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1 Introduction

The LHC experiments ATLAS and CMS have discovered a neutral boson whose properties

comply with those of the Standard-Model (SM) Higgs boson [1, 2]. Moreover, the data on

the Higgs signal strength have permitted to exclude a sequential fourth fermion generation

at the level of 5 standard deviations [3–8]. Similarly to the number of fermion generations,

the structure of the Higgs sector is an ad-hoc feature of the SM: While a single Higgs

doublet is sufficient to break the electroweak symmetry, there are no fundamental reasons

forbidding a richer Higgs sector. From a purely phenomenological point of view, the logical

next step after the discovery of a Higgs boson is to address the question whether it really

is “the” Higgs boson. If nature has opted for an extended Higgs sector, the latter will

influence precision observables through loops with extra Higgs bosons. In order to assess

the viable parameter space of a given extension of the SM, one must perform a global fit in

the extended model which includes all relevant theoretical and experimental constraints. In

this paper we perform such an analysis for the popular two-Higgs-doublet model (2HDM) [9]

of type II [10, 11], in the widely-studied version without CP violation in the Higgs potential.

The presence of an additional Higgs doublet implies the existence of three neutral (h,

H, A) and two charged (H±) Higgs bosons. The 2HDM of type-II is designed to avoid

flavour-changing couplings of the neutral Higgs boson by coupling one Higgs doublet solely

to up-type and the other one to down-type fermions. Theoretical constraints on this model

come from the following requirements:

• the Higgs potential must be bounded from below,

• neglecting the possibility of a meta-stable vacuum, the minimum of the Higgs po-

tential with a vacuum expectation value (VEV) v = 246GeV must be the global

minimum,

• the Higgs and Yukawa couplings must be perturbative.
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The relevant experimental constraints are:

• the mass and signal strengths of the observed Higgs resonance at 126GeV,

• the non-observation of additional Higgs resonances at LEP, Tevatron and the LHC,

• the electroweak precision observables measured at LEP,

• flavour observables from radiative B decays and B − B̄ mixing.

A comprehensive and thorough analysis of constraints from flavour physics has been per-

formed by the CKMfitter group in [12]. In our study we only include the two most relevant

flavour observables, namely the branching ratio of B̄ → Xsγ and the Bs-B̄s mixing fre-

quency. After the Higgs discovery the compatibility of the type-II 2HDM with the observed

Higgs signal strengths and other experimental data has been studied in several papers [13–

27]. However, to our knowledge the analysis presented here is the first global fit which

consistently includes all the above-mentioned constraints. The Higgs signal strengths pro-

vide strong bounds on the 2HDM parameters which determine the couplings of the light

CP -even Higgs h, namely on the ratio tanβ of the Higgs VEVs and the mixing angle α

of the neutral CP -even Higgs bosons. In this respect, our analysis updates (some of the)

previous studies by using the Higgs data presented at the Moriond 2013 conference. Fur-

thermore, the above-mentioned theoretical and experimental constraints allow us to rule

out certain combinations of the heavy 2HDM Higgs masses. We also discuss the implica-

tions of these limits for the possible decay modes of heavy 2HDM Higgs bosons. Where

appropriate, we compare our results with those of [13–27].

Our paper is organised as follows: in section 2 we provide a brief overview over the type-

II 2HDM and its parametrisation. In section 3 we discuss the theoretical and experimental

constraints included in our analysis in detail. The results of the global fit are shown in

section 4.

2 The model

The model we consider in this paper is the CP -conserving two Higgs doublet model of type

II with a softly broken Z2 symmetry. All relevant details about this model can be found

in [28], whose notational conventions we follow exactly. The Higgs potential we consider is

V = m2
11Φ

†
1Φ1 +m2

22Φ
†
2Φ2 −m2

12(Φ
†
1Φ2 +Φ†

2Φ1) +
1

2
λ1(Φ

†
1Φ1)

2 +
1

2
λ2(Φ

†
2Φ2)

2

+ λ3(Φ
†
1Φ1)(Φ

†
2Φ2) + λ4(Φ

†
1Φ2)(Φ

†
2Φ1) +

1

2
λ5[(Φ

†
1Φ2)

2 + (Φ†
2Φ1)

2] , (2.1)

where Φ1,Φ2 are the two scalar SU(2) doublets. Under the Z2 symmetry they transform as

(Φ1,Φ2) → (−Φ1,Φ2) and the term with m2
12 breaks that symmetry softly. In this paper we

only study the case of unbroken CP symmetry (in the Higgs sector), where we can assume

without loss of generality that m2
11,m

2
22,m

2
12, λ1, . . . , λ5 ∈ R. At the global minimum of

the potential V the neutral components of Φ1 and Φ2 acquire vacuum expectation values

(VEVs) v1/
√
2 and v2/

√
2, respectively, which are determined by the parameters of the
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WW,ZZ up-type quarks down-type quarks, leptons

h sin(β − α) cosα/ sinβ − sinα/ cosβ

H cos(β − α) sinα/ sinβ cosα/ cosβ

A 0 cotβ tanβ

Table 1. Tree-level couplings of the neutral 2HDM Higgs bosons to gauge bosons and fermions.

