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ABSTRACT 

Structural reliability analysis of buried pipeline systems is one of the fundamental issues for 

water and wastewater asset managers. Measuring the accuracy of a reliability analysis or a 

failure prediction technique is an effective approach to enhancing its applicability and 

provides guidance on selection of reliability or failure prediction methods. The determination 

of threshold value for a particular pipe failure criterion provides useful information on 

reliability analysis. However, this threshold value is not always known. In this paper, 

Receiver Operating Characteristic (ROC) curve has been applied where empirical and 

Nonparametric Predictive Inference (NPI) techniques are used to evaluate the accuracy of 

pipeline reliability analysis and to predict the failure threshold value. Multi-failure 

conditions, namely, corrosion induced deflection, buckling, wall thrust and bending stress 

have been assessed in this paper. It is hoped that choosing the optimal operating point on the 

ROC curve which involves both maintenance and financial issues, can be ideally 

implemented by combining the ROC analysis with a formal risk-cost management of 

underground pipelines.  
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1. INTRODUCTION 

Many challenges have been faced by water and wastewater industry during installation and 

maintenance of underground pipelines. The most common challenges are found as various 

pipe failure modes under loading, poor design detailing and installation practices, insufficient 

corrosion protection procedures, pipe material deterioration, scouring underneath the ground 

level, frost heave action and insufficient understanding of product limitations. In reality, a 

buried pipe’s mechanical strength begins to decrease as soon as it is installed because of the 

environmental conditions surrounding the pipe [1-2]. For buried metal pipelines subject to 

both corrosion and external loading, a vital failure criterion is the loss of structural strength 

which is influenced by localised or overall reduction in pipe wall thickness. Due to their low 

visibility and lack of proper information regarding underground pipes condition, assessment 

and maintenance are frequently neglected until a disastrous failure occurs. The long-term 

planning for renewal of underground pipe distribution networks requires the ability to predict 

system reliability as well as assess the economic impact with good accuracy [3-6]. 

 

Structural reliability analysis of buried pipeline systems is one of the fundamental issues for 

water and wastewater asset managers. Methods of reliability analysis such as first order 

reliability method, second-order reliability method, point estimate method, Monte Carlo 

simulation, gamma process, probability density evolution method, subset simulation, 

dynamic reliability, etc. are available in literature [7-13]. The correlation coefficients between 

different failure modes show that all the failure modes are strongly correlated positively, i.e., 

where the failure modes might happen concurrently within a buried pipeline system [14]. The 

determination of threshold value for a particular pipe failure mode provides useful 

information on reliability analysis. However, this threshold value is not always known. When 

the actual value of pipe condition (such as deflection, buckling, bending, etc.) is greater than 

the threshold value or allowable limit, then this indicates a failure condition and if the actual 

value is smaller than the allowable limit, then it indicates a non-failure condition. However, 

in reality, pipelines may not follow the predicted pipe conditions and failure criteria which 

are estimated according to the proposed models. Gustafson and Clancy [15], Kettler and 

Goulter [16], Mailhot et al [17] showed that there were 10% to 20% discrepancies in the 

actual and the estimated pipe conditions measured by available models such as Cox’s 

proportional hazards model, Weibull and exponential distributions, etc. 
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Classical reliability theory and methodologies rarely consider the actual state of a pipe system 

and therefore, these are not capable to reflect the dynamics of runtime systems and failure 

processes. Conventional methods are typically useful in design and prediction of long term 

pipe behaviour. However these are not good enough in pipe reliability evaluation with good 

accuracy. Measuring the accuracy of a pipe reliability analysis technique is an effective 

approach to enhancing its applicability and provides guidance on selection of reliability or 

failure prediction methods. One of the accuracy measurements for assessment methods is 

Receiver Operating Characteristic (ROC) curve which is a statistical approach with concepts 

like sensitivity and specificity to express the accuracy.   

 

ROC curve has been commonly used for describing the performance of medical tests for 

parametric and non-parametric analysis. The ROC curve has also been used in many other 

areas, such as signal detection, radiology, machine learning, data mining and credit scoring 

[18-20]. In recent years, Nonparametric Predictive Inference (NPI) has been developed as an 

alternative and frequent statistical framework method based on few modelling assumptions 

and considers one or more future observations instead of a population [21]. It is a statistical 

method based on Hill’s assumption [22], which gives direct probabilities for a future 

observable random quantity, given observed values of related random quantities [23]. NPI 

uses lower and upper probabilities for uncertainty quantification and has strong consistency 

properties within theory of interval probability [21]. From a statistical perspective, NPI is 

defined as a plot of results as true positive fraction (TPF) or sensitivity along y coordinate 

versus false positive fraction (FPF) or its 1-specificity along x coordinate. Normally, ROC 

curve is useful in evaluating the discriminatory ability of an analysis, finding optimal cut-off 

point and comparing efficacy of two or more assessment or tests results.  

