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Abstract

This paper examines incorporation of higher moments in portfolio selection problems uti-

lizing high frequency data. Our approach combines innovations from the realized volatility

literature with a portfolio selection methodology utilising higher moments. We provide an

empirical study of the measurement of higher moments from tick by tick data and imple-

ment the model for a selection of stocks from the DOW 30 over the time period 2005 to

2011. We demonstrate a novel estimator for moments and co moments in the presence of

microstructure noise.
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1. Introduction and Literature

The importance of higher moments in relation to portfolio selection has been discussed

in the literature for some time. For instance, Levy (1969) suggests that expected utility

depends on all of the moments of the distribution and that higher moments cannot be

neglected. Previous research has also shown that mean-variance portfolio selection tech-

niques can involve a severe welfare loss in the presence of non-quadratic preferences and

non-normally distributed asset returns. It is well known that stock returns do not follow a

normal distribution. For example, Mandelbrot (1963) and Mandelbrot and Taylor (1967)
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show that stock returns exhibit excess kurtosis. Fama (1965) finds that large stock returns

tend to be followed by stock returns of similar magnitude but in the opposite direction.

This can lead to the volatility clustering effect that is related to how information arrives and

is received by the market (see Campbell and Hentschel (1992)). This clustering in return

volatility has raised a fundamental question on whether a mean and variance asset pricing

model using only the first two moments of the return distribution is adequate in capturing

variation in average stock returns.

Given that the empirical stock return distribution is observed to be asymmetric and

leptokurtic, a natural extension of the two-moment asset pricing model is to incorporate the

co-skewness (third moment) and co-kurtosis (fourth moment) factors. An investor whose

utility is non-quadratic and is described by non-increasing absolute risk aversion may prefer

positive skewness and less kurtosis in the return distribution. Stocks exhibiting negative

co-skewness and larger co-kurtosis with the market should therefore be related to higher

risk premia. Hence, movement of higher co-moments unfavourable to the investors risk

preferences requires compensation in the form of additional returns. A number of empirical

studies have shown that investors are willing to accept lower expected return and higher

volatility compared to the mean-variance benchmark in exchange for higher skewness and

lower kurtosis (see Harvey and Siddique (2000); Dittmar (2002) and Mitton and Vorkink

(2007)).

Recent contributions to the literature by de Athayde and Flores (2004), Jondeau and

Rockinger (2003), Harvey et al. (2010) and Cvitanic et al. (2008) have looked at the inclusion

of the first four co-moments into the distribution of portfolio returns and how to build 3-4

moments frontiers and select appropriate portfolios from these frontiers. There have been

some other attempts to model portfolio selection taking into account third (see Menćıya

and Sentana (2009)) and third/fourth moments (see Jondeau and Rockinger (2006) and

Martellini and Ziemann (2010)). The main problem with these models is that they generally

use weekly or monthly returns to estimate the parameters. For estimation of coskewness or

cokurtosis parameters, there is a severe dimensionality problem. For example, optimizing

a portfolio of 20 stocks would require estimation of 210 variance-covariance parameters,
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1,540 skewness-coskewness parameters and 8,855 kurtosis-cokurtosis parameters. This makes

efficient implementation of portfolio selection unrealistic. With low frequency data there is

likely to be insufficient data available. One solution to this is to use techniques that reduce

the number of parameters to be estimated. In this paper we adopt an alternative approach.

This approach draws upon the literature relating to high frequency construction of realized

volatility and covariance. Andersen et al. (2001) and Barndorff-Nielsen and Shephard (2002)

have shown that the sum of squared returns converges to the unobserved integrated volatility

as the intraday-interval goes to zero. A weakness with this approach to modelling volatility

is that it can be very sensitive to market frictions when applied to returns recorded over

very short time intervals such as 1 minute or less. Barndorff-Nielsen et al. (2008a,b) propose

realized kernel estimators of quadratic variation that are robust to certain types of frictions.

Following the highly volatile market conditions observed in many asset markets during

the 2007-2011 period, more reliable methods of computing the ex-post variation in asset

returns have been called for. The importance of correct measurement of moments and

comoments and correctly dealing with contaminants in empirical data cannot be overstated.

The Basel III framework has required more robust methods of computing distributions of

asset prices in response to high levels of ‘tail-risk’ observed in many bank portfolio holdings.

Utilizing the higher moments and co-moments has been suggested as a means of overcoming

the perceived non-Gaussian properties of financial asset returns.

