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Abstract. For a fixed graph H, the H-Minor Edit problem takes as
input a graph G and an integer k and asks whether G can be modi-
fied into H by a total of at most k edge contractions, edge deletions
and vertex deletions. Replacing edge contractions by vertex dissolutions
yields the H-Topological Minor Edit problem. For each problem we
show polynomial-time solvable and NP-complete cases depending on the
choice of H. Moreover, when G is AT-free, chordal or planar, we show
that H-Minor Edit is polynomial-time solvable for all graphs H.

1 Introduction

Graph editing problems are well studied both within algorithmic and structural
graph theory and beyond (e.g. [1, 4, 22, 23]), as they capture numerous graph-
theoretic problems with a variety of applications. A graph editing problem takes
as input a graph G and an integer k, and the question is whether G can be modi-
fied into a graph that belongs to some prescribed graph class H by using at most
k operations of one or more specified types. So far, the most common graph op-
erations that have been considered are vertex deletions, edge deletions and edge
additions. Well-known problems obtained in this way are Feedback Vertex
Set, Odd Cycle Transversal, Minimum Fill-In, and Cluster Editing.
Recently, several papers [9, 10, 15–17] appeared that consider the setting in which
the (only) permitted type of operation is that of an edge contraction. This oper-
ation removes the vertices u and v of the edge uv from the graph and replaces
them by a new vertex that is made adjacent to precisely those remaining vertices
to which u or v was previously adjacent. So far, the situation in which we allow
edge contractions together with one or more additional types of graph operations
has not been studied. This is the main setting that we consider in our paper.

A natural starting approach is to consider families of graphs H of cardinal-
ity 1, that is, we set H = {H} for some graph H, called the target graph from
now on, and we assume that H is fixed, that is, H is not part of the input.
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For such families, straightforward polynomial-time algorithms exist if the set of
permitted operations may only include edge additions, edge deletions and vertex
deletions. If vertex deletions are not permitted, then the input graph G must be
of the same order as H yielding a constant-time algorithm as H is assumed to be
fixed. If vertex deletions are permitted, then we consider possibly every induced
subgraph G′ of G that has the same number of vertices as H (say |VH | = r) and
verify whether we can modify G′ into H by at most k − r edge operations. As
H is fixed, such an algorithm takes O(nr) time (where n denotes the number of
vertices of G). However, we show that this approach may no longer be followed
in our case, in which we allow both edge contractions and vertex deletions to be
applied.

It so happens that setting H = {H} yields graph editing problems that
are closely related to problems that ask whether a given graph H appears as a
“pattern” within another given graph G so that G can be transformed to H via
a sequence of operations without setting a bound k on the number of operations
allowed. These ‘unbounded’ problems are ubiquitous in computer science, and
below we shortly survey a number of known results on them; those results that
we will use in our proofs are stated as lemmas.

We start with some additional terminology. A vertex dissolution is the re-
moval of a vertex v with exactly two neighbors u and w, which may not be adja-
cent to each other, followed by the inclusion of the edge uw. If we can obtain a
graph H from a graph G by a sequence that on top of vertex deletions and edge
deletions may contain operations of one additional type, namely edge contrac-
tions or vertex dissolutions, then G contains H as a minor or topological minor,
respectively. For a fixed graph H, that is, H is not part of the input, this leads
to the decision problems H-Minor and H-Topological Minor, respectively.
Grohe, Kawarabayashi, Marx, and Wollan [13] showed that H-Topological
Minor can be solved in cubic time for all graphs H, whereas Robertson and
Seymour [25] proved the following seminal result.

Lemma 1 ([25]). H-Minor can be solved in cubic time for all graphs H.

We say that a containment relation is induced if edge deletions are excluded
from the permitted graph operations. In the case of minors and topological
minors, this leads to the corresponding notions of being an induced minor and
induced topological minor, respectively, with corresponding decision problems H-
Induced Minor and H-Induced Topological Minor. In contrast to their
non-induced counterparts, the complexity classifications of these two problems
have not yet been settled. In fact, the complexity status of H-Induced Minor
when H is restricted to be a tree has been open since it was posed at the AMS-
IMS-SIAM Joint Summer Research Conference on Graph Minors in 1991. Up
until now, only forests on at most seven vertices have been classified [8] (with
one forest still outstanding), and no NP-complete cases of forests H are known.
The smallest known NP-complete case is the graph H∗ on 68 vertices displayed
in Figure 1; this result is due to Fellows, Kratochv́ıl, Middendorf and Pfeiffer [7].

Lemma 2 ([7]). H∗-Induced Minor is NP-complete.
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Fig. 1. The smallest graph H∗ for which H-Induced Minor is NP-complete [7].

Lévêque, Lin, Maffray, and Trotignon [20] gave both polynomial-time solvable
and NP-complete cases for H-Induced Topological Minor. In particular
they showed the following result, where we denote the complete graph on n
vertices by Kn.

Lemma 3 ([20]). K5-Induced Topological Minor is NP-complete.

The complexity of H-Induced Topological Minor is still open when H
is a complete graph on 4 vertices. Lévêque, Maffray, and Trotignon [21] gave
a polynomial-time algorithm for recognizing graphs that neither contain K4 as
an induced topological minor nor a wheel as an induced subgraph. However,
they explain that a stronger decomposition theorem (avoiding specific cutsets) is
required to resolve the complexity status of K4-Induced Topological Minor
affirmatively.

Before we present our results, we first introduce some extra terminology. Let
G be a graph and H a minor of G. Then a sequence of minor operations that
modifies G into H is called an H-minor sequence or just a minor sequence of G
if no confusion is possible. The length of an H-minor sequence is the number of
its operations. An H-minor sequence is minimum if it has minimum length over
all H-minor sequences of G. For a fixed graph H, the H-Minor Edit problem
is that of testing whether a given graph G has an H-minor sequence of length
at most k for some given integer k. Also, for the other containment relations we
define such a sequence and corresponding decision problem.

