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Abstract

The Cloud provides impartial access to computer services on a pay-per-use
basis, a fact that has encouraged many researchers to adopt the Cloud for
the processing of large computational jobs and data storage. It has been
used in the past for single research endeavours or as a mechanism for coping
with excessive load on conventional computational resources (clusters). In
this paper we investigate, through the use of simulation, the applicability of
running an entire computer cluster on the Cloud. We investigate a number
of policy decisions which can be applied to such a virtual cluster to reduce
the running cost and the effect these policies have on the users of the cluster.
We go further to compare the cost of running the same workload both on
the Cloud and on an existing campus cluster of non-dedicated resources.
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1. Introduction

Cloud Computing [1] provides a new model for computational process-
ing and data storage removing many of the access barriers to large-scale
computing (often referred to as High Throughput Computing (HTC)) by
eliminating the need for capital expenditure on large private infrastructures.
Instead users pay only for the computational power or data space they use —
more than they could afford to buy though enough to meet their immediate
needs from an apparently infinite (henceforth we just say infinite) pool of
resources — transferring capital expenditure to operational cost. This allows
the user to work in-spite of local resource availability. Large collections of
resources can be provisioned in a short period of time, quicker than many
organisations can offer, for a relatively small operational outlay, and at a
fraction of the capital cost. This approach has been used in scenarios with
significant temporal variation in requirements, alternating between periods
of little (or no) activity to periods of high activity and jobs which require
low data transfers, to mitigate the data transfer times and costs.

Traditionally many organisations such as universities or companies have
provided HTC through a dedicated centralised cluster of computers, where
capital expenditure is committed to a fixed number of computational re-
sources and data storage. This has the advantage of economies of scale as
most users of the HTC facility will not need full access to the facility at
the same time. The size of such a facility is dominated by two factors: the
anticipated load on the cluster and the available budget. The aim is to pro-
vision enough resources to deal with all but the exceptional load scenarios
placed on the resources. The exceptional load is dealt with either by failing
to achieve the required level of Quality of Service or by outsourcing work,
for example to a Cloud provider [2, 3]. Excess jobs which cannot be handled
on local resources are sent to a (public) Cloud for execution — thus allowing
the owners to temporarily increase the size of their own cluster.

Here we explore an alternative use case — moving the entire cluster onto
the Cloud. We investigate a number of polices which can be applied over
an existing HTC management service for determining the number of Cloud
instances which should make up the virtual Cloud cluster. We further inves-
tigate whether there are advantages in all HT'C users within an organisation
sharing resources to help reduce costs.

We evaluate our approach through the use of two metrics: the financial
cost of using the Cloud (based on the number of hours consumed along with



data transfer charges) and the impact on job overheads. We define overhead
as the difference between the total time a job spends within the system and
the actual execution time for the job, a more formal definition for overhead
is given in Section 3. The overheads include both the time to upload and
download data to the Cloud along with any other delays incurred from using
the Cloud. This data transfer also has implications for the cost of using the
Cloud as most Cloud providers charge for data transfers.

We use a trace-driven simulation [4], using trace logs from the HTCon-
dor [5] (formerly called Condor) desktop cluster based at Newcastle Univer-
sity [6, 7], to evaluate the effectiveness of our approach. In order to evaluate
our policies more thoroughly we have generated a number of synthetic trace
logs based on increasing the number of users submitting work into the HTC
cluster. These synthetic loads represent approximately one to five times the
workload from our real logs, allowing for evaluation of our policies under
greater workload. Using just the submission times for jobs to the cluster,
their execution times and the data ingress/egress volumes allows us to sub-
mit jobs into the simulated Cloud cluster where jobs will either receive service
immediately, if virtual computational instances (referred to here as instances)
are idle, or enter a queue awaiting execution. A Policy can then be enacted
to determine if (and when) a new Cloud instance should be started or unused
instances terminated. As the main focus of this paper is a comparative eval-
uation of a number of policies we do not concern ourselves with how users
would have changed their usage patterns on the Cloud, instead using these
trace-logs for comparison only — real deployment would almost certainly alter
usage patterns. We acknowledge here that the execution times of workload
on the Cloud would vary in comparison with the execution times observed
on our local desktop cluster. However, our aim here is to compare the dif-
ferent polices for optimising our use of the Cloud hence we do not take this
variation into account. Further, Gillam et al. [8] observe over 100% variation
in performance of Cloud instances advertised as being the same thus making
any scaling process highly inaccurate.

An alternative approach used by many organisations is to make use of
their existing computational resources for a secondary purpose, thus exploit-
ing the idle time on these computers for HTC workload. However, as com-
puters are used by the HT'C system speculatively, computational work may
need to be sacrificed in the case when the user requires his/her computer.
This has the advantage that although these resources are no longer dedicated
for the processing of computational workload it does allow the organisation



to make use of a large collection of computers for little (if any) capital ex-
pense. This form of desktop cluster, often referred to as a desktop grid, can
therefore be seen as an alternative to using the Cloud.

We have previously shown that ~120MWh of energy was consumed in
2010 to power the Newcastle HTCondor desktop cluster [7]. This being
made up from ~43MWh from good HTCondor work which completed and
~7TMWh from bad HTCondor work which didn’t complete. In order to
fairly compare the use of a desktop cluster with the Cloud we additionally
factor in the other charges which would be required for running this service,
those of staff costs, carbon emissions and dedicated server costs.

We see our key contributions from this work as being:

e An evaluation of the feasibility and cost of moving an entire HTC clus-
ter into the Cloud based around real trace logs and trace logs generated
from synthetic users.

e An evaluation of a number of policies for minimising the cost of using
the Cloud for HTC workload along with the effect that this will have
on the overheads observed by the user.

e A comparison of the cost implications of running large HTC workloads
on a Cloud as opposed to using a non-dedicated HTC desktop cluster.

The rest of this paper is set out as follows. Section 2 discusses related
research to the work we propose. In Section 3 we describe in more detail
the cluster we are modelling. We present a number of policies for optimising
the cost for using the Cloud in Section 4 along with the perceived benefits of
these policies. The simulation environment is described in Section 5 with the
simulation results being presented in Section 6 where we also compare the
cost of using the Cloud to the cost, in terms of both energy and hardware,
for using the campus based cluster at Newcastle when executing the same
workload. Finally our conclusions are presented in Section 7.

