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1. Introduction

All graphs in this paper are undirected, loopless, and without multiple edges (unless mentioned
otherwise). V (G) and E(G) denote the vertex and edge set of a graph G, respectively. The degree of a
vertex v ∈ V (G) is the number of edges incident with it. Kn is the complete graph on n vertices. Given
an edge e of a graph G, the result of the contraction of e in G is the graph obtained by removing e from
G and then identifying its endpoints to a single vertex ve. For notions and notations not defined here,
we refer the reader to the monograph [5].

Given two edges e1 = {x, x1} and e2 = {x, x2} of G, incident with the same vertex x, and such
that x1 ≠ x2, we define the lift of e1 and e2 in G as the graph obtained by removing e1 and e2 from G
and then adding the edge {x1, x2}. If a contraction or edge lift creates multiple edges, we reduce their
multiplicity to one and keep the graph simple.
Partial orders. The study of partial orders on graphs is one of the basic research avenues in graph theory.
One of the most comprehensive studies of partial orders is the theory of Graph Minors by Robertson
and Seymour [11] (see also the last chapter of [5]). A graph H is a minor of another graph G (H ≤m G)
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if H can be obtained from G by a sequence of vertex deletions, edge removals, and edge contractions.
Somemore restricted graph containment relations than graphminors, like contractions [3] or induced
minors [9] have also been studied.

Graph immersions form another partial order that has been considered in the literature [4]. A graph
H is an immersion of G if H can be obtained from G by a sequence of vertex deletions, edge removals,
and edge lifts. The last operation was introduced by Lovász under the name of splitting as a reduction
method to maintain edge connectivity [8].

In this paper, we introduce and study lift-contractions. We say that a graph H is a lift-contraction
of a graph G if H can be obtained from G by a sequence of edge lifts and edge contractions. We also
define lift-minors. We say that a graph H is a lift-minor of a graph G if H can be obtained from G by a
sequence of vertex and edge deletions, edge lifts and contractions.

Being a lift-contraction (lift-minor) is a partial relation between graphs and we denote it by
H ≤lc G (H ≤lm G). If a graph H can be obtained from G by a sequence of contractions, we say that
H is a contraction of G and we denote this by H ≤c G. Clearly, H ≤c G ⇒ H ≤lc G ⇒ H ≤lm G and
H ≤m G ⇒ H ≤lm G.
Forcing complete graphs. When studying a partial order ≤ on graphs, it is interesting to know under
what conditions on G, for a fixed graph H , H ≤ G. Kostochka [7] and Thomason [13] independently
proved that if the average degree of G is at least cn

√
log n, then G contains Kn as a minor (for some

constant c > 0). Bollobás [2] showed that if the average degree of G is at least cn2, then G contains Kn
as a topological minor1 (for some constant c > 0). Recently, DeVos, Dvořák, Fox, McDonald, Mohar
and Scheide [4] proved that if the minimum degree of G is at least 200n, then G contains Kn as an
immersion. For all these three partial orders, containing Kn implies containing any n-vertex graph.

In this paper, we identify three conditions on a connected graph G that force any n-vertex graph as
a lift-contraction of G.

Theorem 1.1. There exists a constant c such that every connected graph G of treewidth at least c · n4

contains every n-vertex graph as a lift-contraction.

Theorem 1.2. There exists a function f : N → N such that every 2-connected graph of pathwidth at least
f (n) contains every n-vertex graph as a lift-contraction.

Theorem 1.3. There exists a function f : N → N such that every connected graph with at least f (n)
vertices and minimum degree at least 3 contains every n-vertex graph as a lift-contraction.

We note that none of the three conditions above is alone enough to force all n-vertex graphs as
a lift or as a contraction. In order to see this, consider a complete graph K with an arbitrarily large
number of vertices. Because an edge lift does not change the number of vertices, we cannot obtain a
graph with fewer vertices than K by taking edge lifts only. Because contracting an edge in K yields
a new complete graph, we cannot obtain any non-complete graph by performing edge contractions
only.
Structural theorem. Another point of focus, when studying partial orders on graphs, is to understand
the structure of nontrivial ideals in this order. The best known example is the structural theorem on
graphs with an excluded minor by Robertson and Seymour [11]. Recently, a structural description
of graphs with an excluded topological minor was discovered by Grohe and Marx [6] and with an
excluded immersion by Wollan [14].

Here we obtain, as a consequence of Theorem 1.3, a structural description of graphs with a
forbidden lift-contraction. Informally, for a fixed graph H , any graph G that does not contain H as
a lift-contraction contains a set of vertices R whose size depends only on the excluded graph H such
that every connected component of G[V \ R] is of treewidth at most 2 and has at most two neighbors
in R. A simple corollary of our structural result is that graphs with an excluded lift-contraction are of
bounded treewidth and thus of bounded chromatic number.

1 H is a topological minor of G, when some subdivision of H is a subgraph of G.
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Fig. 1. The graph F9 .

Paper structure. We start with some preliminary results in Section 2 which also includes the proofs of
Theorems 1.1 and 1.2. The proof of Theorem 1.3 is presented in Section 3. In Section 4 we describe the
structure of graphs with an excluded lift-minor.