Because any vertex deletion, vertex dissolution and edge contraction reduces
a graph by exactly one vertex, any H-induced minor sequence and any H-
topological induced minor sequence of a graph G has the same length for any
graph H, namely |VG|−|VH |. Hence, H-Induced Minor Edit and H-Induced
Topological Minor Edit are polynomially equivalent to H-Induced Minor
and H-Induced Topological Minor, respectively. We therefore do not con-
sider H-Induced Minor Edit and H-Induced Topological Minor Edit,
but will focus on the H-Minor Edit and H-Topological Minor Edit prob-
lems from now on. For these two problems edge deletions are permitted, and
this complicates the situation. For example, let G = Kn and H = K1. Then
a minimum H-minor sequence of G consists of n − 1 vertex deletions, whereas
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the sequence that consists of n(n− 1)/2 edge deletions followed by n− 1 vertex
deletions is an H-minor sequence of G that has length n(n− 1)/2 + n− 1.

Our Results. In Section 2 we pinpoint a close relationship between H-Minor
Edit and H-Induced Minor, and also between H-Topological Minor Edit
and H-Induced Topological Minor. We use this observation in Section 3.1,
where we show both polynomial-time solvable and NP-complete cases for H-
Minor Edit and H-Topological Minor Edit; note that the hardness results
are in contrast with the aforementioned tractable results for H-Minor [25] and
H-Topological Minor [13]. There is currently not much hope in settling
the complexity of H-Minor Edit and H-Topological Minor Edit for all
graphsH, due to their strong connection toH-Induced Minor andH-Induced
Topological Minor, the complexity classification of each of which still must
be completed. However, in Section 3.2, we are able to show that H-Minor Edit
is polynomial-time solvable on AT-free graphs, chordal graphs and planar graphs.
In Section 3.3 we discuss parameterized complexity aspects, whereas Section 4
contains our conclusions and directions for further research.

2 Preliminaries

In this section we state some results from the literature and make some basic
observations; we will need these results and observations later on. We only con-
sider undirected finite graphs with no loops and with no multiple edges. We
denote the vertex set and edge set of a graph G by VG and EG, respectively.
If no confusion is possible, we may omit subscripts. We refer the reader to the
textbook of Diestel [5] for any undefined graph terminology.

The disjoint union of two graphs G and H with VG ∩ VH = ∅ is the graph
G + H that has vertex set VG ∪ VH and edge set EG ∪ EH . We let Pn and Cn

denote the path and cycle on n vertices, respectively, whereas K1,n is the star
on n+ 1 vertices; note that K1,1 = P2 and K1,2 = P3. The subgraph of a graph
G = (V,E) induced by a subset S ⊆ V is denoted by G[S]. A subgraph G′ of a
graph G is spanning if VG′ = VG. Let G be a graph that contains a cycle C as a
subgraph. If |VC | = |VG| then C is a hamilton cycle, and G is called hamiltonian.
An edge uv ∈ EG \ EC , with C some cycle and with u, v ∈ VC , is a chord of C.

We will frequently make use of the following observation.

Lemma 4. If (G, k) is a yes-instance of H-Minor Edit or H-Topological
Minor Edit, for some graph H, then |VH | ≤ |VG| ≤ |VH |+ k.

Proof. Let (G, k) be a yes-instance of H-Minor Edit or H-Topological Mi-
nor Edit for some graph H. An edge contraction, vertex deletion or vertex
dissolution reduces a graph by exactly one vertex, whereas an edge deletion does
not change the number of vertices. This has the following two implications. First,
no graph operation involved increases the number of vertices of a graph. Hence,
|VH | ≤ |VG|. Second, any H-minor sequence of G has length at least |VG|− |VH |.
Hence, |VG| − |VH | ≤ k, or equivalently, |VG| ≤ |VH |+ k. ut
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We write Π1 ≤ Π2, for two decision problems Π1 and Π2, to denote that
Π2 generalizes Π1. The following observation shows a close relationship between
our two editing problems and the corresponding induced containment problems.

Lemma 5. Let H be a graph. Then the following two statements hold:

(i) H-Induced Minor ≤ H-Minor Edit.
(ii) H-Induced Topological Minor ≤ H-Topological Minor Edit.

Proof. We start with the proof of (i). Let H be a graph, and let G be an instance
of H-Induced Minor. We define k = |VG| − |VH |. We will show that (G, k) is
an equivalent instance of H-Minor Edit. If k < 0, then G is a no-instance
of H-Induced Minor, and by Lemma 4, (G, k) is a no-instance of H-Minor
Edit. Suppose that k ≥ 0. We claim that G contains H as an induced minor if
and only if (G, k) has an H-minor sequence of length at most k.

First suppose G contains H as an induced minor. Because one edge contrac-
tion or one vertex deletion reduces a graph by exactly one vertex, any H-induced
minor sequence of G is an H-minor sequence of G that has length |VG|−|VH | = k.

Now suppose that G has an H-minor sequence S of length at most k. Because
|VG| − |VH | = k, we find that S contains at least k operations that are vertex
deletions or edge contractions. Because S has length at most k, this means that
S contains no edge deletions. Hence, S is an H-induced minor sequence. We
conclude that G contains H as an induced minor.

The proof of (ii) uses the same arguments as the proof of (i); in particular
any vertex dissolution in a graph reduces the graph by exactly one vertex. ut

Two disjoint vertex subsets U and W of a graph G are adjacent if there exists
some vertex in U that is adjacent to some vertex in W . The following alternative
definition of being a minor is useful. Let G and H be two graphs. An H-witness
structure W is a vertex partition of a subgraph G′ of G into |VH | nonempty sets
W (x) called (H-witness) bags, such that

(i) each W (x) induces a connected subgraph of G, and
(ii) for all x, y ∈ VH with x 6= y, bags W (x) and W (y) are adjacent in G if x

and y are adjacent in H.

An H-witness structure W corresponds to at least one H-minor sequence of G.
In order to see this, we can first delete all vertices of VG \ VG′ , then modify
all bags W (x) into singletons via edge contractions and finally delete all edges
uv with u ∈ W (x) and v ∈ W (y) whenever uv /∈ EH . The remaining graph
is isomorphic to H. Similarly, we can obtain an H-witness structure from any
H-minor sequence S of G, namely by putting two vertices u and v in the same
bag if and only if uv is an edge in G that is contracted by S. We note that G
may have more than one H-witness structure.