With automated trading accounting for nearly 70% of trades on the NYSE (see O’Hara

(2003), providing approaches for computing multivariate density functions is becoming ever

more important). Using sequences of moments and comoments is generally as quick or

quicker to execute than most other semi or non-parametric methods. Moments and co-

moments are generated by the rth order sequence of polynomial expansions of a density

function, where r ∈ N+. In the case of multivariate distributions the moments are formed by

the rth order expansion of the vector function into a space of dimension r. Recent examples

of the synthesis of measured moments and decision making can be seen in Menćıya and

Sentana (2009) for the building of skew portfolios by mixtures of normals; and in Briec

and Kerstens (2010), who address the construction of mean-variance-skewness portfolios
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(moments 1, 2 and 3) using a shortage function approach.

The mean-variance framework that is a the heart of most financial models such as the

Sharpe-Lintner CAPM, is a case of utilizing the first and second moments. However, ex-

pansion to a higher moment framework is non-trivial: the normal/multi-normal distribution

has the advantage of having the first and second moments as the parameters that charac-

terize the univariate/multivariate density probability function. After expansion beyond the

second moment no other univariate or multivariate functions have this property and as such

parametrization and confidence testing using the normal sample rules, convergence limits

and likelihoods become very difficult.

From the perspective of portfolio selection the problem of the inclusion of higher mo-

ments also has many difficulties. Brockett and Garven (1998) demonstrate that arbitrary

truncation of the polynomial expansion of a utility function to match measured portfolio

moments may produce sub-parsimonious decision outcomes, i.e. an investor when faced

with two portfolios may find that expected utility maximization may occur by choosing a

portfolio with lower mean, higher variance and lower skewness over an alternative, obviously

negating the standard framework of preferences for higher return, lower variance and higher

positive skewness. This is due to the structure of the truncation; once the decision has

been made to include higher moments, the truncations of the polynomial expansions may

no longer have neat zero remainders and as such domains of decisions exist whereby decision

making deviates from those that would seem obviously appropriate. Key to this issue is the

structure of the hyper-surface that defines the efficient frontier (the constrained opportunity

set) and the hyper-surface defined by the available preferences. Time variation in the higher

moment structure will require substantial adjustment to the equilibrium allocation.

This paper introduces tractable approaches to estimating and incorporating higher mo-

ments in standard financial management settings using ultra-high frequency data. More

importantly, we bring together the literature on higher moments in portfolio selection and

high frequency realized variance estimation techniques. This provides a new approach to

optimal portfolio selection that incorporates information in higher moments and at the same

time allows for efficient estimation of the moment parameters. Our results demonstrate the
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inclusion of directly estimated higher moments radically improves the fit of forecasted return

densities.

The remainder of the paper is organised as follows: §(2) explains our notation approach

and outlines the general theory of measurement for moments and comoments of asset returns;

§(3) introduces the idea of measuring comoment arrays for ultra-high frequency data and

reports a monte-carlo case study of our comoment estimator. We also present a case study

on measuring the distribution of a simulated portfolio of 20 selected stocks from the Dow 30

around the Lehmen Brothers Chapter 11 event in September 2008. §(4) presents our main

set of empirical results testing the moment-comoment sequence for a selection of 20 stocks

from the Dow 30. We present some brief conclusions and ideas for further research in §(5).

2. The Co-Moment Structure of Asset Returns

We start with a vector of log prices denoted y(t) updated at irregular frequencies index by

the vector process t, setting xi,t = yi,t+1− yi,t. This process exhibits realised co-products for

moment two: 〈xi, xj〉T =
∫ T

0
mi,jdt, three 〈xi, xj, xk〉T =

∫ T

0
mi,j,kdt, four 〈xi, xj, xk, xl〉T =

∫ T

0
mi,j,k,ldt and so on until the rth moment 〈x[r]〉T =

∫ T

0
m[r]dt, where [r] denotes general

covariant index of length r of the contravariant vector y.

Each measured comoment is then stored in an r dimensional array with elements defined

by 〈x[r]〉T =
∑Ti

ti=1 (yi,t+1 − yi,t)[r] ≡ x[r]. Constructing this array presents two problems:

first is indexation; multidimensional arrays do not inherently lend themselves to portfolio

allocation and risk management problems. Second is the time index; for n stocks each stock

is updated at asynchronous points as such the time indexation is problematic. We shall deal

with each of these points in turn in the remainder of 2 and 3.