2. Preliminary results

Weprove below auxiliary results thatwill be useful later in the next sections, give some definitions
and prove Theorems 1.1 and 1.2.

Lemma 2.1. For every n-vertex graph H, H ≤lc K2n.

Proof. We prove that every n-vertex graph H is a lift-contraction of K2n. Let H+
= K2 × H . First we

prove that H+ is a lift of K2n. Let V (H) = {v1, . . . , vn} and V (H+) = {v′

1, . . . , v
′
n, v

′′

1 , . . . , v
′′
n }. Let us

assume that V (K2n) = V (H+) and observe that H+ is a spanning subgraph of K2n. Let R be the set of
non-edges ofH , i.e., R = {{u, v} | u, v ∈ V (H), u ≠ v}\E(H). Notice that each {vi, vj} ∈ R corresponds
to the vertices v′

i , v
′

j , v
′′

i , v
′′

j ∈ V (H+) such that the edges {v′

i , v
′′

j }, {v
′′

i , v
′

j}, {v
′

i , v
′

j}, {v
′′

i , v
′′

j } are
present in K2n but not in H+. We use edge lifts to remove those edges. For every {vi, vj} ∈ R, we
lift the pairs of edges {v′

i , v
′′

j }, {v
′′

j , v
′′

i } and {v′′

i , v
′

j}, {v
′

j , v
′

i}. The result is H+. Now we contract edges
{v′

i , v
′′

i } for all i = 1, . . . , n and obtain H as claimed. �

The following observation can be easily proved by induction on r .

Observation 2.2. For every r ≥ 2, the complete r-partite graph, where each of its parts has r −1 vertices,
has a perfect matching M such that for every two of its parts there is exactly one edge in M intersecting
both of them.

For an integer k > 1, the k-fan is the graph obtained from the path Pk on k vertices by adding a
dominating vertex vc . We denote the k-fan by Fk and say that Pk is its spine and vc is its center (see
Fig. 1). The extreme vertices of a k-fan are the endpoints of the path (i.e., the vertices x and y in Fig. 1).

Lemma 2.3. For any connected graph G and n ≥ 2, if Fn(n−1) ≤lm G, then Kn ≤lc G.

Proof. If Fn(n−1) ≤lm G, then it is possible to obtain Fn(n−1) from G by a sequence of vertex deletions,
edge removals, edge contractions and edge lifts. We modify this sequence as follows:

• a removal of an edge e such that e is a bridge in the already constructed graph is replaced by the
contraction of e, all other edge removals are deleted from the sequence;

• a removal of a vertex v is replaced by the contraction of an edge incident with v;
• a lift operation for edges {u, v}, {v, w} such that v has degree 2 in the already constructed graph

is replaced by the contraction of {u, v}.



P.A. Golovach et al. / European Journal of Combinatorics 35 (2014) 286–296 289

Fig. 2. The graphsW11 , K3,5 , and K−

4 .

By the resulting sequence of contractions and edge lifts, we obtain a graph G′
≤lc G such that

G′ contains Fn(n−1) as a spanning subgraph. Let the spine of this n(n − 1)-fan in G′ be a path P
with VP = {v1

1, . . . , v
1
n−1, v

2
1, . . . , v

2
n−1, . . . , v

n
1, . . . , v

n
n−1}. Let J be the complete n-partite graph

with partition classes {v1
1, . . . , v

1
n−1}, . . . , {v

n
1, . . . , v

n
n−1}, and let M be a perfect matching of J as in

Observation 2.2. We choose an arbitrary edge {vt
s , v

t ′
s′ } ∈ M . For each edge {v

j
i, v

j′

i′ } ∈ M , where

{vt
s , v

t ′
s′ } ≠ {v

j
i, v

j′

i′ }, we lift the pair of edges {v
j
i, vc} and {v

j′

i′ , vc} in G′. Then we contract {vt
s , vc}. In the

resulting graph, we contract, for each i ∈ {1, . . . , n}, all the edges in {{vi
j, v

i
j+1} | j ∈ {1, . . . , n−2}} to

a single vertex ui. Observe that the resulting graph is a complete graphwith the vertex set {u1, . . . , un
}.

Hence, Kn ≤lc G′
≤lc G as claimed. �

A tree decomposition of a graph G is a pair (X, T ) where T is a tree and X = {Xi | i ∈ V (T )} is a
collection of subsets of V (G) (called bags) such that:

1.


i∈V (T ) Xi = V (G);
2. for each edge {x, y} ∈ E(G), {x, y} ⊆ Xi for some i ∈ V (T ), and
3. for each x ∈ V (G) the set {i | x ∈ Xi} induces a connected subtree of T .

The adhesion of a tree decomposition ({Xi | i ∈ V (T )}, T ) is max{|Xi ∩ Xj| | i, j ∈ V (T ), i ≠ j}
and its width is max{|Xi| − 1 | i ∈ V (T )}. The treewidth of a graph G is the minimum width over all
tree decompositions of G. A path decomposition of a tree decomposition where the tree T is a path. The
pathwidth of a graph G is the minimum width of a path decomposition of it.