2. Related Work

There is currently great interest in Cloud Computing [1]. This has led to a
number of investigations into the applicability of the Cloud as a tool for aiding
users in their work. A number of simulation approaches to model the benefits
of Cloud computing have been performed. Deelman [9] evaluated the cost



of using Amazon’s Elastic Compute Cloud (EC2) [10] and Amazon’s Simple
Storage Service (S3) [11] to service the requirements of a single scientific
application. Here we seek to service the requirements of multiple users and
multiple applications.

De Assuncao [2] proposed the use of Cloud computing to extend exist-
ing clusters to deal with exceptional load. This work was further extended
by Mattess [12] by proposing the use of Amazon Spot Instances, supply-
and-demand driven pricing of instances, to further reduce the cost of Cloud
Bursting. Our approach differs to these in the sense that we seek to deploy
our entire cluster to the Cloud. The approach of using Spot Instances, how-
ever, could easily be included in our approach and would allow for the same
cost reduction as proposed by Mattess. Van den Bossche et al. [13] uses Bi-
nary Integer Programming to select which workflows should be burst to the
Cloud. This approach is computationally expensive to determine the optimal
approach and does not address the issue of when to terminate instances. To
address the computational expense Van de Bossche et al. extend their work
by developing scheduling algorithms for bag-of-tasks applications in hybrid
cloud environments [14]. It may be naively assumed that our approach here
is no more than the degenerative case with no local resources. However, these
papers discuss when Cloud resources should be brought in, whilst our work
discusses how to best manage the starting/termination of instances. These
two approaches can therefore be seen as complementary.

Marshall [15] proposes policies for how to extend the number of Cloud
instances to use along with simulations of a small number of short running
synthetic jobs to evaluate overhead times. Here we use a full trace log con-
taining over half a million real jobs, along with synthetic traces derived from
this real log, and evaluate for both overhead and Cloud cost including the
effect on overheads of data transfer and the cost for the data transfer.

Palankar [16] showed the criticality of data locality in the Cloud. In this
work we take into account the effects of uploading and downloading data
from the Cloud without storing data there. This gives us an upper limit
on the data transfer cost. We see that moving our data to the Cloud and
keeping it there will help to reduce the data locality problem and associated
data transfer costs.

Additional functionality such as Amazon CloudWatch [17] allow instances
to be brought up and down dependant on the characteristics of existing
instances that are being used. The approaches we propose could be built
into such a system.



2.1. Cost of Clouds

Lampe et al. [18] propose an exact mathematical model for computing the
most optimal placement of work onto the Cloud for cost minimisation based
on Binary Integer Programming [19] though conclude that this approach is
non-tractable when the number of jobs is larger than 20. They go further
to propose a heuristic for approximating this minimisation based on the
knapsack problem [20]. However, in both cases they only consider the cost
of using the Cloud and not the impact this will have on the overheads.

Byun et al. [21] propose an architecture for computing workflows on the
Cloud. They compute the minimum number of Cloud instances required to
complete the workflow within a pre-determined time interval using an ap-
proach of Balanced Time Scheduling [22]. This allocates a fixed number of
Cloud instances for the duration of the workflow. This differs from our ap-
proach where the number of Cloud instances changes dynamically throughout
and we do not limit ourselves to the execution of a single workflow.

Kondo et al. [23] evaluate the cost benefits for using a volunteer computing
environment such as BOINC [24] over running the same workload in the
Cloud. As they are not responsible for the costs of computation on the
volunteer computers their approach shows that the use of the Cloud quickly
becomes more expensive. However, they do conclude that the use of the
Cloud for providing the central resources would be appropriate. Our work
is similar in that we are not responsible for the cost of local resources which
are provisioned primarily for other purposes, though our work differs in that
our workload is much more heterogeneous.

Koch et al. [25] evaluated three approaches to allocating resources within
an educational environment in order to minimise cost whilst maintaining
Quality of Service (QoS), namely: resource pre-allocation based on peak de-
mands; reactive resource allocation based on current demand; and proactive
resource allocation that considers workload characteristics and parameters of
the domain. They concluded that the workload aware proactive approach is
the best for meeting QoS for a minimum cost. This is similar to our work
though we do not assume knowledge of the workload.

3. Cloud Cluster Model

We adopt the Cloud model used by many providers (e.g. Amazon EC2 [10],
Microsoft Azure [26] and RackSpace [27]) allowing users to deploy virtual



machine images onto servers owned by the provider — referred to as Infras-
tructure as a Service (laaS) [28]. Figure 1 illustrates our basic architecture
in which users submit job descriptions to the cluster based job management
system such as HTCondor [5], PBS [29] or (Sun) Grid Engine [30] along with
a number of files required to perform the job and details of files to be staged
back after completion of the job. A Job Management Service is used to allo-
cate these jobs to a dynamic pool of instances within the Cloud. Like many
organisations Newcastle University does not provide a shared file system for
its HT'C users. We thus assume that the Cloud alternative works in the same
manner. We acknowledge that storing data on the Cloud could help alleviate
transfer times and costs. However, as we do not possess information as to
the contents of files within our logs we cannot identify which files would be
appropriate to keep in the Cloud. We would expect that keeping files in the
Cloud to be beneficial. Although illustrated here as a single entity the job
management service may consist of multiple entities allowing balancing of
job submissions and data transfers to and from the Cloud.

We seek here not to replace the existing HTC management system but
rather to augment it with the ability to add and remove computers to our
virtual cluster in the Cloud. Policy is able to decide when extra instances
need to be provisioned and when instances can be removed. These policy
decisions are based on the current state of the cluster and the perceived future
state of the cluster. Additional software is required to increase the number of
Cloud instances, when required, and terminate these when no longer needed
— the policy component in Figure 1. Instances within the Cloud cluster can
be in one of three states with interactions illustrated in Figure 2:

e Unallocated: these are the potential Cloud instances not currently
under contract — (effectively) an infinite set. The Job Management
Service can ‘hire’ such an instance to run a job, placing it in the Active
state.

e Active: the instance is ‘hired’ by the cluster and is currently servicing
a job. On job completion the instance will enter the idle state.

e Idle: the instance is ‘hired’ by the cluster but not currently servicing
a job. The instance will become active if the cluster allocates a job
before the end of its billing period otherwise it will be released into the
unallocated state.
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Figure 1: The Cloud cluster architecture
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Figure 2: The state diagram for Instances

We assume here that instances only run a single job at a time. As an
instance incurs the same charge irrespective of when it is terminated within
a billing period it is always kept ‘hired” until the end of this period — increas-
ing the chance of there being an idle instance available when a job arrives.
Instances can either be provisioned for all users within a cluster or only a
specific user. If provisioned for all users then the instance will accept new
jobs from any user, whilst instances provisioned for a given user will only
accept new jobs from that specific user. Although accepting jobs from only
a specific user will in general reduce the utilisation of Cloud instances this
may be desirable for security reasons.

