
Determining the chromatic number of
triangle-free 2P3-free graphs in polynomial time?

Hajo Broersma, Petr A. Golovach, Daniël Paulusma, and Jian Song ??

School of Engineering and Computing Sciences, Durham University,
Science Laboratories, South Road, Durham DH1 3LE, England

{hajo.broersma,petr.golovach,daniel.paulusma,jian.song}@durham.ac.uk

Abstract. Let 2P3 denote the disjoint union of two paths on three ver-
tices. A graph G that has no subgraph isomorphic to a graph H is called
H-free. The Vertex Coloring problem is the problem to determine the
chromatic number of a graph. Its computational complexity for triangle-
free H-free graphs has been classified for every fixed graph H on at most
6 vertices except for the case H = 2P3. This remaining case is posed as
an open problem by Dabrowski, Lozin, Raman and Ries. We solve their
open problem by showing polynomial-time solvability.

1 Introduction

Graph coloring involves the labeling of the vertices of some given graph by
integers called colors such that no two adjacent vertices receive the same color.
The corresponding `-Coloring problem is the problem to decide whether a
graph can be colored with at most ` colors. The related Vertex Coloring
problem is to determine the smallest number of colors a graph can be colored
with. Due to the fact that `-Coloring is NP-complete for any fixed ` ≥ 3,
there has been considerable interest in studying its complexity when restricted
to certain graph classes. Without doubt one of the most well-known results in
this respect is that `-Coloring is polynomially solvable for perfect graphs. More
information on this classic result and on the general motivation, background and
related work on coloring problems restricted to special graph classes can be found
in several surveys [23, 25] on this topic.

We continue the study of the computational complexity of the `-Coloring
and Vertex Coloring problem restricted to graphs characterized by one or
more forbidden induced subgraphs. This problem has been studied in many
papers by different groups of researchers [4–6, 8, 12–14, 16–18, 22, 25, 26].

If a graph G does not contain an induced subgraph that is isomorphic to a
graph H, then G is called H-free. By combining several results from the literature
with a number of new results we obtained the following result that even holds
for the precoloring extension version of 3-Coloring [5]. Here, a linear forest is
the disjoint union of a collection of paths.

? A preliminary and shortened version of the results in this paper will appear in the
proceedings of ISAAC 2010.

?? This work has been supported by EPSRC (EP/G043434/1).

Theorem 1 ([5]). Let H be a fixed graph on at most 6 vertices. Then the 3-
Coloring problem for H-free graphs is polynomial-time solvable if H is a linear
forest; otherwise it is NP-complete.

The complexity status of the 3-Coloring problem restricted toH-free graphs
is open for many graphs H on seven or more vertices, in particular for paths. It is
even unknown whether there exists a fixed integer k ≥ 7 such that 3-Coloring
is NP-complete for Pk-free graphs. Here, Pk denotes the path on k vertices.

For larger values of `, more is known on the complexity status of the `-
Coloring problem restricted to Pk-free graphs. The currently sharpest known
results are that 4-Coloring is NP-complete for P8-free graphs [5] and that 6-
Coloring is NP-complete for P7-free graphs [4]. It is unknown whether there
exists an integer ` such that `-Coloring is NP-complete for P6-free graphs.

Hoàng et al. [12] showed that `-Coloring for any fixed integer ` is polynomial-
time solvable for P5-free graphs. In contrast, Král’ et al. [16] proved that Vertex
Coloring is NP-hard on P5-free graphs. In fact, they give a complete complexity
classification of the Vertex Coloring problem restricted to graphs in which
one fixed graph is forbidden as an induced subgraph. In particular, this problem
is NP-hard for triangle-free graphs. These graphs are also called K3-free graphs.

The result of Král’ et al. [16] motivated a study by Kamiński and Lozin [13]
on the computational complexity of the Vertex Coloring problem on triangle-
free graphs with one extra forbidden subgraph H. They showed that Vertex
Coloring is NP-hard for triangle-free H-free graphs for any fixed graph H that
is not a forest. Let K1,5 denote the 6-vertex star. Maffray and Preissmann [21]
showed that Vertex Coloring is NP-hard for triangle-free K1,5-free graphs.

A very recent paper of Dabrowski et al. [8] deals with the computational
complexity of the Vertex Coloring problem for triangle-free H-free graphs,
where H is a forest on at most 6 vertices not isomorphic to K1,5. They prove
that the problem is polynomial-time solvable for all such cases, except when
H = 2P3, i.e., the disjoint union of two paths on 3 vertices. For a number of
cases they use a generic approach, which we describe below.

Let H be a forest on at most 6 vertices. First show that the class of triangle-
free H-free graphs has bounded clique-width. This means that for any fixed
integer k the k-Coloring problem can be solved in polynomial time for triangle-
free H-free graphs by applying the result of Courcelle, Makowsky and Rotics [7].
This does not immediately lead to the desired result for Vertex Coloring for
this graph class. However, it does so, if one can determine a constant c that is
an upper bound on the chromatic number of every triangle-free H-free graph.
This is the final part of their approach.

As we shall see later on, every triangle-free 2P3-free graph can be colored
with at most 5 colors, so the chromatic number of such graphs is bounded by a
constant. However, Lozin and Volz [20] showed that already bipartite 2P3-free
graphs can have arbitrarily large clique-width. Hence, the above approach cannot
be used. Dabrowski et al. [8] leave the case H = 2P3 as an open problem and
mention that it could be NP-hard. We disprove this by presenting a polynomial-
time algorithm that solves Vertex Coloring for triangle-free 2P3-free graphs.

2

Our result together with all the aforementioned results leads to the following
theorem.

Theorem 2. Let H be a fixed graph on at most 6 vertices. Then the Vertex
Coloring problem for triangle-free H-free graphs is polynomial-time solvable if
H is a forest not isomorphic to K1,5; otherwise it is NP-hard.

Our polynomial-time algorithm that solves the Vertex Coloring problem
for triangle-free 2P3-free graphs tests if the input graph can be colored with `
colors for increasing value of `. As we mentioned above, a triangle-free 2P3-free
graph can always be colored with at most 5 colors; we will prove this in in Sec-
tion 4. Hence, our algorithm terminates. It runs in polynomial time because of the
following reasons. Firstly, the 2-Coloring problem is trivial. Secondly, by The-
orem 1, we can solve the 3-Coloring problem for this graph class (even without
requiring triangle-freeness). Thirdly, we can solve the 4-Coloring problem in
polynomial time for triangle-free 2P3-free graphs; we will prove this in Section 3.
We start by stating some basic terminology and observations in Section 2.