Proof of Theorem 1.1. From Lemmas 2.1 and 2.3, G does not contain F2n2−2n as a minor; otherwise
we are done. A graph with no K2 × Ck minor, where Ck is a cycle on k vertices, has treewidth at most
60k2 − 120k + 63 [1]. As Fk is a minor of K2 × Ck, the same bound holds for graphs with no Fk minor.
The result follows by taking k = 2n2

− 2n. �

Proof of Theorem 1.2. According to a result mentioned in [12], for any pair of graphs G and H such
that G is an outerplanar graph and H has a vertex whose removal leaves a tree, there is a constant cG,H
such that every 2-connected graph of pathwidth at least cH,G containsG orH as aminor. By taking both
G and H to be a k-fan, we conclude that there is a function f : N → N such that every 2-connected
graph of pathwidth at least f (k) contains Fk as a lift-minor. Then Lemma 2.3 yields the result. �

3. Proof of Theorem 1.3

Let Wk be the graph obtained from Fk by adding an edge between its extreme vertices (assuming
that k ≥ 3). Let K3,k be the complete bipartite graph whose parts have exactly 3 and k vertices. We
denote by K−

4 the graph obtained from K4 by removing an edge, and we call the vertices of degree 2 in
it base vertices. Examples of these graphs are shown in Fig. 2. We let Γr = K2 × Pr . We denote by Mr
the graph obtained if we take r copies of K4, pick a vertex in each of them, and then identify all chosen
vertices to a single vertex. We denote by Nr the graph obtained as follows. We take r copies of K−

4 . In
each copy we choose an arbitrary base vertex and call it a left base vertex, and say that another base
vertex is right. Thenwe identify all left vertices and all right vertices. Finally, we denote by Lr the graph
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Fig. 3. The graphsM8 , N4 , Γ6 , and L4 .

obtained if we take r copies of K−

4 , pick a left and right base vertices in each copy, and then identify
the right base vertex of the (i − 1)-th copy and the left base vertex of the i-th copy for i ∈ {2, . . . , r}.
See Fig. 3 for examples.

We need the following lemmas.

Lemma 3.1. For each k ≥ 1, it holds that Fk ≤lm Wk, Fk ≤lm K3,k, Fk ≤lm Mk, Fk ≤lm Nk, Fk ≤lm Γk, and
Fk ≤lm Lk.

Proof. Clearly, Fk ≤lm Wk. Because Γk consists of two paths on k vertices joined by a matching, it is
straightforward to see that we obtain Fk by contracting all the edges of one path.

For K3,k, denote by u1, u2, u3 and v1, . . . , vk the vertices of the respective partition sets. For i ∈

{1, ⌊k/2⌋}, we lift the edges {v2i−1, u1}, {u1, v2i}, and for i ∈ {1, ⌈k/2⌉ − 1}, {v2i, u2}, {u2, v2i+1} are
lifted. Now Fk with the center u3 is a subgraph of the obtained graph.

Recall thatMk is obtained from k copies ofK4 by identifying vertices chosen in each copy. Let xi, yi, zi
and v be the vertices of the i-th copy (v is a common vertex) for i ∈ {1, . . . , k}.We obtain Fk as follows:
for i ∈ {1, . . . , k − 1}, we lift {xi, v}, {v, yi+1}, and then xi, yi, zi are contracted to a single vertex for
all i ∈ {1, . . . , k}.

Consider nowNk obtained from k copies of K−

4 . Let xi, yi, vl, vr be the vertices of the i-th copywhere
vl, vr are the common base vertices for i ∈ {1, . . . , k}. For i ∈ {1, . . . , k − 1}, we lift {xi, vl}, {vl, yi+1}

and observe that Fk is a subgraph of the obtained graph.
Finally, assume that Lk consists of k copies of K−

4 with the vertices xi, yi, ui, vi where ui, vi are base
vertices and vi = ui+1 for i ∈ {1, . . . , k − 1}. For i ∈ {1, . . . , k − 1}, we lift the edges {xi, vi} and
{ui+1, xi+1}. Afterwardwe contract the edges {u1, x1}, {v1, y1}, {vk, xk}, {uk, yk}. This gives us the graph
Γk. Because Fk ≤lm Γk, as shown above, this means that Fk ≤lm Lk. �

Lemma 3.2. Let G be a 3-connected graph with at least four vertices, {u, v} ∈ E(G). Then G can be
contracted to K4 in such a way that {u, v} is an edge of the obtained graph.

Proof. The graph G has at least three internally vertex disjoint (u, v)-paths. Hence, there are at least
two vertex disjoint (u, v)-paths P1, P2 that avoid the edge {u, v}. The set {u, v} does not separate
V (P1) \ {u, v} and V (P2) \ {u, v}. Therefore, there is a path that joins these sets, and the claim
follows. �

We also need the following proposition.

Proposition 3.3 ([10]). There exists a function g : N → N such that every graph excluding Wk and K3,k
as a minor has a tree-decomposition of width at most g(k) and adhesion at most two.