Jobs are first matched against idle instances capable of accepting jobs
from that user, receiving continuous service from the active instance until
completion when the instance will become idle. Jobs arriving to find no
‘idle’ instances capable of servicing them will cause a new instance to be
provisioned, requiring time for the operating system and middleware to start,
before running the job.
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Figure 3: Timeline for a job

Figure 3 illustrates the timeline for a job executing within the Cloud
cluster. A job will first encounter an idle period before being allocated to a
resource. This idle period could be due to policy decisions within the cluster
or time waiting for a resource to become available for use. Once a resource
is allocated then the data for this job will be uploaded to the instance before
the job itself executes. On completion of execution data is staged back before
the resource is placed into the idle state either to be allocated to a new job or
released from the cluster at the end of its current charging interval. Figure 3
indicates the two time intervals which make up the overheads for a job along
with the time interval of the make-span. It is assumed that all data will be
staged from and to a computer within the home campus through a high-speed
network link with appropriate capacity for storing returned results.

3.1. Cloud Cost Model

In terms of the work that we seek to perform on the Cloud charges will
apply for data upload and download from the Cloud along with charges
for the amount of time that Cloud computers are actively ‘hired’. As our
current HT'C desktop cluster does not support data storage we omit this from
our costing model, though note that using Cloud storage would have a cost
implication from the storage charges and a cost benefit from removing the
need to upload and download all data. The general equation for our Cloud
charging model is given in equation 1:

M I J K
cost = Z(Z P, iTi + Z Um,;S; + Z dm,k€k> (1)
m=1 i=1 Jj=1 k=1

where M is the number of billing periods over which we are modelling — for
most Cloud providers a billing period is one month in length, I is the number
of instance types — here we flatten out different charging rates for the same
instance type into separate instance charging types to allow us to enumerate
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them, J and K are the number of cost categories for data ingress and egress
respectively. We define h,,,; as the number of computation instances rented
(typically measured in hours) from the provider during month m, for instance
charging type ¢ with a charge of r; per unit. Similarly for data ingress w,, ;
is the number of data transfer units (normally measured in GB) in billing
period m in charging category j charge at s;. Conversely d,, represents
the number of egress data transfer units during billing period m in charging
category k charged at rate e,. Although this leads to a large number of
potential charging categories most Cloud providers do not use them all. For
example most Cloud providers do not have separate charging models for the
same instance type and do not charge for data ingress. In order to match the
resources used within our desktop cluster we have selected a Cloud instance
type which closely resembles the performance of one of our normal desktop
computers — this is approximately equivalent to an EC2 c¢l.medium instance
which is currently charged at $0.145 per hour. We acknowledge that memory
and CPU characteristics could be used to select more appropriate resources
within the Cloud. However, our trace logs do not include enough information
to allow us to determine this.

Billing is typically by the hour with partly used hours incurring a full
hour charge. The start of a billing period varies between providers. Some,
including Amazon and Azure [8, 31, 32|, have charged from the start of the
wall-clock hour in which the instance was started — billing from 7pm for an
instance started at 7:58pm — whilst others charge from the time the instance
was started. For clarity we refer to the former case as wall-clock charging and
the latter as ezact charging. Although the user of a Cloud cannot select which
form of charging they will receive, except for choosing a different provider, we
attempt to show here the impact of such charging polices. It should be noted
that although other billing intervals exist our results are not invalidated by
the use of shorter (or longer) periods, they merely alter the severity of the
impacts that we seek to mitigate.

3.2. Desktop cluster cost model

We have extended our desktop cluster based simulation for HT Condor [7]
to take account of the data transfer times along with a measurement of the
proportion of time that each cluster within the university is used by HTCon-
dor. The results for running the simulation for our current HTCondor setup
at Newcastle are shown in Figure 4. Each of the different clusters is repre-
sented as a separate bar (along the X-axis) with each bar representing the
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proportion of time that computers within the cluster are used for HTCon-
dor, interactive users or in an idle/powered down state. From these scaled
proportions, along with the resource prices (see Table 1) which depicts the
average prices paid for hardware over the last four years, we can compute
an estimate for the hardware cost that HT'Condor could be accountable for.
This allows us to provide a realistic cost for how much the University could
consider when evaluating the cost of using HTCondor rather than just fac-
toring in the raw cost of the electricity. We base our cost model around that
proposed in [23].

We estimate the cost of providing technical support for the HTCondor
desktop cluster to be less than half a day of effort per week — ~$6,750 per
annum. The capital expense of a server to manage the cluster would have
cost $5,142, however, as this would be needed for both the Cloud cluster and
the desktop cluster we have ignored it in our calculations. Charges incurred
for carbon emission taxes are £12(~$17.95) per metric ton with ~0.541kg of
COs being generated per KWh. We do not factor in here space charges for
the computers, as the computer space is provided for student use, nor do we
factor in repair costs as the computers will be repaired as part of the general
cluster room management. Network charges are based on the proportion of
time computers within a particular cluster were used for HTCondor. Thus
our annual charge for the desktop cluster will be:

100 T = ——T——T——T——T——|
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Figure 4: Proportion of cluster time used by interactive users and HTCondor
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Table 1: Scaled hardware costings for clusters

Hardware type | Average price | Years of service | Cost per year
Normal computer $785 4 $196.25
High spec computer $1,100 4 $275.00
Switch (24 port) $1,570 10 $157.00
c
cost = $6, 750 + Z(hardwarec + carbon, + energy.) (2)
c=1

where C' is the number of clusters in the university, and hardware cost
(hardware.), COq tax (carbon.) and energy cost (energy.) are defined as
follows:

hardware. = p.(pene + [%1 s) (3)

where p, is the proportion of the cluster which was used by HTCondor during
the year, p. is the cost per computer divided by the number of years of service,
n. the number of computers within the cluster and s the cost of a single 24
port switch. It should be noted that for ease of management the University
use the same 24 port switches across the campus, further savings would be
possible by varying the switch type and port count for each cluster.