2 Preliminaries

We only consider finite undirected graphs without loops and without multiple
edges. Let G = (V,E) be a graph. For u ∈ V let NG(u) = {v | uv ∈ E} denote
the neighborhood of u, and let dG(u) = |NG(u)| denote the degree of u. Let U be
a subset of V . Then we define NG(U) = {v ∈ V \ U | uv ∈ E for some u ∈ U}.
We write G[U] to denote the subgraph of G induced by the vertices in U , i.e.,
the subgraph of G with vertex set U and an edge between two vertices u, v ∈ U
whenever uv ∈ E. Furthermore, U is called a dominating set of G if every vertex
of G is in U or adjacent to a vertex of U , and U is called an independent set if
there is no edge between any two vertices in U . If G[U] is a complete graph, i.e.,
if there is an edge between any two vertices of U , then U is called a clique. The
complete graph on n vertices is denoted Kn.

Let {H1, . . . ,Hp} be a set of graphs. We say that a graph G is (H1, . . . ,Hp)-
free if G has no induced subgraph isomorphic to a graph in {H1, . . . ,Hp}; if
p = 1, we write H1-free instead of (H1)-free.

A (vertex) coloring of a graph G = (V,E) is a mapping c : V → {1, 2, . . .}
such that c(u) 6= c(v) whenever uv ∈ E. Here c(u) is referred to as the color of
u. An `-coloring of G is a coloring c of G with c(V) ⊆ {1, . . . , `}. Here we use the
notation c(U) = {c(u) | u ∈ U} for U ⊆ V . We let χ(G) denote the chromatic
number of G, i.e., the smallest ` such that G has an `-coloring. We say that a
graph G is `-chromatic if χ(G) = ` and `-colorable if χ(G) ≤ `. We recall that the
problem `-Coloring is to decide whether a given graph admits an `-coloring,
and that the Vertex Coloring problem is to determine the chromatic number
of a given graph.

A list-assignment of a graph G = (V,E) is a function L that assigns a
list L(u) of so-called admissible colors to each u ∈ V . We say that a color-
ing c : V → {1, 2, . . .} respects L if c(u) ∈ L(u) for all u ∈ V . In this case we

3

also call c a list-coloring. The problem of finding such a coloring of a graph is
relevant for us in the following sense. We begin our coloring algorithm in Sec-
tion 3 by assigning a list {1, 2, 3, 4} of colors to each vertex of the input graph
G = (V,E). Then, in order to start some branching, we sometimes color the
vertices of a subset W ⊆ V (we precolor W) in every possible way. Afterwards
we does as follows for each u ∈W . If u got precolored by color i we remove this
color from the list of every neighbor of u that is not in W . In that case we say
that we update the lists, and then we must find a coloring that respects the new
lists.

The coloring algorithm in Section 3 makes frequently use of the following
well-known observation, the proof of which follows from the fact that the de-
cision problem in this case can be modeled and solved as an instance of the
2-Satisfiability problem. This approach has been introduced by Edwards [9]
and is folklore now.

Observation 1 ([9]) Let G be a graph in which every vertex has a list of admis-
sible colors of size at most 2. Then checking whether G has a coloring respecting
these lists is solvable in polynomial time.

3 Coloring (K3, 2P3)-free graphs with at most four colors

Our polynomial-time algorithm for solving 4-Coloring for (K3, 2P3)-free graphs
heavily relies on a number of structural properties of 4-colorable (K3, 2P3)-free
graphs. We present these properties together with some other useful observations
in Section 3.1. Then in Sections 3.2–3.4 we present our algorithm.

3.1 Structural properties

Let G = (V,E) be a 2P3-free graph. Let I be an independent set in G, and
let X be a subset of V \I. We write I(X) := NG(X)∩ I and I(X) := I\NG(X),
so I = I(X) ∪ I(X) and I(X) ∩ I(X) = ∅. If every vertex in NG(I)\X has at
most one neighbor in I(X) then we say that X pseudo-dominates I. An example
of a set X that pseudo-dominates a set I is illustrated in Figure 1.

We need the following two lemmas. Lemma 1 is an improvement of a sim-
ilar lemma for sP3-free graphs from our previous paper [5] for the case s = 2.
Lemma 2 is the direct translation of a lemma for sP3-free graphs from our pre-
vious paper [5] for the case s = 2.

Lemma 1. Let I be an independent set in a 2P3-free graph G = (V,E). Then
G[V \I] contains a clique X that pseudo-dominates I.

Proof. Let G = (V,E) be a 2P3-free graph, and let I be an independent set in
G. Let X be a clique in G[V \I] such that there is no clique X ′ in G[V \I] with
|I(X ′)| > |I(X)|.

4

X NG(I) \ X

I(X) I(X)

︷ ︸︸ ︷ ︷ ︸︸ ︷

︸ ︷︷ ︸ ︸ ︷︷ ︸
Fig. 1. A set X that pseudo-dominates a set I.

We will prove that X pseudo-dominates I. In order to derive a contradiction
assume that X does not pseudo-dominate I. Then there is a vertex v ∈ V \(I∪X)
with at least two neighbors z, z′ in I(X). The following claim is trivially true for
any x ∈ X with exactly one neighbor in I. Because G is 2P3-free, the claim also
holds if such an x has more than one neighbor in I.

Claim 1. Let x ∈ X. If vx /∈ E, then v is adjacent to at least |N(x) ∩ I| − 1
neighbors of x in I.

Let X1 = N(v)∩X and let X2 = X\X1. If X1 = X then X∪{v} contradicts
our choice of X, because X ∪ {v} is a clique with |I(X ∪ {v})| > |I(X)|. Hence,
X1 6= X, so X2 6= ∅.

Let I∗(X2) consist of all vertices in I(X2) that are adjacent to every vertex
in X2. We claim that v is adjacent to every vertex in I(X2)\I∗(X2). In order
to see this, suppose there exist two vertices x ∈ X2 and w ∈ I(X2) such that
vw /∈ E and wx /∈ E. By definition of I(X2), there exists a vertex x′ ∈ X2

with wx′ ∈ E, so x′ 6= x. However, then wx′x and zvz′ are two induced paths
on three vertices that form an induced 2P3 in G. This is not possible, because
G is 2P3-free. Hence, indeed v is adjacent to every vertex in I(X2)\I∗(X2). By
Claim 1, v is adjacent to at least |N(x) ∩ I| − 1 neighbors of any x ∈ X2 in I.
Hence, we find that v is adjacent to every vertex in I(X2) except perhaps one.
However, then X1∪{v} is a clique with |I(X1∪{v})| > |I(X)|. This contradicts
our choice of X. We conclude that X pseudo-dominates I. ut

Lemma 2 ([5]). Let G be a 2P3-free graph that contains a set X and an in-
dependent set I, such that X pseudo-dominates I. Let k ≥ 1. If I(X) contains
more than k vertices with degree at least k in G, then G is not k-colorable.

