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We develop a numerical algorithm to solve the high-ordeiinear derivative-coupling equation associated
with the quartic Galileon model, and implement it in a modifiersion of theRaMSES N-body code to study
the effect of the Galileon field on the large-scale mattesteling. The algorithm is tested for several matter field
configurations with different symmetries, and works verjiwihis enables us to perform the first simulations
for a quartic Galileon model which provides a good fit to thern@ microwave background (CMB) anisotropy,
supernovae and baryonic acoustic oscillations (BAO) data.result shows that the Vainshtein mechanism in
this model is very efficient in suppressing the spatial vemies of the scalar field. However, the time variation
of the effective Newtonian constant caused by the curvatowgling of the Galileon field cannot be suppressed
by the Vainshtein mechanism. This leads to a significant emiak) of the strength of gravity in high-density
regions at late times, and therefore a weaker matter cingten small scales. We also find that without the
Vainshtein mechanism the model would have behaved in a @eipldifferent way, which shows the crucial
role played by nonlinearities in modified gravity theorieslahe importance of performing self-consistét
body simulations for these theories.

I. INTRODUCTION the modified gravitational forBeThere are two major classes
of such theories. In the first class, the screening is rehbye

Modified gravity theorie< [1] have been widely studied as a2 Nonlinear coupling specifying the interaction between th
possible alternative to the dark energy scenakios [2]aliclg ~ Scalar field and matter (or curvature), together with a merlt
the standard cosmological constant A@€DM, paradigm) to ~ Potential specifying the scalar field self-interactiontap-
explain the observed speed up of the cosmic expar%i [3—gpropriate choices of the coupling and potential, the saigar
There has been growing interest in this area recently becau§ree of freedom can become very heavy or extremely weakly
study in such models not only sheds light on our understandeoupled with matter in dense regions, so that it hardly medi-
ing of the origin and nature of the cosmic acceleration, lmata &t€S any interaction between matter UC|65- The chamele
provides tests of the standard gravity theory, generdiviia d%’] (includingf (R) gravity model[15| 17], see also [18—
(GR), on cosmic scales. Such tests are crucial to estabfish G20]), dilaton [21] and symmetroh [22] models are well-known
as the theory of gravity of the whole universe, valid also onexamples in this class. Out of these modgls?) gravity (no-
cosmological scales. tably the model of [19]) is the most well studied. There have

Regardless of passing the cosmological tests, however, afgen a number of works which investigated structure forma-
theory of gravity must satisfy a number of stringent local, o tion in this model in the nonlinear regime, with the help\6f
solar system, constraintd [9], as GR does. Such a requitemeody smulauon%ﬂ&]. To facilitate the study, ARbody
is highly nontrivial, because the universality of gravihet ~€0de,ECOSMOG[43], was developed, based on the publicly
ory means that if it is modified on cosmic scales, changes cafivilable coderamSEs [44]. This code is efficiently paral-
usually also be expected on much smaller scales. Thereforiglised usingupi and makes large and high-resolution simu-
any viable modified gravity theory must have some dynamicalations of f (R) gravity feasible (se¢ [45, 46] for other recent
mechanism by which such modifications are suppressed arfifvelopments of modified gravity simulation codes). Using
GR is recovered in high-density (or deep-potential) region & Parameterisation for this class of mod!fled gravity thesri .
such as the Solar system. Such mechanisms are known ¥f,48],Ecosmochas also been generalised to study generic
‘screening mechanisms’ in the literature. The screeningme chameleon, dilaton and symmetron models 49, 50].

anism makes gravity behave in different ways in differenten The second class of scalar-type modified gravity theories,
vironments, and this environmental dependence often @spli With the Dvali-Gabadadze-Porrati (DGP) model[51] as a rep-

strong nonlinearity in the associated field equations, ngaki 'esentative example, achieves the screening throughneanli

studies of these models numerically particularly chaliegg ~ derivative self-couplings of the scalar field. Here, thelimen
Many of the modified gravity theories studied so far have€arity causes interference between the gravitational 6éld

one or more dynamical scalar-type (spin-0) fields to mediaténdividual particles, which makes the deviation from themnst