 

The authors Debon et al [24] and Arian et al [25] conclude by identifying a knowledge gap 

and research possibilities, mainly relating to data collection and how to best use the existing 

data for the development and calibration of predictive deterioration models, risk assessment 

methods, etc. In this study, a ROC curve has been applied in buried flexible metal pipeline 

network where classical (or empirical) and Nonparametric Predictive Inference (NPI) 

technique are used for assessing the accuracy of failure prediction and identifying failure-

prone situations, i.e. the threshold value for different pipe failure modes. The multiple time-

dependent failure modes for underground flexible metal pipelines, namely, corrosion induced 
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deflection, buckling, wall thrust and bending are considered. The loss of structural strength is 

due to corrosion through reduction of pipe wall thickness which then leads to pipe failure. 

Pipe wall thickness is considered as a key random variable and Monte Carlo simulation has 

been applied to generate the thickness data based on pipe material and soil parameters.  

 

The contents of this paper are structured as follows. In Section 2, the formulations for pipe 

failure modes of corrosion induced deflection, buckling, wall thrust and bending are 

presented. The basic of ROC curve is studied in Section 3, where classical ROC and NPI for 

ROC curve are briefly discussed. In Section 4, a numerical example is considered for 

underground pipeline reliability prediction using ROC curve. The results and discussion are 

presented for different failure modes in Section 5. Finally, some conclusions are made on the 

basis of outcomes from this study in Section 6. 

 

 

2. PIPE FAILURE MODES 

For a buried pipe structure, the number of potential failure modes is very high. This is true in 

spite of the simplifications imposed by assumptions such as having a finite number of failure 

elements at given points of the structure and only considering the proportional loadings. It is, 

therefore, important to have a method by which the most critical failure modes can be 

identified. The critical failure modes are those contributing significantly to the reliability of 

the system. In this paper, the dominating failure criteria of flexible pipes are characterised by 

limit states as follows: 

 

a) Excessive deflection; 

b) Actual buckling pressure greater than the critical buckling pressure; 

c) Actual wall thrust greater than critical wall thrust; 

d) Actual bending stress greater than the allowable stress  

 

The failure modes adopted here are due to loss of structural strength of pipelines and these 

failure criteria are influenced by corrosion through reduction of the pipe wall thickness over 

time. 

 

2.1 Corrosion of metal pipes  
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Buried pipes are made of plastic, concrete or metal, e.g. steel, galvanized steel, ductile iron, 

cast iron or copper. Plastic pipes tend to be resistant to corrosion. Damage in concrete pipes 

can be attributed to biogenous sulphuric acid attack [26-27]. On the other hand, metal pipes 

are susceptible to corrosion. Metal pipe corrosion pit is a continuous and variable process. 

Under certain environmental conditions, metal pipes can become corroded based on the 

properties of the pipe, soil, liquid properties and stray electric currents. The corrosion pit 

depth can be modelled with respect to time [28-29] as shown in Eq. (1).  

 

The corrosion pit depth, n

T kTD                                                                                     (1) 

 

where TD  is corrosion pit depth, T is exposure time and k and n are corrosion empirical 

constants which are determined from experiments and/or field data.  

 

Due to reduction of wall thickness given by Eq. (1), the moment of inertia of pipe wall per 

unit length, I and the cross-sectional area of pipe wall per unit length, As can be defined as 

follows [30-31]. 

 

12/)( 3

TDtI   and Ts DtA    (2) 

 

where t is wall thickness of pipe. 

 

Deflection 

The performance of a flexible pipe in its ability to support load is typically assessed by 

measuring the deflection from its initial shape. Deflection is quantified in terms of the ratio of 

horizontal (or vertical) increased diameter to the original pipe diameter. Normally, the 

allowable deflection for flexible pipe is 5% of its internal diameter [32]. The actual deflection 

for flexible pipes y  can be calculated as follows [33].  
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where Kb is deflection coefficient, LD  is deflection lag factor, D is mean diameter = Di + 2c, 

Di  is inside diameter and c is distance from inside diameter to neutral axis, Wc is soil load, Ps 

is live load,  E is modulus of elasticity of pipe material and 'E  is modulus of soil reaction. 

 

Buckling Pressure 

Buckling is a premature failure in which the structure becomes unstable at a stress level that 

is well below the yield strength of structural material [8]. The actual buckling pressure should 

be less than the critical buckling pressure for the safety of structure. The actual buckling 

pressure, p and the allowable buckling pressure, ap  can be calculated as follows [34]. 

