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Abstract

The asymptotic behavior of localized principal components applying kernels as

weights is investigated. In particular, we show that the first-order approximation

of the first localized principal component at any given point only depends on the

bandwidth parameter(s) and the density at that point. This result is extended

to the context of local principal curves, where the characteristics of the points

at which the curve stops at the edges are identified. This is used to provide a

method which allows the curve to proceed beyond its natural endpoint if desired.
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1 Introduction

In this work, we consider localized PCA in the sense of locally weighted PCA, where

the weighting enters through multivariate kernel functions. More specifically, we are

given a multivariate random vector X ∼ (µ,Σ) : S −→ R
d with mean µ and variance

matrix Σ, which maps elements from a sample space S into d−variate space. (The

sample space S may be considered as latent and does not play a role henceforth.)

The global first principal component line would be that line through the data cloud

which minimizes the expected squared distances between data and their projections

onto the line. It is well known that the solution to this problem is the line through

µ which points into the direction of the eigenvector γ1 of Σ corresponding to the

largest eigenvalue λ1 of Σ. Turning from the probabilistic to the empirical setting,

i.e. given n independent replicates of X, say x1, . . . ,xn ∈ R
d, then µ and Σ need

to be replaced by consistent estimators, for instance the ML estimators µ̂ = x̄ and

Σ̂ = 1
n

∑n
i=1(xi − x̄)(xi − x̄)T .

This concept is straightforwardly extended to a scenario in which, given a (non-

random) vector x ∈ R
d, and weights wx(xi) centered at x, we aim to minimize the

weighted squared distances between data and their projections onto the line. If the

weights are of bell–shaped and symmetric shape, their role is effectively to localize the

estimation problem at x. Weight functions of this type are known as kernels, with the

prominent example of the Gaussian kernel. As we will verify later, it turns out that,

unsurprisingly, the solution to this problem is the line through the locally weighted
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mean, or short, local mean1

µx =

n∑

i=1

wx(xi)xi

n∑

i=1

wx(xi)

(1)

which points into the direction of the first eigenvector2 of the local covariance matrix

Σx =

n∑

i=1

wx(xi)(xi − µ
x)(xi − µ

x)T

n∑

i=1

wx(xi)

. (2)

That is, the “locally weighted” first principal component is given by a vector

pointing into the direction which explains most of the “local variance” around x, or,

in simpler terms, which locally gives the best fit. Localized principal components,

in this kernel-weighted sense, have found their way into the statistical literature only

relatively recently. Schaal, Vijayakumar & Atkeson (1998) present locally weighted

principal component analysis as a tool for local dimensionality reduction. Einbeck,

Tutz & Evers (2005) used iterative localized PCA in a kernel-based approach to prin-

cipal curve estimation. A variant of this technique was developed in Wang, Assadi &

Spalding (2008) for adaptive tracing of curvilinear structures. Charlton, Brunsdon,

Demsar, Harris & Fotheringham (2010) used localized PCA to implement geographi-

cally weighted principal components. Zayed & Einbeck (2010) used localized principal

components to track the contribution of sub–indices to a summary index over time.

The question of the “asymptotic” behavior of the method, for small neighborhoods

and large sample sizes, has not been investigated yet. This is in great contrast to

1For denotational convenience, we will from now on omit all ‘hats’ on symbols denoting estimators

– it is clear that µx etc. are empirical and not theoretical quantities.
2When using the term ‘first eigenvector’, we mean the eigenvector corresponding to the largest

eigenvalue.
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the huge literature on kernel-based asymptotics for nonparametric regression, which

exploit the nice theoretical properties of the kernel approach in much depth and detail.

In this paper we will fill this gap; in particular we will show that the first-order

approximation of the first localized principal component at x only depends on the

bandwidth parameter(s) and the local topology of the data cloud (in terms of its

density f(x) and its derivatives). We will use this result to understand the convergence

behavior of local principal curves (Einbeck, Tutz & Evers, 2005). We take advantage

of this understanding in order to provide a method which allows the curve to ‘delay’

convergence if desired, i.e. to converge further into the tails than usual.