Each coupling is normalised to the corresponding coupling of the SM Higgs boson.

Higgs potential and must satisfy v21 + v22 = (246GeV)2 ≡ v2. After trading m11 and m22

for v1 and v2 the independent real parameters of the model are

tanβ = v2/v1 , m2
12 , λ1 , λ2 , λ3 , λ4 , λ5 (2.2)

and we may assume tanβ > 0 without loss of generality. The physical scalar spectrum of

this model consists of two neutral CP -even bosons h and H (with masses mh ≤ mH), a

neutral CP -odd boson A, a charged boson H+ and its anti-particle H−. Expressions for

the physical (tree-level) masses of the Higgs bosons in terms of the parameters (2.2) can

be found in [28].

The Yukawa Lagrangian of the type-II model is

LYuk = −Y d
ijQ̄LiΦ1dRj − Y u

ij Q̄LiΦ̃2uRj − Y l
ijL̄LiΦ1eRj + h.c. , (2.3)

where QL and LL are the left-handed quark and lepton doublets, dR, uR and eR are the

right-handed up-type quark, down-type quark and lepton singlets, respectively, Y u, Y d and

Y l are the corresponding Yukawa coupling matrices, i, j = 1, 2, 3 are generation indices and

Φ̃2 ≡ iσ2Φ
∗
2 (where σ2 is the second Pauli matrix).

The tree-level couplings of the neutral CP -even Higgs bosons h, H to gauge bosons and

fermions have the same structure as the corresponding couplings of the SM Higgs boson.

The pseudo-scalar A only couples to fermions and the Feynman rule contains an additional

factor iγ5. The ratios of coupling constants (2HDM coupling divided by corresponding

SM coupling) only depend on β and the mixing angle α of the neutral CP -even 2HDM

Higgs bosons. These ratios are summarised in table 1. The relation between α and the

parameters (2.2) is given in [28]. For the discussion in this paper it is important to note that

the couplings of the light CP -even Higgs h (first line of table 1) approach the corresponding

SM values for β − α → π/2, irrespective of the value of β.

3 Theoretical constraints and experimental inputs

The parameters (2.2) are subject to a number of theoretical constraints. First of all, the

potential (2.1) must be bounded from below. As explained in [28], this is the case if and

only if the following inequalities are satisfied:

λ1 > 0 , λ2 > 0 , λ3 > −
√

λ1λ2 , |λ5| < λ3 + λ4 +
√

λ1λ2 . (3.1)
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Furthermore, to obtain a stable vacuum state we require that the minimum of the potential

with v21 + v22 = (246GeV)2 is the global minimum.1 As pointed out recently in [29] this

requirement leads to the additional constraint

m2
12

(

m2
11 −m2

22

√

λ1/λ2

)(

tanβ − (λ1/λ2)
1/4

)

> 0 . (3.2)

Finally, if we want to be able to trust perturbative calculations, the magnitude of the Higgs

self-couplings λi should not be too large. The only correct way to implement this bound is

to compute many higher-order corrections and assess the convergence of the perturbative

series. Here we take the simple approach of requiring |λi| < λmax for i = 1, . . . , 5 and some

λmax > 0. The most conservative choice for λmax is 4π, which forces the product of two λs

and the loop factor to be smaller than 1. A study of higher-order corrections for the case

of the SM Higgs sector points to a smaller perturbativity limit, closer to λmax = 2π [30].

To estimate the dependence of our results on the ultimately arbitrary upper limit λmax we

show results for λmax = 2π and λmax = 4π.

In addition to these theoretical constraints, we confront the 2HDM described in sec-

tion 2 with the following experimental data:

• the mass of the observed Higgs resonance

mh = 125.96+0.18
−0.19GeV . (3.3)

This input is a combination of the results presented in [31–34]. We always identify the

observed Higgs resonance with the light CP -even 2HDM Higgs boson. Specifically,

we neglect the possibility that the observed resonance is one of the heavy neutral

2HDM Higgs bosons or a degenerate state. See, for instance, [35, 36] for a discussion

of the former case and [18] for the latter.