 

swwsw PHRp                        (4) 
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where wR  is water buoyancy factor = 1 – 0.33 ( wH /H), s is unit weight of soil, w  is unit 

weight of water, wH  is height of groundwater above the pipe and 'B  is empirical coefficient 

of elastic support. 
 

 

Wall Thrust 

Wall thrust or wall stress on a pipe wall is determined by the total load acting on the pipe 

including soil arch load AW , live load sP  and hydrostatic pressure wP  as shown in Eq. (6). 

Two wall thrust analyses are required: (a) accounts both the dead load and live load and 

employs the short term material properties throughout the procedure, (b) accounts only the 

dead load and employs the long-term material properties. Then, the most limiting value is 

used for wall thrust analysis [32, 35]. The actual wall thrust, T and the allowable wall thrust, 

aT  can be calculated as follows. 

 

The actual wall thrust, )2/)((3.1 0DPCPWT wLSA                               (6) 

where 0D  is outside diameter and LC  is live load distribution coefficient.  

 

The allowable wall thrust, psya AFT                     (7) 
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where yF  is the minimum tensile strength of pipe and p  is capacity modification factor for 

pipe. 

 

Bending Stress 

Under the effect of earth and surface loads, the buried pipe may bend through pipe wall.  The 

allowable bending stress for flexible pipes is longitudinal tensile strength of pipe material.  

The bending stress is important to ensure that it is within material capability. Excessive 

bending will cause the pipe wall to collapse. The actual bending stress b  can be calculated 

as follows [32]. 

 

Bending stress, 
2

0 /2 DyED yfb                                (8) 

where fD  is shape factor, 0y  is distance from centroid of pipe wall to the furthest surface of 

the pipe and y  is the pipe deflection which can be calculated from Eq. (3). 

 

 

3.  BASIC OF ROC CURVE 

ROC curves are two-dimensional graphs that visually depict the performance and 

performance trade-off of a classification model [36]. ROC curves are originally designed as a 

tool to distinguish between the actual results and analytical results. Sensitivity and specificity, 

which are defined as the number of true positive decisions (the number of actually positive 

cases) and the number of true negative decisions (the number of actually negative cases), 

respectively, constitute the basic measures of performance of ROC curve. A ROC curve 

displays the full picture of trade-off between the true positive fraction (TPF) or sensitivity 

and false positive fraction (FPF) or 1 – specificity across a series of cut-off points. Area 

under the curve is considered as an effective measure of inherent validity of an analysis or 

experimental result. It is a very powerful tool to measure the accuracy of analysis results and 

commonly used in medical field but currently ROC curves are also using in other fields, such 

as engineering and agricultures.   

 

A ROC curve is applicable only for continuous data or at least ordinal data. A classification 

model classifies each instance into one of two classes: a true and a false class. This gives rise 

to four possible classifications for each instance: (1) a true positive, (2) a true negative, (3) a 
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false positive, and (4) a false negative. The classifications that lie along the major axis x and 

axis y of the curve are the 100% correct classifications, that is, the true positives and the true 

negatives, respectively (Figure 1). For a perfect model, only the true positive and true 

negative fields are filled out, the other fields would be zero. A number of regions of interest 

can be identified in a ROC graph. The ROC curve illustrates the relationship between TPF 

and FPF at all possible cut-off levels. Therefore, it can be used to assess the performance of 

analysis results independently with respect to the decision threshold.  

 

Area under ROC curve and the threshold value of reliability assessment can be predicted 

from ROC curve which are main concerns in this study. Let D be a variable describing the 

pipeline condition, where D = 1 for pipe failure condition and D = 0 for non-failure condition. 

Suppose that Y is a continuous random quantity which is related to the pipe condition (such as 

pipe wall thickness) and those large values of Y which are greater than threshold or allowable 

limit are failure states. Using a threshold, for example c, the result is called positive if cY  , 

so it indicates a failure condition and if cY  , i.e., negative, pipe condition is a non-fail 

condition, where ),( c . Obviously, an accurate assessment will have both sensitivity 

and specificity close to 1. In ROC curve analysis, the aim is to find a cut-off point (threshold) 

of a classifier that minimizes the number of false positives and false negatives (maximizes the 

sensitivity and specificity). Based on the above conceptions, FPF, TPF and ROC curve can 

be estimated using Eqs. (9) – (11), respectively [23]. 