T 2
where T is the CO, tax rate ($17.95 per metric ton in 2010), P the mass of
CO; produced per KWh (0.541 Kg), t. the total time used by HTCondor in
the cluster over the whole year and e. the energy consumption rate for the
computers whilst active.

carbon, =

enerqgy. = te.e.c (5)

where € is the energy cost (per KWh) and ¢., e. are as defined above. It
should be noted here that the cost for the operating system is part of the
price of each computer and that no other charges are incurred for the use of
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software as all work performed either used free software or software written
by the users.

4. Policy

In this section we discuss a number of policies which can be applied to
a Cloud based cluster aimed at reducing the number of hours consumed by
the cluster but still allowing it to successfully complete all jobs. In each case
we indicate how the policy could be realised and how we would expect the
Cloud cluster to be affected.

P1: Limiting the maximum number of Cloud instances: Although
the Cloud offers an (apparently) infinite availability of instances each provider
has a threshold over which prior approval is required for more resources —
EC2 is initially restricted to 20 instances per region, giving an overall limit of
200 instances. However, this limit can easily be increased through a simple
email to Amazon. Limiting instances helps prevent starting an excessive
number of instances when users submit large numbers of short jobs, leading
to low utilisation and high cost.

Jobs arriving to find no instances in the ‘idle’ state can either cause a
new instance to be started, provided that the instance limit has not been
reached, or be placed into a queue of pending jobs. Pending jobs are serviced
in a FCFS manner as instances become ‘idle’. This will reduce the number of
hours consumed by the cluster at the expense of increased average overhead.

P2: Merging of different users’ jobs: Each Cloud instance is capable
of running a single job at a time. We can either restrict an instance to only
accept jobs from one particular user — the user that the instance was started
for — or allow it to accept jobs from any user. Restricting jobs to a single user
could provide a greater level of security for the running jobs. Alternatively,
allowing multiple users to share each instance allows us to determine whether
there is an advantage in bringing the workload of multiple users together as
opposed to allowing each user to use the Cloud independently. Allowing
users to share Cloud instances could help reduce costs as fewer instances will
be required and reduce overheads as jobs are more likely to discover usable
idle instances. As the current cluster shares resources we are not reducing
the available security.

This policy can be implemented by having one central pool of Cloud in-
stances with jobs being allocated to any ‘idle’ instance. This does, however,
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have the complexity of how to sub-charge for these ‘shared’ instances. Equa-
tion 6 can be used to evaluate sub-charges once the instance has terminated:

S e
Zidzl (Zjvzkl €hyj)
where v is the number of time units that the instance was active, p is the
unit price per hour, N; is the number of jobs from user ¢, M is the number
of users and e ; is the execution time for the j’th job from user . Thus each
user’s cost is based on the proportion of the overall time the user was active
on the instance relative to all other users on this instance.

P3: Instance keep-alive: It has been shown that the time for an
instance to initialise is around two minutes and can be as high as 3.25 min-
utes [8]. Further, before an instance can start accepting jobs it must com-
municate its presence to the HTC system which can take a further couple
of minutes. This adds extra time to the overheads for jobs arriving when no
instances are idle. This policy allows an idle instance at the end of a billing
period to remain ‘hired’ for the next period with probability f(p), thus al-
lowing it to serve new incoming jobs more quickly. It is difficult to predict a
priori whether a job will arrive within a given period, we therefore identify

three alternative policies for deciding if an instance should remain alive and
define f(p) for each:

(6)

Cost; = up

e Fixed: instances will be kept alive with probability f(p) = p.

e Idle: instances will be kept alive with a probability proportional to
the number of currently idle instances: f(p) = (1 — £)p where ¢ is the
number of Cloud instances which are idle at the decision time and ¢ is
the total number of Cloud instances at this time.

e Load: instances will be kept alive with a probability proportional to

! i di . . .
the current load on the system: f(p) = %p where ¢ is the decision
t—T
time, T is the interval over which we are evaluating the load, u; the
number of active Cloud instances at time ¢ and a; the total number of

Cloud instances we have hired at time 3.

This would have a benefit if jobs were expected to arrive within the ex-
tended time-frame. To prevent a half-life decay an instance which is ‘idle’
for a full charging interval will always terminate. This policy may have more

14



impact on the overheads than on the cost saving, as an arriving job is more
likely to find an ‘idle’ instance. The cost may go up due to instances running
when no jobs are present.

P4: Delaying the start of instances: This policy, like P1, aims to
reduce the impact of short running jobs. Arriving jobs which cannot be
allocated to an ‘idle’ instance are queued. If the job fails to obtain an instance
within ¢ minutes then a new instance will be created. This helps the overall
cost for using the Cloud by reducing the chance of instances being brought
up for short-running jobs. The average overhead will go up due to the extra
waiting time.

P5: Removing the delay on starting an instance: Policy P4 can
be slow to react when large numbers of jobs are submitted. This throttling
can be removed while the queue size exceeds a given proportion (r) of the
maximum instance count. Although this is expected to increase the cost of
using the Cloud it should reduce the average overhead.

P6: Waiting for the start of the next hour: Where a Cloud provider
adopts a wall-clock charging model it may not be economical to start an
instance just before the end of an hour. Jobs arriving within b minutes of
the end of an hour are delayed until the start of the next hour. Although
this will increase the overheads of the job it should decrease the cost.

5. Simulation Environment

Our simulations use the trace logs from the HTCondor high-throughput
cluster at Newcastle University [6, 7]. The university HTC service comprised
1,359 student accessible desktop computers, running Microsoft Windows XP,
located in 35 cluster rooms spread around campus. Computers were replaced
on a four year rolling cycle a whole cluster at a time.

Figure 5 depicts the profile for the 409,479 successful jobs executed in
2010 by 21 unique users requiring ~487,068 hours to execute. Jobs which
were terminated before completing by the submitting user have not been
included in this simulation due to their lack of execution time. We also plot
the job submission profile of synthetic workload S1 for comparison.

In order to evaluate our polices over a wider range of workloads we have
used the synthetic logs generated as part of [33]. Here we use synthetic
trace logs derived from individual users each of whom are assumed to be
generating job submissions in a bursty manner — intervals of no job submis-
sions interleaved with intervals of job submissions. Table 2 illustrates the
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Figure 5: Profile of job submissions

number of jobs and the workload generated from each of the synthetic trace
logs along with the real trace log. It should be noted here that the synthetic
workloads are roughly indicative of how a system with increased load may
perform, but we recognise that they are not completely representative of how
real logs may look.