An edge subdivision is the operation that removes an edge uv of a graph and
adds a new vertex w adjacent (only) to u and v. This leads to an alternative
definition of being a topological minor, namely that a graph G contains a graph
H as a topological minor if and only if G contains a subgraph H ′ that is a
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subdivision of H; that is, H ′ can be obtained from H by a sequence of edge
subdivisions. A subdivided star is a graph obtained from a star after p edge
subdivisions for some p ≥ 0.

Let G be a graph that contains a graph H as a minor. An H-minor sequence
S of G is called nice if S starts with all its vertex deletions, followed by all its
edge contractions and finally by all its edge deletions. It is called semi-nice if S
starts with all its vertex deletions, followed by all its edge deletions and finally by
all its edge contractions. By replacing edge contractions with vertex dissolutions,
we obtain the notions of a nice and a semi-nice topological minor sequence.

Lemma 6. Let H be a graph and k an integer. If a graph G has an H-minor
sequence of length k, then G has a nice H-minor sequence of length at most k.

Proof. Let H be a graph. Let S be an H-minor sequence of a graph G that
has length k. Suppose that S contains the deletion of a vertex u that appears
after the contraction or deletion of an edge e. We may assume without loss of
generality that the deletion of u appears immediately after the operation on e.
First suppose that this operation deletes e. Then deleting u before deleting e
results in a new H-minor sequence of G that either has the same length as S,
or a smaller length in the case that e was incident with u. Now suppose that
this operation contracts e. Let e = vw, and let z be the new vertex that is
obtained as a result of contracting e. If u = z, then we delete v and w instead
of contracting e and deleting u. If u 6= z, then we delete u before contracting e.
Both cases result in a new H-minor sequence of G that has the same length as
S. Hence, repeatedly applying the above procedure yields an H-minor sequence
S∗ of length at most k, in which every vertex deletion appears before any edge
contraction and before any edge deletion.

Let U be the set of vertices that are removed from G by vertex deletions
in S∗. Then we can partition the vertex set of G[VG \U ] into bags corresponding
to the H-witness structure W of G that we obtain from S. Let p be the number
of pairs of adjacent bags that correspond to pairs of non-adjacent vertices in
H. Let q be the number of edge deletions in S. Due to our choice of W, we
have q ≥ p. We now let all edge contractions of S take place before any of its
edge deletions. This reduces each bag of W to a singleton. Afterward we must
remove exactly p edges to obtain H. Hence, we have changed S∗ into an H-minor
sequence of G that is nice, and moreover, that has length at most k, as q ≥ p
and S∗ has length at most k. ut

We note that a lemma for topological minors similar to Lemma 6 does not
hold. For example, build G as follows: take two disjoint copies of Kn, where
n ≥ 5; subdivide an edge in each copy, to introduce new vertices u and v; and
join the two new vertices u and v. Build H as two disjoint copies of Kn. If we
delete the edge (u, v) of G and next perform two vertex dissolutions (of u and
v) then we obtain an H-topological minor sequence of length 3 for G. It is not
difficult to see that there is no nice H-topological minor sequence for G of length
at most 3. However, for topological minor sequences the following holds.
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Lemma 7. Let H be a graph and k an integer. If a graph G has an H-topological
minor sequence of length k, then G has a semi-nice H-topological minor sequence
S of length at most k, such that the vertices not deleted by the vertex deletions
of S induce a subgraph that contains a subdivision of H as a spanning subgraph.

Proof. Let H be a graph. Let S be an H-topological minor sequence of a graph
G that has length k. We may assume without loss of generality that the number
of vertex deletions in S is maximum over all H-topological minor sequences of G
that have length at most k. Let U be the set of vertices that are removed from
G by vertex deletions in S. By using exactly the same arguments as in the proof
of Lemma 6, we may assume without loss of generality that S starts with these
|U | vertex deletions.

Suppose that an edge e is deleted by an edge deletion in S after a disso-
lution of a vertex v. Because all vertex deletions in S appear before its edge
deletions and vertex dissolutions, we may assume without loss of generality that
the deletion of e appears immediately after the dissolution of v. Let u and w be
the neighbors of v just before v is dissolved; note that dissolving v leads to an
edge uw. Suppose that e = uw. Then instead of dissolving v and deleting e, we
remove v contradicting the maximality of the number of vertex deletions of S.
This means that e 6= uw. Then, swapping the dissolution of v with the deletion
of e in S leads to another H-topological minor sequence of length at most k.
Hence, after repeatedly doing this, we obtain a semi-nice topological minor se-
quence S′ of G that has length at most k and that also has maximum number
of vertex deletions over all H-topological minor sequences of G that have length
at most k.

Because S′ contains no more vertex deletions after the vertices of U are
deleted, G[V \ U ] contains a subgraph H ′ that is a subdivision of H. By maxi-
mality of the number of vertex deletions of S, and hence of S′, we deduce that
H ′ is a spanning subgraph of G[V \ U ]. ut

We note that a lemma for minors similar to Lemma 7 does not hold. The
following example, which we will use later on as well, illustrates this.

Example 1. Let H = C6. We take a cycle Cr for some integer r ≥ 7. Let u be one
of its vertices. Add an edge between u and every (non-adjacent) vertex of the
cycle except the two vertices at distance two from u. This yields the graph G.
Then (G, r−5) is a yes-instance of H-Minor Edit (via a sequence of r−6 edge
contractions followed by an edge deletion). It is not difficult to see that every
H-minor sequence of length r − 5 of G must start with r − 6 edge contractions
followed by one edge deletion.

Let Kk,` be the complete bipartite graph with partition classes of size k and `.
Fellows et al. [7] showed that for all graphs H, H-Induced Minor is polynomial-
time solvable on planar graphs, that is, graphs that contain neither K3,3 nor K5

as a minor. This result has been extended by van ’t Hof et al. [18] to any minor-
closed graph class that is nontrivial, i.e., that does not contain all graphs.