It should be noted that the term “localized” has been used in further, different

meanings and facets in the context of principal component analysis. Historically,

localized PCA meant cluster-wise PCA (E. Diday et Collaborateurs, 1979), which

evoluted to powerful recursive partitioning algorithms during the last decades (for

instance, Breiman, Friedman, Olshen & Stone (1984), Hawkins (1995), Liu, Chiu &

Xu (2003)). A further family of methods for nonlinear principal component analysis is

known under the term kernel PCA (Schölkopf & Smola, 1998). Good accounts of these

developments, which are not of interest for the present paper, are found in Gorban,

Kégl, Wunsch & Zinovyev (2008).

This paper is structured as follows. In Section 2, we formalize localized principal

components and recall some known theoretical results. In Section 3 we provide some

asymptotics for localized PCA, which we apply on local principal curves in Section 4.

Section 5 exploits these results for boundary extension of local principal curves, before

the paper is concluded in Section 6.
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2 Localized principal components

As stated earlier, we consider the term “localized” to be equivalent to “locally kernel-

weighted”. To fix terms, let x = (x1, . . . , xd)
T ∈ R

d and κ(·) be a bounded symmetric

univariate function which integrates to 1 (we do not strictly require it to be non-

negative, but usually this will be the case). From this, a d−variate kernel function

K can be defined by either taking the product kernel K(x) = κ(x1) · . . . · κ(xd) or

a radial kernel function K(x) = κ(||x||). The two formulations are equivalent if the

base kernel κ is the Gaussian probability density function, κ(x) = 1√
2π

e−x2/2. The

following applies to either construction of K. Now, let H ∈ R
d×d denote a positive

definite bandwidth matrix, employing the usual notation as set out in Wand & Jones

(1993) (for instance, if we localize only in the directions of the coordinate axes, then

H = diag(h2
1, . . . , h

2
d), where hj , j = 1, . . . , d are the individual bandwidths; and if we

smooth equally strong in all directions, thenH = h2I, where I is the identity matrix.)

Then we can define

KH(·) = |H|−1/2K
(

H−1/2 ·
)

which is a d-variate probability density function in itself. Given any line in R
d, say

g(t) = m+ tγ ∈ R
d, with t ∈ R and suitable vectors m and γ with ||γ|| = 1 , denote

the coordinate of X projected orthogonally onto g by Xg, where

Xg = m+ γγT (X −m) = (I − γγT )m+ γγTX ≡ Aγm+ γγTX.

The matrix Aγ = (I − γγT ) is positive semi-definite, which is evident by noting that

Aγ
TAγ = Aγ, and hence ||Aγu||

2 = uTAγu, for u ∈ R
d. However, it is not positive

definite, since det(Aγ) = 1 − γTγ = 0.

Now, at point x, we seek to find m and γ such that the line g locally minimizes

the weighted squared distances between the data and their projected counterparts
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x
g
i = Aγm+ γγTxi. Using weights wx(xi) = KH(xi − x), and taking into account

the restriction ||γ|| = 1, the expression to minimize is

Q(m,γ) =
n∑

i=1

KH(xi − x)||xi − x
g
i ||

2 − λ(γTγ − 1) (3)

=

n∑

i=1

KH(xi − x)||Aγ(xi −m)||2 − λ(γTγ − 1)

=

n∑

i=1

KH(xi − x)(xi −m)TAγ(xi −m) − λ(γTγ − 1) (4)

Then,

∂Q(m,γ)

∂m
= 2

n∑

i=1

KH(xi − x)Aγ(xi −m) (5)

which, when equated to zero, yields the equation

Aγ

n∑

i=1

KH(xi − x)xi = Aγm

n∑

i=1

KH(xi − x). (6)

Further, using the fact that ∂
∂γ
uTAγu = −2(uuT )γ,

∂Q(m,γ)

∂γ
= −2

n∑

i=1

KH(xi − x)(xi −m)(xi −m)Tγ − 2λγ, (7)

and setting this equal to zero yields
[

n∑

i=1

KH(xi − x)(xi −m)(xi −m)T

]

γ = −λγ (8)

One immediate solution to equation (6) is found through

m =

n∑

i=1

KH(xi − x)xi

n∑

i=1

KH(xi − x)

≡ µx. (9)

in which case (8) takes the shape

Σxγ = −λγ,
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with Σx defined as in (2), implying that γ is an eigenvector of Σx. By multiplying the

latter equation to the left with γT it is clear that it needs to be the first eigenvector,

which we denote by γx henceforth.