Recall that for two vectors of integers x = (xw, . . . , x1) and y = (yw, . . . , y1), x < y lexicographi-
cally, if there is k ∈ {1, . . . , w−1} such that xi = yi for i ∈ {k+1, . . . , w} and xk < yk. For a tree decom-
position (X, T ) ofwidthw, denote by bi the number of bags of size i for i ∈ {1, . . . , w+1}.We say that
such a tree decomposition (X, T )with adhesion atmost two isminimal, if the vector b = (bw, . . . , b1)
is lexicographically minimal, where the minimum is taken over all tree decompositions of width at
most w and adhesion at most two. We need the following property of minimal tree decompositions.
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Lemma 3.4. Let X = {Xi | i ∈ V (T )} be a minimal tree decomposition of a connected graph G of
minimum degree at least 3. For a bag Xi denote by G[Xi] the graph obtained from G[Xi] by the addition
of (non-existing) edges {u, v} for the pairs if vertices u, v ∈ Xi such that there is another bag Xj with
Xi ∩ Xj = {u, v}. Then the following holds.
(a) No bag is a subset of another bag.
(b) For each bag Xi, either (i) G[Xi] is a bridge in G and i is not a leaf of T , or (ii) G[Xi] is a triangle and for

each u ∈ V (Xi), there is another bag Xj with u ∈ Xj, or (iii) G[Xi] is a 3-connected graph with at least
four vertices.

(c) If Xi, Xj are distinct bags, Xi ∩ Xj = {x, y}, then there is a (x, y)-path in G that avoids the vertices of
Xi \ {x, y}.

Proof. Statement (a) follows directly from theminimality. Notice that it implies that there are no bags
of size one, since G is a connected graph of minimum degree at least 3.

We now prove (b). Let Xi = {u, v} be a bag of size two. We claim that v and u are adjacent. To
see this, assume to the contrary that u and v are not adjacent. Let also ev and eu be the first and the
last edge of a path in the connected graph G starting from v and finishing at u. Let also Xiu (resp. Xiv )
be a bag where the edge eu (resp. ev) is contained. As G is connected, i cannot be in the path of T
connecting iv and iu. Therefore, we may assume that either iv is in the path of T connecting i and iu or
that iu is in the path of T connecting i and iv . In both cases, the third condition of the definition of a
tree decomposition implies that either u ∈ Xiv or that v ∈ Xiu , a contradiction to (a). Hence, u, v are
adjacent, and because u, v are not included in another bag, {u, v} is a bridge. Clearly, i cannot be a leaf
of T , as G has no vertices of degree one.

Now suppose that Xi = {u, v, w} be a bag of size 3. Since the minimum degree of G is at least 3,
each vertex of Xi is included in another bag. We are left to prove that G[Xi] is a triangle. To obtain a
contradiction, assume that u and v are not adjacent. Then there is no bag Xj, j ≠ i, with u, v ∈ Xj.
We modify the tree decomposition as follows. The node i is replaced by two adjacent nodes i′, i′′.
Let Xi′ = {u, w} and Xi′′ = {v, w}. For each j such that Xj ∩ Xi ≠ ∅, we join j with i′ by an edge if
Xi∩Xj ⊆ {u, w}, andwe join jwith i′ ifXi∩Xj = {v} orXi∩Xj = {v, w}.We obtain a tree decomposition,
where a bag of size tree is replaced by two bags of size 2. This contradicts theminimality of the original
tree decomposition.

Finally suppose that Xi = {u1, . . . , xp} is a bag of size p ≥ 4. To obtain a contradiction, assume that
H = G[Xi] is not 3-connected. Then it has a cut set S of size at most two. Let X be the set of vertices of a
component of the graph obtained from H by the removal of S. Let Y = X ∪ S and Z = V (H)\X . Notice
that for any bag Xj, Xi ∩ Xj ⊆ Y or Xi ∩ Xj ⊆ Z . Wemodify the tree decomposition as follows. The node
i is replaced by two adjacent nodes i′, i′′. Let Xi′ = Y and Xi′′ = Z . For each j such that Xj ∩ Xi ≠ ∅, we
join j with i′ by an edge if Xi ∩ Xj ⊆ Y and Xi ∩ Xj ∩ X ≠ ∅, and we join j with i′ if Xi ∩ Xj ⊆ Z . We
obtain a tree decomposition, where a bag of size p is replaced by two bags of size at most p − 1. This
contradicts the minimality of the original tree decomposition. Hence we have proven (b).

Nowwe prove (c). Suppose that Xi, Xj are distinct bags, Xi ∩Xj = {x, y} and x, y are not adjacent. To
obtain a contradiction, assume that there are no (x, y)-paths in G that avoid the vertices of Xi \ {x, y}.
Let T be rooted in i. The root defines the parent–child relation on V (T ). Clearly, j is a child of i. Denote
by p the last descendant of iwith the same property as i, i.e., p has a child q, Xp ∩Xq = {u, v} and there
are no (u, v)-paths in G that avoid the vertices of Xp \ {u, v}, and no child of p satisfies this condition.
Then Xq has at least three vertices, and the graph obtained fromG[Xq] by the removal of the edge {u, v}

is disconnected, but it contradicts (b). �

Now we are in position to prove Theorem 1.3.