In order to compute the time requirements for data transfer, bandwidth
tests were conducted between computers on the Amazon EC2 (US East
Northern Virginia Region) cluster and a server within the university. The
iperf bandwidth testing software [34] was used for this purpose with the re-
sults illustrated in Figure 6. This figure illustrates capturing the network
bandwidth every half hour between Monday May 20t 2013 and Tuesday

May 28t 2013 based on the GMT time zone. There is a clear day and
night pattern to this data, although there are a number of outlying points.
Bandwidth seems to be greatest during the early hours (GMT) with the up-

Table 2: Statistics on the real and synthetic trace logs

Log Real S1 S2 S3 S4 S5

Total Jobs | 409,479 | 508,883 | 909,929 | 1,405,463 | 1,742,130 | 2,212,209

Workload | 107,699 | 66,469 | 114,872 184,992 232,472 292,770
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Figure 6: Upload and download speeds for the Cloud

load speeds showing the greatest variation. A full analysis and modelling of
this variation in bandwidth is beyond the scope of this paper and we simply
use the average bandwidth values from our test period for our simulations,
those being an upload speed of 90.08MBits/s (11,811bytes/ms) and down-
load speed of 174.88MBits/s (22,925bytes/ms). It should be noted that the
largest data transfer observed in the data set was 903MB with our transfer
experiments running for five minutes reaching up to 9.4GB of data transfer.
It should also be noted that these are maximum bandwidth potentials for
the connections; real use is likely to be less, thus these give a lower estimate
on data transfer times.

Similar experiments were conducted to determine the bandwidth for the
local cluster. These are not reproduced here as they indicated that the band-
width averaged 94.75MBits/s (12,419 bytes/ms). This value was consistent
over tests conducted from 1Kbyte up to and including 1Gbyte and in both
directions. Although the download speed from Amazon exceeded this value
this is consistent with our network topology. Within the university cluster
room computers are connected to switches at 100MBits/s. These switches
are then connected back to the main university machine room at 1GBits/s.
However, our link to the outside world is a 20GBits/s connection allowing
potential transfer between ourselves and Cloud providers at greater rates
than to cluster room computers.
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6. Simulations and Results

6.1. Cloud optimisation

We evaluate our policies in order to assess an optimal set of policies for
our Cloud cluster. These evaluations could be performed on different cluster
data and we believe that the conclusions from this work will be applicable
to other similar clusters. To help exemplify the generality of our policies
we demonstrate them against both our real data set and five synthetic data
sets. As we are combining here the cost for both using resources on the
Cloud and the data transfer costs we need to convert these into monetary
values. For the purpose of this paper we are adopting the pricing policy from
Amazon as of 30th June 2013. We assume here all jobs could be run on a
single Linux based instance — for Amazon we choose cl.medium instances,
with the current cost per instance hour of $0.145. Data ingress is free for
Amazon (and most Cloud providers) with the first 1GB of egress also being
free. We use the costs for Amazon data transfers: first 1GB is free, next
10TB is charged at $0.12 per GB, the next 40TB is charged at $0.09 per GB
and data egress in excess of this level is charged at $0.07 per GB.

6.1.1. Baseline Results

Table 3 shows the results under the assumption of infinite instance avail-
ability. However, to minimise the cost in using the Cloud idle instances are
terminated at the end of their charging period. Exact charging gives a signif-
icant decrease in hours consumed over wall-clock charging. This equates to
~30,000 hours for the real log, a difference of ~12%. This difference remains

Table 3: Baseline results for an infinite size Cloud Cluster

Log | Hours Consumed Average Cost

Exact | Wall Clock | Overhead Exact | Wall Clock
R 209457 238956 14.84s | $43512.51 $47789.86
S1 100792 114403 14.59s | $29946.03 $31919.63
S2 178387 203603 16.27s | $54646.92 $58303.24
S3 281321 319877 13.61s | $76506.08 $82096.69
S4 | 353456 402049 14.58s | $97967.88 | $105013.87
S5 | 444837 506192 13.98s | $120921.13 | $129817.52
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Figure 7: Effect of varying the maximum instance count on Cloud cost and Overhead

consistent across all synthetic data sets. The overhead is identical for both
wall clock and exact charging in these cases as boot time is zero with the
overhead just representing the data transfer times.

The cost for using the Cloud comprises of a cost for using the instances
and a cost for data transfer. The data transfer cost is around $16,534.47 for
the real data set, though this figure varies slightly due to policy decisions.
Changes which cause the transfer times to move between months will vary
the volume of data transferred in each of the months.

The following key letters are used to indicate the Cloud pricing model and
user merging policy (P2) in the following graphs: w - wall-clock charging, e
- exact charging, m - jobs can run on any instance, s - jobs can only be run
on instances allocated to a particular user.

6.1.2. Limiting the maximum of Cloud instances and merging users jobs
Figure 7 illustrates the effect of policy P1 for the real workload. In this
graph we plot cost against overhead. The four pricing models are represented
using different colours and symbol shapes as follows: blue circles represent
separate users with wall-clock charging, green triangles represent separate
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users with exact charging, red dots represent merged users with wall-clock
charging and cyan crosses represent merged users with exact charging. The
cheapest (and greatest overhead) points on each set represent a maximum
instance limit of 50, whilst the most expensive (and lowest overhead) rep-
resents the maximum instance limit of 2000, with all other instance limits
being in increasing steps of 50 between these two points. This suggests in
order to minimise the overhead the limit on maximum instances should be
as high as possible, whilst if the intention is to minimise cost then the lowest
value for maximum instance count should be selected. However, it is not
possible to minimise both cost and overhead at the same time. A user of the
Cloud will need to select their own preference for overhead against cost.

Exact charging remains more cost effective than wall-clock charging and
gives a larger financial benefit than allowing different users to access the
same cloud instances (P2). Although the user of a Cloud service cannot select
between wall-clock and exact charging this shows that it has the potential for
a significant increase in revenue for Cloud providers. This equates to around
10% increase in overall cost between exact and wall-clock charging over the
entire set of real jobs. Whilst the difference between allowing only single
users or multiple users to access the same instance only yields approximately
a 1.2% reduction in cost. The difference between overheads for wall-clock and
exact charging is negligible. For small values of maximum instances there
is a significant improvement in using merging of users (~10% for a limit
of 100 instances). However, this becomes less significant as the maximum
number of instances increases. This is caused by the fact at low maximum
instance counts a job may arrive to find the maximum number of instances
active, though none able to accept it due to being dedicated to a different
user. Whilst for merging of users jobs any free instance can accept the
job. However, when the maximum instance count becomes large then a
job arriving under a non-merging policy can normally just start up a new
dedicated instance.