 

                                                                                   (9) 

                                                                            

                                                                                      (10) 

 

ROC = {(FPF(c), TPF(c), )},( c                                                                  (11) 

 

Throughout this paper it is assumed that the two groups (failure and non-failure) are fully 

independent, i.e., no information about any aspect related to one group contains information 

about any aspect of the other group. If there are 1n  conditions data from a failure group and 

0n  data from non-failure group, then these can be denoted by },....,2,1,{ 1

1 niyi   and 

},....,2,1,{ 0

0 njy j  , respectively. For the classical (empirical) method, these observations per 
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group are assumed to be realisations of random quantities that are identically distributed as 

Y
1
 and Y

0 
with corresponding survival functions ][)( 1

1 yYPyS   and ][)( 0

0 yYPyS  .  

According to Pepe [18], the empirical estimator of the ROC can be estimated as follows. 
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where 1{A} is the indicator function which is equal to 1 if A is true or else. 1



S  and 0



S  are 

the empirical survival functions for 1Y and 0Y , respectively. The empirical estimator of the 

ROC can also be written as shown in Eq. (18). 

 

                                                                                                      (15) 

 

3.1 Area under ROC curve 

One of the important factors in ROC curve analysis is the area under the ROC curve, denoted 

as AUC.  AUC has been used to predict the accuracy of failure prediction of pipeline in this 

paper. AUC can be estimated both parametrically and non-parametrically. The parametric 

estimation of AUC under the empirical ROC curve is the area under the curvature. On the 

other hand, the nonparametric estimation of the area under the empirical ROC curve is the 

summation of the areas of the trapezoids formed by connecting the points on the ROC curve. 

The nonparametric estimate of the area under the empirical ROC curve tends to 

underestimate AUC when discrete rating data are collected, whereas the parametric estimate 

of AUC has negligible bias except when extremely small case samples are employed. 

Therefore, for discrete rating data, the parametric method is preferred. For continuous or 

quasi-continuous data (e.g., a percent confidence scale from 0% to 100%), the parametric and 

nonparametric estimates of AUC will have very similar values and the bias is negligible [36]. 
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A useful way to estimate the area under the ROC curve, AUC, can be expressed using Eq. 

(16) [37]. 

 

dttROCAUC )(

1

0

                                                                                                            (16) 

 

According to Zhou et al [36], the AUC is equal to the probability that the analytical results 

from a randomly selected pair of fail and non-fail group, as shown in Eq. (17) 

  

][ 01 YYPAUC                                                                                                               (17) 

 

The AUC measures the overall performance of the assessment. Higher AUC values indicate 

more accurate results, where AUC = 1 for perfect or ideal results and AUC = 0.5 for uniform 

results. So the AUC represents the ability to correctly classify a randomly selected individual 

as being from either the failure group or non-failure group. The empirical estimator of the 

AUC is the well-known Mann–Whitney U statistic which can be represented by Eq. (18) [23].  
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The AUC value of 0.50 to 0.75 is fair, 0.75 to 0.92 is good, 0.92 to 0.97 is very good and 0.97 

to 1.00 is considered as excellent result of an analysis [38].  

 

3.2 Optimum threshold value in ROC curve 

Another potential use of ROC curve is optimising the threshold value of an assessment. The 

optimum threshold values for pipe failure due to corrosion induced deflection, buckling, wall 

thrust and bending stress have been predicted in this study. The ROC curve comprises all 

possible combinations of sensitivity and specificity at all possible threshold values. This 
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offers the opportunity to assess the optimal threshold value to be used in critical decision 

practice.  

 

In practice, choosing an optimal threshold value based on ROC analysis is practicable only 

for continuous data. For continuous data, all operating points on the curve correspond to 

realistic threshold values are considered. Different criteria are used to find optimal threshold 

point from ROC curve, such as points on curve closest to the (0, 1) and Youden index (J) etc, 

based on number of observed operating points (Figure 2). The Youden index (J) is the point 

on the ROC curve which is farthest from the line of equality [39].   

 

Most of the operating points on the ROC curve consist of sensitivity and specificity 

combinations that do not correspond to realistic threshold values. Naturally, one would 

identify the threshold or optimal operating point as the point on the ROC curve that is closest 

to the ideal upper left-hand corner.  The optimal range of the operating point will thus, shift 

towards the lower left hand corner of the ROC graph. Ideally, such decisions should be made 

by linking the constructed ROC curve in explicit decision analysis. If NS  and pS  denote 

sensitivity and specificity respectively, the distance between the point (0, 1) and any point on 

the ROC curve can be predicted by applying Eq. (19) as follows [39].  

 

])1()1[( 22

pN SSd                                                                                                   (19) 

 

where d is the distance from top point (0, 1) to any point on curve. To obtain the optimal cut-

off point, it is necessary to calculate this distance for each observed cut-off point and locate 

the point where distance is found minimum. The main aim of Youden index is to maximise 

the difference between TPF ( NS ) and FPF )1( pS and this yields ][ pN SSMaxJ  . The 

value of J can be located by doing a search of plausible value where sum of sensitivity and 

specificity is the maximum value [39].  