The following lemma states a useful relationship between k-colorability of
(K3, 2P3)-free graphs with minimum degree at least k and the existence of a
dominating set, the size of which is bounded by a linear function in k. Its proof
uses Lemmas 1 and 2.

Lemma 3. Let G be a (K3, 2P3)-free graph with minimum degree at least k for
some integer k. If G is k-colorable, then G contains a dominating set D of size
at most 2k + 7, such that the size of a maximum independent set in G[D] is at
most 2k + 4.

5

Proof. Let G be a (K3, 2P3)-free graph with minimum degree at least k for
some integer k. Assume that G is k-colorable. If G has a component that is a
complete graph, then this component must have at least k+1 vertices due to our
minimum degree assumption. However, then G is not k-colorable. Hence, such a
component does not exist. Then G contains an induced path uvw. If {u, v, w} is
a dominating set of G, then the statement of the lemma holds. Suppose {u, v, w}
is not a dominating set of G.

Let G′ be the graph obtained from G after removing u, v, w, and all vertices
in NG({u, v, w}). Because G is (K3, 2P3)-free and u, v, w form an induced P3,
we find that G′ is (K3, P3)-free. Hence, every component of G′ is isomorphic to
K1 or to K2.

We partition the vertices of G′ into at most 2 independent sets I1 and I2
as follows. First we form I1 by taking exactly one vertex from each component
of G′. We remove I1 from G′ and repeat the above step to obtain I2 if there
were any vertices of G′ left. This is indeed a partition of V (G′), because every
component of G′ has at most 2 vertices at the start of this procedure.

We apply Lemma 1 to each Ih in order to find a clique Xh in G that pseudo-
dominates Ih. Because G is K3-free, |Xh| ≤ 2 for h = 1, 2.

We apply Lemma 2 to G and each Ih in order to find that Ih(Xh) has size
at most k for h = 1, 2. Then D = {u, v, w} ∪ X1 ∪ X2 ∪ I1(X1) ∪ I2(X2) is
a dominating set of G that has at most 3 + 2 + 2 + k + k = 2k + 7 vertices.
We observe that the size of a maximum independent set in G[D] is at most
2 + 1 + 1 + k + k = 2k + 4. This completes the proof of Lemma 3. ut

We observe that the graph in Lemma 3 is required to have minimum degree
at least k. This is not a problem for our algorithm (which assumes k = 4) due
to the following well-known procedure. Let G be a graph. Remove all vertices
with degree at most k − 1 from G. Propagate this until we obtain a graph with
minimum degree at least k, denoted as G≥k. We note that G≥k might be empty
and observe the following, see e.g. [5] for a proof.

Observation 2 Let k be a fixed integer. Then G≥k can be obtained in polyno-
mial time, and G≥k is k-colorable if and only if G is k-colorable. Furthermore,
for any set H of graphs, G≥k is H-free if G is H-free.

We now present our algorithm that solves the 4-Coloring problem for the
class of (K3, 2P3)-free graphs.

3.2 Outline of the algorithm

Our algorithm first assigns a list with colors 1, 2, 3, 4 to every vertex of the
input graph G. Our goal is to reduce the list of every vertex to a list with at most
two admissible colors such that Observation 1 can be used. For this purpose our
algorithm first preprocesses G, thereby reducing the lists of admissible colors
of every vertex by at least one. This preprocessing heavily relies on Lemma 3

6

and is explained in detail in Section 3.3. After the preprocessing stage, we either
find that G has no 4-coloring, or else we find a constant-bounded number of
so-called suitable list-assignments of G. Due to the preprocessing, every list in
every suitable list-assignment is a proper subset of {1, 2, 3, 4}, thus of size at
most three. We show the following claim:

G has a 4-coloring if and only if G has a coloring respecting one of the suitable
list-assignments of G.

However, for a suitable list-assignment L′, we might not be able to apply Ob-
servation 1 immediately, because there may exist vertices u with |L′(u)| = 3. In
Section 3.4 we apply a polynomial-time branching algorithm that reduces the
size of such lists, such that Observation 1 may be used.

During the execution of the algorithm some vertices may get an empty list of
admissible colors at some moment. In that case our algorithm can immediately
output No. We do not write this explicitly in the description of our algorithm,
because such a case will be spotted anyway, namely at the moment we apply
Observation 1. At the end of Section 3.4, we explain a few other directions for
decreasing the running time of our polynomial-time algorithm even further.

3.3 The preprocessing

Let G be a (K3, 2P3)-free graph, every vertex u of which has a list L(u) =
{1, 2, 3, 4} of admissible colors. By Observation 2, we may assume that G has
minimum degree at least 4. We preprocess G in three phases. If at some moment
we precolor a vertex u with a certain color, then we remove this color from the
list of every neighbor of u. Recall that in that case we say that we update the
lists.

Phase 1. Reduce the list sizes by at least 1.
The algorithm checks if G has a dominating set D of size at most 2 ·4+7 = 15. If
not, it outputs No. Suppose G has such a dominating set D. Then the algorithm
precolors every vertex of D with a color from {1, 2, 3, 4} and updates the lists of
the other vertices afterwards.

After Phase 1, we can partition the set of vertices of G into five sets A,
B1, B2, B3, B4, some of which may be empty. They are defined as follows. We
let A consist of all vertices with a list of at most two admissible colors. Observe
that we have not removed the vertices of D. Because these have been precolored,
they have a list of exactly one admissible color. Hence, by definition, D ⊆ A. For
i = 1, . . . , 4, we let Bi consist of all vertices with list {1, 2, 3, 4}\{i}. We note
that each G[Bi] contains at most one component on more than two vertices due
to our assumption that G is (K3, 2P3)-free. We denote this component by Hi if
it exists.

Phase 2. Precolor an induced P3 in each Hi.
For i = 1, . . . , 4 the algorithm acts as follows. It finds three vertices ai, bi, ci that

7

form an induced P3 in Hi and precolors these vertices. Afterwards it updates
the list of the other vertices.

