical (and fixed) for all

simulations, and B is a randomly generated positive-definite matrix. Notice that

the overall mean path is not affected, and is indistinguishable from the determin-

istic path after 1000 samples; however, it is clear that sample paths can be fairly

different from the mean path, and even if the mean process appears to have reached

stability, this does not necessarily correspond to stability of the sample path.

5.3. Sensitivity of the Stochastic Model

In this section we investigate the sensitivity of the stochastic model using the same

method we applied to our deterministic system in §5.1 above. First we analyse the

case where B is diagonal, with entries restricted to the interval [0, 1] (it would be

unrealistic to accept noise levels higher than the population size). Since for the

stochastic model we need to consider sensitivity in the diagonal of B, we now have

an 11-dimensional input space defined by the six rates β, a, c, η, ν, ε, the two

starting points x(0), y(0), and the three matrix elements B11, B22, B33. We use a

quasi-Monte Carlo method and a 22-dimensional (22D) Latin hypercube sample to

estimate the main effects for each input at the times t ∈ [0, 10]. Due to the increased

number of input parameters and the variability caused by the stochasticity of the

model, the time interval ∆t = 0.002 is finely sampled, and convergence for all

parameters appears after around 105 samples in our 22D latin hypercube.

The response of the three populations to the main parameters and start points is

similar to the effects in the deterministic model; the effect of start points is slightly

higher for small values of t but is quite small when compared to the effects of β, a

and c. The second variational parameter B22 is the only one to have a significant

effect in any of the three subpopulations; its effect is higher in the populations of

potential smokers x and former smokers z, which is consistent with the fact that

the population of current smokers y directly affects the other two populations. The

variational parameters show that oscillations in the populations of potential and
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Fig. 6. Example of the stochastic system in Equation 5.4. The ‘smooth’ lines correspond to the

deterministic model, while the ‘noisy’ lines represent a sample stochastic path, and the patches

are the 95% quartiles for each population. The asymptotic values are (x, y, z) ≈ (0.28, 0.44, 0.29).

former smokers, unlike the population of current smokers, do not affect the overall

stability of the model, but significant changes to the population of smokers can lead

to a change in state.

Now we analyse the case where B is a symmetric positive-definite covariance

matrix with entries in the interval [−1, 1]. In this situation our input space consists

of the six main model parameters β, a, c, η, ν, ε, the two start points x(0) and y(0),

and six covariance parameters. Given the dimensionality of such a problem, and

its new correlation structure, estimating the main effect parameters becomes more

expensive. To achieve satisfactory convergence for the main effects, we keep the

time sampling interval at ∆t = 0.002 and generate 108 samples in a 28-dimensional

Latin hypercube. Since we have to guarantee that the matrix B is positive definite,

we test for positiveness in each sample, resampling if the condition is not met.

The sensitivity profile of this model is still similar to the original parameters

in the deterministic model, but the effects of the background relapse a and cessa-

tion rates c is reduced in the population of potential smokers, and increased in the

populations of current smokers and former smokers. In the population of current

smokers, the effect of parameters other than a and c is negligible, while in the other

two populations, the effect of the correlation parameters is more evident. The sub-

population of potential smokers shows higher effects for the parameters linked to the
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population of current smokers B12, B22 and B23, implying that interactions between

the population of non-smokers (x+ z) and smokers (y) are the most important.

The main effects of the correlation parameters on the population of former smok-

ers is almost the same for all parameters, with B12 and B33 slightly higher than

the remaining four. The increased significance of B12 in this population (z) seems

to reflect part of the effect of the initial uptake β and cessation c rates, since a sub-

stantial increase in both these rates would lead to an increase in this population.

The response of the population of non-smokers (x+ z) to these correlation param-

eters might also indicate the need to modify the model to include more parameters

describing interactions between the three groups, or add a temporal variability to

some of the parameters that are assumed constant. Overall, from the three sensi-

tivity analysis discussed here, we see that the population of current smokers y is

the most robust and least sensitive to fluctuations, while from the remaining two,

the population of potential smokers x is most responsive to changes in the mod-

elling parameters, and the population of former smokers z most volatile when the

stochasticity is incorporated.