 

3.3 NPI for ROC curve 

In NPI, the uncertainty is quantified by lower and upper probabilities for events of interest. In 

effect, the optimal lower and upper bounds for the ROC, AUC can be derived. Suppose that 

}1,,....,2,1,{ 11

1  nniYi  are continuous and exchangeable random quantities from the failure 
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group and }1,,....2,1,{ 00

1  nnjY j  are quantities from the non-failure group, where 1

11nY  and 

0

10nY  are the next observations from the failure and non-failure groups following 1n  and 0n  

observations, respectively. Let 11

1 1
.... nyy   are the ordered observed values for the first 1n  

pipes data from the failure group and 11

0 0
.... nyy  for the first 0n  pipes data from the non-

failure group. For ease of notation, let  0

0

1

0 yy  and  

0

1

1

1 01 nn yy . Thus NPI can 

be used for reliability applications when the data represents failure and non-failure event 

which are non-negative. The NPI lower and upper survival functions for 1

11nY  and 0

10nY  can 

be determined as follows [20-21].  
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where 

P and 



P  are NPI lower and upper probabilities. As the ROC curve clearly depends 

monotonously on the survival functions, therefore, it is easily seen that the optimal bounds, 

which is defined to be the NPI lower and upper ROC curves areas, are given as follows [37]. 

 


 

 



0 1

01

1 1

01

01

0

1

1

1 }{1
)1)(1(

1
)(

n

j

n

i

jinn yy
nn

YYPAUC                                                    (24) 

]1}{1[
)1)(1(

1
)( 01

1 1

01

01

0

1

1

1

0 1

01



 

 

 nnyy
nn

YYPAUC
n

j

n

i

jinn                              (25) 

 



Preprint submitted to Journal of Risk and Reliability 

 

Based on Eqs. (24) and (25), it is evident that the difference between upper and lower AUC 

can be expressed as follows.  
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Equation (26) indicates that it depends on the two sample sizes 0n and 1n  only. Similarly for 

the partial area under ROC curve which can estimated using Eqs. (24) and (25) for any 

specific point of interest. 

 

 

4. NUMERICAL APPLICATION  

The proposed ROC approach has been applied to a steel buried pipe under a heavy roadway 

subject to external loading and corrosion. Four underground pipeline failure modes, namely 

corrosion induced deflection, buckling, wall thrust and bending stress have been used to 

illustrate the application of ROC curve in the accuracy of failure prediction and threshold 

value estimation. The loss of structural strength is due to corrosion through reduction of pipe 

wall thickness which then leads to pipe failure. In this study, pipe condition (i.e. pipe wall 

thickness) is considered as a classifier whereas the threshold is the cut-off point or limit to 

distinguish between the failure and non-failure conditions. The threshold obtained from the 

ROC curve is compared with the allowable limit from the limit state function. Due to lack of 

real data, 100 pipe wall thicknesses have been simulated at 100-year of service life using 

Monte Carlo method for each failure criterion based on soil and pipe material listed in Table 

1 [29, 40, 41].  

  

It is assumed that when actual pipe behaviour or pipe wall thickness exceeds the threshold 

value or allowable limit ( cY  ), the result is positive (D = 1), i.e. failure condition; and 

when cY  , the result is negative (D = 0), i.e. non-failure condition. However, there are 10% 

to 20% discrepancies in the actual and the estimated pipe conditions [17]. Therefore, it is 

assumed that, the predictions of pipe failure and non-failure conditions are not 100% 

accurate. The empirical and NPI lower and upper ROC curves have been applied for different 

failure modes with 10%, 20% and 30% noise which are introduced into the data to simulate 

the inaccurateness of failure predictions. Tables 2 to 5 show the pipe wall thickness with 10% 
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inaccurate prediction for the case of corrosion induced deflection, buckling, wall thrust and 

bending stress, respectively.  

 

 

5. RESULTS AND DISCUSSION 

The empirical ROC curves are applied for estimation of AUC and threshold value of pipe 

failure condition with 10%, 20% and 30% inaccurate failure prediction for different corrosion 

induced pipe failure modes. The performance of the ROC curve analysis is computed in terms 

of the true positive and false positive rates. This traces the curve from left to right (maximum 

ranking to minimum ranking) in the ROC graph. That means that the left part of the curve 

represents the behaviour of the model under high decision thresholds (conservative) and the 

right part of the curve represents the behaviour of the model under lower decision thresholds.  