After Phase 2 we redefine A,B1, B2, B3, B4 by moving every vertex whose
list got reduced to size at most two from B1 ∪B2 ∪B3 ∪B4 to A. We note that
for i = 1, . . . , 4 the vertices ai, bi, ci are now in A (if they exist) and so are their
neighbors in Hi. Because G is (K3, 2P3)-free, the remaining vertices of each Hi

induce a set of isolated vertices and edges in G. Hence, for i = 1, . . . , 4, every
component of G[Bi] is either a vertex or an edge. We write Fi for the subgraph
of G[Bi] induced by the vertices of the components isomorphic to K2. So, each
Fi is the disjoint union of a number of edges.

Phase 3. Precolor each Fi.
For i = 1, . . . , 4, the algorithm precolors every vertex of Fi respecting its list of
admissible colors. Afterwards it updates the lists of the other vertices.

After Phase 3, we denote the resulting list-assignment by L′ and call L′

a suitable list-assignment of G. We redefine A,B1, B2, B3, B4 by moving every
vertex whose list got reduced to size at most two from B1 ∪B2 ∪B3 ∪B4 to A.
In Phase 2 we got rid of any components of G[Bi] on more than 2 vertices, and
in Phase 3 we got rid of any components isomorphic to K2. Hence, each Bi now
induces a set of isolated vertices in G.

Before we continue with the description of our algorithm, we need to show
the following two lemmas. Lemma 4 shows that we can restrict ourselves to
suitable list-assignments of G. Note that G has no suitable list-assignment if our
algorithm has outputted No in Phase 1, 2 or 3. Otherwise, the number of suitable
list-assignments depends on the number of different precolorings in Phase 1, 2
and 3. Hence, G may have many suitable list-assignments. However, Lemma 5
shows that the number of suitable list-assignments is bounded by a constant and
that we can find all of them in polynomial time.

Lemma 4. Let G be a (K3, 2P3)-free graph with minimum degree at least 4.
Then G has a 4-coloring if and only if there exists a suitable list-assignment L′

such that G has a coloring respecting L′.

Proof. Let G be a (K3, 2P3)-free graph with minimum degree at least four. First
suppose G has a 4-coloring c. Consider Phase 1. Because G is (K3, 2P3)-free and
has minimum degree at least 4, we can apply Lemma 3 to find that G has a
dominating set of size at most 2 · 4 + 7 = 15. We precolor D according to c and
update the lists of the other vertices. We then color the three vertices ai, bi, ci
of an induced P3 in every nonempty Hi according to c. Afterwards we update
the lists of the other vertices. Finally, in Phase 3, we color the two end-vertices
of each edge in Fi according to c for i = 1, . . . , 4. Afterwards we update the lists
of the other vertices. This leads to our desired suitable list-assignment L′ of G.

Now suppose there exists a suitable list-assignment L′ such that G has a
coloring respecting L′. By definition, this coloring is a 4-coloring of G. This
completes the proof of Lemma 4. ut

8

Lemma 5. Let G be a (K3, 2P3)-free graph with minimum degree at least 4.
Then the number of suitable list-assignments of G is constant-bounded and can
be obtained in polynomial time.

Proof. Let G be a (K3, 2P3)-free graph on n vertices that has minimum degree
at least 4. The running time of Phase 1 is dominated by the time it takes to
find the dominating set D of G if it exists. Because |D| ≤ 15, this takes O(n15)
time. The running time of Phase 2 is dominated by the time it takes to find the
vertices ai, bi, ci in each nonempty Hi. This takes O(n3) time in total.

In order to show that Phase 3 runs in polynomial time, we need to show that
each Fi has bounded size. This is true by the following claim proven below.

Claim 1. Every Fi is the disjoint union of at most 396 edges.

We prove this claim as follows. In order to derive a contradiction, suppose there is
an Fi, say F1, that is the disjoint union of edges y1z1, . . . , yqzq for some q ≥ 397.
By definition, each vertex of F1 has a list of admissible colors {2, 3, 4}. This
means that every vertex in F1 must be adjacent to a vertex that received color
1 already. Note that such a vertex must be from the dominating set D that we
precolored in Phase 1.

By Lemma 3, the size of a maximum independent set in G[D] is at most
2 · 4 + 4 = 12. Since pairs of vertices with the same color are not adjacent,
this implies that there are at most 12 vertices that received color 1 in Phase 1.
Because q ≥ 397, we then find that there exists a vertex u ∈ D with color 1 that
is adjacent to at least 34 vertices from the set {y1, . . . , yq}. We assume without
loss of generality that u is adjacent to y1, . . . , y34. Because G is K3-free, u is
adjacent to no vertex of {z1, . . . , z34}. Since there exist at most eleven other
vertices with color 1, this means that there exists a vertex v ∈ D with color 1
that is adjacent to at least four vertices in {z1, . . . , z34}. We assume without
loss of generality that v is adjacent to z1, z2, z3, z4. Because G is K3-free, v is
adjacent to no vertex of {y1, y2, y3, y4}. Since u and v both received color 1, they
are not adjacent. However, then the paths y1uy2 and z3vz4 form an induced 2P3

in G. This is not possible, because G is 2P3-free. Hence, we have proven Claim 1.

We are left to determine the number of suitable list-assignments of G. This num-
ber equals the number of different precolorings of the vertices in D∪ {a1, b1, c1}∪
{a2, b2, c2}∪ {a3, b3, c3} ∪ {a4, b4, c4}∪ V (F1)∪ V (F2)∪ V (F3)∪ V (F4), which is
at most 415 · (33)4 · (3792)4. This completes the proof of Lemma 5. ut

Due to Lemma 4, our algorithm is left with the following task.

Check for each suitable list-assignment L′ whether G has a coloring that respects
L′.

Due to Lemma 5, our algorithm runs in polynomial time if it performs the
above task in polynomial time for every suitable list-assignment. In Section 3.4
we consider a single suitable list-assignment L′ of G and show that this is indeed
the case.

9

3.4 Reducing the lists of size three in a suitable list-assignment

Let L′ be a suitable list-assignment created from a (K3, 2P3)-free graph G with
minimum degree at least 4. Recall that, due to the preprocessing, V (G) = A ∪
B1 ∪B2 ∪B3 ∪B4 with the following four properties; also recall that D ⊆ A is
the dominating set that got precolored in Phase 1.