5.4. Uncertainty of the Stochastic Model

We are studying a three-population stochastic model with a 14-dimensional pa-

rameter space comprising the six parameters β, a, c, η, ν, ε from the generalised

deterministic model (4.2), two start points x(0) and y(0), and six correlation param-

eters (elements of B). Despite having a low-dimensional problem, prior information

and expert judgements about the rates that we are investigating are scarce, meaning

that a high-level of uncertainty and possible ambiguity exists regarding interpreta-

tion of model outputs.26 The sensitivity analyses conducted above (§5.1 and §5.3),

indicate to which parameters the model is more robust; we know that those pa-

rameters to which the model is most sensitive—e.g., rates of initial uptake β and

cessation c—are also those most likely to induce high variability in the final outputs.

We also analysed parameter interactions, noting them to be fairly small; how-

ever, this does not imply that they are uncorrelated. In fact, they are likely to be

correlated through interactions with one or more subpopulations, suggesting that in

future works we should investigate parameters as functions of time and subpopula-

tions. The datasets currently available are small and simplistic, providing temporal

data on the three population sizes, but little information about contact rates, or

motivation for initial uptake or cessation.15 Moreover, it is known that some people

who categorise themselves as “casual smokers” deny being “smokers” when asked;

given that the class of potential smokers x could be seen as the most influential

category, and the class of former smokers z the most volatile, such behaviour could

considerably affect the uncertainty linked to these two populations, especially given

that our model portrays the current smoker class y as the most robust. So, regard-

less of how unrealistic a three-population model might initially appear, investing in

a more complex model would not necessarily result in improved predictive capacity
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until the uncertainty in simple models such as ours can be understood; indeed many

variables related to social behaviour are unmeasurable or unobservable.

6. Conclusion

We have developed a new compartmental model for describing the transmission of

socially determined behaviours when generalised ‘peer influence’ terms act between

each of the subpopulations, and discussed it in the context of societal smoking

dynamics. Both deterministic (§4) and stochastic (§5) aspects have been considered:

in the former, we derived general results about system dynamics, such as the number

of steady-states and the nature of their asymptotic stability; while in the latter, we

examined aspects of uncertainty that are essential to interpreting model output for

application to real-world situations.

In the deterministic analysis (§4), we demonstrated that new peer influence

terms in rates of relapse and cessation result in markedly new behaviour (when

compared to a basic model for which peer influence is assumed in rates of initial

uptake only). In particular, we found that the inclusion of generalised peer influence

allows for additional equilibria (§4.2), system bi-stability (§4.1, §4.3, §4.4 and §4.5),

and the introduction of both ‘tipping point’ dynamics and hysteresis (§4.6). These

results contrast with the basic model, where for a given set of model parameters

only a single stable steady-state is permitted (see §3). Such features may be of con-

siderable interest to both health practitioners and policy makers: for example, the

existence of societal ‘tipping points’ suggest that (for some conditions) sustained

changes to system parameters can eventually lead to dramatic system shifts; while

the presence of hysteresis means that such changes might persist in the long-term.

The new aspects are also significant from a purely modelling perspective: the fact

that relatively small changes to the underlying system (introduction of new inci-

dence terms) can induce such novel behaviour, raises important questions about

structural stability of the compartmental approach.4,9,19,22,23,28,31,34

The sensitivity analyses and stochastic simulations of our generalised model in

§5 showed that the three sub-population classes are responsive to the new param-

eters, justifying the introduction of multiple peer influence terms. However, while

we have been able to initialise our simulations with known population densities

(those relevant to the Northeast of England15) the difficulty in obtaining reliable

information about other system parameters means that further research is needed

to fully understand model uncertainty. In future, we need to investigate the impact

of new interaction terms and non-linear incidence (either as functional or stochas-

tic processes), since this would help to account for changes in behaviour, both

through time, and with population distribution. Indeed, topics such as non-linear

incidence are known to have important consequences for compartmental modelling

in epidemiology,13,18,20 and so are also likely to be relevant to social dynamics.