 

Empirical AUC, which is interpreted as the average value of sensitivity for all possible values 

of specificity, is a measure of the overall performance of the analysis for every failure case. 

The area under empirical ROC curve (AUC) is estimated using Eq. (18). AUC can take any 

value between 0 and 1, where a bigger value suggests the better overall performance of an 

analysis with 95% confidence level. Figures 3 to 6 show that AUC is higher for the case of 

10% than that for 20% inaccurate prediction. Similarly, the case for 20% inaccurate 

prediction shows higher AUC than that for 30%. This indicates that the area under empirical 

ROC curve can be used to predict the reliability accuracy for different failure modes.  

 

Table 6 indicates that different failure modes have different AUC for the same percentage of 

inaccurate prediction due to randomness of the data. The analysis shows that if simulated 

inaccurate prediction is 10%, the accuracy of the results is still fair enough for all the failure 

modes (AUC > 0.75). However if it is more than 10%, the accuracy of the results falls below 

the acceptable value (AUC < 0.75) which is implemented in practice as suggested by Huguet 

et al [38]. 

 

The allowable limit and the corresponding threshold pipe wall thickness for each corrosion 

induced failure modes, namely deflection, buckling, wall thrust and bending stress can be 

calculated using pipeline design formula as discussed in Section 2. For example, in the case 

of corrosion induced deflection, the allowable limit of deflection is estimated as 5% of initial 
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inside diameter of pipe. Then, the corresponding threshold pipe wall thickness is calculated 

using Eq. (3). Similarly, in the case of corrosion induced buckling, the allowable limit is 

estimated using Eq. (4) based on the assumption that the pipe fails when the actual buckling 

pressure is equal to the allowable buckling pressure and then the corresponding pipe wall 

thickness is calculated using Eq. (5). The same procedure is followed for other failure modes.  

 

Besides that, the proposed approach has established a threshold at which a pipe can be 

considered in a high-risk condition. The threshold values of pipe wall thickness are predicted 

for the failure modes of deflection, buckling, wall thrust and bending stress. The optimum 

threshold value for each failure criteria predicted from the empirical ROC curve is obtained 

from Eq. (19) and the results are shown in Table 6 for comparison with the values obtained 

from pipeline design formulae. Both results are reasonably close in which the optimum 

threshold value of pipe wall thickness obtained from empirical ROC curve is more 

conservative. The results from Table 6 also show that the corrosion induced bending stress is 

the most dominating failure mode whereas buckling is the least susceptible failure mode.  

 

Next, NPI ROC curves are applied to estimate the lower and upper bounds of AUC for all the 

failure modes and the results are shown in Figures 7 -10 and Table 7 with different 

percentages of inaccurate prediction. The NPI lower and upper areas under the ROC curves 

are calculated from Eqs. (24) and (25), respectively. As shown in Tables 6 and 7, the area 

under the upper bound of NPI AUC is always larger than empirical AUC for all the failure 

modes. It is clear that with increasing the percentage of inaccurate prediction, the areas under 

the upper and lower bounds of NPI are decreased. Therefore, the accurateness of the failure 

predictions is decreased as shown in Figures 7 to 10 and Table 7.  

 

The performance of a prediction analysis should be judged in the context of the situation to 

which the data is applied. It can be seen that AUC for NPI is given in terms of upper and 

lower limits instead of a single curve. In this way it provides an interval of accuracy 

prediction which is more reasonable compared to classical ROC. Alternatively, the partial 

area estimation, where only a portion of the entire ROC curve needs to be considered, can 

also be used to predict the accuracy of an analysis when a particular FPF is useful indicator.   
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6. CONCLUSIONS 

ROC curve has been applied in reliability analysis for underground pipelines due to corrosion 

induced deflection, buckling, wall thrust and bending stress. The ROC curve provides a 

performance assessment model for prediction of pipe failure state function. The analysis 

shows that ROC curve is a useful technique to predict the optimum threshold value and the 

accuracy of the results. The area under the curve provides an objective valuation for the 

accuracy of an analysis with combinations of sensitivity and specificity values. Thus two or 

more failure prediction methods can be compared using ROC curve. The results demonstrate 

that with increasing inaccurateness of failure prediction, the areas of the ROC curves (both 

classical and NPI) are decreased. Choosing the optimal operating point on the ROC curve 

which involves both maintenance and financial issues, can be ideally implemented in a 

formal risk-cost management process of buried pipeline network.  
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Figure 1: Basic of a typical ROC Curve 

 

 

 

 

         

Figure 2:  A typical best cut-off or threshold value in ROC curve  
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Figure 3: Empirical ROC curve for pipe failure due to corrosion induced deflection for 

different percentages of inaccurate prediction 

 

 

 