• the signal strengths (observed cross section times branching ratio divided by SM

expectation) of the Higgs resonance at 126GeV. Our signal strength inputs for

the different decay modes and, in the case of the γγ final state, the different event

categories defined by the experimental groups are summarised in figure 3. On the

theory side, the signal strength for a given Higgs production and decay mode is

given by the product of the corresponding 2HDM/SM ratios of (effective) squared

couplings. For instance, the gluon fusion contribution µ(gg → H → γγ) to the

H → γγ signal strength is given by the product RggRγγ , where Rgg (Rγγ) is the

square of the effective Hgg (Hγγ) coupling calculated in the 2HDM, divided by the

same effective coupling calculated in the SM. We use the FeynArts, FormCalc and

LoopTools packages [37–39] to compute Rgg and Rγγ at one-loop order. For all other

couplings (HWW , HZZ etc.) we use the tree-level values.

To compare quantities such as µ(gg → H → γγ) with experimental data one needs

to know the composition of the Higgs signal in a given final state or event category.

1In doing this we neglect the possibility that our vacuum is metastable with a lifetime larger than the

age of the universe.
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In other words, one needs to know the fraction with which each Higgs production

mechanism contributes to the signal seen in each final state or event category. In our

analysis we use these percentage contributions wherever they (or the corresponding

selection efficiencies) are provided by the experimental groups. Our values for the

percentage contributions are summarised in table 3. In the case of the 8TeV CMS

H → ττ data, we derived the percentage contributions from the corresponding selec-

tion efficiencies. These efficiencies are summarised in table 2. For the remaining final

states we assume that the dominant production mode contributes 100% of the signal.

• limits from searches for heavy neutral Higgs bosons in the WW and ZZ decay modes.

Specifically, we include the (mass dependent) expected limit from the CMS H →
WW → 2l2ν search ([40], figure 9) and the expected limit from the CMS H →
ZZ → 4l search ([34], figure 5, left panel). In the absence of any clear signals for

heavy Higgs resonances we consider it good practice to use the expected limits instead

of the observed ones since otherwise the analysis becomes sensitive to background

fluctuations in the search data. For the same reason we refrain from using the signal

strength values for heavy Higgs bosons, as provided by the experimental groups.

• the full set of electroweak pseudo-observables (EWPOs) measured at LEP and SLC,

as well as the latest results for the W and top mass. We use the same inputs as in

table II of [8], and our SM parameters (MZ , mt, αs and ∆α
(5)
had(MZ)) are fixed to

the best-fit values from that analysis. We emphasise that the study of the oblique

parameters S,T ,U is not sufficient, because the 2HDM involves Z vertex correc-

tions [41–43]. For our analysis we have re-calculated the 2HDM contributions to

the electroweak precision observables at one loop using the FeynArts, FormCalc and

LoopTools packages [37–39]. The results have then been combined with the SM

contributions (including all available higher-order corrections) using the prescription

of ref. [44]. The SM contributions to the EWPOs were calculated with the Zfitter

software [45–47], with the exception of Rb, for which we use the improved results

from [48].

• the branching ratio Br(B → Xsγ). We use the theoretical calculation of this quantity

in the 2HDM in refs. [49–54] and write [55]

Br(B̄ → Xsγ)E>E0 = Br(B̄ → Xceν̄)exp

∣

∣

∣

∣

V ∗
tsVtb

Vcb

∣

∣

∣

∣

2 6αem

π ·C [P (E0) +N(E0)] , (3.4)

where E0 = 1.6GeV, Br(B̄ → Xceν̄)exp = 0.1072 (eq. 183 of [56]), |V ∗
tsVtb/Vcb|2 =

0.963 (text before eq. 1 of [57]) and C = 0.546 (eq. 7 of [57]). The dependence on

the 2HDM parameters is contained in the quantity [P (E0) + N(E0)]. To evaluate

it we use private code provided by the authors of [54]. Following the discussion of

theoretical errors in [54] we obtain a statistical error of 3% from the uncertainties

of the parameters Br(B̄ → Xceν̄)exp, |V ∗
tsVtb/Vcb|2 and C and an overall systematic

error of 12% (all other errors from [57] added linearly). In our fit, all these theoretical