However, since det(Aγ) = 0, the solution to (6) is not unique. This is not different

to the case of linear (unweighted) PCA (Hastie, Tibshirani & Friedman, 2001, Exercise

14.7). It is easily verified that the family of equivalent solutions of (6) is given by

µx + tγx, for t ∈ R, and that γx is the solution to (8) whatever member of the family

is used for m.

Summarizing, the localized first principal component line at x is given by

gx(t) = µx + tγx,

i.e. a line through the local mean in direction of the first eigenvector of the local

covariance matrix.

An important quantity that should also be introduced at this point, and which

will become relevant later on, is the mean shift

sx = µx − x =

n∑

i=1

KH(xi − x)(xi − x)

n∑

i=1

KH(xi − x)

. (10)

This is a simple tool originating from the computer science literature (Cheng, 1995)

which computes the “shift” necessary to move a certain point x ∈ R
d towards the

local mean of all data points in a neighborhood of x. Note that both x and µx are

vector-valued, so the mean shift is vector-valued as well.
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3 Asymptotics

Next, an asymptotic version of the result from Section 2 is provided. Define the

function Q(m,γ) as in (3), and let f denote the density function of X with support

supp(f). Denote 0 and 1 vectors of appropriate dimension which only consist of 0’s

and 1’s, respectively, and let op(1) denote a sequence which tends to zero in probability

as n −→ ∞. We assume

(A1) The kernel K is a bounded and compactly supported probability density function

such that
∫
uK(u) du = 0 and

∫
uuT K(u) du = µ2(K)I, with µ2(K) ∈ R.

(A2) At x ∈ supp(f), f is continuously differentiable and f(x) > 0.

(A3) The sequence of bandwidth matrices H is such that n−1|H |−1/2 and each entry

of H tends to zero as n −→ ∞, with H remaining symmetric and positive

definite.

We firstly provide an approximation of the mean shift. We make use of the well known

results

n∑

i=1

KH(xi − x)(xi − x) = n[µ2(K)H∇f(x) + op(H1)]

n∑

i=1

KH(xi − x) = n[f(x) + op(1)]

which were established in a different context by Ruppert & Wand (1994) but are

equally true here. The quotient of these two expressions gives the asymptotic mean

shift,

s̃x = µ2(K)H∇f(x)/f(x) + op(H1) (11)

Hence, the operator s̃x shifts a given point x into a direction in which the data tend

to be more dense, with the step size being the larger the less dense the data are at

x. This implies that, asymptotically, the gradient is zero when the mean shift is zero,

which makes the mean shift a suitable tool for density mode detection (Cheng, 1995).
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Equation (11) provides an asymptotic version of (10), hence, implicitly, of (9). In

order to find an asymptotic version of (8), the strategy is to find an asymptotic version

of Q, based on which the minimization problem is solved. Considering the first term

of (4),

E

(
n∑

i=1

KH(xi − x)(xi −m)TAγ(xi −m)

)

= n|H|−1/2

∫

K
(

H−1/2(s− x)
)

(s−m)TAγ(s−m)f(s) ds

= n

∫

K(u)(H1/2u+ x−m)TAγ(H1/2u+ x−m)f(x+H1/2u) du

= n

∫

K(u)
{

(x−m)TAγ(x−m) + O(1TH1/2u)
}{

f(x) + O(1TH1/2u)
}

du

= nf(x)(x−m)TAγ(x−m) + o(n),

where
∫

K(u) du = 1. Similarly, one can show that

Var

(
n∑

i=1

KH(xi − x)(xi −m)TAγ(xi −m)

)

= o(n2),

so that, in summary,

n∑

i=1

KH(xi − x)(xi −m)TAγ(xi −m) = nf(x)(x−m)TAγ(x−m) + oP (n)

holds. We arrive at the penalized asymptotic minimization problem

Q̃(m,γ) = nf(x)(x−m)TAγ(x−m) − λ(γTγ − 1).