Proof of Theorem 1.3. We set k = 2n(2n − 1) and assume that G does not contain Fk as a lift-minor.
Also, keep in mind that k > 2. From Lemmas 2.1 and 2.3 it is enough to prove that |V (G)| cannot be
bigger than f (k) where f is a function that will be determined later in the proof.

Notice that by Lemma 3.1, Wk and K3,k both contain Fk as a lift-minor. Hence, by Proposition 3.3,
G has a tree-decomposition of width at most g(k) and adhesion at most two. We assume that X =

{Xi | i ∈ V (T )} is a minimal and, subject to this condition, for a given X, a tree T with the maximum
number of leaves is chosen.
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Let L ⊆ X be the set of bags corresponding to the leaves of T . Our strategy is to observe that if the
size of G is big enough, then either T has many leaves or there is a long path in T with all vertices of
degree two in T . Thenwe construct a lift-minor Fk using either the leaf-bags or the path-bags. For this,
we first bound the number of leaves in T . Thenwe take the size of G to be sufficiently big so that, given
that both the treewidth of X and the number of leaves in T are bounded, we can force the existence
of a path in T . We need the following claim.

Claim 1. There is a function f1 such that if Fk ≰lm G, then |L| < f1(k).

Proof of Claim 1. Let us assume that |L| ≥ f1(k) for some f1 that will be determined at the end of the
proof of this claim and consider the graphs LX = G[X], for each X ∈ L. There are at most two vertices
in each LX that have neighbors outside X in G. Let SX be the set of such vertices for each X ∈ L. Denote
by LX the graph obtained from LX by joining vertices of SX by an edge (if |SX | = 1, then LX = LX ). By
Lemma 3.4, X has at least four vertices and LX is 3-connected for each X ∈ L. We set

S1 = {SX | X ∈ L and |SX | = 1} and S2 = {SX | X ∈ L and |SX | = 2}.

If SX ∈ S1, then the 3-connectivity of LX implies that K4 is a contraction of LX = LX by Tutte’s
theorem (see c.f. [5]). In case |SX | = 2, we define L−

X as the graph taken from LX by removing, if it
exists, the edge with endpoints in SX . The 3-connectivity of LX and Lemma 3.2 imply that L−

X can be
contracted to K−

4 in a way that the two base vertices are the vertices of SX . �

We now construct an auxiliary graph J by taking G−
= G[


X∈X\L X] and then, for every S ∈ S2,

adding an edge connecting the two vertices of S (if such an edge already exists, then do not add it).
Let us call essential the edges connecting in J the two vertices of some S ∈ S2 (notice that an essential
edge of J is not necessarily present in G).

We assign weights to the vertices and edges of J: each vertex v ∈ V (J) receives weight |{L ∈ L |

{v} = SL}| and each edge e ∈ E(J) receives weight |{L ∈ L | e = SL}|. Observe that the essential
edges are exactly those with positive weights and recall that the sum of the weights of the edges and
vertices of J is at least f1(k). We prove a series of subclaims.

Subclaim 1.1. The sum of the weights of the vertices in J is less than k.

Proof of Subclaim 1.1. Suppose that is not correct. Then contract in G all edges that do not belong to
some of the graphs in {LX | SX ∈ S1} and obtain a graph that, in turn, can be contracted to Mk. But
then, from Lemma 3.1, G should contain Fk as a lift-minor, a contradiction. �

Subclaim 1.2. There is a function f2 such that J does not have more than f2(k) blocks with essential edges.

Proof of Subclaim 1.2. Notice that for each block B of J , there is a unique block B′ of G such that
V (B) ⊆ V (B′), and for different blocks B1, B2, V (B1) and V (B2) are included in distinct blocks of G.
Observe also that if B is a block of J with at least one essential edge, then the corresponding block B′

in G can be contracted to K4 by Lemma 3.4. That way, we have that G can be contracted to a bridgeless
graph W where each of its blocks is a K4 and such that the number of blocks in W is equal to the
number of blocks in J with essential edges. Notice that W cannot contain a cut vertex w with the
property that W − w has k or more connected components, otherwise W could be contracted to Mk
and therefore Fk ≤lm Mk ≤lm G by Lemma 3.1; a contradiction. Moreover, the diameter ofW should be
less than k, otherwiseW contains Lk as a minor. Then Fk ≤lm Lk ≤lm G by Lemma 3.1, a contradiction. It
is now easy to verify that the number of blocks inW is bounded by some function f2 of k. The subclaim
follows. �

From Subclaim 1.1, the sum of weights of the edges of J is more than f1(k) − k. From Subclaim 1.2,
one of the blocks of J denoted by B should have total-edge weight at least f1(k)−k

f2(k)
.