More generally, there exist a number of fundamental questions concerning math-

ematical descriptions of social behaviour. Certainly, another way of viewing the
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smoking dynamics problem modelled here is as a complex system, one in which

the decisions of individual agents are likely to vary heterogeneously, with a range

of nonlinearly additive2 interactions. Our compartmental method neglects some of

these aspects by treating the system on a macroscopic scale assuming heterogene-

ity to be averaged out as a mean-field. Nevertheless, one can go deeper into the

microscopic structure by taking a statistical approach and using game theory to

model the output of individual interactions,3,6,30 while the impact of heterogeneity

can be investigated directly by studying games on graphs.29 It would be interest-

ing to consider further the relationship of the macroscopic compartmental method

adopted here to—or indeed emergence from—smaller scale multi-agent systems (see,

for example, Bellomo et al.1,2,3 and references therein).

Nevertheless, while our present model is based on assumptions that are only

likely to fit a specific age group or region at any given time, more sophisticated social

elements can be included at the macroscopic scale by adding new compartmental

groups, and allowing them to mix and interact. The next step, therefore, would be to

incorporate age and gender structure to the model, and indeed entirely new classes

(such as ‘casual’ and ‘chain’ smokers) with different vital dynamics (for a discussion

of non-linear age dependent population dynamics see G. F. Webb [33]); spatial

heterogeneity could also be addressed, either through use of patch models,21 or

systems of partial differential equations.24 However, as our present study has shown,

if such developments are to have practical consequences for the work of health

practitioners, then more comprehensive data is needed than that currently available,

especially regarding rates of smoking uptake and cessation; ideally, therefore, future

modelling activities should be undertaken in conjunction with new empirical studies.

Appendix A. Stability of the Basic Model

Although our approach is inspired by Sharomi and Gumel,31 the fact that we use

three populations rather than four means that the stability of our basic model

does not directly follow from their original paper.31 For completeness, therefore,

we now include a direct stability analysis of the S.F.E. and S.P.E. when multiple

peer influence is excluded (§A.1 and §A.2 below). Note that the stability conditions

found here represent limiting cases with which to compare the results derived from

our more general peer influence model in §4.

A.1. Smoking Free Equilibrium

We analyse the stability of the smoking-free equilibrium (x0, y0, z0) = (1, 0, 0) us-

ing the ‘next generation method’ described by Sharomi and Gumel.7,31 Linearising

equations (2.4b) and (2.4c) about y0 = z0 = 0 by taking y = y1e
λt and z = z1e

λt,

with y1, z1 ∈ R+ and λ constant, we find(
A−B

)
· v = λv, where v =

(
y1
z1

)
, (A.1)
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and the matrices A and B are defined such that B is an M-matrix, i.e., has non-

negative diagonal elements and non-positive off diagonal elements, viz

A =

(
β 0

0 0

)
and B =

(
(γ + 1) −α
−γ (α+ 1)

)
. (A.2)

Since y, z ∝ exp(λt), the stability of the S.F.E. depends on the signs of the

eigenvalues λ of (A−B). Fortunately, by defining A and B as we have done, these

may be readily determined7,31; indeed, in this case the next generation method

states that providing the spectral width ρs of the matrix A · B−1 exceeds unity,

then there exists at least one positive eigenvalue λ > 0, otherwise all λ ≤ 0. More

specifically, if ρs(A ·B−1) = sup{||λk||} > 1, where λk are the k = 1, 2 eigenvalues

of (A ·B−1), then the S.F.E. given by (x, y, z) = (1, 0, 0) is unstable. In this way, it

is possible to demonstrate ρs(A ·B−1) = R and thus

stable S.F.E. when R ≤ 1 (A.3a)

and unstable S.F.E. for R > 1, (A.3b)

where the equality applies to the marginally stable state for which equations (3.1)

and (3.2) yeild identical solutions (cf. inequalities (4.12) in §4.1). Consequently, for

the S.P.E. to exist, i.e., R > 1, the S.F.E. must be unstable.