Taking again the derivative,

∂Q̃(m,γ)

∂γ
= −2

[
nf(x)(x−m)(x−m)Tγ + λγ

]
, (12)

and equating this to zero,

nf(x)(x−m)(x−m)Tγ = −λγ (13)

9



i.e. γ is eigenvector of nf(x)(x −m)(x −m)T . Now, note that for any matrix of

type Σ = cψψT , with c ∈ R,ψ ∈ R
d, the only eigenvector of Σ is (in standardized

form) γ = ψ/||ψ||, with eigenvalue λ = c||ψ||2 = Tr(Σ). Hence, the only eigenvector

of nf(x)(x−m)(x−m)T is given by

x−m

||x−m||
.

Using that the local estimate of m is µx, we can replace x−m by (11), yielding the

asymptotic version of γx,

γ̃x a
=

−µ2(K)H∇f(x)/f(x)

µ2(K)||H∇f(x)||/f(x)
= −

H∇f(x)

||H∇f(x)||
,

where the denotation
a
= means that in the expression succeeding this symbol all terms

of an asymptotically higher order than the leading term are omitted. This shows that,

asymptotically, the first local principal component always steers into the direction of

the density gradient.

4 Local principal curves

The nonparametric equivalent to a (globally fitted) principal component line is a prin-

cipal curve, which can be descriptively defined as a ‘smooth curve through the middle

of the data cloud’. There do exist several competing algorithms for fitting principal

curves. Most of these are not directly based on a ‘localized’ or ‘nonparametric’ ver-

sion of PCA, but rather start with some globally fitted line (which may be the first

principal component line), and iteratively bend this line (or concatenate other lines

to it), until it fits satisfactorily through the middle of the data cloud (in some sense).

In contrast, the local principal curve algorithm (Einbeck, Tutz & Evers, 2005) is ex-

plicitly based on iterating local PCA steps. To fix terms, let x(0) ∈ R
d be a starting

point (chosen at random or by hand). At j-th iteration, the mean shift brings us from
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x(j) to µ(j) ≡ µ
x(j) , and stepping from there a predetermined distance, say t, into the

direction of γ(j) ≡ γx(j) yields x(j+1). Condensing these two steps into one row, one

has

x(j+1) = µ(j) ± tγ(j) (14)

where the sign in ‘±’ is given by sign(γ(j) ◦ γ(j−1)) (this ‘signum flipping’ ensures

that the curve maintains their direction). The step size t needs to be specified by

the data analyst, and is usually set equal to h if H = h2I (this is a very reasonable

assumption if the data are previously scaled, for instance by dividing through their

range or standard deviation). The resulting principal curve is constituted through

the series of local means, {µ(j)}j≥0, and the iteration is stopped when the difference

between neighboring µ(j)’s falls below a given threshold. We will refer to this state

in what follows as ‘convergence’, though this does not necessarily imply convergence

in a strict, mathematical sense. Next, one proceeds from the starting point in the

opposite direction, i.e. one changes the signum preceding γ(0) in the computation of

x(1), and continues as before until convergence is reached. There are some additional

technicalities involved in the curve fitting, which are not relevant for this presentation;

the interested reader is referred to the paper mentioned above.

Figure 1 (left) shows a local principal curve fitted to time series data for monthly

unemployment and inflation rates in the Unites States from March 1984 until April

2008. The horizontal axis is the monthly rate of unemployment and the vertical axis

is the monthly consumer price index, which is considered the most commonly used

measure of inflation3.

The developments in Section 3 enable us to study the asymptotic, local behavior

of the local principal curve algorithm. Firstly, we look at the difference between two

3In Economics, the curve representing the relationship between unemployment and inflation is well

known as ‘Phillips Curve’(Phillips, 1958).

11



Figure 1: local principal curve for unemployment-inflation data

4 5 6 7

60
70

80
90

10
0

11
0

12
0

LPC − default

Unemployment rate

CP
I

4 5 6 7

60
70

80
90

10
0

11
0

12
0

LPC − boundary extended

Unemployment rate

CP
I

neighboring points x(j) and x(j+1). From (14), one has

x(j+1) − x(j) = µx(j) − x(j) ± tγx(j)

a
= µ2(K)H∇f(x(j))/f(x(j)) ± t

H∇f(x(j))

||H∇f(x(j))||

=

(
µ2(K)

f(x(j))
±

t

||H∇f(x(j))||

)

H∇f(x(j)).