– 5 –



J
H
E
P
0
7
(
2
0
1
3
)
1
1
8

errors are reflected by a single multiplicative nuisance parameter. Our experimental

input for Br(B̄ → Xsγ)E>E0 is [54]

Br(B̄ → Xsγ)
exp
E>E0

= (3.37± 0.23)× 10−4 . (3.5)

• the mass splitting ∆mBs in the neutral Bs meson system. For the theoretical com-

putation of this quantity we use the expressions given in [12, 58–60]:

∆mBs =
G2

F

24π2
|VtsV

∗
tb|2ηBmBsm̄

2
t f

2
Bs
B̂Bs(SWW + SWH + SHH) , (3.6)

where GF is the Fermi constant and the dependence on the 2HDM parameters is in

the quantities SWW , SWH and SHH (see [12] for their definition). The values of the

other pre-factors are

|VtsV
∗
tb|2 = 0.039986 [61]

ηB = 0.551± 0.0022 (syst.) [12, 62]

mBs = 5.3663GeV [63]

m̄t = 166.6GeV (MS scheme) [8]

fBs = [0.229± 0.002 (stat.)± 0.006 (syst.)] GeV [64]

B̂Bs = 1.322± 0.026 (stat.)± 0.035 (syst.) [61, 65]

By adding the statistical errors in quadrature and the systematic errors linearly we

obtain a relative statistical uncertainty of 2.6% and a relative systematic uncertainty

of +8.0
−8.5%. In our fit, these theoretical uncertainties are represented by a single multi-

plicative nuisance parameter. Our experimental input for ∆mBs is [66]

∆mBs = [17.768± 0.023 (stat.)± 0.006 (syst.)] (ps)−1 . (3.7)

Let us briefly comment on our selection of flavour observables. In the type-II model

under consideration, flavour-changing neutral current (FCNC) processes are sensitive to

2HDM effects for small and very large values of tanβ: if tanβ < 1, the charged-Higgs

coupling to the top quark is enhanced. Conversely, for tanβ & 40 the couplings ofH, A, H±

to bottom quarks and tau leptons is of order 1, leading to sizable effects in (semi-)tauonic

B decays [67–79] and Br(B → ℓ+ℓ−) [80]. Br(B → Xsγ) plays a special role, because it

provides a powerful lower bound on MH+ which is essentially independent of tanβ, unless

tanβ < 1 [49–54]. An early combined analysis of several flavour observables for tanβ ≤ 1

can be found in ref. [60]. An exhaustive analysis of several leptonic and semileptonic meson

(and τ) decays, B-B̄ mixing, Br(B → Xsγ), and Z → bb̄ is presented in ref. [12]. In the

present paper we are interested in the low tanβ region where the Higgs signal strengths

still allow large deviations of α from the SM-like limit β − π/2. Therefore the only flavour

observables relevant to our fit are Br(B → Xsγ) and the mass splitting ∆mBs in the neutral

Bs meson system. The ratio ∆mB/∆mBs assumes the same value as in the SM. Therefore

we do not need to include the weaker constraint from ∆mB in our fit. Furthermore, the

– 6 –
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value of |VtsVtb| governing both Br(B̄ → Xsγ) and ∆mBs is not changed if one passes

from the SM to the 2HDM: Vtb is approximately 1, Vts is obtained from Vcb trough CKM

unitarity and the extra 2HDM Higgs bosons have no impact on the determination of Vcb.

The omission of data on (semi-) tauonic B decays affects the fit only for large values of

tanβ. Furthermore, the 2HDM of type II does not alleviate the tensions between the SM

and the experimental world averages of Br(B → τν) and Br(B → D(∗)τν), but rather

worsens the agreement with the data. (For an analysis of these decay modes in a general

2HDM see ref. [81].)

4 Results

In this section we present the results of a global fit incorporating the constraints discussed

in the last section. All fits were done with the myFitter framework [82] and cross-checked

with an independent implementation in the CKMfitter software [83]. All p-values (and

the corresponding 1σ, 2σ and 3σ exclusion limits) were computed by applying Wilks’

theorem. Although this is common practice for analyses like the one presented here, it is

not clear how reliable these p-values are as the presence of theoretical constraints violates

the underlying assumptions of Wilks’ theorem (see [82] for a discussion). For the present

paper, we decided to follow standard practice and postpone further studies of this issue to

a future publication.