Figure 8 shows the rate of cost-overhead benefit B, when increasing the
maximum number of instances (c):

¢ 0 otherwise

where O, is the overhead for a maximum instance count of ¢ and C. is the
cost for the same instance count.
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Figure 8: Benefit of increasing the maximum instance count

For small maximum instance limits ¢ this leads to relatively low values
of B, indicating that the rate of reduction in overhead is large for a small
rate of increase in cost. However, when ¢ exceeds ~900 instances B, starts
to increase much quicker indicating that to achieve an equivalent decrease
in overhead requires a much larger increase in cost. This is a consequence
of the fact that c represents the maximum number of Cloud instances which
can be rented rather than an actual number rented. As ¢ increases there will
be fewer points within the simulation where this number of Cloud instances
will be required with far fewer instances required for most of the time. Thus
to handle these peaks many more Cloud instances are required. If the glut
is short then the extra instances will not be well utilised leading to high cost
for low benefit.

For the rest of the results here we fix the maximum number of Cloud
instances at 500 as this gives a representative balance between overhead and
cost.

The impact of merging jobs by different users (P2) on cost is shown in
Figure 9, results for overhead are omitted as they show no perceivable impact.
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Figure 9: Cost difference between merging and not merging workloads

For very small maximum instance counts (50) there is no perceivable benefit
to merging users. This is most likely due to the fact that all instances are
active and merging cannot find idle instances that separate users cannot
access. However, this quickly increases and stabilises at around $450 for
exact charging and $575 for wall-clock charging. Both lines becoming flat
after ~900 instances suggests that all possibility of exploiting the effects of
merging have been exhausted by this point. We would expect that as the
workload increases so too will the gap between the costs for merged and un-
merged due to the larger number of hours of Cloud use. This is borne out for
the real and synthetic logs with the percentage increase of cost for separate
user instances to merged user instances (at a maximum of 500 instances) —
Real: 1.15%, S1: 2.78%, S2: 5.11%, S3: 7.80%, S4: 8.92% and S5: 9.93%.
This indicates that the opportunity to exploit the merging of users’ jobs
increases as the workload increases.

6.1.3. Keeping Cloud Instances Alive
In Figure 10 we investigate the effect of start-up time for instances and
whether it is beneficial to keep instances ‘idle’ in the absence of jobs (P3). We
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Figure 10: Varying the boot time and chance of keep-alive on average overhead and cost

again produce a scatter plot of cost against overheads. Assigning different
symbols to each keep-alive policy: triangles for the fixed policy, crosses for
the idle policy and squares for the load policy. For each combination of keep-
alive policy and boot time the value of p ranges from zero at the furthest left
symbol, progressing in steps of 0.05 to a value of 0.5 for the furthest right
symbol. For the case of zero boot time this leads to a horizontal line, for each
of the three policies, as there is no benefit to overhead by having an instance
already running. However, for all other cases there is a small improvement
to overhead by increasing the chance of keep-alive — about 12 seconds (6.6%)
for the idle policy, about 18 seconds (10%) for the fixed policy and about
57 seconds (31.7%) for the load policy all for the case of a ten minute boot
time. Though the increase in cost of running idle instances would seem less
— ~$600 (1.3%), ~$1,000 (2.2%) and ~$2,700 (5.8%) respectively. However,
if the boot time is less the benefit becomes far less. The idle and fixed policy
seem to follow the same curve, though with the idle points having less range,
whilst the load policy shows a greater rate of decrease in overhead with
respect to cost and a much larger range of costs. Therefore if cost saving is
the primary goal then not using this policy makes sense, whilst if overheads
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Figure 11: Varying max instance delay on average overhead and cost

are a concern and boot times are high then using the load policy would make
the best sense.

6.1.4. Delaying the Start of Cloud Instances

Policy P4 is evaluated in Figure 11 in which we vary the maximum delay
time for starting a new Cloud instance, in an attempt to reduce the hours
consumed. Here we plot only for instances which can accept jobs from mul-
tiple users (green triangles) and instances which can only accept jobs from
a single user (blue circles). A delay limit of zero minutes is the symbol fur-
thest to the right, whist a delay limit of 30 minutes is the symbol furthest to
the left with the increase in the delay for the first five symbols on the right
being one minute and the remaining ones being spaced out by five minutes.
As we increase the maximum delay the hours consumed decrease but the
average overhead increases. As these two characteristics are conflicting in
their demands it is necessary to balance maximum delay against increases
in overhead. The reduction in cost is slightly more pronounced for smaller
values of maximum delay whilst the overhead is almost linear which would
suggest that small values for maximum job delay are appropriate.
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For Figure 12 we investigate policy P5 in which we remove the delay
on starting new instances (P4) when there is a high influx of jobs to the
Cloud cluster. In aid of clarity, we display results for only merged jobs
under exact charging, but similar trends are also observed under wall-clock
charging, though under wall-clock charging overhead values fall sharply and
converge to the same low value. Again we use different colours and symbols
to represent different numbers of minutes delay — blue circles for one minute
delay, green triangles for 10 minutes, red dots for 15 minutes, cyan crosses
for 20 minutes, pink squares for 25 minutes and light green diamonds for 30
minutes. In this case the size of the queue at which delays are abandoned,
as a proportion of the maximum number of instances allowed, increases from
0% on the far right to 50% at the far left in steps of 5%.

For all policies a capping of 0 instances gives the same value — this is
essentially degrading the policy back to a maximum n instance policy (P1).
As we increase the capping (size of the queue over which we abandon the use
of delaying job start) we both decrease the cost but increase the overheads.
This is due to the fact that jobs arriving when few jobs are queued will
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Figure 12: Varying max job delay and job delay capping on average overhead and cost
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Figure 13: Varying max delay to next hour capping on average overhead and cost

be delayed — triggering an increase in overhead. But as the jobs are now
potentially more bunched together then they require less instance hours to
complete. This policy gives lower overheads than the equivalent delaying
jobs only policy (P4) as would be expected. For example in the five minute
delay policy overheads are reduced by between 2.4 and 79.5%, though cost is
increased by between 10 and 18%. For the 30 minute delay case this changes
the overhead to have an increase of 3.1% when abandonment is 50% of cloud
instances down to a decrease of 96% when abandonment is turned off in
conjunction with a 12.5 to 31.7% for increase in cost. Therefore if cost is
the driving factor then this policy is not as optimal as the delay only policy,
whilst if overhead is the key requirement then using a maximum instance
only policy would be better than this.