Measuring Comoments

Let us denote the array of cumulative expected comoment for a time interval 0, T as

E(x[r]) = Mr, where Mr is an r array of co-moments and we specify x[r] as the vector

permuted outer product of the vector x with itself; e.g. for the second co-moments, this

changes to the transpose operator designated T i.e. x[2] ≡ xxT. We shall also make a slight
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abuse of notation by using the expectation operator to represent the ex-post realisation of

the comoments, therefore E
(
x[r]
)

=
∑T

t=1 x
[r]
t .

All moments are assumed to be un-normalised and un-centered. The resultant array

Mr is an r dimensional array (classical tensor), with rth order super-symmetry. In matrix

notation we can define a flat matrix, containing the identical elements to Mr, using the

higher vec operator we can define the relation: vec(Mr) = vec(Mr). In this case the

vec operator stacks the fibre bundles of the array Mr, in such a way that the inverses are

homeomorphic, i.e. for a pair of inverse transformations ivecr,ivec2 of an array, the following

definitions hold,

ivecr (vec (Mr)) =Mr ivec2 (vec (Mr)) = Mr (1)

We now define the matrix Mr in terms of Kronecker powers and first order permutations,

(transposes) of x

E
((

x[⊗r−2]
)

xT
)

= Mr (2)

This allows the rewriting in Kronecker power notation of the comoment array as x = x[⊗0].

For a given vector of weights, ω, then the weights array is defined as ω[r] =Wr, and we can

specify the following matricizing condition, vec (Wr) = vec (Wr), or,
(
ω[⊗r−2]

)
ωT = Wr.

From this definition rth moment µr of a random variable x = ωTx, is therefore µr =Wr•Mr.

Where • is the inner tensor product of two identical arrays. In vector notation it can be

written as,

µr = vec (Wr)
T vec (Mr) ≡ vec (Wr)

T vec (Mr) (3)

Subsequently the rth moment of x is then defined in matrix notation as,

µr = vec
((
ω[⊗r−2]

)
ωT
)T
vec
(
E
((

x[⊗r−2]
)
xT
))

(4)
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The first 4 co-moments of x1.

Moment Array by

Vector Permutations

Moment Matrix, in Kronecker

Product Notation

Moment Matrix, in Kronecker

Power Notation

E
(
x[1]
)

=M1 E (x) = M1 E (x) = M1

E
(
x[2]
)

=M2 E
(
xxT

)
= M2 E

((
x[⊗0]

)
xT
)

= M2

E
(
x[3]
)

=M3 E
(
(x⊗ x) xT

)
= M3 E

((
x[⊗1]

)
xT
)

= M3

E
(
x[4]
)

=M4 E
(
(x⊗ x⊗ x) xT

)
= M4 E

((
x[⊗2]

)
xT
)

= M4

⇓
E
(
x[r]
)

=Mr E
(
(x⊗ x⊗ ...⊗ x) xT

)
= Mr E

((
x[⊗(r−1)]

)
xT
)

= Mr

Weighting the empirically observed co-moments yields

µ0 = 1

µ1 = ωTx

µ2 = vec
(
ωωT

)T
vec
(
E
(
xxT

))
≡ ωT

(
E
(
xxT

))
ω

µ3 = vec
(
(ω ⊗ ω)ωT

)T
vec
(
E
(
(x⊗ x) xT

))

µ4 = vec
(
(ω ⊗ ω ⊗ ω)ωT

)T
vec
(
E
(
(x⊗ x⊗ x) xT

))

⇓

µr = vec
((
ω⊗(r−1)

)
ωT
)T
vec
(
E
((

x⊗(r−1)
)
xT
))

(5)

We can compute correlation analogues, denoted for moments 3 and 4 as skew-correlation and

kurtic-correlation arrays/matrices using the same approach as we do for quadratic correlation

matrices. For an arrayMr let mr denote the r root of the n vector of of the super diagonal,

i.e. for a co-skewness array the elements of m3 are (〈xi, xi, xi〉T )
1
3 = 3

√∑Ti

ti=1 (xi,t+1 − xi,t)3.