We now construct the graph B∗ from B by repeatedly removing or contracting non-essential edges:
for a non-essential edge {u, v}, if {u, v} is a cut set in the already constructed graph, then we remove
the edge, elsewe contract the edge. Notice that a non-essential edge can be identifiedwith an essential



P.A. Golovach et al. / European Journal of Combinatorics 35 (2014) 286–296 293

one after one of these operations (in such a case, such a new edge is essential). Observe also that these
operations maintain 2-connectivity. Hence, B∗ is 2-connected. If during such a contraction two edges
become one, the weight of the new edge is the sum of the weights of the two edges. Notice that the
total edge-weight of B∗ is the same as in B, that is at least f1(k)−k

f2(k)
. Notice also that at most two edges of

zero weight may survive in B∗ and this may happen only when B∗ is a triangle where one or two of its
edges have positive weights. Clearly, none of the edges in B∗ may have a weight of at least k as, then,
the same sequence of edge contractions and removals in G would create a graph that contains Nk as
a minor. Then Fk ≤lm Nk ≤lm G by Lemma 3.1; a contradiction. We obtain that the total weight of the
edges in B∗ is lower bounded by f1(k)−k

k·f2(k)
. In what follows, we will take f to be big enough so that this

lower bound is greater than 2, and therefore wemay assume that all edges of B∗ have positive weight.
This implies that

|E(B∗)| ≥
f1(k) − k
k · f2(k)

. (1)

Our next step is to observe that the maximum degree of B∗ is less than k. Suppose towards a
contradiction that somevertex y ofB∗ is incidentwith at least k edges. Recall thatB∗ is 2-connected and
thus B∗

− y is connected. Therefore, if we contract in B∗ all edges that are not incident to y, we create
a single edge with total weight at least k. As before, this implies that Fk ≤lm Nk ≤lm G; a contradiction.

Our next observation is that every path in B∗ has length at most k − 1. Indeed, a path of length
at least k in B∗ would imply the existence in G of Lk as a minor, a contradiction, since by Lemma 3.1
Fk ≤lm Lk ≤lm G.

According to the two observations above, B∗ has at most f3(k) edges for some function f3. This,
combined with (1), implies that f3(k) ≥

f1(k)−k
k·f2(k)

for some specific choice of the functions f2 and f3. If we
now take f1 to be big enough so that this inequality is violated, we have a contradiction and the claim
follows.

Notice that the fact that each bag of X has at most g(n(n− 1)) vertices implies that X has at least
f (n)/g(k) bags. Therefore, the tree T has ≥ f (n)/g(k) vertices and from the above claim, less than
f1(k) of them are leaves (recall that k = n(n − 1)). But then we can choose the function f such that
T contains a path P of 24(k + 1)3 + 3 vertices such that all internal vertices of P have degree two in
T . By the fact that the minimum degree of G is at least 3, we obtain that at most half of the graphs
induced by the bags corresponding to the vertices of P are bridges. We call the bags corresponding to
these bridges of G bridge edges of G andwemay assume that this path P has at least 12(k+1)3 internal
vertices that correspond to bags that are not inducing bridges in G. Let H be the graph obtained from
G[


i∈V (P) Xi] by contracting all bridge edges. Our aim is to arrive at a contradiction by showing that H

(and therefore G as well) contains either Lk, or Fk, or Γk as a minor. Notice that X gives rise to a path
decomposition X′

= {X0, . . . , Xr+1} of H containing at least 12(k + 1)3 + 2 bags (we first crop from
X the bags corresponding to P and then we suppress bridge bags). Recall that the number of leaves in
T is maximum. Then each bag Xi of X′ can be of one of the following types:

• (1-1-type) Qi = H[Xi] is a 3-connected graph. Moreover, if i ∈ {1, . . . , r} then such a Xi contains
two vertices xil and xir such that {xil} = Xi ∩ Xi−1 and {xir} = Xi ∩ Xi+1.

• (1-2-type) Qi = H[Xi] contains three vertices xil, x
i
ru and xird such that the addition in H[Xi] of the

edge {xiru, x
i
rd}makes it 3-connected or a triangle (we denote this enhanced graph byQ i). Moreover,

if i ∈ {1, . . . , r}, then {xil} = Xi ∩ Xi−1, {xiru, x
i
rd} = Xi ∩ Xi+1 and xil ∉ {xiru, x

i
rd}.

• (2-1-type) Qi = H[Xi] contains three vertices xilu, x
i
ld and xir such that the addition in H[Xi] of the

edge {xilu, x
i
ld}makes it 3-connected or a triangle (we denote this enhanced graph byQ i). Moreover,

if i ∈ {1, . . . , r}, then {xilu, x
i
ld} = Xi ∩ Xi−1, {xir} = Xi ∩ Xi+1 and xir ∉ {xilu, x

i
ld}.