Figure 1(a) shows the regions in the tanβ-(β−α) plane allowed at one, two and three

standard deviations. Here and in the following plots, the shaded blue areas show the results

of the fit with the tight perturbativity limit λmax = 2π. To gauge the sensitivity of the

visible features on the implementation of the perturbativity bound the contours of the

corresponding areas for the fit with λmax = 4π are shown as green lines. The line with

β−α = π/2 corresponds to the case where the couplings of the light CP -even Higgs boson

are the same as those of the SM Higgs boson. The best agreement with the experimental

data is found along this line, which just reflects the fact that all the included experimental

data is in good agreement with the predictions of the SM. For tanβ < 0.6 the value of β−α

can not deviate from π/2 by more than 0.01π. This is a combined effect of the flavour,

EWPO and perturbativity constraints. For small tanβ the observables Br(B̄ → Xsγ),

∆mBs and Rb receive large corrections from charged Higgs diagrams and thus force mH±

to large values. In this limit the perturbativity bounds force α to be close to β − π/2. For

tanβ > 5 there is a thin strip allowed at two standard deviations, where β−α can be as low

as 0.4π. The best-fit scenarios in this strip feature relatively small masses of the charged

and CP -even Higgs bosons. For example, we obtain the following best-fit parameters for

β − α fixed at 0.4π:

tanβ = 6.5 , m12 = 185GeV ,

mH = 476GeV , mA = 737GeV , mH± = 440GeV . (4.1)

Figure 1(b) shows the allowed regions in the tanβ-mH± plane. The exclusions in this

plot are essentially due to the flavour observables Br(B̄ → Xsγ) and ∆mBs as well as the

– 7 –
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H

+
[G
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]

(b)
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Rgg

0.4

0.6

0.8

1

1.2

Rγγ

(c)

Figure 1. Allowed regions in the tanβ-(β − α) plane (a), the tanβ-mH± plane (b) and the Rgg-

Rγγ plane (c). The shaded blue areas are the regions allowed at one, two and three standard

deviations (dark to light) for the tight perturbativity constraint (λmax = 2π). The contours of the

corresponding regions for λmax = 4π are indicated by green lines.

hadronic Z → bb̄ branching ratio Rb. All these observables get contributions from charged

Higgs diagrams which are proportional to positive powers of cotβ. Suppressing these terms

for small values of tanβ requires very large values of mH± , so that charged Higgs masses

below 1TeV are excluded for tanβ . 0.8. The β-independent terms in Br(B̄ → Xsγ)

lead to an absolute lower limit of 322GeV at two standard deviations and approximately

400GeV at one standard deviation. This limit is the main reason for the fact that the

lower strip in figure 1(a) is disfavoured at one standard deviation. If we remove the flavour

observables and Rb from our fit we confirm the results of previous analyses (e.g. [24, 26])

where the lower strip in figure 1(a) is still allowed at one standard deviation. Also note

that the green lines in figure 1(b) exactly coincide with the boundaries of the blue regions,

which means that the limits shown in this plot are insensitive to the implementation of the

perturbativity bound. The pattern of figure 1(b) is the same as the one found in [12], but

of course the newer data and the NNLO result used by us lead to a tighter lower bound

on mH± .
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Limits for the tree-level couplings of h to fermions, W and Z bosons can easily be

extracted from figure 1(a) and table 1. The relations between the 2HDM parameters and

the one-loop effective hgg and hγγ couplings are more complicated. Figure 1(c) shows

exclusion limits in the Rgg-Rγγ plane, where Rgg and Rγγ are the (2HDM/SM) ratios of

squared effective hgg and hγγ couplings, respectively. We see that the favoured region is

centred around Rgg = Rγγ = 1, i.e. the SM limit. In addition, there is a region around

Rgg = 1.25 and Rγγ = 0.8 which is allowed at two standard deviations. This region directly

corresponds to the lower strip in figure 1(a). The enhancement of the hgg coupling is due

to the constructive interference between the top and bottom-loop contribution and depends

only on tanβ and β − α. Using the expressions in [84, 85] for the fermion loop diagram,

mh = 126GeV, mt = 174GeV, mb = 4.2GeV and coupling modification factors from

table 1 we find

Rgg ≈ 1.107
cos2 α

sin2 β
+ 0.008

sin2 α

cos2 β
+ 0.115

sin(2α)

sin(2β)
. (4.2)

For the tanβ and β − α values from (4.1) this gives Rgg ≈ 1.23. The effective hγγ

coupling receives contributions from fermion, W boson and charged Higgs loops. For the

parameters (4.1) we obtain Rγγ ≈ 0.77. The decrease with respect to the SM is due to

the fact that the W loop contribution is multiplied with the factor sin(β − α), which is

approximately 0.95 for the parameters in (4.1). The modification of the htt̄ coupling and

the charged Higgs contribution are negligible at this parameter point.