P1. |L′(u)| ≤ 2 for every u ∈ A;

P2. L′(v) = {1, 2, 3, 4}\{i} for every v ∈ Bi and for every 1 ≤ i ≤ 4;

P3. Bi is an independent set for every 1 ≤ i ≤ 4;

P4. Every vertex of Bi is adjacent to at least one vertex of D that has color i.

Our algorithm now starts a branching procedure in order to reduce the num-
ber of admissible colors in the list of every vertex in each Bi by at least one,
thereby enabling the use of Observation 1. This is described below.

Phase 4. The branching.
Our algorithm first considers B1, then B2, then B3, and finally B4 by applying
the following procedure for each Bi. Recall that we use the notation Bi(X) =
NG(X) ∩Bi and Bi(X) = Bi\NG(X).

(i) Determine a clique X in G[V \D] with X = {x} or X = {x1, x2} that pseudo-
dominates Bi.

(ii) If X = {x}, then do as follows for every pair p, q ∈ {1, 2, 3, 4}\{i} with p 6= q:

1. Set L′(u) := {p, q} for every u ∈ Bi({x}).
2. Remove all vertices in Bi({x}) with at most two neighbors in V \D.
3. Precolor all remaining vertices in Bi({x}) respecting L′.
4. If i ≤ 3, then start Phase 4 with Bi+1; otherwise apply Observation 1.

If the above branching does not lead to a coloring of G respecting L′, then
the algorithm does as follows. If |Bi({x})| ≤ 2 or i /∈ L′(x) it outputs No.

Otherwise, the algorithm precolors x by i, removes x from G and repeats
Phase 4 with set Bi.

(iii) If X = {x1, x2}, then do as follows for all 4-tuples (p, q, r, s) with p, q, r, s ∈
{1, 2, 3, 4}\{i}, p 6= q and r 6= s:

1. Set L′(u) := {p, q} for every u ∈ Bi({x1}).
2. Set L′(v) := {r, s} for every v ∈ Bi({x2}).
3. Remove all vertices in Bi(X) with at most two neighbors in V \D.
4. Precolor all remaining vertices in Bi(X) respecting L′.
5. If i ≤ 3, then start Phase 4 with Bi+1; otherwise apply Observation 1.

If the above branching does not lead to a coloring of G respecting L′, then
the algorithm does as follows. If there is no x ∈ X with |Bi(x)| ≥ 3 and
i ∈ L′(x) then it outputs No. Otherwise, at least one of the vertices x1, x2
has three neighbors in Bi and color i in its list. If |Bi(x2)| ≥ 3 and i ∈ L′(x2)
then the algorithm does as follows for every p ∈ L′(x1)\{i}:

10

6. Set L′(x1) = p.
7. Set L′(u) := L′(u)\{p} for every u ∈ NG(x1).
8. Set L′(x2) := {i}.
9. Remove x1, x2 from G, set Bi := Bi\Bi({x1}), and repeat Phase 4 with
Bi.

If the above branching does not lead to a coloring of G respecting L′, then
the algorithm outputs No unless |B(x1)| ≥ 3 and i ∈ L′(x1). In that case,
the algorithm does as follows for every r ∈ L′(x2)\{i}:

10. Set L′(x2) = r.
11. Set L′(v) := L′(v)\{r} for every v ∈ NG(x2).
12. Set L′(x1) := {i}.
13. Remove x1, x2 from G, set Bi := Bi\Bi({x2}), and repeat Phase 4 with

Bi.

(iv) If all calls to Observation 1 in steps (ii) and (iii) yield no coloring, then
the algorithm outputs No. Otherwise, if there is a call to Observation 1 that
yields a coloring c, then the algorithm extends c to a coloring of G that
respects L′ by coloring the vertices it has removed from G in the reverse
order of their removal, in such a way that L′ is respected.

We prove the correctness of our branching algorithm in Lemma 6 and perform
a running time analysis in Lemma 7.

Lemma 6. Let L′ be a suitable list-assignment of a (K3, 2P3)-free graph G with
minimum degree at least four. Then G has a coloring respecting L′ if and only
if a coloring is produced in Phase 4.

Proof. Let L′ be a suitable list-assignment of a (K3, 2P3)-free graph G with mini-
mum degree at least four. Let V (G) be partitioned into the sets A,B1, B2, B3, B4

that satisfy properties P1–P4, where D ⊆ A denotes the dominating set that
got precolored in Phase 1. Below we show that G has a coloring respecting L′ if
and only if our algorithm produces a coloring in Phase 4.

Suppose G has a coloring c respecting L′. Because G is (K3, 2P3)-free, we
can use Lemma 1. By this lemma, we are guaranteed to find a set X as described
in Phase 4 (i). Note that X has indeed size at most two, because G is K3-free.
Suppose Phase 4 is performed on the set Bi. We must show that our algorithm
branches in every possible way; in that case it will find a coloring respecting L′,
because G has at least one such coloring, namely c.

First consider the case X = {x} for some x ∈ V \D. Suppose the branching
in operations 1–4 of step (ii) does not lead to a coloring of G respecting L′.
Then we find that all three colors from {1, 2, 3, 4}\{i} must occur on Bi({x}),
and that consequently x must receive color i. Hence, we branch in every possible
way.

Now consider the case X = {x1, x2} for two vertices x1, x2 ∈ V \D with
x1 6= x2. Suppose the branching in operations 1–5 of step (iii) does not lead to a
coloring of G respecting L′. Then we find that all three colors from {1, 2, 3, 4}\{i}

11

must occur on Bi({x1}) or Bi({x2}). In the first case x1 must have color i. In the
second case x2 must have color i. Because x1 and x2 are adjacent they cannot
receive both color i. The algorithm first explores the case in which x2 gets color
i; this is done in operations 6–9 of step (iii). If this branching does not lead to
a coloring of G respecting L′, then it explores the case in which x1 gets color i;
this is done in operations 10–13 of step (iii). Hence, we branch in every possible
way.

Now suppose our algorithm produces a coloring c. Then this coloring will
respect L′, because during Phase 4 the algorithm only removed colors from the
lists assigned to the vertices by L′. However, the algorithm may have removed
vertices from G, and such vertices did not get a color. In that case c is a coloring
of a subgraph of G, and we must show how to extend c to a coloring of G.
Let S be the set of vertices that have been removed. In step (iv) the algorithm
considers the vertices in S in the reverse order of their removal. Let u ∈ S. At
the moment u got removed, u had a list of three admissible colors and at most
two neighbors in V \D. Hence, there is always a color available to color u while
respecting its list. This completes the proof of Lemma 6. ut

Lemma 7. Phase 4 runs in polynomial time.