Lemma 8 ([18]). Let G be any nontrivial minor-closed graph class. Then, for
all graphs H, the H-Induced Minor problem can be solved in linear time on G.
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An asteroidal triple in a graph is a set of three mutually non-adjacent vertices
such that each two of them are joined by a path that avoids the neighborhood
of the third, and AT-free graphs are exactly those graphs that contain no such
triple. A graph is chordal if it contains no induced cycle on four or more vertices.
We will also need the following two results.

Lemma 9 ([11]). For all graphs H, the H-Induced Minor problem can be
solved in polynomial time on AT-free graphs.

Lemma 10 ([2]). For all graphs H, the H-Induced Minor problem can be
solved in polynomial time on chordal graphs.

3 Complexity Results

In Section 3.1 we consider general input graphs G, whereas in Section 3.2 we
consider special classes of input graphs. In Section 3.3 we discuss parameterized
complexity aspects.

3.1 General Input Graphs

We first show that the computational complexities of H-Minor Edit and
H-Topological Minor Edit may differ from those of H-Minor and H-
Topological Minor, respectively.

Theorem 1. The following two statements hold:

(i) There is a graph H for which H-Minor Edit is NP-complete.
(ii) There is a graph H for which H-Topological Minor Edit is NP-complete.

Proof. For (i) we take the graph H∗ displayed in Figure 1. Then the claim follows
from Lemma 2 combined with Lemma 5-(i). For (ii) we take H = K5. Then the
claim follows from Lemma 3 combined with Lemma 5-(ii). ut

The remainder of Section 3.1 is devoted to results for some special classes of
target graphs H. We start by considering the case when H is a complete graph;
note that Theorem 2-(ii) generalizes Theorem 1-(ii).

Theorem 2. The following two statements hold:

(i) Kr-Minor Edit can be solved in cubic time for all r ≥ 1.
(ii) Kr-Topological Minor Edit can be solved in polynomial time, if r ≤ 3,

and is NP-complete, if r ≥ 5.

Proof. We first prove (i). Let (G, k) be an instance of Kr-Minor Edit. If |VG|−
r < 0 or |VG| − r > k, then (G, k) is a no-instance of Kr-Topological Minor
Edit due to Lemma 4. Suppose that 0 ≤ |VG| − r ≤ k. Because we may remove
without loss of generality any edge deletions from a Kr-minor sequence of a
graph, we find that (G, k) is a yes-instance of Kr-Minor Edit if and only if G
contains Kr as a minor. Hence, the result follows after applying Lemma 1.
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We now prove (ii). The cases H = K1 and H = K2 are trivial. The case
H = K3 = C3 follows from Theorem 5, which we will prove later. The case
H = K5 follows from the proof of Theorem 1-(ii).

Let r ≥ 6 and assume thatKr−1-Topological Minor Edit is NP-complete.
Let (G, k) be an instance of Kr−1-Topological Minor Edit. Let VG =
{u1, . . . , un} for some integer n. From G we construct a graph G′ as follows.
First we add a new vertex v that we make adjacent to all vertices of G. We then
subdivide each of the new edges incident with v exactly once. We denote the
new vertices created in this way by w1, . . . , wn and say that they are of w-type.
We claim that (G, k) is a yes-instance of Kr−1-Topological Minor Edit if
and only if (G′, k + n) is a yes-instance of Kr-Topological Minor Edit.

First suppose that (G, k) is a yes-instance of Kr−1-Topological Minor
Edit. Let S be a Kr−1-topological minor sequence of G that has length at
most k. We modify S as follows in order to obtain a Kr-topological minor se-
quence of G′ that has length at most k + n. Let ui be a vertex in G that is
removed from G either by a vertex deletion or by a vertex dissolution in S. Be-
fore we apply this operation we first delete wi. After we have done this for any
vertex of G removed by S, we extend S by dissolutions of the remaining vertices
of w-type. This yields the desired Kr-topological minor sequence of G′.

Now suppose that (G′, k + n) is a yes-instance of Kr-Topological Minor
Edit. Then G′ has a Kr-topological minor sequence S of length at most k + n.
Because r ≥ 6 and each vertex of w-type has degree 2 in G′, we find that S
either dissolves it or deletes it. We modify S as follows in order to obtain a
Kr−1-topological minor sequence of G that has length at most k.

First suppose that S neither dissolves nor deletes v. Then we remove all n
operations from S that remove the vertices of w-type via a dissolution or a
deletion and apply this sequence (that has length at most k) on G. This gives
us the desired Kr−1-topological minor sequence of G.

Now suppose that S deletes v. Then we may assume without loss of generality
that the vertices of w-type are deleted by S as well. We remove all n+1 operations
from S that delete the vertices of w-type and v and apply this sequence (that has
length at most k − 1) on G. Afterward we delete one of the r vertices of G that
were neither deleted nor dissolved by S to obtain the desired Kr−1-topological
minor sequence of G.

Finally, suppose that S dissolves v. Then we may assume without loss of
generality that exactly n − 2 vertices of w-type are deleted by S, whereas two
distinct vertices wi and wj are dissolved (if not then we could replace the dis-
solution of v by the deletion of v in S). Moreover, it can be assumed that the
dissolutions of wi, wj and v are the last three operations in S. Let xy be the
edge obtained by these operations. We remove all n+ 1 operations from S that
dissolve v, wi, wj and delete vertices of w-type (not equal to wi or wj). We ap-
ply the resulting sequence (that has length at most k − 1) on G and afterward
delete x. In this way we obtain a Kr−1-topological minor sequence of G that has
length at most k. ut

We now consider H-Minor Edit for the case in which H is a path or a star.
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Theorem 3. Pr-Minor Edit and K1,r-Minor Edit can both be solved in poly-
nomial time for all r ≥ 1.

Proof. First, let H = Pr for some r ≥ 1. If r ≤ 2, we use Theorem 2-(i). Hence,
we may assume that r ≥ 3. Let (G, k) be an-instance of Pr-Minor Edit with
|VG| − r = k′. We run the algorithm described below.