1We utilize T, to represent the simple conjugate transpose operator, vec represents the column-wise
stacking of a matrix or array, to a column vector, we set aTb =

∑N
i=1 aibi, for two N length vectors a and

b.
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For an array Hr = m
[r]
r , the high comoment correlation array is derived from the relation:

Mr = Hr × Rr, where × denotes element by element multiplication. In matrix notation

this simplifies to:

Mr ÷Hr = Rr (6)

where ÷ is the element by element division operator of two identically sized arrays. We can

finally expand this to a Kronecker power notation to yield:

Mr ÷
(
m[⊗(r−1)]

r mT
r

)
= Rr (7)

This is a useful identity as we can use the array Rr to isolate only the ‘off super diagonal’

changes in skew-correlation and kurtic-correlation.

Following Guidolin and Timmermann (2008) we can write the objective function of a

portfolio optimisation problem in terms of an expanded utility function. Let u(c) be a r

differentiable utility function, fixing a particular investment point c and setting u(j) to be

the j derivative of u at c, the asset allocation problem is

max
ω

∑r

j=1
(j!)−1 u(j)

∑Ti

ti=1
ω[j] (xi,t+1 − xi,t)[j] (8)

under our notation this is equivalent to:

max
ω

∑r

j=1
(j!)−1 u(j)vec

((
ω⊗(j−1)

)
ωT
)T
vec
(
E
((

x⊗(j−1)
)
xT
))

(9)

several recent contributions have demonstrated for low frequency data that the inclusion of

higher moments in the portfolio optimisation substantially changes the actual asset alloca-

tion, see for instance Harvey et al. (2010). In addition to expanding the asset allocation

problem to higher dimensions the moments of the portfolio can be used to construct the

density function characterising the portfolio.

A simple method of reconstructing the portfolio density function from its moments is

the von Mises (1947) stepwise approach, which proposes matching the moment sequence

8



to the moments of some arbitrary density function. We can mix a variety of distributions

together to exactly match the empirical distribution sequence, for instance the half/log

normal, Weibull, Gamma, Maxwell, Exponential, Chi-Squared, Rayleigh, Hypergeometric,

Cauchy, Student and F -distributions offer an eclectic library. In addition to using alternative

distributions we can also mix distributions of the same type with differring parameters. The

first step is to deal with the information content that the moment sequence contains, for a

Hankel matrix ∆r, partitioned into sequences of moments as follows,

∆2r =
[
µ[0,r], µ[1,r+1], ..., µ[r,2r]

]T
(10)

A new partitioned matrix, Φ may now be formed,

Φ =




µ[0,r] µ[0,r] · · · µ[0,r] µ[0,r]

0 µ[1,r+1] · · · µ[1,r+1] µ[1,r+1]

0 0
. . .

...
...

...
... · · · µ[r,2r−1] µ[r,2r−1]

0 0 · · · 0 µ[r,2r]




T

(11)

where,

µ[p,q] = [µp, ..., µq]
T (12)

For a vector of coefficients c = [c0, c1, c2, ..., c2r]
T the following linear algebra problem is then

solved as a method of moments problem,

Φc + µ[r+1,2r+1] = 0 (13)

To obtain the abscissa values, {ν1, ν2, ..., ν2r−1}, the roots of the 2r − 1th polynomial with

coefficients described by c are evaluated. This system maybe rewritten as a set of Legendre

polynomials, see Devroye and Hwang (2006). We can then compute approximations of

the critical boundaries allowing for the computation of value at risk and expected shortfall
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measures. This is therefore analogous to a method of moments problem if we set the target

moments as a mixture of the distributions described previously.

The target moments can be derived from a single characteristic function or set of char-

acteristic functions as required. One consequence of this is that if the multivariate moments

of the individual assets is very complex then the portfolio planner can in effect choose the

class of distribution of the portfolio rather than simply adjust parameters within a single

family of distributions.

3. Time Distortion Effects

The second issue in dealing with ultra high frequency data is the effect of randomised

time intervals for stock updates creating time distortion effects. The ‘Epps’ effect introduced

in Epps (1979) illustrates that correlations are suppressed as sampling intervals increase.

Recent work by Aı̈t-Sahalia et al. (2011) has indicated that microstructure noise frictions

also play a part in either dampening or exacerbating the level of volatility. Our approach

uses a multi timescale framework in line with the ‘needlework’ estimator of Audrino and

Corsi (2010) and Barndorff-Nielsen et al. (2009).

The issue with estimating cross variational products with asynchronous updating is that

a very fine (say second by second) regularised grid such as that used in Williams et al.

(2012) often results in many zero price changes. This can have two effects, first it can make

covariance matrices that are near singular and hence not invertible thus useless for portfolio

management and second suppress absolute levels of correlation, by adding large numbers of

zero values to sums of products.