The implications of the current experimental data for the masses of the heavy 2HDM

Higgs bosons are summarised in figure 2. figure 2(a) shows, as a function of mφ, the p-value

for the hypothesis that a certain heavy 2HDM Higgs boson φ (= H,A,H±) has a certain

mass mφ. In addition to the lower limits on mH± which were already shown in figure 1(b)

we see that masses of the heavy neutral Higgs bosons below approximately 375GeV are

disfavoured at one standard deviation. At two standard deviations all values down to

126GeV (in the case of mH) or below (in the case of mA) are allowed. However, certain

combinations of heavy Higgs masses can be excluded with a higher significance. This is

shown in figures 2(b) to (d). The dashed lines indicate the thresholds for various tree-level

φ → φ′φ′′ and φ → φ′V decays (with φ, φ′, φ′′ ∈ {H,A,H±} and V ∈ {W,Z}). Figure 2(b)
shows that scenarios where both mH and mA are smaller than 300GeV are excluded at two

standard deviations. In figure 2(d) we see that the lower limit of mH± increases slightly

for values of mH below approximately 400GeV. Both limits come from the combination of

flavour and electroweak precision observables and are independent of the implementation

of the perturbativity bound. For mH < mH± the EWPO constraints can only be satisfied

if mA ≈ mH± . Combined with the lower bound on mH± from Br(B → Xsγ) this explains

the exclusion of the lower left corner in the mH -mA plane. Furthermore, the top-left

and bottom-right regions in figures 2(b) to (d) are excluded because the requirement of

perturbativity constrains the differences between the heavy Higgs masses to be of order

v. Naturally, these limits depend on the implementation of the perturbativity bound.

For the tight bound (λmax = 2π) the (on-shell) decay H → H+H− is excluded at two

standard deviations.
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Figure 2. (a) shows p-values for the masses of the heavy 2HDM Higgs bosons. (b) to (d) shows

allowed regions in the mH -mA, mH± -mA and mH± -mH planes, respectively. The shaded blue

areas are the regions allowed at one, two and three standard deviations (dark to light) for the tight

perturbativity constraint (λmax = 2π). The contours of the corresponding regions for λmax = 4π

are indicated by green lines. The dashed lines indicate thresholds for on-shell decays of one heavy

2HDM Higgs boson into other heavy 2HDM Higgs bosons.

5 Conclusions

In this paper we have confronted the type-II 2HDM (with a softly broken Z2 symmetry)

with the relevant experimental constraints from LHC data on the 126GeV Higgs resonance,

the non-observation of additional heavy Higgs resonances, electroweak precision and flavour

observables. In addition theoretical constraints from the requirements of vacuum stability

and perturbativity were taken into account. While the requirement for perturbativity of

the Higgs self-couplings must be included in some way, we emphasise that the definition

of the perturbativity bound involves some arbitrariness. Therefore, the approach taken
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ggF VBF VH

0/1 jet [%] 0.945 2.101 1.702

VBF [%] 0.026 0.979 0.023

Table 2. Selection efficiencies for the different Higgs production mechanisms in the H → ττ event

categories defined by CMS [86] (see also figure 3). The columns stand for gluon fusion (ggF), vector

boson fusion (VBF) and WH or ZH associated production (VH).

in this paper is to show results for both a loose (λmax = 4π) and a tight (λmax = 2π)

implementation of this bound.

In the present analysis the 126GeV resonance is always interpreted as the light CP -

even 2HDM Higgs boson. We find that the combination of Higgs signal strength data and

flavour observables disfavours, at one standard deviation, scenarios where the couplings of

light CP -even Higgs boson deviate strongly from the ones of the SM Higgs boson. (We are

referring to the 2σ ‘islands’ in figure 1(a) and (c).) For tanβ < 5 such scenarios are excluded

at two standard deviations. Charged Higgs masses below 322GeV are also excluded at two

standard deviations. This limit is mainly due to the Br(B̄ → Xsγ) measurement and

our fit uses the most accurate available theoretical computation [54, 55] of this quantity.

Furthermore, flavour and electroweak precision observables exclude scenarios with both

mH and mA below approximately 300GeV at two standard deviations. For large values of

mH , mA and mH± the differences between these masses are bounded by the requirement

of perturbativity. If the tight version (λmax = 2π) of the perturbativity bound is employed,

the on-shell H → H+H− decay is ruled out at two standard deviations.