If k′ < 0 or k′ > k, then we return no. Otherwise, that is, if 0 ≤ k′ ≤
k, we proceed as follows. We consider each induced subgraph G′ of G that
has at most (r − 1)r vertices and solve the problem Pr-Minor Edit on input
(G′, k− (|VG| − |VG′ |)). If we find that the latter instance is a yes-instance, then
we return yes. Otherwise, after considering each such subgraph G′, we return no.

The running time of the algorithm is polynomial due to the following reasons.
Let |VG| = n. Then there are at most n(r−1)r possible choices of induced sub-
graphs G′ on at most (r− 1)r vertices. This is a polynomial number, because of
our assumption that r is fixed. By the same assumption, every such subgraph G′

has constant size, and hence can be processed in polynomial time. We conclude
that the total running time is polynomial.

We now prove the correctness of our algorithm. If k′ < 0 or k′ > k, then (G, k)
is a no-instance of Pr-Minor Edit due to Lemma 4. Suppose that 0 ≤ k′ ≤ k.
We claim that our algorithm returns yes if and only if G has a Pr-minor sequence
of length at most k.

First suppose that our algorithm returns yes. Then G contains an induced
subgraph G′ on at most (r − 1)r vertices, such that (G′, k − (|VG| − |VG′ |)) is a
yes-instance of Pr-Minor Edit. Hence, G′ has a Pr-minor sequence S of length
at most k− (|VG|− |VG′ |). We add the |VG|− |VG′ | vertex deletions that we used
to modify G into G′. This results in a Pr-minor sequence of G that has length k.

Now suppose that G has a Pr-minor sequence S of length at most k. By
Lemma 6, we may assume without loss of generality that S is a nice Pr-minor
sequence of G that has minimum length over all (not necessarily nice) Pr-minor
sequences of G. We also assume without loss of generality that the number
of vertex deletions in S is maximum over all nice Pr-minor sequences of G of
minimum length. Let U be the set of vertices that are deleted by the vertex
deletions in S. Then the remaining set of vertices VG \U induces a subgraph G′

that contains Pr as a minor as well.
Let W be a Pr-witness structure of G′. Let W (x) be a witness bag in W.

We claim that W (x) induces a path Px in G. Let u be a vertex in W (x) with a
neighbor in another witness bag W (x′). If x has no other neighbor, then G[W (x)]
is a path Px consisting of the single vertex u, by maximality of the number of
vertex deletions of S. Suppose x has a neighbor x′′ 6= x′. Then W (x) contains a
vertex v that has a neighbor in W (x′′) (note that u = v is possible). As G[W (x)]
is connected, we can take a shortest path Px between u and v in G[W (x)]. By
maximality of the number of vertex deletions of S, we find that VPx

= Wx.
Suppose that Px has at least r vertices. Then G contains a path Pr as an

induced subgraph. This would mean that G has a Pr-minor sequence S′ of mini-
mum length that only consists of vertex deletions. Because S′ contains no other
operations, S′ is nice. Because W (x) contains at least r ≥ 3 vertices, S contains
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at least two edge contractions. Hence, S′ contains at least two more vertex dele-
tions than S. This is a contradiction. We conclude that every W (x) contains at
most r−1 vertices. This means that G′ has at most (r−1)r vertices. Hence, our
algorithm will consider G′ at some point and detect that (G′, k− (|VG| − |VG′ |))
is a yes-instance of Pr-Minor Edit. Consequently, it will return yes.

Now let H = K1,r with center vertex y. If r ≤ 2, then H is a path and we can
use the proof above. Hence, we may assume that r ≥ 3. Let (G, k) be an instance
of K1,r-Minor Edit with |VG| − (r + 1) = k′. We run the algorithm below.

If k′ < 0 or k′ > k, then we return no. Otherwise, that is, if 0 ≤ k′ ≤ k,
we proceed as follows. We consider each subset W of |VH | − 1 vertices of G. If
|EW | > k−k′, then we discard W . Otherwise we check if there exists a connected
component D of G[VG \W ], such that every vertex in W has a neighbor in D.
If so, then we return yes. Otherwise, after considering each such subset W , we
return no.

The running time of the algorithm is polynomial by the same arguments
as before. Hence, we are left with proving the correctness of our algorithm. If
k′ < 0 or k′ > k, then (G, k) is a no-instance of H-Minor Edit due to Lemma 4.
Suppose that 0 ≤ k′ ≤ k. We claim that our algorithm returns yes if and only
if G has an H-minor sequence of length at most k.

First suppose that our algorithm returns yes. Then G contains H as a minor
and our algorithm has obtained H by at most k−k′ edge deletions, whereas the
total number of edge contractions and vertex deletions is k′. Hence, G has an
H-minor sequence of length at most k − k′ + k′ = k.

Now suppose that G has an K1,r-minor sequence S of length at most k. By
Lemma 6, we may assume without loss of generality that S is a nice K1,r-minor
sequence of G that has minimum length over all (not necessarily nice) K1,r-minor
sequences of G. We also assume without loss of generality that the number of
vertex deletions in S is maximum over all nice K1,r-minor sequences of G of
minimum length. Let U be the set of vertices that are deleted by the vertex
deletions in S. Then G[VG \ U ] contains K1,r as a minor as well.

Let W be a K1,r-witness structure of G[VG \ U ]. Recall that y denotes the
center vertex of H = K1,r. By maximality of the number of vertex deletions of
S, we find that |W (x)| = 1 for all x ∈ VH \ {y}. This means that the union of
these bags W (x), which we denote by W , has size |W | = |VH |−1. Consequently,
our algorithm will consider W at some point. Because S is an K1,r-minor se-
quence, the number of edge deletions of S is at most k−k′. This number include
all deletions of edges between vertices in W . Hence, |EW | ≤ k − k′, and our
algorithm will proceed by considering the connected components of G[VG \W ].
Because W (y) induces a connected subgraph by definition, W (y) is contained in
some connected component D of G[VG \W ]. Moreover, every W (x) with x 6= y
is adjacent to W (y). This means that every vertex in W has a neighbor in D.
Consequently, our algorithm will return yes. This completes the proof of Theo-
rem 3. ut

For topological minors we can show a stronger result than Theorem 3.
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Theorem 4. Let H be a subdivided star. Then H-Topological Minor Edit
is polynomial-time solvable.