Proof. Let L′ be a suitable list-assignment of a (K3, 2P3)-free graph G on n
vertices with minimum degree at least four. Let V (G) be partitioned into the
sets A,B1, B2, B3, B4 that satisfy properties P1–P4, where D ⊆ A denotes the
dominating set that got precolored in Phase 1.

The algorithm performs step (i) in O(n3) time, because it has to find a set
X of size at most two and then check whether X pseudo-dominates a set Bi. We
observe that all operations in steps (ii) and (iii) can be done in polynomial time
and that a call to Observation 1 takes polynomial time as well. Furthermore, if
the algorithm finds a coloring then extending it to a coloring of the whole graph
in step (iv) can be performed in polynomial time. Hence, we are left to show
that the branching in steps (ii) and (iii) can be done in polynomial time, i.e.,
that the total number of calls to Observation 1 is bounded by a polynomial in
n.

Suppose the algorithm is in Phase 4 and considers B1. First assume that the
set X determined in step (i) has size 1, say X = {x} for some x ∈ V \D; note
that x ∈ A∪B2∪B3∪B4 by definition of X. Then our algorithm starts to branch
as prescribed in step (ii). Let B∗1 denote the set of vertices in B1({x}) that have
at least three neighbors in V \ D. Note that these vertices get precolored by
operation 3 of step (ii). We prove the following claim, which shows that B∗1 has
bounded size.

Claim 1. B∗1 contains at most 48 vertices.

We prove this claim by contradiction. Suppose |B∗1 | ≥ 49. By property P4, every
vertex of B∗1 is adjacent to a vertex in D precolored 1. By Lemma 3, the size of
a maximum independent set in G[D] is at most 2 ·4+4 = 12. Since vertices with
the same color are not adjacent, this implies that there are at most 12 vertices

12

that received color 1 in Phase 1. Because |B∗1 | ≥ 49, we then find that there
exists a vertex u ∈ D with color 1 that is adjacent to at least five vertices from
B∗1 . Let y1, . . . , y5 denote these five vertices. By definition of B∗1 , every yi has at
least three neighbors ai, bi, ci that are not in D. We recall that B∗1 ⊆ B1({x}).
Then, by definition of B1({x}), we obtain that none of {ai, bi, ci} is adjacent to
yj whenever j 6= i.

We claim that the 9-vertex subgraph of G induced by a1, a2, a3, b1, b2, b3,
c1, c2, c3 contains an induced path P on three vertices. This can be seen as
follows. Because G is K3-free, the sets {a1, a2, a3}, {b1, b2, b3} and {c1, c2, c3}
are independent. Then there must exist a vertex in {a1, b1} that is adjacent to a
vertex in {a2, b2}. Otherwise, the paths a1y1b1 and a2y2b2 form an induced 2P3

in G, which is not possible because G is 2P3-free. We assume without loss of
generality that a1a2 ∈ E. By applying the same arguments on the sets {b1, c1}
and {b2, c2}, we may also assume without loss of generality that b1b2 ∈ E. We
now consider the pairs {a1, b1} and {a3, b3}. By the previous arguments we find
that there exists an edge between a vertex from {a1, b1} and a vertex from
{a3, b3}. Suppose without loss of generality that a1a3 ∈ E. Then a2a1a3 is the
desired path P ; it is induced because G is K3-free. Due to the K3-freeness of G,
no vertex of P is adjacent to u. Thus P and the path y4uy5 form an induced 2P3

of G. This is not possible, because G is 2P3-free. Hence, we have proven Claim 1.

Note that we have 3 possible choices for reducing the lists of the vertices in
Bi({x}) in operation 1 of step (ii). Then, due to Claim 1, we only have to
consider 3 ·348 possible branches in step (ii). Every time we perform step (ii), we
reduce the list of every vertex in B1 by at least one color, thus afterwards the
only vertices with a list of three admissible colors are the vertices in B2∪B3∪B4.

Now assume that the set X determined in step (i) has size 2, say X = {x1, x2}
for some x1, x2 ∈ A ∪ B2 ∪ B3 ∪ B4. Then our algorithm starts to branch as
prescribed in (iii). By using exactly the same arguments as in the proof of Claim
1, we find that the set B∗1(X) of vertices with at least three neighbors in V \D has
size at most 48. Then we find that the total number of branches after performing
operations 1–5 is 3 ·3 ·348. Contrary to step (ii), we might also need to branch by
performing 6–9 and 10–13 in every possible way. However, the following claim
shows that we only need to branch for at most one set X of size 2 according to
operations 6–9 and according to operations 10–13.

Claim 2. If the algorithm performs both operations 6–9 and operations 10–13
for X = {x1, x2} when processing B1, then it will not perform both operations
6–9 and operations 10–13 for any later set X ′ = {x′1, x′2} when it processes B1

further.

We prove this claim as follows. Suppose the algorithm must perform both op-
erations 6–9 and operations 10–13 for X = {x1, x2}. We assume that X is the
first set for which the algorithm does this. In order to derive a contradiction
suppose that, when it is processing B1 further, the algorithm finds a new set X ′

containing two vertices x′1, x
′
2 for which it must also perform both operations

6–9 and operations 10–13.

13

Let A1 = B1({x1}) and A2 = B1({x2}) be the set of neighbors of x1, x2,
respectively, in B1. We assume without loss of generality that X ′ was computed
in the branch that assigns color 1 to x1. Let A′1, A

′
2 be the set of neighbors of

x′1, x
′
2, respectively, in B1. We will prove the following six properties.

(i) A′1 ⊆ B1\A2 and A′2 ⊆ B1\A2;

(ii) |A1| ≥ 3 and |A2| ≥ 3;

(iii) |A′1| ≥ 3 and |A′2| ≥ 3;

(iv) x1x
′
1 /∈ E(G) and x1x

′
2 /∈ E(G);

(v) A1 ∩A2 = ∅;
(vi) A′1 ∩A′2 = ∅;

(vii) A′1 ∪A′2 ∪A1 ∪A2 is an independent set.

Property (i) follows from our assumption that we consider the branch in
which x1 gets color 1. In that branch, B1 gets reduced to B1\A2 in operation
13 of step (ii). Property (ii) holds, because the algorithm must perform both
operations 6–9 and 10–13 for {x1, x2}. Property (iii) holds, because the algorithm
must perform both operations 6–9 and 10–13 for {x′1, x′2}. By the same argument,
we find that 1 must be a color in the list of x′1 and x′2. Consequently, x′1 and
x′2 cannot be adjacent to x1 which already received color 1. This shows that
property (iv) is valid. Properties (v) and (vi) follow from the K3-freeness of G
and the fact that x1x2 ∈ E(G) and x′1x

′
2 ∈ E(G), respectively. Finally, property

(vii) follows directly from P3 that states that the set B1 at the start of Phase 4
is an independent set.