Our results differ from several recent analyses of the 2HDM of type II. Contrary to

statements in e.g. [24, 26] we find that scenarios where β − α deviates significantly from

π/2 are disfavoured at one standard deviation and excluded at two standard deviations for

tanβ < 5. This exclusion is a consequence of the combination of light Higgs signal strengths

with flavour observables. We also do not confirm the upper limits on the heavy Higgs masses

reported in [27]. As explained in [28] the type-II 2HDM with a softly broken Z2 symmetry

has a decoupling limit in which the light CP -even Higgs boson becomes SM-like and the

other Higgs bosons become infinitely heavy. In this limit the theory is phenomenologi-

cally indistinguishable from the SM and perturbativity of the Higgs self-couplings enforces

precise relations between the heavy Higgs masses. The scan-based analysis of [27] simply

misses the scenarios where these relations are fulfilled. For the same reason, we do not

confirm the upper limit on tanβ reported there.
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ggF VBF WH ZH ttH

ATLAS 7TeV ucl 0.929 0.040 0.018 0.010 0.002

uch 0.665 0.157 0.099 0.057 0.024

url 0.928 0.039 0.020 0.011 0.002

urh 0.654 0.161 0.108 0.061 0.018

ccl 0.928 0.040 0.019 0.010 0.002

cch 0.666 0.153 0.100 0.057 0.025

crl 0.928 0.038 0.020 0.011 0.002

crh 0.653 0.160 0.110 0.059 0.018

ct 0.894 0.052 0.033 0.017 0.003

jj 0.225 0.767 0.004 0.002 0.001

ATLAS 8TeV ucl 0.937 0.040 0.014 0.008 0.002

uch 0.793 0.126 0.041 0.025 0.014

url 0.932 0.040 0.016 0.010 0.001

urh 0.781 0.133 0.047 0.028 0.011

ccl 0.936 0.040 0.013 0.009 0.002

cch 0.789 0.126 0.043 0.027 0.015

crl 0.932 0.041 0.016 0.010 0.001

crh 0.777 0.130 0.052 0.030 0.011

ct 0.907 0.055 0.022 0.013 0.002

lhm2j 0.450 0.541 0.005 0.003 0.001

thm2j 0.238 0.760 0.001 0.001 0.000

lm2j 0.481 0.030 0.297 0.172 0.019

etmiss 0.041 0.005 0.357 0.476 0.121

lept 0.022 0.006 0.632 0.154 0.186

CMS 7TeV u0 0.614 0.168 0.121 0.066 0.031

u1 0.876 0.062 0.036 0.020 0.005

u2 0.913 0.044 0.025 0.014 0.003

u3 0.913 0.044 0.026 0.015 0.002

jj 0.268 0.725 0.004 0.002 0.000

CMS 8TeV u0 0.729 0.116 0.082 0.047 0.026

u1 0.835 0.084 0.045 0.026 0.010

u2 0.916 0.045 0.023 0.013 0.004

u3 0.925 0.039 0.021 0.012 0.003

jj t 0.207 0.789 0.002 0.001 0.001

jj l 0.470 0.509 0.011 0.006 0.005

mu 0.000 0.002 0.504 0.286 0.208

e 0.011 0.004 0.502 0.285 0.198

Etmiss 0.220 0.026 0.407 0.230 0.117

Table 3. Fractional contributions of the different Higgs production mechanisms to the H → γγ

event categories defined by ATLAS and CMS. The numbers and category labels are from [31, 33, 87]

(see also figure 3). The columns stand for gluon fusion (ggF), vector boson fusion (VBF), WH

associated production (WH), ZH associated production (ZH) and tt̄H associated production (ttH).
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µT(V H → V bb̄) = 1.59+0.69
−0.72 [88]

µT(H → γγ) = 5.97+3.39
−3.12 [88]

µT(H → ττ) = 1.68+2.28
−1.68 [88]

µT(H → WW ) = 0.94+0.85
−0.83 [88]

µA7(V H → V bb̄) = 0.481± 2.185 [89]
µA7(H → γγ)jj = 2.896± 1.887 [90]
µA7(H → γγ)cch = −3.665± 1.916 [90]
µA7(H → γγ)ccl = 5.276± 2.554 [90]
µA7(H → γγ)crh = −0.675+2.845

−2.816 [90]
µA7(H → γγ)crl = 2.779+1.945

−1.916 [90]
µA7(H → γγ)ct = 0.370+3.628

−3.599 [90]
µA7(H → γγ)uch = 0.022+1.887

−1.916 [90]
µA7(H → γγ)ucl = 0.602± 1.422 [90]
µA7(H → γγ)urh = 10.936± 3.657 [90]
µA7(H → γγ)url = 1.967± 1.597 [90]
µA7(H → ττ) = 0.407+1.630