Proof. LetH be a subdivided star. Let (G, k) be an-instance ofH-Topological
Minor Edit with |VG| − |VH | = k′. We run the algorithm described below.

If k′ < 0 or k′ > k, then we return no. Otherwise, that is, if 0 ≤ k′ ≤ k, we
proceed as follows. We consider each subset U of |VH | vertices of G. We check if
G[U ] contains an H-topological minor sequence of length at most k − k′ (note
that such a sequence only involves edge deletions). If so, then we return yes.
Otherwise, after considering all such subsets U , we return no.

We now analyze the running time. Let |VG| = n. Then there are at most n|VH |

possible choices of induced subgraphs G′ on |VH | vertices. This is a polynomial
number, because of our assumption that H is fixed. By the same assumption,
every such subgraph G′ has constant size, and hence can be processed in poly-
nomial time. We conclude that the total running time is polynomial.

We now prove the correctness of our algorithm. If k′ < 0 or k′ > k, then (G, k)
is a no-instance of H-Topological Minor Edit due to Lemma 4. Suppose
that 0 ≤ k′ ≤ k. We claim that our algorithm returns yes if and only if G has
an H-topological minor sequence of length at most k.

First suppose that our algorithm returns yes. Then G contains H as a topo-
logical minor and our algorithm has obtained H from a graph G[U ] on |VH |
vertices by at most k − k′ operations (which are all edge deletions), whereas
the total number of vertex deletions is |VG| − |VH | = k′. Hence, G has an H-
topological minor sequence of length at most k − k′ + k′ = k.

Now suppose that G has an H-topological minor sequence S of length at
most k. By Lemma 7, we may assume without loss of generality that S is a
semi-nice H-topological minor sequence S of length at most k, such that the
vertices not deleted by the vertex deletions of S induce a subgraph G′ that
contains a subdivision H ′ of H as a spanning subgraph. We also assume without
loss of generality that the number of vertex deletions in S is maximum over all
such H-topological minor sequences of G. Then, because H is a subdivided star,
H ′ must be isomorphic to H (to see this, note that after all vertex deletions
of S, we must have a subdivided star, together with possibly some additional
edges, and that any subsequent vertex dissolutions can be replaced with vertex
deletions so contradicting the maximality of the number of vertex deletions in
S). Because H ′ ' H is a spanning subgraph of G′, our algorithm will consider
G′ at some point. Because the remaining operations in S are at most k−k′ edge
deletions, they form an H-topological minor sequence of G′ that has length at
most k− k′. This will be detected by our algorithm, which will then return yes.
This completes the proof of Theorem 4. ut

Note that Theorem 3 can be generalized to be valid for target graphs H that
are linear forests (disjoint unions of paths) and Theorem 4 to be valid for target
graphs H that are forests, all connected components of which are subdivided
stars.

We now consider the case when the target graph H is a cycle and show the
following result, which holds for topological minors only.
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Theorem 5. Cr-Topological Minor Edit can be solved in polynomial time
for all r ≥ 3.

Proof. Let r ≥ 3. Let (G, k) be an instance of Cr-Topological Minor Edit.
We run the following algorithm. Let k′ = |VG| − r. If k′ < 0 or k′ > k, then we
return no. Otherwise, we do as follows. We check if G contains Cr as an induced
topological minor. If so, then we return yes. If not, then we do as follows for
each induced subgraph G′ of G with r ≤ |VG′ | ≤ 2r. We check if G′ contains a
Cr-topological minor sequence of length at most k − (|VG| − |VG′ |). If so, then
we return yes. Otherwise, after having considered all induced subgraphs G′ of
G on at most 2r vertices, we return no.

We first analyze the running time of this algorithm. Checking whether G
contains Cr as an induced topological minor is equivalent to checking whether
G contains an induced cycle of length at least r; the latter can be done in
polynomial time. Suppose G does not contain Cr as an induced topological
minor. Then the algorithm considers at most |VG|2r induced subgraphs of G,
which is a polynomial number because r is fixed. For the same reason, our
algorithm can process every such subgraph G′ in constant time.

We are left to prove correctness. If k′ < 0 or k′ > k, then (G, k) is a no-
instance of Cr-Topological Minor Edit due to Lemma 4. Suppose that 0 ≤
k′ ≤ k. We claim that our algorithm returns yes if and only if G has a Cr-
topological minor sequence of length at most k.

First suppose that our algorithm returns yes. If G contains Cr as an induced
topological minor, then G has a Cr-topological minor sequence of length at most
k′ ≤ k. Otherwise, G contains an induced subgraph G′ of at most 2r vertices
that has a Cr-topological minor sequence of length at most k − (|VG| − |VG′ |).
Adding the |VG| − |VG′ | vertex deletions that yielded G′ to this sequence gives
us a Cr-topological minor sequence of G that has length at most k.

Now suppose that G has a Cr-topological minor sequence of length at most k.
By Lemma 7, we may assume without loss of generality that S is a semi-nice
H-topological minor sequence S of length at most k, such that the vertices
not deleted by the vertex deletions of S induce a subgraph G′ that contains a
subdivision H ′ of Cr as a spanning subgraph; note that H ′ = Cs for some s ≥ r.
We also assume without loss of generality that the number of vertex deletions in
S is maximum over all such H-topological minor sequences of G, and moreover,
that Cr is obtained from G′ by first deleting all chords and then by dissolving
s− r vertices.

If G′ has at most 2r vertices, then the algorithm would consider G′ at some
point. Because S is a Cr-topological minor sequence of length at most k, we find
that G′ has a Cr-topological minor sequence of length at most k− (|VG|− |VG′ |).
Hence, our algorithm would detect this and return yes.