Note that, defining S(x) ≡ ∇f(x)/f(x), the Taylor expansion of S at x is given by

S(x± δ) = S(x) ±

[
Hf (x)

f(x)
− S(x)S(x)T

]

δ + O(δ2)

where δ −→ 0 (component-wise), and Hf (x) is the Hessian of f at x.

This implies that, in first order approximation, the difference between two neigh-
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boring local centers of mass µ(j) and µ(j+1) is given by

µ(j+1) − µ(j) (15)

= (µ(j+1) − x(j+1)) − (x(j+1) − µ(j))

a
= µ2(K)H

∇f(x(j+1))

f(x(j+1))
± tγ̃x(j)

= µ2(K)HS(x(j) + (x(j+1) − x(j))) ± t
H∇f(x(j))

||H∇f(x(j))||

= µ2(K)H







S(x(j)) +

[

Hf (x(j))

f(x(j))
−

∇f(x(j))∇f(x(j))
T

f(x(j))2

]

(x(j+1) − x(j))
︸ ︷︷ ︸

O(H1)







± t
H∇f(x(j))

||H∇f(x(j))||

a
= µ2(K)H

∇f(x(j))

f(x(j))
± t

H∇f(x(j))

||H∇f(x(j))||

=

[
µ2(K)

f(x(j))
±

t

||H∇f(x(j))||

]

H∇f(x(j)) (16)

In this result, the two-step character of the algorithm is still visible: The first term

inside the squared bracket corresponds to the contribution of the mean shift, while

the second term corresponds to the local PCA step. In order to gain more insight,

we assume from now on that H = h2I, and t = h, which is the recommended default

setting according to Einbeck, Tutz & Evers (2005). Then,

µ(j+1) − µ(j)
a
= h

[
h µ2(K)

f(x(j))
±

1

||∇f(x(j)||

]

∇f(x(j)) (17)

Now, if the curve is proceeding uphill (i.e., towards higher densities), then both the

mean shift step and the local PCA step will steer the curve in the same direction,

so the term µ(j+1) − µ(j) will be quite large. If the curve is moving downhill, then

the mean shift step will pull the curve backwards – towards higher densities –, so the

total step size (17) will be rather small. This means the curve will get stuck if the two

contributions are exactly the same. This is the case when

hµ2(K)

f(x)
=

1

||∇f(x)||
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(subscript j omitted for notational ease), implying

f(x) = h µ2(K)||∇f(x)||. (18)

Hence, the position at which the curve gets stuck only depends on: the density of the

random vector X, the kernel function K and the bandwidth h. If we use a Gaussian

kernel K, then µ2(K) = 1, and (18) becomes

f(x) = h ||∇f(x)||. (19)

Next, we wish to gain some understanding of where the points with property (18) or

(19), respectively, are situated. Therefore, let us assume that the random vector under

consideration is given by

X ∼ N(0, σ2I) (20)

with 0 ∈ R
d being a vector of 0′s, and I ∈ R

d×d being the identity matrix. One has

then

f(x) =
1

(2π)d/2σd
exp

{

−
1

2σ2
xTx

}

and

||∇f(x)|| =
1

(2π)d/2σd+2
exp

{

−
1

2σ2
xTx

}

||x||

so that (19) boils down to

||x|| =
σ2

h
. (21)

We will verify result (21) by experiment. Therefore, we assume that X is bivariate

normal, i.e. of type (20) with d = 2. We simulate n = 10000 replicates from X, for

each σ2 = 2 and σ2 = 3. Next, we fit 20 local principal curves (with t = h = 1) to

each of both data clouds, where the starting points are randomly chosen among all

those observations xi which satisfy ||xi|| ≤ 1. For the principal curve fitting, we use

a Gaussian base kernel κ(·) which is truncated at ±5. This does not actually affect
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the results of the simulation, but ensures compatibility with assumption (A1); see also

Ruppert & Wand (1994). The resulting curves are displayed in Figure 2 (top row).