For instance there are 78 five minute blocks of time in an NYSE trading day, therefore

there are 23,400 seconds in a grid, which is one order of magnitude more than the average

number of transacted price updates for most stocks in our sample2.

Consider an n vector of stocks with tick intervals ti ∈ t, the objective is to compute

the cross product 〈x[r]〉T =
∑Ti

ti=1 (xi,t+1 − xi,t)[r], for some time interval t, T , which we shall

2In this study we look at transacted prices, including bid-ask quotes and re-quotes does not necessarily
mitigate this issue
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assume to be one day. Each stock has its own clock and update times labelled t1, . . . , tT ,

where tT is assumed to be the last update prior to the end of the day. To estimate the cross

products a set of tick times needs to be built such that the maximum amount of actual cross

variation is captured.

The ‘needlework’ estimator operates by assigning changes in prices in one stock to the

closest prior price change in another stock. Therefore the ‘master’ clock of tick-times are

not uniform in their sampling frequency. We take this a step further by adding the multi

timescale concept of Aı̈t-Sahalia et al. (2011) to improve our sampling performance.

Consider a set of fixed regular time intervals indexed by t̃, for instance 5 minute intervals.

For a cross section of stocks there will be a set of updated prices (ticks), {t̃j < ti∈{1,n} < t̃j+1}t̃j+1

t̃j
.

Assuming that the update frequency is some form of point process then there will be a dis-

tribution of updated prices over the interval. If we use the most frequently updated stock

then many other stocks will report zero price changes relative to this clock.

Setting Ni

(
t̃j, t̃j+1

)
as the counter for the number of updated prices for the i stock, the

chosen clock for a cross section of n stocks is the set of tick times
{
t̃j < ti∗ < t̃j+1

}t̃j+1

t̃j
,

whereby

i∗ = arg min
i∈{1,n}

Ni

(
t̃j, t̃j+1

)
(14)

i.e. the stock with lowest number of updated ticks over the interval. Our adaptation of the

needlework estimators works well for cross sections of stocks with frequent updates such as

those traded on exchanges without substantial execution lags. For instance the NASDAQ

permits 30 second delays before reporting of executed trades (see Aı̈t-Sahalia et al. (2011))

therefore the mixing of delayed trades with instantly executed trades would create some

distortions at our ultra high frequency sampling range.

Monte-Carlo Study Moments 2, 3 and 4

To test our cross product estimator we construct a Monte-Carlo study. We take a twelve

stock portfolio, in the authors experience this is a typical size of cross section for a single

investment book for a statistical arbitrage hedge fund. Returns are assumed to be generated

by a copula based distribution with skewed marginals to create higher co-moments.
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The distributional assumptions are as follows. Let the intraday underlying log price

process be a vector random walk δT = δ0 +
∑T

t=1 δ0 where the revealed price increment

is δt ∼ F (θ). Where F(θ) is a multivariate density function, with parameters θ. Using

Sklars theorem we decompose F(θ) into a joint distribution coupling distribution, T
(
θcopula

)

and independent marginal distributions, Fi (θi). In our case we shall use a multivariate T

distribution, with parameters θcopula = {ν,Ω} to impart second and fourth co-moments and a

generalised extreme value distribution to create skewness in the marginals, θi = {ki, µi, σi}.
The motivation for this choice comes from the literature on non-Guassian approaches to

approximating asset returns, see for instance Rachev and Mittnik (2000) for an overview.

The ‘master’ clock for the underlying process is assumed to be a uniform grid, t refreshed

at a rate such that ∆t < ∆ti,∀i ∈ n, i.e. faster than the fastest refresh rate for the individual

tick times. In our case this is 234,000 gridded price changes a day, equivalent to a one tenth of

a second uniform grid. Figure 1 presents an illustration of our estimator sampling approach

versus a fixed grid.

Individual ticks ti are refreshed via a poisson point process with rate parameter λi. We

assume that λi is distributed across stocks, but is constant for an individual stock for the t, T

interval. Previous research such as Admati and Pfleiderer (1989) have suggested that more

trades will take place in early trading, however we assume that our analysis will exclude the

opening call auction period.

Therefore the Monte-Carlo algorithm works as follows, construct a vector sequence of

draws of δt at the master clock refresh rate. Each draw is constructed by drawing a vector

from a multivariate T distribution with chosen degrees of freedom ν and positive definite

parameter matrix Ω. Each marginal draw is then transformed by a cumulative univariate

T distribution function, with the same degrees of freedom ν and then transformed again by

the inverse cumulative generalised extreme value distribution with chosen shape parameter

ki and centering and spread parameters µi and σi, resulting in a marginal draw of δi. The

master clock draw of δt has its empirical moments and comoments computed and these are

set as the objective moments for the sampling procedure.