Now suppose that G′ has at least 2r + 1 vertices. Suppose that Cs has at
least one chord e. Because s = |VG′ | ≥ 2r + 1, this means that G′ contains a
smaller cycle Ct on t ≥ r vertices that has exactly t− 1 edges in common with
Cs. We modify S as follows. We first remove all vertices of G′ not on Ct. Then
we remove all chords of Ct. Finally, we perform t − r vertex dissolutions on Ct
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in order to obtain a graph isomorphic to Cr. Hence, the sequence S′ obtained in
this way is a Cr-topological minor sequence of G as well. By our construction,
S′ is semi-nice. Moreover, because Cs and Ct have t− 1 edges in common, any
edge deletion in S′ is an edge deletion in S as well. Hence S′ has length at most
k. However, S′ contains at least one more vertex deletion than S, because there
exists at least one vertex in G′ that is not on Ct. This contradicts the maximality
of the number of vertex deletions in S. Hence, Cs has no chords. Then Cs is an
induced cycle on at least s ≥ r vertices in G′, and consequently, in G. This means
that G contains Cr as an induced topological minor. The algorithm checks this
and thus returns yes. ut

3.2 Input Graphs Restricted to Some Nontrivial Graph Class

Instead of restricting the target graph H to belong to some special graph class,
as is done in Section 3.1, we can also restrict the input graph G to some special
graph class. In this section we do this for the H-Minor Edit problem.

For the H-Minor Edit problem, we may use the following lemma that
strengthens the relationship between H-Minor Edit and H-Induced Minor.

Lemma 11. Let G be a graph class and H a graph. If H ′-Induced Minor
is polynomial-time solvable on G for each spanning supergraph H ′ of H, then
H-Minor Edit is polynomial-time solvable on G.

Proof. Let G be a graph class and H a graph. Suppose that H ′-Induced Minor
is polynomial-time solvable on G for each spanning supergraph H ′ of H. Let
G ∈ G and k ∈ Z form an instance of H-Minor Edit. Let k∗ = |VG| − |VH |.
If k∗ < 0 or k∗ > k, then we return no. Suppose 0 ≤ k∗ ≤ k. Then, for every
spanning supergraph H ′ of H with at most k−k∗ additional edges, we check if G
contains H ′ as an induced minor. As soon as we find that this is the case for some
H ′ we return yes. Otherwise, after having considered all spanning supergraphs
of H, we return no.

The running time of the above algorithm is polynomial for the following two
reasons. First, because H is fixed, the number of spanning supergraphs H ′ of H
is a constant. Second, by our assumption, we can solve H ′-Induced Minor in
polynomial time on G for each spanning supergraph H ′ of H.

We now prove that our algorithm is correct. If k∗ < 0 or k∗ > k then (G, k)
is a no-instance of H-Minor Edit due to Lemma 4. From now on we assume
that 0 ≤ k∗ ≤ k. We claim that our algorithm returns yes if and only if G has
an H-minor sequence of length at most k.

First suppose that our algorithm returns yes. Then there exists a spanning
supergraph H ′ of H with at most k − k∗ additional edges, such that H ′ is an
induced minor of G. Let S′ be an H ′-induced minor sequence of G. Then S′ has
length exactly |VG|−|VH′ | = |VG|−|VH | = k∗. We extend S′ by deleting the edges
in EH′ \EH . This yields an H-minor sequence S of G. As |EH′ \EH | ≤ k − k∗,
we find that S has length at most k∗+k−k∗ = k. Hence, (G, k) is a yes-instance
of H-Minor Edit.
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Now suppose that G has an H-minor sequence S of length at most k. By
Lemma 6, we may assume without loss of generality that S is nice, thus all edge
deletions in S take place after all its edge contractions and vertex deletions.
Let S′ be the prefix of S obtained by omitting the edge deletions of S. Then
S′ is an H ′-induced minor sequence of G for some spanning supergraph H ′ of
H. Because every operation in S′ is a vertex deletion or edge contraction, S′

has length |VG| − |VH′ | = |VG| − |VH | = k∗. Because S has length at most k,
this means that H ′ can have at most k − k∗ more edges than H. Hence, as our
algorithm considers all spanning supergraphs of H with at most k−k∗ additional
edges, it will return yes, as desired. This completes the proof of Lemma 11. ut

Combining Lemmas 8–10 with Lemma 11 yields the following result.

Theorem 6. For all graphs H, the H-Minor Edit problem is polynomial-time
solvable on

(i) the class of AT-free graphs,
(ii) the class of chordal graphs,

(iii) any nontrivial minor-closed class of graphs.

3.3 Parameterized Complexity

A parameterized problem is fixed-parameter tractable if an instance (I, p) (where
I is the input and p is the parameter) can be solved in time f(p) · |I|O(1) for
some function f that only depends on p. Here, a natural parameter is the number
of permitted operations k. The following proposition follows immediately from
Lemma 4.

Proposition 1. For all graphs H, the H-Minor Edit and H-Topological
Minor Edit problems are fixed-parameter tractable when parameterized by k.

Proof. Lemma 4 tells that the graph G of any yes-instance (G, k) of H-Minor
Edit and H-Topological Minor Edit can have at most |VH | + k vertices.
Hence, we can use brute force to solve these two problems in fpt time. ut

We now take |VH | as the parameter. Theorem 2 shows that in that case H-
Minor Edit and H-Topological Minor Edit are fixed-parameter tractable
and para-NP-complete, respectively, when H is a complete graph (a problem is
para-NP-complete when it is NP-complete for some fixed value of the parameter).
The running times of the algorithms given by Theorems 3–5 are bounded by
O(n|VH |), where H is a path, subdivided star or cycle, respectively. A natural
question would be if we can show fixed-parameter tractability with parameter
|VH | for these cases. However, the following result shows that this is unlikely
(the class W[1] is regarded as the parameterized analog to NP).