We explore the effect of delaying starting up new instances until the start
of the next wall-clock hour (P6) in Figure 13. Our scatter plot contains four
colour / symbol combinations: blue circle for separate users wall-clock, green
triangle for separate users exact charging, red dot for merged wall-clock and
cyan cross for merged exact charging. The number of minutes delay until
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Figure 14: Comparison of all Policies

the next hour decreases for each point from right to left with the furthest
right value representing no delay and furthest left representing half an hour
delay with each point representing an decrease in delay capping of 5 minutes.
Each transition between symbols represents a change in delay of five minutes.
In all cases increasing the delay until next hour reduces cost but increases
overhead. The wall-clock charging model shows the greatest decrease in cost
- this is because the charge for a partial hour (starting an instance part way
through a billing period) is now removed in favour of renting full hours. This
gives ~7% cost saving. Exact charging shows some cost reduction (~2.5%)
due to this policy degrading in this case to a delay start of instance policy. In
all cases the overheads increase by a similar, large, proportion. Thus unless
cost is the primary concern this policy would not seem good.

6.2. QOwverall Evaluation

Here we compare the effectiveness of each policy set that we have pro-
posed. Figure 14 shows all of the different polices together on the same scatter
graph. Note that in this case each policy is shown with a different colour /
symbol. As has been stated earlier it is not possible to minimise both cost
and overheads at the same time. If the desire here is to minimise the cost of
using the Cloud then having policy P1 and keeping the maximum number of
instances very small. However, this will lead to excessively high overheads
— ~ 2,600 seconds. Though using the job delay policy (P4) achieves nearly
the same reduction in cost but with over an order of magnitude reduction
in overheads (down to ~ 675 seconds). This is still far higher than the best
case of 15 seconds, though if cost is most important then this is a sensible
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Figure 15: Comparison of all Policies over Synthetic Workloads

compromise. If overhead is the driving concern then having the highest cap
on instances is the most sensible option — even better is to have no cap at all
— although this leads to the greatest cost.

Policy P2: Merging different users workload. This has shown to give an
improvement, though this is not highlighted in Figure 14. P3 — instance keep-
alive also does not show its benefit in this scatter plot as the boot time will
make it in general more expensive and higher overheads than the zero boot
time cases. Though in cases where boot time is an issue it may be prudent
to use it. Policy P5 unfortunately shows no situation in which it is best.
Although it drops overheads slightly it is always more expensive than the non
capped equivalent (P4). Likewise for policy P6 this is always outperformed
by policy P4 in terms of cost and showing very similar overhead. Although
not a policy there is a clear benefit, in all cases in using exact charging over
wall clock charging.

Figure 15 shows the different policies now for each of the different work-
loads. In this scatter plot the different workloads are each represented with
a different colour / symbol. Although this does not distinguish between the
different polices it does highlight that the different workloads show similar
trends in terms of their scatter. The synthetic workloads shows a more acute
change of slope at the the lower left corner for the max instance count policy
(P1) — a consequence of the synthetic workload not exhibiting the extreme
submission events as seen in the real trace log (see for example June to Au-
gust in Figure 5). Though each synthetic workload changes the overall cost
of running work in the cloud — to be expected as they vary the number of jobs
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to run — they show high similarity in overheads. This should be expected
due to the high capacity of resource availability on the Cloud.

6.3. Comparison with Campus Cluster

Here, in Figures 16 and 17, we compare our existing HTCondor cluster
with a virtual HTCondor cluster running in the Cloud in terms of cost and
overheads for job execution. In these figures we evaluate two local cluster cost
models, only charging for energy used and a proportion of the cluster build
cost (equation 2), labelled Cluster energy only and Cluster proportional cost
respectively. These were computed from our simulation model of HT Condor
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[7] and interactive users in 2010 along with the same job logs used in the rest
of this paper. Note that in Figure 17 we only show a single value here for
the cluster as both options give the same overhead. For the Cloud we show
four different results:

e Cloud low cost — representing the lowest cost which we were able to
achieve through our simulation by varying the parameters described
above.

e Cloud low overhead — representing the lowest overhead which we were
able to achieve through our simulation by varying the parameters de-
scribed above.

e Cloud infinite — allowing an unbounded maximum instance count.

e Cloud same overhead — The parameter selection which gives the most
equivalent overhead to that observed in the University cluster.

We have evaluated the power consumption, for the HTCondor system, to
be ~43MWHh for our real workload, which at an energy cost of $0.189 (£0.12)
per KWh equates to $8,153.12 (including a COq tax of £774.33), clearly
making the university HTCondor resources more economic when compared
to all the Cloud options we have obtained using our approaches. However,
this is at the expense of a far higher overhead (over 46 times larger) than
Cloud low overhead or Cloud infinite. This is a consequence of work needing
to be evicted from the HTCondor due to the interactive users and delays
whilst waiting for computers to become available to HT Condor. This gives a
clear selection criteria over whether to use an internal cluster or the Cloud,
preferring the Cloud in cases where overhead is of concern, or Quality of
Service requirements are high, whilst preferring the cluster if cost is the
driving factor. This effect holds for the synthetic workloads.

If we take a proportion of the cluster cost into account (using the indi-
vidual cluster proportions and the costing values in Table 1 — Cluster pro-
portional cost) this increases the cost for running work on the HTCondor
system to $27,895.78 for the real workload. This is still cheaper than all
Cloud options (with the cheapest being $32,255.58). Selecting a Cloud pol-
icy set which closely matches the overheads of the local cluster (Cloud same
overhead) offers little over the cheapest cloud offering, often being the same
or a higher cost. However, again the driving motivation to use the Cloud
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would be the significant reduction in overheads. This holds for the synthetic
workloads. It should be noted that the cost for computers in the university
is high due to our desire to have reliable equipment and the requirement to
have above average components such as graphics cards. A dedicated cluster
could ‘reasonably’ be put together for a lower price.