A.2. Smoking Present Equilibrium

For R > 1 and constant α and γ, the smoking-present equilibrium (x0, y0) given by

equations (3.2)—or identically by equations (3.4)—is unique and defines a Jacobian

matrix associated with equations (2.4) of the form

J(x0, y0) =

(
∂xF ∂yF

∂xG ∂yG

)
=

(
−R −β/R

R− (α+ 1) −αβ/R

)
. (A.4)

The eigenvalues of J(x0, y0) are thus found by solving the characteristic polynomial

λ2 + p1λ+ p2 = 0, where p1 = R+
αβ

R
and p2 = β(α+ 1)

(R− 1)

R
. (A.5)

Since both coefficients of this quadratic are positive (we require R > 1 for an S.P.E.),

the real parts of the possible eigenvalues are accordingly negative:

<{λ±} < −
p1
2

(1∓ 1). (A.6)

Hence, the smoking-present equilibrium is always locally asymptotically stable.

Appendix B. Closure of Solution Space

Our argument for global stability of the S.F.E. when it is the only steady-state (see

§4.4) assumes that the system stays within the domain D of physical solutions

D = {(x, y) ∈ R2
≥0 : x+ y ≤ 1}, with R≥0 = {x ∈ R : x ≥ 0}, (B.1)
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Fig. 7. Qualitative sketch showing trajectories starting from the domain boundary (arrows) crossing

∂D into D. Note the intersections of the nulcline ẋ = 0 (dashed) with y = (1−x), and the division

of D into regions where ẋ > 0 and ẋ < 0 (cf. figure 1).

i.e., that D is invariant. Recalling that the trajectory at a given point (x, y) is given

by the direction of the phase-space velocity vector (ẋ, ẏ), where

ẋ = F (x, y) = (1− x)− βxy, (B.2a)

ẏ = G(x, y) =
(
β − (η + ε)

)
xy − (c+ 1)y +

(
(ν − η)y + a

)
(1− x− y), (B.2b)

(see model 4.2), the gradient of a trajectory in phase-space is given by(
dy

dx

)
x,y

=
ẏ(x, y)

ẋ(x, y)
, for ẋ 6= 0. (B.3)

Hence, closure can be established after demonstrated how—with the exception the

critical point (x, y) = (1, 0) corresponding to smoking-free equilibrium—the tra-

jectory of a solution
(
x(t), y(t)

)
starting from a point

(
x(0), y(0)

)
=
(
x̃, ỹ
)

on the

boundary ∂D of the domain will cross it (i.e., is non-parallel to ∂D) in such a way as

to take solutions further into D. We proceed with such an approach in the following

sections, dividing ∂D\{(1, 0)} into three segments such that

∂D = ∂D1 ∪ ∂D2 ∪ ∂D3 ∪ {(1, 0)}, (B.4)

where ∂D1, ∂D2, and ∂D3 are defined

∂D1 = {(x, y) ∈ R2 : 0 < x < 1, y = 0}, (B.5a)

∂D2 = {(x, y) ∈ R2 : 0 ≤ y ≤ 1, x = 0}, (B.5b)

∂D3 = {(x, y) ∈ R2
+ : (x+ y) = 1}. (B.5c)

respectively (see figure 7), and represent those parts of ∂D excluding {(1, 0)} which

coincide with either the coordinate axis or the line y = (1− x).
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B.1. Boundary on the x-axis

For (x̃, ỹ) ∈ ∂D1 we have ỹ = 0 and x̃ ∈ (0, 1), and thus

ẋ = (1− x̃) > 0, and ẏ = a(1− x̃) > 0, ⇒
(

dy

dx

)
x̃,ỹ

= a > 0. (B.6)

Since the gradient of this trajectory is positive (and therefore none parallel to ∂D1,

which has zero gradient) with ẋ, ẏ > 0, solutions starting from (x̃, ỹ) cross the

boundary deeper into D (see figure 7). Notice that the magnitude
√
ẋ2 + ẏ2 of the

phase-space velocity on ∂D1 obeys

lim
x̃→1−

(√
ẋ2 + ẏ2

)
= lim
x̃→1−

(
(1− x̃)

√
1 + a2

)
= 0, (B.7)

consistent with our critical point (x, y) = (1, 0) as the smoking-free equilibrium.