Figure 4: Empirical ROC curve for pipe failure due to corrosion induced buckling for 

different percentages of inaccurate prediction 
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Figure 5: Empirical ROC curves for pipe failure due to corrosion induced wall thrust for 

different percentages of inaccurate prediction 

 

 
 

Figure 6: Empirical ROC curves for pipe failure due to corrosion induced bending stress for 

different percentages of inaccurate prediction 
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Figure 7: NPI lower and upper ROC curves for pipe failure due to corrosion induced 

deflection for different percentages of inaccurate prediction 

 

 

Figure 8: NPI lower and upper ROC curves for pipe failure due to corrosion induced buckling 

for different percentages of inaccurate prediction 
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Figure 9: NPI lower and upper ROC curves for pipe failure due to corrosion induced wall 

thrust for different percentages of inaccurate prediction 

 

 

Figure 10: NPI lower and upper ROC curves for pipe failure due to corrosion induced 

bending stress for different percentages of inaccurate prediction 
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Table 1: Materials properties  

Description Symbol Value COV (%) 
Distribution 

Buoyancy factor  Rw 1.00 - - 

Trench width Bd 2.00 m - - 

Outside pipe diameter  Do 1.231 m - - 

Inside pipe diameter  Di 1.189 m - - 

Soil constrained modulus  Ms 2.02×10
3 
kPa - - 

Deflection Lag factor DL 1.0 - - 

Shape factor Df 4.0 - - 

Capacity modification factor 

for pipe  
p  

1.0 - - 

Capacity modification factor 

for soil  
s  

0.90 - - 

Allowable bending stress  
a  450 MPa - - 

Poisson ratio ʋ 0.3 - - 

Elastic modulus of pipe  E 213.74×10
6
 kPa 1.0 Normal 

Backfill soil modulus  Es 10
3
 kPa 5.0 Normal 

Unit of weight of soil   18.0kN/m
3
 2.5 Normal 

Wheel load (Live load)  Ps 80.0 kPa 10.0 Normal 

Deflection coefficient  Kb 0.11 1.0 Lognormal 

Multiplying constant  k 2.0 10.0 Normal 

Exponential constant  n 0.3 5.0 Normal 

Initial thickness of pipe  t 0.021 m 1.0 Normal 

Height of the backfill  H 3.75 m 1.0 Normal 

 

COV = Coefficient of variation. 
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Table 2: Pipe wall thickness (m) with 10% inaccurate prediction for the case of deflection 

Failure group 

          

0.013711 0.013717 0.013638 0.01367 0.012256 0.013659 0.013754 0.013056 0.014336 0.013639 

0.013621 0.013749 0.013913 0.012942 0.013693 0.01367 0.01365 0.01395 0.013921 0.0138 

0.013989 0.01699 0.013639 0.012865 0.0138 0.01376 0.0139 0.01361 0.013821 0.013755 

0.013976 0.013431 0.014138 0.013709 0.013895 0.013147 0.013159 0.012774 0.012002 0.012245 

0.013983 0.013866 0.013934 0.017792 0.01386 0.016665 0.012867 0.01744 0.013876 0.016101 

          

Non-failure group 

          

0.011358 0.011579 0.0131 0.013198 0.013332 0.012482 0.012303 0.013431 0.012126 0.013077 

0.012755 0.013135 0.012934 0.011323 0.012859 0.012523 0.01289 0.013035 0.013332 0.013018 

0.012963 0.013181 0.013824 0.012724 0.012456 0.012408 0.012732 0.012675 0.014351 0.012753 

0.014237 0.013091 0.012728 0.011857 0.013177 0.013711 0.013231 0.013534 0.012028 0.014094 

0.013576 0.01348 0.013257 0.013538 0.014696 0.012475 0.013428 0.012847 0.012283 0.011654 

          

 

 

Table 3: Pipe wall thickness (m) with 10% inaccurate prediction for the case of buckling 

Failure group 

0.016711 0.016717 0.016638 0.016621 0.016749 0.016913 0.012942 0.016693 0.01667 0.01665 

0.016989 0.01699 0.016639 0.012865 0.0168 0.01676 0.0169 0.01695 0.016921 0.0138 

0.016976 0.016431 0.016738 0.016709 0.013895 0.016847 0.016859 0.01661 0.013821 0.016755 

          

Non-failure group 

0.011358 0.011579 0.0131 0.013198 0.013332 0.012482 0.012303 0.013431 0.012126 0.013077 

0.012755 0.013135 0.012934 0.011323 0.012859 0.012523 0.01289 0.013035 0.013332 0.013018 

0.012963 0.013181 0.016824 0.012724 0.012456 0.012408 0.012732 0.012675 0.014351 0.012753 