• (2-2-type) Qi = H[Xi] contains the vertices xilu, x
i
ld, x

i
ru and xird where xilu ≠ xild, x

i
ru ≠ xird,

|{xilu, x
i
ld, x

i
ru, x

i
rd}| ∈ {3, 4}, and the addition in H[Xi] of the edges {xiru, x

i
rd} and {xilu, x

i
ld} makes

it 3-connected (we denote this enhanced graph by Q i). Moreover, if i ∈ {1, . . . , r}, then {xilu, x
i
ld} =

Xi ∩ Xi−1 and {xiru, x
i
rd} = Xi ∩ Xi+1.
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Notice that for each i ∈ {0, . . . , r}, if Xi is of x–y-type and Xi+1 is of x′–y′-type, then y = x′ and that
y is the cardinality of the set Si = Xi ∩ Xi+1. Observe also that for any i ∈ {1, . . . , r − 1}, Si−1 \ Si ≠ ∅

and Si\Si−1 ≠ ∅, since otherwise if Si−1 ⊆ Si or Si ⊆ Si−1, then the node i of T could bemade a leaf, but
this contradicts the choice of T . Notice that each Q i is either a triangle or 3-connected by Lemma 3.4.
For 1 ≤ i ≤ j ≤ r , we let Hi j = H[


h∈{i,...,j} Xh]. We need some properties of Hi j given in the next

four claims.

Claim 2. Suppose that |Si−1| = 1, |Sj| = 1, and for h ∈ {i, . . . , j − 1}, |Sh| = 2. Then the graph
Hi j contains three paths P1, P2, P∗, where P1, P2 are internally vertex disjoint (xil, x

j
r)-paths, P∗ joins an

internal vertex of P1 with some internal vertex of P2 and avoids xil, x
j
r .

Proof of Claim 2. The graph Hi j is 2-connected. Hence, there are two internally vertex disjoint
(xil, x

j
r)-paths P1 and P2. Notice that for each h ∈ {i, . . . , j − 1}, each of the paths P1 and P2 contains

exactly one vertex of Sh.
If j = i, then H is 3-connected, and because the minimum degree of G is at least 3, Hi j has at least

four vertices.Moreover, asH is 3-connectedwemay assume that P1, P2 have internal vertices. Observe
also that {xil, x

j
r} is not a cut set of H . Hence, there is a path P∗ that joins an internal vertex of P1 with

some internal vertex of P2.
Suppose that j > i. Notice that P1, P2 have internal vertices because xil ∉ {xiru, x

i
rd} and xjr ∉ {xjlu, x

j
ld}.

If for every h ∈ {i, . . . , j}, |Xh| = 3, then there is h ∈ {i, . . . , j − 1} such that xhlu, x
h
ld are adjacent in

G, since G has no vertices of degree two. Then such an edge forms a path between an inner vertex of
P1 and an inner vertex of P2. Assume that there is an h ∈ {i, . . . , j} such that |Xh| ≥ 4. By Lemma 3.4,
Q h is 3-connected. If h = i, then xhru, x

h
rd are joined in Q h by at least three internally vertex disjoint

paths. At least one of these paths avoids xhr and the edge {xhru, x
h
rd} and we have P∗. If h = j, then we

find P∗ by the same arguments using the symmetry. Let i < h < j. Then xhru, x
h
rd are joined in Q h by at

least three internally vertex disjoint paths, and at least one of these paths avoids the edges {xhlu, x
h
ld}

and {xhru, x
h
rd}. �

Claim 3. Suppose that i < r, |Si−1| = |Si| = |Si+1| = 2 and Sh−1 ∩ Sh ∩ Sh+1 = {u}. Then the graph
Hi i+1 contains two paths P, P∗, where P joins the unique vertices Si−1 \ {u}, Si+1 \ {u} and avoids u, P∗

joins an internal vertex of P with u and avoids vertices of Si−1 ∪ Si+1 \ {u}.

Proof of Claim 3. Assumewithout loss of generality that u = xild = xird = xi+1
rd and Si−1 \ (Si ∪ Si+1) =

{xilu}, Si+1 \ (Si−1 ∪ Si) = {xi+1
ru }.

The graph H i i+1 obtained from Hi i+1 by the addition of edges {xilu, u} and {xi+1
ru , u} is 2-connected.

Hence, there is a (xilu, x
i+1
ru )-path P inH i i+1 that avoids u. Clearly, P is a path inHii+1. This path contains

at least one internal vertex xiru. If |Xi| = |Xi+1| = 3, then xiru, x
i
rd are adjacent in G, since xiru has degree

at least 3. Then this edge forms a path between an inner vertex of P and u. Assume that |Xi| ≥ 4. By
Lemma 3.4, Q i is 3-connected. Then xiru, x

i
rd are joined in Q i by at least three internally vertex disjoint

paths, and at least one of these paths avoids the edges {xilu, x
i
ld} and {xiru, x

i
rd}. We take this path as P∗.

If |Xi+1| ≥ 4, then we find P∗ by symmetrically applying the same arguments. �

Claim 4. Suppose that for h ∈ {i − 1, . . . , j}, |Sh| = 2, and Si−1 ∩ Si = ∅. Then the graph Hi j contains
two disjoint paths P1, P2 joining the vertices in {xild, x

i
lu} with the vertices in {xjrd, x

j
ru}.