Next, we construct a sequence of ultra high frequency refresh times for the individual
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stocks. We draw a master set of λi, from a normal distribution, such that the average is

5,000 or 8,000 ticks per day and the standard deviation is 250, equivalent to the observed

spread of refresh times for prices on the NYSE on a high versus low activity trading day.

A set of refresh times are drawn for the day and the prices are sampled from the nearest

preceding time increment for the vector draw from δt, which we designate δ̃ti . We run

a set of experiments ranging from where the observed log prices xiti = δ̃iti have no extra

contaminants to a point where we add an increasing amount of i.i.d. microstructure noise

xiti = δ̃iti + εiti , εiti ∼ N (0, γ2
i ).

We then compare three coproduct estimators for the second, third and fourth moments

and comoments. First a uniform grid of ten seconds, next the simple ‘needlework’ estimator

of Audrino and Corsi (2010) and finally our ‘adjusted needlework’ estimator. For a given

moment-comoment array let Mr be the ‘true’ array and let M̃r be a candidate matrix

computed via one of the the methods mentioned previously, then the estimated error is

computed by Λ̃r =
∥∥∥Mr − M̃r

∥∥∥, where ‖·‖ is the Frobenius norm of a matrix.

Table 1 presents the results of the Monte-Carlo study. The columns of Table 1 define the

type of estimator used whilst the rows present the various different input configurations of

the simulation. The proportions of γ are relative to the level of variance of the underlying

price process, therefore 0.01, means that the microstructure noise is equivalent to 1% of the

quadratic variation in the actual price process.

It is apparent that there are trade-offs in the selection of the various approaches, based

on the assumed magnitude of the variance of the unobserved microstructure noise is. Speed

should also be commented on here, as the adjusted needlework estimator uses existing tick

times rather than searching for updated ticks across the cross section it is approximately one

order of magnitude faster, albeit not as fast as the fixed grid estimators. Another point to

notice is that the higher moments are always more accurately predicted than the covariance

and suffer far less deterioration from increasing microstructure noise.

[INSERT TABLE 1 HERE]

[INSERT FIGURE 1 HERE]
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Example: 20 Stocks From the Dow Jones During August, September and October 2008

We now move on to illustrate the effect of including higher comoments in the evaluation

of portfolio density functions. We will compute the density function for a portfolio of twenty

stocks using either the first two or the first four moments for a log utility maximising investor.

For our example we collect every recorded transaction on the NYSE for the 20 stocks from

eight weeks prior to the default of Lehman Brothers to eight weeks after this event. We

choose 20 out of the 30 stocks from the Dow Jones, as a 20 variate model is computationally

tractable for a long time series. As of 2011, the companies in the sample constitute roughly

one quarter of the total market capitalisation for all US equities.

[INSERT TABLE 2 HERE]

Table 2 presents the list of stocks, their RIC codes and the number of updated (trans-

acted) ticks for the period of January 1, 2005 to October 10, 2011. The stocks are collected

into a portfolio that maximises log-utility using the approach suggested in formula 9. The

expected utility is maximised numerically using a standard sequential quadratic optimisa-

tion algorithm. The weights are set using the data from the four and eight weeks prior to

September 16, 2008 and carried over into the four and eight weeks afterwards. We use two

different windows to provide a comparison (See Figure 2).

We utilise a library of distribution functions to minimise the objective moments. For

the two moment system we use a Gumbell distribution with analytic moments as the target

distribution for the portfolio. When including the next four moments more general distri-

butions are available, we choose a generalised extreme value distribution from the Fréchet

family as the target distribution. Again the target moments are analytic and easily fitted

to those measured from the high frequency data.

[INSERT FIGURE 2 HERE]
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Figure 2 presents our two experiments using the four or eight weeks prior to predict the

density for the four or eight weeks after. The striking appearance is the substantial variation

in portfolio densities from either choice of moment or time period.

It is quite obvious to see that the chapter 11 announcement of Lehmen Brothers on

September 16, 2008 has a marked effect on the elements of the twenty stock portfolio. There

are dramatic increases in the levels of variance, and there is also a noticeable decrease in the

level of skewness and kurtosis observed.