0.014237 0.013091 0.012728 0.011857 0.013177 0.016711 0.013231 0.013534 0.012028 0.017094 

0.013576 0.01348 0.013257 0.013538 0.016696 0.012475 0.013428 0.012847 0.012283 0.011654 

0.01367 0.012256 0.013659 0.013754 0.013056 0.014336 0.013639 0.013983 0.013866 0.013934 

0.01744 0.013876 0.016101 0.013792 0.01386 0.013665 0.016867 0.012774 0.012002 0.012245 
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Table 4: Pipe wall thickness (m) with 10% inaccurate prediction for the case of wall thrust 

Failure group 

0.013711 0.013717 0.013638 0.01367 0.012256 0.013659 0.013754 0.012056 0.014336 0.013639 

0.013621 0.013749 0.013913 0.012942 0.013693 0.01367 0.01365 0.01395 0.013921 0.0138 

0.013989 0.01699 0.013639 0.012865 0.0138 0.01376 0.0139 0.01361 0.013821 0.013755 

0.013976 0.013431 0.014138 0.013709 0.013895 0.013147 0.013159 0.012774 0.012002 0.012245 

0.013983 0.013866 0.013934 0.017792 0.01386 0.016665 0.012867 0.01744 0.013876 0.016101 

0.014237 0.013091 0.012728 0.011857 0.013177 0.013711 0.013231 0.013534 0.012028 0.014094 

0.013576 0.01348 0.013257 0.013538 0.014696 0.012475 0.013428 0.012847 0.012283 0.011654 

0.014351 0.013824         

          

Non-failure group 

0.011358 0.011579 0.0129 0.012198 0.013332 0.012482 0.012303 0.013431 0.012126 0.013077 

0.012755 0.013135 0.012934 0.011323 0.012859 0.012523 0.01289 0.012035 0.012332 0.013018 

0.012963 0.013181 0.012724 0.012456 0.012408 0.012732 0.012675 0.012753   

          

 

 

Table 5: Pipe wall thickness (m) with 10% inaccurate prediction for the case of bending 

stress 

Failure group 

0.013711 0.013717 0.013638 0.01367 0.011256 0.013659 0.013754 0.011056 0.014336 0.013639 

0.013621 0.013749 0.013913 0.01142 0.013693 0.01367 0.01365 0.01395 0.013921 0.0138 

0.013989 0.01699 0.013639 0.01165 0.0138 0.01376 0.0139 0.01361 0.013821 0.013755 

0.013976 0.013431 0.014138 0.013709 0.01125 0.013147 0.013159 0.012774 0.012002 0.012245 

0.013983 0.013866 0.013934 0.017792 0.01386 0.016665 0.012867 0.01744 0.013876 0.016101 

0.014237 0.013091 0.012728 0.011857 0.013177 0.013711 0.013231 0.013534 0.012028 0.014094 

0.013576 0.01348 0.013257 0.013538 0.014696 0.012475 0.013428 0.012847 0.012283 0.011654 

0.012408 0.012732 0.012675 0.014351 0.012753 0.012963 0.013181 0.013035 0.013332  

          

Non-failure group 

0.011358 0.011579 0.0131 0.011198 0.013332 0.011482 0.011303 0.011431 0.011126 0.011077 

0.011755 0.011135 0.011934 0.011323 0.010859 0.011523 0.01189 0.013824 0.012724 0.012456 
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  Table 6: Threshold value and area under empirical ROC curve 

 Failure modes 

Deflection Buckling Wall thrust Bending stress 

Allowable limit using pipeline design 

formula 0.0605 m 1023.8 kPa 5867 kPa 450000
 
kPa 

Threshold wall thickness using 

pipeline design formula 0.0137 m 0.0171 m 0.0136 m 0.0132 m 

Optimum threshold wall thickness 

from empirical ROC curve 0.01357 m 0.0166 m 0.013 m 0.0128 m 

Area under empirical 

ROC curve with 

inaccurate prediction  

10% 0.89 0.78 0.80 0.76 

20% 0.68 0.67 0.68 0.70 

30% 0.55 0.63 0.58 0.56 

 

 

 

Table 7: Area under NPI ROC curve 

% of inaccurate 

prediction 
NPI Area 

Failure modes 

Deflection Buckling Wall thrust Bending stress 

10%  
AUC  

0.92 0.86 0.87 0.90 

AUC  0.88 0.81 0.78 0.87 

20%  

 

AUC  
0.73 0.70 0.71 0.72 

AUC  0.67 0.64 0.66 0.65 

30%  
AUC  

0.60 0.61 0.60 0.59 

AUC  0.54 0.58 0.56 0.54 

 

 