Because G is K3-free and x′1x
′
2 is an edge, at least one of the two vertices

in {x′1, x′2}, say x′1, is not adjacent to x2. We claim that x′1 is adjacent to at
least |A2| − 1 vertices of A2. In order to see this, suppose x′1 is adjacent to at
most |A2| − 2 vertices in A2. By (ii) we have |A2| ≥ 3. Hence, we find two
different vertices a, a∗ ∈ A2 with ax′1 /∈ E(G) and a∗x′1 /∈ E(G). By (iii) we
have |A′1| ≥ 3 ≥ 2. Hence, there exist two different vertices b, b∗ ∈ A′1. By (i) we
have A′1 ⊆ B1\A2. Then, x2 is neither adjacent to b nor to b∗. By (vii) we find
that {a, a∗, b, b∗} is an independent set. However, then bx′1b

∗ and ax2a
∗ form an

induced 2P3 in G. This is not possible, because G is 2P3-free. We conclude that
x′1 is adjacent to at least |A2| − 1 vertices of A2. Then, because |A2| ≥ 3 ≥ 2 by
(ii), there exist two vertices c, c∗ ∈ A2 with cx′1 ∈ E and c∗x′1 ∈ E.

We now show that |A1 ∩ A′2| ≥ 2. To see this, suppose that |A1 ∩ A′2| ≤ 1.
Then, because |A1| ≥ 3 due to (ii) and |A′2| ≥ 3 due to (iii), there exist two
vertices s1, s2 ∈ A1\A′2 and two vertices t1, t2 ∈ A′2\A1. By (iv), we have that
x1 and x′2 are not adjacent. By (vii), we find that {s1, s2, t1, t2} is an independent
set. Consequently, G contains two paths, namely s1x1s2 and t1x

′
2t2, that form

an induced 2P3. This is not possible, because G is 2P3-free. Hence, we find that
A1 and A′2 have at least two common vertices. Denote these vertices by d, d∗.

By (v) we have A1 ∩ A2 = ∅, so x1 has no neighbor in A2. By (vi) we have
A′1 ∩A′2 = ∅, so x′1 has no neighbor in A′2. We conclude that {c, c∗, d, d∗} is a set

14

of 4 vertices. By (vii), this set is independent. By (iv) we have that x1x
′
1 is not

an edge. However, then cx′1c
∗ and dx1d

∗ form an induced 2P3 in G. This is not
possible, because G is 2P3-free. Hence, we have completed the proof of Claim 2.

Indeed, due to Claim 2, our algorithm will never perform both operations 6-9
and operations 10-13 in step (ii) for more than one set X of size 2. Note that
each time our algorithm performs step (ii) or (iii) the size of G is decreased by at
least one vertex, because we remove the vertices in X from G. We conclude that
our algorithm creates at most 2 · (6 · 6 · 348 + 3)|B1| = O(|B1|) list-assignments
of G that each assign only lists of size 3 to vertices in B2 ∪ B3 ∪ B4 and that
each can be considered as separate inputs for the algorithm when it starts to
run Phase 4 for B2.

For B2, and also for B3 and B4, we follow the same reasoning. This means
that the total number of calls to Observation 1 is O(|B1||B2||B3||B4|) = O(n4),
which is polynomial, as desired. This completes the proof of Lemma 7. ut

By Lemmas 4–7 we immediately obtain the following result.

Theorem 3. The 4-Coloring problem can be solved in polynomial time for
the class of (K3, 2P3)-free graphs.

Remark. A reader might have noticed that we are quite generous with respect
to the running time of our algorithm. Indeed, there are several ways to make
our algorithm faster, e.g., by showing that the size of the dominating sets con-
structed by the algorithm can be reduced, or by replacing Phase 3 by some
extra branching steps in Phase 4, and so on. We decided not to introduce these
extra technicalities for the following two reasons. Firstly, our main motivation
is to show polynomial-time solvability. Secondly, we believe that the extra ad-
justments that are necessary to decrease the running time distract from the
underlying key ideas behind our algorithm.

4 Determining the chromatic number

We present a polynomial-time algorithm that solves the Vertex Coloring
problem for (K3, 2P3)-free graphs. We need the following theorem before we are
able to present our main result, Theorem 5.

Theorem 4. Every (K3, 2P3)-free graph can be colored with at most 5 colors.

Proof. Let G be a (K3, 2P3)-free graph. We may assume that G is connected
and that |V (G)| ≥ 3. This implies that G contains an induced P3, say on vertex
set P = {v1, v2, v3}, where v2 is the vertex with degree 2 in the induced P3. By
the assumptions, every component of the subgraph of G induced by V (G)\ (P ∪
N(P)) is either a vertex or an edge; we denote the set of components isomorphic
to K1 by I and the set of components isomorphic to K2 by M .

Consider the following assignment of colors from {1, 2, 3, 4, 5} to the vertices
of G: assign color 1 to v1, v3 and all the (other) neighbors of v2, assign color 2

15

to v2 and all the (other) neighbors of v1, and assign color 3 to all the uncolored
neighbors of v3. Because G is K3-free, this is a 3-coloring of the subgraph of G
induced by P ∪N(P). This 3-coloring can be extended to a 5-coloring of G by
assigning color 4 to all the vertices of I and colors 4 and 5 to all the pairs of
adjacent vertices of the edges of M . ut

Theorem 5. The Vertex Coloring problem can be solved in polynomial time
for the class of (K3, 2P3)-free graphs.

Proof. Let G be a (K3, 2P3)-free graph. Our algorithm checks whether G is k-
colorable for increasing value of k from 1 up to 4. If in the end no coloring of
G has been found then χG = 5 is outputted. The correctness of this algorithm
immediately follows from Theorem 4. Below we show that it runs in polynomial
time.

We first note that a graph can be colored with at most one color if and only
if it consists of isolated vertices only. Secondly, a graph can be colored with at
most two colors if and only if it is bipartite. By Theorem 1 and 3, we can test
in polynomial time whether G is 3-colorable or 4-colorable, respectively. Hence,
we conclude that our algorithm runs in polynomial time. ut

5 Future research

One can explore various directions to extend the polynomial-time results in this
paper, and determining the complexity of the following problems is still open.