For the portfolio density functions we can see that the inclusion of moments 3 and 4 in

the decision system markedly improve the level of fit compared to the estimates of moments

1 and 2 post September 16, 2008. The higher moments capture a far higher level of downside

risk in the four weeks after September 16, 2008 and correctly predict that the portfolio of

twenty stocks could have a 50% chance of reducing in value by 50% over the next four weeks.

The useful aspect of this exercise is in illustrating the benefits of including higher mo-

ments in outlining the complex adjustments in the distribution of returns during a time of

market stress. The mean variance approach, cannot capture the extreme values that the

portfolio can take during this time of market stress. In fact we start to see agglomeration of

probability mass at catastrophic levels near the origin (i.e. the portfolio having zero value).

4. Empirical Application and Data

We run the rolling comparative forecast test for the second, third and fourth realised

higher moments for the 20 stocks utilised in the portfolio example in §§(3), for the 1,706 days

from January 1, 2005 to October 10, 2011. A summary of the total number of observations

is given in the third column of Table 2. The data is partitioned by day and each day is

processed using the adjusted ‘needlework ’ approach into a standardised set of time stamps.

The complete standardised dataset is available from the authors website.

For each day returns are computed using the approach outlined in §§(3) and the second,

third and fourth moments and comoments are then computed for each day. For the long run

forecasts we use a 66 day window, which is the number of trading days in a quarter. The
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total number of processed, ‘needlework’, updated ticks is 7,259,030 or an average of 4,255

updated transactions a day.

For one stock, TRV Travelers Companies, for four days (January 3-6, 2006) from the

sample there are no trades recorded. We replace the missing data with transactions from

the previous week to maintain a consistent time series. For the comparative analysis the

loss function is set as the first g predictor to be the previous days moment and comoment

sequence and the second h predictor to be a running quarterly average of 66 days.

Discussion with practitioners suggested that a one quarter averaging risk assessment

versus a day on day trading book was a good comparison for this exercise.

Results and Analysis

Table 2 presents the descriptive statistics for the numbers of ticks available for each day

for the 20 stocks in the sample for each year in the sample from 2005 to 2011, recalling

that the sample finishes in October, 2011. The total number of ticks for the each of the

stocks in question varies between 10.7 million for United Technologies and 22.3 million for

General Electric. For the Log utility portfolio used in the example seven stocks are short

and thirteen are long, with the largest weight being placed in Johnson and Johnson.

The stocks are amongst the most actively traded in the whole world and are generally

as actively traded or more actively traded than tracker paper such as the S&P depository

receipt. This makes them good candidates for this type of study.

Table 3 presents breakdown by year of daily descriptive statistics for the number of ticks

for cross section of the sample. The table illustrates the impact of the ‘sub-prime’ and ‘credit

crunch’ financial crises on average trading for 2007-2009 with average numbers of daily ticks

increasing from 5,552 in 2006 to 12,717 in 2008.

The table also reports the average, median, minimum and maximum number of zero

returns recorded daily for each year for the cross section. Recall that the total number of

tick changes is the mean number of ticks times twenty, therefore for 2009, the average for the

daily total number of ticks is 210,286 and there was on average 22,941 zero returns or less

than 10% of returns were zero. The maximum number of zero returns recorded was 48,318
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for a single day in 2007. This reinforces the practitioner view that the Dow 30 components

are amongst the most actively traded and continuously updated assets available in the world

and an excellent case study for our estimator.

[INSERT TABLE 3 HERE]

For the measured higher moments we have divided the results into two parts, first the

j ∈ 1, . . . , r-root of the diagonal elements which we designate as m1,...,r. For each moment

array there are n super diagonal elements. For each year we have tabulated the cumulative

value of m1,...,r, for the second, third and fourth moments (variance, skewness and kurtosis)

and averaged over the cross section of stocks. These results are reported in Table 4.

The obvious impact of the financial crisis is on the annualised volatility of the stocks in

the sample, during 2008 we see the highest second moment increase from 25% to over 75%.

The average level of Skewness is more stable over the sample period however the maximum

realised skewness increases in 2008 by three fold from around +2 to +8. The lowest level of

skewness is almost perfectly symmetrical to the highest level of observed skewness.

The maximum level of raw kurtosis increases to +19 in 2008 from 4.5 in 2005 three

years earlier. This level of kurtosis is massively in excess of the level to be expected from

the corresponding level of variance, i.e an excess of (18.994 × 0.77−4 >> 1) over a normal

distribution.