Proof of Claim 4. The graph H ij obtained from Hi j by the addition of edges {xild, x
i
lu} and {xjrd, x

j
ru} is

2-connected. If we subdivide the edges {xird, x
i
ru}, {x

j
rd, x

j
ru}, and denote the obtained vertices of degree

two by u and v respectively, then the obtained graph contains two internally vertex disjoint (u, v)-
paths. The claim follows immediately. �

Claim 5. Suppose that for t ∈ {i + 1, . . . , j − 1}, Si ∩ St = ∅, St ∩ Sj = ∅ and for h ∈ {i − 1, . . . , j},
|Sh| = 2. Then the graph Hi j contains paths P1, P2, P∗, where P1, P2 are disjoint paths joining the vertices
in {xild, x

i
lu} with the vertices in {xjrd, x

j
ru}, and P∗ joins a vertex of P1 with some vertex of P2.
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Fig. 4. The types of bags in X = {X0, . . . , Xr+1}.

Proof of Claim 5. The paths P1 and P2 exists by Claim 4. Without loss of generality we assume that P1
is a (xild, x

j
rd)-path and P2 is a (xilu, x

j
ru)-path.

If for every h ∈ {i, . . . , j}, |Xh| = 3, then there is h ∈ {i, . . . , j} such that xhlu, x
h
ld are adjacent in G,

since otherwise the vertices of St would have degree two. Then such an edge forms a path between
P1 and P2. Assume that there is an h ∈ {i, . . . , j} such that |Xh| ≥ 4. By Lemma 3.4, Q h is 3-connected.
Then xhru, x

h
rd are joined in Q h by at least three internally vertex disjoint paths, and at least one of these

paths avoids the edges {xhlu, x
h
ld} and {xhru, x

h
rd}. Clearly, this path joins P1 and P2 in Hi j. �

Now we are ready to complete the proof of Theorem 1.3. Consider the sequence S1, . . . , Sr . Recall
that r ≥ 12(k + 1)3.

First, we show that the sequence |S1|, . . . , |Sr | contains at most k 1’s. Suppose that |Sh1 | = · · · =

|Shk+1 | = 1 for some 1 ≤ h1 < · · · < hk+1 ≤ r and that |Sh| = 2 for all 1 ≤ h ≤ r with
h ∉ {h1, . . . , hk+1}. Then we apply Claim 2 for Hh1 h2 , . . . ,Hhk hk+1 and conclude that H contains Lk
as a minor which gives a contradiction because of Lemma 3.1. As a consequence of this, the sequence
|S1|, . . . , |Sr | contains a subsequence |Si|, . . . , |Sj| formed by at least 12(k + 1)2 consecutive 2’s (in
Fig. 4, this holds for i = 1 and j = 2). This also means that for all h ∈ {i + 1, . . . , j}, Xh is a 2-2-type
bag.

Now we prove that the sequence Si, . . . , Sj does not contain any subsequence Si′ , . . . , Sj′ of more
than 2k consecutive elements such that ∩

j′
h=1 Sh = {u}. Otherwise, we apply Claim 3 for Hi′+1 i′+2,

Hi′+3 i′+4 . . . ,Hi′+2k−1 i′+2k, and it follows that Fk is a minor of H; a contradiction.
We have that the sequence Si, . . . , Sj contains a subsequence Sh1 , . . . , Sh3k of 3k pairwise disjoint

(not necessarily consecutive) elements. We apply Claim 5 for Hh1 h3 ,Hh4 h6 , . . . ,Hh3k−2 h3k and Claim 4
for Hh3 h4 ,Hh6 h7 , . . . ,Hh3k−3 h3k−2 and observe that Γk is a minor of H , a contradiction. �

4. On the structure of lift-contraction-free graphs

Given a graph G and a subset S of V (G), we denote by NG(S) the set of vertices not in S that are
neighbors of vertices in S. We also define NG(S) = NG(S) ∪ S. Theorem 1.3 implies the following
structural theorem on the graphs excluding some graph H as a lift-contraction. We call a vertex set
R of a graph G 2-central if for every connected component C of G \ R, it holds that G[NG(V (C))] has
treewidth at most two and |NG(V (C))| ≤ 2. We need the following observation.

Observation 4.1. Let G be a graph with a 2-central set R and let G+ be the graph obtained from G by
the consecutive application of the following operations: (i) edge subdivisions and (ii) additions of a new
vertex adjacent to either a single vertex or two adjacent vertices in the already constructed graph. Then R
is a 2-central set in G+ as well.

Theorem 4.2. There exists a function f : N → N such that every connected graph G that does not contain
an h-vertex graph H as a lift-contraction contains a 2-central set R of at most f (h) vertices.

Proof. Let f be the function that exists by Theorem 1.3. Assume that there is a minimum size
counterexample G and let n = |V (G)|. Clearly, n > f (h) as any graph of at most f (h) vertices satisfies
trivially theproperty of the theorem.However, fromTheorem1.3, a graphwithmore than f (h) vertices
that does not contain H as a lift-contraction, should contain some vertex v of degree at most two. We
contract an edge incidentwith v in the connected graphG, and denote byG′ the obtained graph. Notice
that the graph G′ also excludes H as a lift-contraction and, as |V (G′)| < n, G′ contains a 2-central set
R of at most f (h) vertices. From Observation 4.1, R is also a 2-central set in G. �
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