1. 4-Coloring for (K3, sP3)-free graphs for any fixed s ≥ 3;
2. 3-Coloring for (K3, P7)-free graphs.

With respect to problem 1, we note that we can solve the 3-Coloring prob-
lem for sP3-free graphs for any fixed s ≥ 1 [5]. Furthermore, Dabrowski et al. [8]
combined results from Balas and Yu [1], Brandt [3], and Tsukiyama et al. [24]
to show that Vertex Coloring is polynomial-time solvable for the class of
(K3, sK2)-free graphs for any fixed s ≥ 1.

Fig. 2. the Grötzsch graph.

Another interesting research direction is to characterize the class of (K3, 2P3)-
free graphs with chromatic number 4 or 5, respectively. Such a characterization

16

could lead to a certifying algorithm, just as Bruce, Hoàng, and Sawada [6] suc-
cessfully show for 3-Colorability of P5-free graphs. An infinite class of 4-
chromatic (K3, 2P3)-free graphs can for example be obtained from the Grötzsch
graph (see Figure 2) by replacing the unique vertex of degree 5 by a set of ver-
tices, all adjacent to its five neighbors. We have no examples of (K3, 2P3)-free
graphs with chromatic number 5. We note that even when such graphs do no
exist at all our polynomial-time algorithm in Section 3 for solving 4-Coloring
is still useful, because it produces a 4-coloring of a 4-chromatic (K3, 2P3)-free
graph. Furthermore, we expect that the techniques applied to this algorithm are
useful for solving problem 1.

Acknowledgments. We thank the anonymous referees for their useful comments
that helped us to improve the readability of our paper.

References

1. E. Balas and C. S. Yu, On graphs with polynomially solvable maximum-weight
clique problem, Networks 19, 247–253 (1989).

2. J.A. Bondy and U.S.R. Murty, Graph Theory, Springer Graduate Texts in Math-
ematics 244 (2008).

3. S. Brandt, Triangle-free graphs and forbidden subgraphs, Discrete Appl. Math.
120, 25–33 (2002).

4. H.J. Broersma, F.V. Fomin, P.A. Golovach and D. Paulusma, Three complexity
results on coloring Pk-free graphs, Proceedings of the 20th International Work-
shop on Combinatorial Algorithms (IWOCA 2009), Lecture Notes in Computer
Science 5874, 95–104 (2009).

5. H.J. Broersma, P.A. Golovach, D. Paulusma and J. Song, Updating the complex-
ity status of coloring graphs without a fixed induced linear forest, manuscript,
http://www.dur.ac.uk/daniel.paulusma/Papers/Submitted/updating.pdf.

6. D. Bruce, C.T. Hoàng, and J. Sawada, A certifying algorithm for 3-colorability of
P5-free graphs, Proceedings of the 20th International Symposium on Algorithms
and Computation (ISAAC 2009), Lecture Notes in Computer Science 5878, 594-604
(2009).

7. B. Courcelle, J.A. Makowsky and U. Rotics, Linear time solvable optimization
problems on graphs of bounded clique-width, Theory Comput. Systems 33, 125–
150 (2000).

8. K. Dabrowski, V. Lozin, R. Raman and B. Ries, Colouring vertices of triangle-
free graphs, Proceedings of the 36th International Workshop on Graph-Theoretic
Concepts in Computer Science (WG 2010), Lecture Notes in Computer Sci-
ence 6410,184–195 (2010).

9. K. Edwards, The complexity of coloring problems on dense graphs, Theoret. Com-
put. Science 43, 337–343 (1986).

10. M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, Freeman, San Francisco (1979).

11. M. Grötschel, L. Lovász, and A. Schrijver, The ellipsoid method and its conse-
quences in combinatorial optimization, Combinatorica 1, 169–197 (1981).

12. C.T. Hoàng, M. Kamiński, V. Lozin, J. Sawada, and X. Shu, Deciding k-colorability
of P5-free graphs in polynomial time, Algorithmica 57, 74–81 (2010).

17

13. M. Kamiński and V.V. Lozin, Coloring edges and vertices of graphs without short
or long cycles, Contributions to Discrete Math. 2, 61–66 (2007).

14. M. Kamiński and V.V. Lozin, Vertex 3-colorability of Claw-free Graphs. Algorith-
mic Operations Research 21, (2007).

15. M. Kochol, V.V. Lozin and B. Randerath, The 3-Colorability Problem on Graphs
with Maximum Degree Four, SIAM J. Comput. 32, 1128–1139 (2003).

16. D. Král’, J. Kratochv́ıl, Zs. Tuza, and G.J. Woeginger, Complexity of coloring
graphs without forbidden induced subgraphs, Proceedings of the 27th International
Workshop on Graph-Theoretic Concepts in Computer Science (WG 2001), Lecture
Notes in Computer Science 2204, 254–262 (2001).

17. J. Kratochv́ıl, Precoloring extension with fixed color bound, Acta Math. Univ.
Comen. 62, 139–153 (1993).

18. V.B. Le, B. Randerath and I. Schiermeyer, On the complexity of 4-coloring graphs
without long induced paths, Theor. Comp. Science 389, 330–335 (2007).

19. V. Lozin and R. Mosca, Independent sets in extensions of 2K2-free graphs, Discrete
Appl. Math. 146, 74–80 (2005).

20. V. Lozin and J. Volz, The clique-width of bipartite graphs in monogenic classes,
Inter- national Journal of Foundations of Computer Science 19, 477494 (2008).

21. F. Maffray and M. Preissmann, On the NP-completeness of the k-colorability prob-
lem for triangle-free graphs, Discrete Math. 162, 313–317 (1996).

22. B. Randerath and I. Schiermeyer, 3-Colorability ∈ P for P6-free graphs, Discrete
Appl. Math. 136, 299–313 (2004).

23. B. Randerath and I. Schiermeyer, Vertex colouring and forbidden subgraphs - a
survey, Graphs and Combin. 20, 1–40 (2004).

24. S. Tsukiyama, M. Ide, H. Ariyoshi, and I. Shirakawa, A new algorithm for gener-
ating all the maximal independent sets, SIAM J. Comput. 6, 505–517 (1977).

25. Zs. Tuza, Graph colorings with local constraints - a survey, Discuss. Math. Graph
Theory 17, 161–228 (1997).

26. G.J. Woeginger and J. Sgall, The complexity of coloring graphs without long in-
duced paths, Acta Cybern. 15, 107–117 (2001).

18