[INSERT TABLE 4 HERE]

Table 5 presents the descriptive statistics for the cumulative annualised and normalised off-

diagonal elements for the moment arrays for the covariance-correlation, coskewness-skew-

correlation and cokurtosis-kurtic-correlation. For the second moment correlations 2008 had

the highest minimum level of correlation at 21% and the second highest maximum correlation

at 62%. More interestingly the maximum level of skew-correlation peaks at 1.4 (note that the

normalised coskewness is not constrained between -1 and 1). This is a very high value and
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indicates that certain stocks as three-tuples exhibit very high levels of positive codependence.

The small size of the maximum and mean kurtic-correlation in 2008 is actually somewhat

smaller than in 2009-2011. The co-risk and co-dependence have substantially increased after

2008 and this tail dependence has not reverted back after the market stress of 2008.

Figures 3 to 5 present the plot of the average of the j− root, for j ∈ 1, . . . , r of the daily

cumulative diagonal moments. The dotted line presents the actual measured daily moments

and the unbroken black line is a ten day moving average.

We see that after 2008 that the daily ex-post level of n−1
∑

m2 rises substantially. What

is more interesting is the effect on the level of skewness. On average pre 2008 the daily level

of skewness is realtive low, however after 2008 we see suddent spikes and troughs in the level

of skewness as the market shifts suddenly.

The level of kurtosis also spikes in 2008, however the overall level of kurtosis is always

far in excess of that predicted under a normal distributiuon. However the level of excess

kurtosis during 2008 is very large and this is also visible in the annual aggregates in Table

5.

[INSERT FIGURES 3 TO 5 AS A SINGLE PANEL HERE]

Figures 6 to 8 present the plot of the average of then normalised daily off diagonal elements

for the covarianc offdiagR2, coskewness offdiagR3 and cokurtosis offdiagR4. Again we

see substantial differences in the time pattern of the daily aggregates for instance the covari-

ance and cokurtosis exhibit noticeable rises after 2008 but the variation in skewcorrelations

is far lower. This is a new result in the literature and suggests that for this case study sample

the crisis impacts returns in a symmetrical manner, via variance-covariance and kurtosis-

cokurtosis. Skewness only plays a part in the most extreme circumstances, during a short

period around 2008. The policy implications of this observation are quite interesting as it

suggests that the market can continue to function in most cases (assymetric returns indi-

cate substantial increases in information assymetry, see for instance the theoretical work of

Admati and Pfleiderer (1988). The high levels of coskewness seen during the crisis indicates
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that during the crisis the market ceased to function in anything resembling the ‘orderly

market’ that the securities and exchange commission (SEC) states as being its regulatory

target3.

The usefulness of the inclusion of realised higher moments is in fully populating a density

function that does not coverge as quickly as a standard Brownian motion. Once the diffusion

underlying asset prices deviates from this convention then sampling at lower frequencies will

miss many of the important underlying properties of the data generating process.

[INSERT FIGURES 6 TO 8 AS A SINGLE PANEL HERE]

[INSERT TABLE 5 HERE]

5. Concluding remarks

This paper has introduced a method to utilize higher moments empirically estimated

from high frequency data in the asset allocation problem. The proposed method utilizes

the empirically estimated co-moments and matches them to those from a generalized den-

sity function that may be composed from a mixture of distributions. Within the expected

utility maximizing framework it is demonstrated that combining the higher moments into a

coherent framework improves portfolio performance as information about higher order mo-

ments makes an important contribution to portfolio choice. The empirical results show an

increase in variance and kurtosis at the time of the 2007/2008 crisis. Although there is some

spiking in skewness in 2008 when looking at the smoothed series of the third moment, there

is very little increase in 2008 when compared to the second or fourth moment. During the

2007/2008 financial crisis, covariance and cokurtuosis increase when the crisis occurs and

remain high for a prolonged period afterwards. In contrast, coskewness only increases at

the most extreme point of the crisis in 2008, and then reverts back to the pre-crisis levels.

This approach appears to be a relatively simple method for increasing the information set

3See SEC documentation: http://www.sec.gov/about/whatwedo.shtml
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used in asset allocation problems and for dealing explicitly with observed deviations from

multivariate-normality and the associated moment sequence that appear in many asset re-

turn series. The methodology can be applied to time-varying conditional moments, albeit at

a far greater computing cost, despite restricting the number of dimensions to the elements

of the super-diagonal.
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