In these plots, the dashed and solid circle symbolize the radii ||x|| = 1 and ||x|| = σ2,

respectively, so according to the theory the curves should get stuck close to the solid

circle. We see that this is always the case. For both σ2 = 2 (left) and σ2 = 3 (right),

all principal curves converge to endpoints which are very close to the solid circle. In

the bottom panels of this figure we repeat the analysis for h = t = 0.75. We observe

that, according to (21), by decreasing h the curves will visit a larger area of the data

than if h = 1, as the radius σ2/h gets larger. Similarly, when h > 1, the curves are

expected to visit a smaller area of the data as the radius gets bigger (not shown). [Of

course, the example itself is a little bit contrived, as one, realistically, would not be

interested in fitting curves to bivariate normal data, but the theory is convincingly

confirmed].

5 Boundary extension

We have seen towards the end of Section 4 that by reducing the bandwidth one obtains

curves which proceed further into the boundary region of the data. Access to these

boundary regions can be of a special importance, for instance for time series data where

the endpoints correspond to the most current observations. Furthermore, curves which

are “too short” in the boundaries will result in projections clustered at the endpoints,

which impacts negatively on the usability of the curve as a data compression tool, a

problem which was observed by Einbeck, Evers & Hinchliff (2010) in the context of

nonlinear compression of high-dimensional spectrographic data. In such situations,

one may attempt extending the local principal curve beyond its natural endpoint in

order to reach more data points at boundaries. Obviously, decreasing the bandwidth
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Figure 2: 20 local principal curves with bandwidths h = t = 1 (top) and h = t = 0.75

(bottom) through multivariate Gaussian data with σ2 = 2 (left) and σ2 = 3 (right).

The dashed circle indicates the radius ||x|| = 1, while the radius of the solid circle is

equal to ||x|| = σ2/h according to (21).
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arbitrarily will not be the solution, as this will result in a curve which gets stuck even

sooner.

To find a practicable way of dealing with this problem, note firstly that the sim-

ulation in Section 4 was run assuming t = h. If we allow these two parameters to

decouple, then we see from (16) that the difference between two successive centers of

mass can be written as

µ(j+1) − µ(j)
a
= h

[
hµ2(K)

f(x(j))
±

t

h

1

||∇f(x(j))||

]

∇f(x(j))

Compared to (17), one observes that now the term corresponding to the principal

component step is multiplied by t/h. Hence, if t is increased relative to h, the PCA

contribution increases relative to the mean shift contribution, and the principal curve

will proceed beyond the limit given by (21).

We illustrate this effect again through simulation. Using Gaussian data X with

σ2 = 3, 20 local principal curves have been fitted with different ratios of t and h. The

resulting curves are displayed in the first three panels of Figure 3, and one observes

that, for t/h < 1, the curve will stop inside the circle defined by (21), while for t/h > 1,

it will stop outside (in fact, the radius at which the curves converge is now σ2t/h2).

However, in practice it is impractical to increase t beyond h, as this would impact

detrimentally onto large parts of the curve, and cause erratic behavior especially in

the boundary region. Therefore, it is recommended to keep the default setting t = h,

which has proven to work generally well, for the non-boundary part of the principal

curve, and reduce h (but not t) adaptively as soon as the curve begins to converge to

its endpoint.

In the implementation of the LPC algorithm (Einbeck & Evers, 2010), this is

achieved by defining a threshold, say T1, and reducing the bandwidth adaptively as
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Figure 3: 20 local principal curves, all with h = 1, and t = 0.75 (top left), t = 1

(right), and t = 1.25 (bottom left) through a multivariate Gaussian sample of size

n = 10000 with σ2 = 3. The bottom right plot uses the boundary extension proposed

in Section 5. The outer (solid) circles have radius σ2, and the inner (dashed) circles

radius 1.
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h(j+1) = (1 − δ)h(j), for some small constant δ > 0, as soon as

||µ(j+1) − µ(j)||

||µ(j+1) + µ(j)||
≤ T1.