−2.037 [89]
µA7(H → WW ) = 0.0+0.6

−0.6 [91]
µA7(H → ZZ) = 1.185+1.222

−0.815 [89]
µA8(V H → V bb̄) = 1.0± 0.9± 1.1 [92]
µA8(H → γγ)lept = 2.711+1.980

−1.657 [31]
µA8(H → γγ)cch = 2.005+1.519

−1.258 [31]
µA8(H → γγ)ccl = 1.391+1.043

−0.951 [31]
µA8(H → γγ)crh = 1.299+1.320

−1.274 [31]
µA8(H → γγ)crl = 2.220+1.166

−0.997 [31]
µA8(H → γγ)ct = 2.818+1.688

−1.596 [31]
µA8(H → γγ)lhmjj = 2.772+1.780

−1.381 [31]
µA8(H → γγ)lmjj = 0.332+1.734

−1.458 [31]
µA8(H → γγ)/ET

= 2.987+2.716
−2.164 [31]

µA8(H → γγ)thmjj = 1.621+0.829
−0.675 [31]

µA8(H → γγ)uch = 0.962+1.090
−0.936 [31]

µA8(H → γγ)ucl = 0.885+0.721
−0.706 [31]

µA8(H → γγ)urh = 2.711+1.350
−1.151 [31]

µA8(H → γγ)url = 2.527+0.921
−0.783 [31]

µA8(H → ττ) = 0.756+0.775
−0.745 [89, 93]

µA8(H → WW ) = 1.26± 0.35 [91]
µA8(H → ZZ) = 1.603+0.423

−0.459 [32, 89]
µC7(tt̄ → H → bb̄) = −0.729+2.018

−1.853 [94]
µC7(V H → V bb̄) = 0.588+1.235

−1.153 [94]
µC7(H → γγ)u0 = 3.832+2.042

−1.671 [33]
µC7(H → γγ)u1 = 0.193+1.002

−0.965 [33]
µC7(H → γγ)u2 = 0.045± 1.262 [33]
µC7(H → γγ)u3 = 1.493± 1.634 [33]
µC7(H → γγ)jj = 4.203+2.339

−1.782 [33]
µC7(H → ττ)0/1 jet = 1.000+1.441

−1.400 [94]
µC7(H → ττ)VBF = −1.718+1.318

−1.153 [94]
µC7(H → ττ)VH = 0.671+4.076

−3.047 [94]
µC7(H → WW ) = 0.726+0.417

−0.412 [40]
µC7(H → ZZ) = 0.671+0.700

−0.494 [94]
µC8(V H → V bb̄) = 1.584+0.771

−0.704 [94, 95]
µC8(H → γγ)u0 = 2.198+0.928

−0.817 [33]
µC8(H → γγ)u1 = 0.045± 0.705 [33]
µC8(H → γγ)u2 = 0.304± 0.483 [33]
µC8(H → γγ)u3 = −0.327+0.817

−0.854 [33]
µC8(H → γγ)e = −0.661+2.785

−1.968 [33]
µC8(H → γγ)jj loose = 0.824+1.077

−1.002 [33]
µC8(H → γγ)jj tight = 0.304+0.668

−0.594 [33]
µC8(H → γγ)/ET

= 1.938+2.599
−2.339 [33]

µC8(H → γγ)µ = 0.416+1.819
−1.411 [33]

µC8(H → ττ)0/1 jet = 1.109+0.416
−0.417 [94, 96]

µC8(H → ττ)VBF = 2.375+0.674
−0.703 [94, 96]

µC8(H → ττ)VH = 0.780+1.613
−1.723 [94, 96]

µC8(H → WW ) = 0.647+0.225
−0.221 [40]

µC8(H → ZZ) = 0.975+0.332
−0.275 [34, 94]

−6 −4 −2 0 2 4 6 8 10 12 14

Figure 3. Higgs signal strengths measured by D0, CDF, ATLAS and CMS. The superscripts T, A7,

A8, C7 and C8 refer to Tevatron, ATLAS 7TeV, ATLAS 8TeV, CMS 7TeV and CMS 8TeV data,

respectively. The subscripts jj, cch etc. denote the different event categories defined by ATLAS and

CMS. The combination of all signal strengths yields µcombined = 1.007+0.099
−0.098 and is illustrated

by the green band.
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