B.2. Boundary on the y-axis

For (x̃, ỹ) ∈ ∂D2 we have x̃ = 0 and ỹ ∈ [0, 1], and thus

ẋ = 1 > 0, and ẏ = a− (1 + a+ c−∆)ỹ −∆ỹ2, ⇒
(

dy

dx

)
x̃,ỹ

= ẏ. (B.8)

Positive ẋ here means that trajectories starting from (x̃, ỹ) ∈ ∂D2\{(0, 0), (0, 1)}
cross ∂D into the domain D; however, it remains for us to show that this is also

true for the limiting points of ∂D2, namely (0, 0) and (0, 1). Observing

lim
ỹ→0+

(
dy

dx

)
x̃,ỹ

= a > 0 and lim
ỹ→1−

(
dy

dx

)
x̃,ỹ

= −(1 + c) < −1, (B.9)

we see that at (0, 0) the gradient is greater than that of the boundary segment ∂D1

(which has a gradient of 0), while at (0, 1) the gradient is less than that of the

boundary segment ∂D3 (which has a gradient of -1); hence, solutions starting from

either point will be carried deeper into the domain (see figure 7).

The limits (B.9) indicate that the trajectory gradient on ∂D2 must change sign

on ỹ ∈ (0, 1), and by equation (B.8) this occurs when ẏ = 0. Indeed, solving ẏ = 0

subject to the condition ỹ > 0 we find

ỹ = ỹh =
1

2∆

{(
∆− (1 + a+ c)

)
+

√(
∆− (1 + a+ c)

)2
+ 4a∆

}
> 0, (B.10)

as the point on ∂D2 where the trajectory is horizontal. [Note: Since for any a and

c we have that ỹh is a monotonically increasing function of ∆, with both ỹh → 1 as

∆ → ∞−, and ỹh →
(
a/(1 + a + c)

)
as ∆ → 0+, this gives ỹh ∈ (0, 1) as required

(these limits are consistent with results in §B.1 above and §B.3 below).]
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B.3. Boundary on the Curve y = (1 − x)

For (x̃, ỹ) ∈ ∂D3 we have y = (1− x) and x̃ ∈ (0, 1), and thus

ẋ = (1− βx̃)(1− x̃), and ẏ = (1− x̃)
(
(1− βx̃)− (c+ (η + ε)x̃)

)
. (B.11)

At the point
(
1
β ,

β−1
β

)
, this means that ẋ = 0 and ẏ < 0, and the trajectory crosses

∂D3 vertically downwards, further into D (see figure 7). Elsewhere we have

(
dy

dx

)
x̃,ỹ

=


−
(

1 +
c+ (η + ε)x̃

(1− βx̃)

)
< −1, for x̃ <

1

β

−
(

1 +
c+ (η + ε)x̃

(1− βx̃)

)
> −1, for x̃ >

1

β
,

(B.12)

so none of these trajectories are parallel to ∂D3 (which has gradient −1), and must

therefore also traverse it: that they do so in the sense of taking solutions deeper

into D is guaranteed given that ẋ > 0 for x̃ < 1
β , and ẋ < 0 for x̃ > 1

β , and

lim
x̃→0+

(
dy

dx

)
x̃,ỹ

= −(1 + c) < 0 (B.13)

(this is consistent with the gradient at (0, 1) found in §B.2). Furthermore, as we

saw in §B.1, the magnitude
√
ẋ2 + ẏ2 of the phase-space velocity on ∂D3 obeys

lim
x̃→1−

(√
ẋ2 + ẏ2

)
= 0, (B.14)

as expected given our smoking-free equilibrium (x, y) = (1, 0).
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