A second threshold, 0 < T2 < T1, determines when the state of convergence is reached

and the algorithm is stopped. The performance of this technique is demonstrated in

the bottom right panel of Figure 3. Compared to the non-extended fit, it is clear that,

after applying the boundary extension, the local principal curves reach further into

the boundary region of the data cloud.

This technique extends straightforwardly to situations where different bandwidths

hj are used in each direction j = 1, . . . , d, by multiplying each bandwidth individually

by 1 − δ. This technique was used for the US unemployment-inflation data example,

where the “default” curve displayed in Figure 1 (left) used the bandwidth vector

h = (0.5, 1.5). The boundary extended version is provided in Figure 1 (right), and it

is obvious that this curve deals better with the two boundaries than the default curve.

6 Conclusion

In this work we have explored some asymptotics for localized principal components

using multivariate kernels as weights. It was shown that for small neighborhoods and

large sample sizes, at any point x, the first eigenvector of the local covariance matrix

Σx can be approximated in terms of the density function and the bandwidth matrix

H. For local principal curves (LPCs), this result implied that the LPC always steers

into the direction of the gradient of the density function, which means in practice that

it will closely follow the density ridge. The previous approximation was extended to

explore the behaviour of the local principal curve in terms of the difference between

neighboring local centers of mass which compose the fitted curve. Using the first order

approximation of the latter, the stopping criteria for the LPC was further investigated.
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It was concluded that the position at which the curve stops only depends on: the

topology of data in the neighborhood in terms of the density function and its derivative,

the multivariate kernel function used and the bandwidth matrix. This was verified

experimentally, and it was confirmed that the smaller is the bandwidth, the larger

is the area of the data visited by the curves. It was shown that by reducing the

bandwidth adaptively relative to the step size as soon as the local principal curve

begins to converge to its endpoint, the curve reaches further into the boundaries. This

is of particular importance for data with time series character, even if time is not

used for the multivariate analysis, as in the real data example provided. For data

of this type, the current time point, which is likely to be the point of interest, is

by construction a boundary point. In addition, this technique avoids the projections

being clustered at the curve endpoints, which would impact negatively on the usability

of the curve as a data compression tool.
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Gorban, A., Kégl, B., Wunsch, D., and Zinovyev, A. (2008). Principal Manifolds

for Data Visualization and Dimension Reduction. Heidelberg: Springer.

Hastie, T., Tibshirani, R., and Friedman, J. (2001). The Elements of Statistical

Learning. New York: Springer.

Hawkins, D. M. (1995). FIRM Formal Inference-based Recursive Modeling. St. Paul,

MN, USA: University of Minnesota.

Liu, Z.-Y., Chiu, K.-C., and Xu, L. (2003). Improved system for object detection

and star/galaxy classification via local subspace analysis. Neural Networks 16,

437–451.

Phillips, A. W. (1958). The relation between unemployment and the rate of change

of money wage rates in the United Kingdom. Economica 25, 283–299.

Ruppert, D. and Wand, M. P. (1994). Multivariate locally weighted least squares

regression. Ann. Statist. 22, 1346–1370.

Schaal, S., Vijayakumar, S., and Atkeson, C. (1998). Local dimensionality reduction.

21



In M. Jordan, M. Kearns, & S. Solla (Eds.), Advances in Neural Information

Processing Systems 10. MIT Press, Cambridge, MA.

Schölkopf, B. and Smola, A. (1998). Nonlinear component analysis as a kernel eigen-

value problem. Neural Computation 10, 1299–1319.

Wand, M. P. and Jones, M. C. (1993). Comparison of smoothing parametrizations

in bivariate kernel density estimation. J. Amer. Statist. Assoc. 88, 520–528.

Wang, L., Assadi, A. H., and Spalding, E. P. (2008). Tracing branched curvilinear

structures with a novel adaptive local pca algorithm. In Proceedings of the 2008

International Conference on Image Processing, Computer Vision, and Pattern

Recognition, Volume 17, pp. 557–563. CSREA Press, Athens, GA.

Zayed, M. and Einbeck, J. (2010). Constructing economic summary indexes via

principal curves. In COMPSTAT 2010 Proceedings (e-book), pp. 1709–1716.

22