Proposition 2. For H ∈ {Cr, Pr,K1,r}, the problems H-Minor Edit and H-
Topological Minor Edit are W[1]-hard when parameterized by r.
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Proof. Let H = Pr. Papadimitriou and Yannakakis [24] proved that the problem
of testing whether a graph contains Pr as an induced subgraph is W[1]-hard when
parameterized by r (their proof was not done in terms of parameterized complex-
ity theory and was later rediscovered by Haas and Hoffmann [14]). We observe
that a graph G contains Pr as an induced subgraph if and only if G contains a
Pr-(topological) minor sequence of length at most |VG| − r. Hence, Pr-Minor
Edit and Pr-Topological Minor Edit are W[1]-hard when parameterized
by r.

Let H = Cr. It is known that the problem of testing whether a graph contains
Cr as an induced subgraph is W[1]-hard when parameterized by r [14, 24]. The
corresponding hardness proofs in [14, 24] immediately imply that the problem
of testing whether a graph G contains a cycle Cs with s ≥ r as an induced
subgraph is W[1]-hard as well, when parameterized by r. We observe that a graph
G contains a cycle Cs with s ≥ r as an induced subgraph if and only if G contains
a Cr-(topological) minor sequence of length at most |VG| − r. Hence, Cr-Minor
Edit and Cr-Topological Minor Edit are W[1]-hard when parameterized
by r.

Let H = K1,r. It is known that the problem of testing whether a graph has
an independent set of size at least r is W[1]-complete when parameterized by r
(see [6]). We use this result as follows.

First we consider the K1,r-Minor Edit problem. Let G′ be the graph ob-
tained from a graph G by adding a new vertex v that is made adjacent to all the
vertices of G. We first claim that G has an independent set of size r ≥ 2 if and
only if K1,r is an induced minor of G′. Suppose that G has an independent set I
of size r in G. In G′ we delete all vertices of I. The presence of v ensures that the
resulting graph G′′ is connected. We contract the edges of one of the spanning
trees of G′′. Because v is adjacent to all vertices of I in G′, applying these edge
contractions in G′ yields the graph K1,r. Hence, G′ contains K1,r as an induced
minor. To prove the reverse implication, suppose that G′ contains K1,r as an
induced minor. Let W be a K1,r-witness structure of G′. Let W (x1), . . . ,W (xr)
be the bags that correspond to the leaves of K1,r. We choose an arbitrary vertex
ui ∈ W (xi) for i = 1, . . . , r. Because K1,r is an induced minor of G′, any two
bags W (xi) and W (xj) are not adjacent in G. Hence, the set U = {u1, . . . , ur}
is an independent set, and because r ≥ 2, we have that v /∈ U . Thus, U ⊆ VG;
that is, U is an independent set of G. It remains to observe that G′ contains
K1,r as an induced minor if and only if G′ has a K1,r-minor sequence of length
at most |VG′ | − r − 1.

We now consider the problem K1,r-Topological Minor Edit. Let G′ be
a graph obtained from a graph G by adding a new vertex that is made adjacent
to all the vertices of G. Then G has an independent set of size r if and only if
G′ contains K1,r as an induced subgraph if and only if G′ contains K1,r as an
induced topological minor if and only if G′ has a K1,r-topological minor sequence
of length at most |VG′ |−r−1. Hence, K1,r-Topological Minor Edit is W[1]-
hard when parameterized by r. ut
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4 Conclusions

The ultimate goal is to complete our partial complexity classifications of H-
Minor Edit and H-Topological Minor Edit. This includes addressing the
following three research questions.

1. Is H-Minor Edit polynomial-time solvable for all subdivided stars H?
2. Is Cr-Minor Edit polynomial-time solvable for all r ≥ 3?
3. Is K4-Topological Minor Edit polynomial-time solvable?

Answering Question 1 in the affirmative would generalize Theorem 3, in which
target graphs H that are paths or stars are considered. Note that generalizing
Theorem 3 to all trees H may be very challenging, because a positive result
would solve the aforementioned open problem on H-Induced Minor restricted
to trees H, due to Lemma 5-i. The same holds for Question 3: a positive answer
to Question 3 would imply membership in P for K4-Induced Topological
Minor, the complexity status of which is a notorious open case (see e.g. [21]).
As regards Question 2, Example 1 shows that we cannot guess a bounded set
of vertices and consider the subgraph that these vertices induce instead of the
whole input graph, as was done for Cr-Topological Minor Edit. Hence, new
techniques are needed. So far, we only know that the statement is true if r ≤ 4.

Proposition 3. Cr-Minor Edit is polynomial-time solvable if r ≤ 4.

Proof. If r = 3 then H = C3 = K3 and we apply Theorem 2-(i). Let r = 4, and
let (G, k) be an instance of C4-Minor Edit. We run the following algorithm.
Let k′ = |VG| − r. If k′ < 0 or k′ > k, then we return no due to Lemma 4.
Otherwise, we do as follows. We check if G contains C4 as an induced minor. If
so then we return yes. Note that this is equivalent to checking if G contains an
induced cycle on at least four vertices, which can be done in polynomial time. If
not then G is chordal, and we apply Theorem 6-(ii). ut

Another question is whether we can prove an analog of Theorem 6 for
H-Topological Minor Edit. It is known that for all graphs H, the H-
Induced Topological Minor problem is polynomial-time solvable for AT-
free graphs [12], chordal graphs [2] and planar graphs [19]. However, as noted in
Section 2, we cannot always guarantee the existence of a nice topological minor
sequence of sufficiently small length. Hence, our proof technique used to prove
Theorem 6 can no longer be applied.

Finally, we can consider other graph containment relations as well. An edge
lift removes two edges uv and vw that share a common vertex v and adds an
edge between the other two vertices u and w involved (should this edge not
exist already). A graph G contains a graph H as an immersion if G can be
modified into H by a sequence of operations consisting of vertex deletions, edge
deletions and edge lifts. If edge deletions are not allowed then G contains H as
an induced immersion. It is known that the corresponding decision problems H-
Immersion [13] and H-Induced Immersion [3] are polynomial-time solvable
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for all fixed graphs H (the first problem can even be solved in cubic time [13]).
What is the computational complexity of H-Immersion Edit and H-Induced
Immersion Edit? The main difficulty is that for both problems, we can swap
neither edge lifts with vertex deletions nor edge deletions with vertex deletions.
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