The cost of data egress from the Cloud — data ingress was free during
2010 - is substantial $13,141.24 (~ %). This highlights the criticality of
selecting the most appropriate work to run on the Cloud — work with little
egress requirements being much more cost-effective to run on the Cloud. We
have no evidence within our logs to indicate that output from one job is used
as input to subsequent jobs therefore we can only assume that all output
was required by the users for further local work. Ingress of data does not
impose a financial cost, however, it does impose a time penalty for the data
transfer. Storage of data within the Cloud — say on Amazon S3[11] would be
an alternative, though this imposes an additional charge. Therefore we can
only say that if we could reduce the data egress by ~ 66% then this would
make the Cloud low cost option comparable with the Cluster proportional cost
option — though with significantly better overhead. A more detailed analysis
of such data storage policies would require knowledge of the contents of the
files transferred and is beyond the scope of this paper.

The overhead difference between Cloud infinite and Cloud low overhead is
negligible, however, for the real workload case the cost is slightly higher (by
$3,687.79). This being a consequence of the policies used. Unfortunately this
is not apparent with all of the synthetic workloads due to the exact policy
set used.

It should be noted that the use of Reserved Instances and Spot Instances
could be used to bring the Cloud price down further. However, in the interest
of fairness if we were to allow checkpoint and migration within the Cloud we
should also allow for a checkpoint and migration process within the Cluster.
Below we give some simple indications of how the cost could be affected,
with a full analysis of both the Cloud and cluster under checkpointing and
migration policies forming the basis for future research.

We assume here for simplicity that both the Cloud and the Cluster are
equipped with a perfect checkpoint and migration system. This requires zero
time to checkpoint and is always capable of checkpointing immediately before
an eviction (we call losing a spot instance an eviction). In order to bring the
price of the cloud down to the $8,153.12 cluster energy only case we would
need an overall average spot price of less than $0.0618 per hour — achievable
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as spot prices have been as low as $0.012 per hour. If perfect checkpointing
were to be used on the Cluster this would bring energy consumption costs
down to ~ $6,319.77 (~33MWh of electricity plus CO, tax) thus requiring
an average spot instance price no more than $0.048 per hour, which would
still seem reasonable. However, as data transfer costs are $13,141.24 this
would make it impossible to provide Cloud instances cheap enough to match
this unless we can reduce data egress. If we instead assume a spot price of
$0.012 per hour this would cost $1,581.88, leaving $4,737.89 for data transfer.
Therefore a decrease of data egress (either through better selections of files
to return or through the use of compression where possible) of ~36% would
allow for equivalent costs.

Likewise if the proportional cost of the cluster were taken into account
then the spot price would need to be on average less than $0.197 — achievable
as normal instances are cheaper. With Data transfer factored in this would
need to be on average less than $0.097. Data egress reductions could be used
to improve this value.

Reserved instances allow you to pre-pay for accessing resources in the
future. For example you may wish to pre-pay for n reserved instances over
the next one or three years, in which case you may simultaneously use up to
n instances during this time-frame at the lower hourly cost with instances
in excess of this being charged at the standard rate. This may prove benefi-
cial if your expected utilisation over this period is high enough to make the
savings from lower instance prices greater than the up-front cost of taking
the reserved instances — Amazon claim that you need to have at least 11%
utilisation of your n instances to make this worthwhile [35].

A full analysis of the potential savings through using reserved instances is
beyond the scope of this paper. However, we present here some initial findings
on how much could be saved for the workloads presented here. We use the
same cloud cost of $0.145 per instance hour for normal cloud use and $0.032
per instance hour for reserved instances with an up-front charge of $405 for
one year. Note that we do not include the ingress/egress charges here as this
is effectively a constant value. In the case of our real workload it would be
possible to reduce the overall cost of using the cloud by $4,943.70 (21.3%)
by using 20 reserved instances. By contrast for a much larger synthetic
workload (Synthetic 5, 2,212,209 jobs) this would allow us to save $15,115
(30.1%) by purchasing 46 reserved instances. This is a consequence of the
larger synthetic workload having a more even spread of load over the year
and being more likely to require instances for a higher proportion of the time
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— leading to higher levels of utilisation.

7. Conclusions

In this paper we have demonstrated through the use of simulation how
a cluster can be deployed completely on the Cloud. We have demonstrated
how policies over provisioning of instances can effect the overall cost of using
the Cloud and the consequence this has on average overhead for users jobs.
All of these policies have the potential to decrease the cost of using the Cloud
at the expense of increasing the overhead. These metrics impose conflicting
demands, preventing them from both being optimised at the same time. It
is therefore important to weigh up these two considerations in order to select
an optimal policy set for a given Cloud cluster.

The policy of merging jobs from different users (P2) provides a benefit
for overhead at no appreciable increase in cost. All other policies can provide
a cost benefit, though at the expense of higher average overheads. All the
presented policies have the potential to be used together thus increasing the
potential gain though it is not possible to optimise both metrics at the same
time hence a choice needs to be made as to the relative importance of these
metrics. As the policies affect when to start up instances and how long to
wait before doing so a merging of the policies would require one policy to
take precedence over another. For example delaying jobs for at least ten
minutes (P4) unless they are within twenty minutes of the start of the next
hour (P6).

Although the Newcastle cluster is currently free it does have drawbacks:
non-dedicated resources, imposed operating system and high overheads for
jobs. If electricity charges were introduced — 43MWh would currently equate
to $8,153.12 which is far cheaper than performing the same work on the
Cloud. This is maintained as the workload increases. However, this lower
cost comes with the downside of a far greater overhead on the work to be per-
formed — 46 times longer than in the Cloud. Thus a user needs to determine
if overheads or cost are most crucial to their work. Likewise the cost of the
Cloud can easily become dominated by data transfer costs — in our logs we
see ~ % of the cost coming from data transfer. This shows the criticality of
managing data transfers when working with the Cloud. Careful management
of data transfer is essential if the Cloud is to compete on cost with a local
cluster. Thus in general the Cloud offers a good solution in the case where
prompt turnarounds and Quality of Service are important, whilst the local
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cluster is good for cases of high data transfer demands and cost is the most
significant factor.

If we factor into our local cluster charge a proportion of the cluster cost
equivalent to the amount of work performed on it then the distinction be-
tween Cloud and cluster becomes small. The cluster just managing to beat
the Cloud on cost. However, this reduction in cost difference coupled with
the vast reduction in overheads is likely to make the Cloud more favourable
to many. In neither case are we optimising the system. For the Cloud a
checkpointing system along with the use of spot instances and better data
transfer management could help significantly. Whilst in the cluster the use
of checkpoint and migration could allow more efficient use of the resources.
Although both systems have the potential for improvement the Cloud has
the larger potential.
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