* Email address: baojiu.li@durham.ac.uk 1 See, [[10=13], however, for examples with non-dynamicabsaiegrees of
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dard gravity per particle weaker when one keeps adding pathen implemented in thecosmoGcode to carry out the first
ticles into a system. This is known as the Vainshtein mecha®-body simulations of the nonlinear structure formation in
nism [52], which was first introduced in the context of mas-this model. Our results show that the nonlinearity due to the
sive gravity to suppress the extra helicity modes of the mashigh-order derivative couplings plays a very importanéril
sive graviton so as to recover GR in the massless limit. Theletermining the strength of gravity and therefore the elust
Vainshtein mechanism works not only in the nonlinear masing of matter, and enable us to quantify the deviations from
sive gravity [58555] and DGP models, but also in other morethe standard gravity predictions.
general models, such as the Galiledns [56-62], which are the This paper is organised as follows: IfBwe briefly de-
focus of this paper. The Galileon model is the general namecribe the quartic Galileon model and derive its field equa-
of a class of models whose Lagrangians respect the Galileafbns in the quasi-static and weak-field limits; we alsoadntr
shift symmetry, namely the Lagrangian is invariant under th duce the attractor tracker solution of the model, which &elp
following transformation in the Minkowski spacetime, us to remove one Galileon model parameter, obtain analyti-
@ cal expressions for the background quantities and to siynpli
the field equations. In HI] we re-express the field equations
wherey is the Galileon field and,, is a constant four-vector. in the RAMSES code unit and derive the discrete versions of
If one requires that the field equation contains at most sedhese equations which can be solved on a mesh. We point out
ond order derivatives, then there are tﬁreessibilities, re- thatthe quartic Galileon equation can be considered asa thi
spectively the cubic, quartic and quintic Galileons, namied order algebraic equation fov2yp, and that first analytically
ter the highest power ap in the Lagrangian (e.g., the quin- solving the latter could greatly simplify the numericalsol
tic Galileon Lagrangian contains the fifth powerof quar-  tions to the former. A new algorithm is proposed based on
tic Galileon fourth and cubic Galileon third; more detaite a this principle, which is shown to work very well for a number
given below). of test cases in Then in 8V]we discuss further issues
There have been many studies of the astrophysical and cothat arise in cosmological simulations, describe the samul
mological implications of Galileon models (e.d..[63-77f)  tions and present our results. We finally summarise and con-
particular, there have recently been seve¥abody simula- clude in §VI1
tions of these models (e.d.. [781-84]). However, so far,inenl  Throughout the paper we shall follow the metric convention
ear simulation of the Galileon models have been restricied t(+,—,—,—), and set: = 1 except in expressions wher@p-
the DGP and cubic Galileon models, which involve up to secpears explicitly. Greek indices run owv@rl, 2, 3 while Roman
ond order powers of the scalar field derivatives, e(.@?,go)z indices run ovet, 2, 3. Mp is the reduced Planck mass and
and ViViyV,V; ¢, in their field equation. We emphasise is related to Newton's constartk, by Mp,* = 87G.
that even for these simple Galileon models, those deriwativ
couplings already make the equation highly nonlinear. & th
full Galileon model, one can have even higher order deriva-
tive coupling terms, such a(§290)3, V2pViVipV,V, e and
ViVipV,;ViLpVEV,p in the quartic Galileon model, and . . L . .
we ars:e7 unaware of :ny self-consistent simulations of nenlin 1 iS section gives a short description of the quartic Gaiile
ear structure formation in this case. Recently, (85 hamod.el_and the derlvatlon of its flelo_l equations in appropri-
made a spherical collapse study and found that the highes‘?—te limits under whichV-body simulations are usually carried

order Galileon model, the quintic Galileon, admits no physi out.

cal solution to the Galileon field in the quasi-static limitept

when the matter density perturbation is sthallherefore, the

quintic Galileon model is not of interest to us here, and this

work will focus on theN-body simulation of the mogfeneral

model that is still viable under the quasi-static approxiorg

namelythe quartic one. The full Galileon model, constrained by the requirement of
In this work we develop an extension of the numerical al-having at most second-order derivatives in the field eqoafio

gorithm used in[[82, 84] for the DGP and cubic Galileon sim-is described by the followingodified Einstein-Hilbeaction

ulations, and apply it to the quartic Galileon model. This is

Oup = Oup + by,

II. THE QUARTIC GALILEON MODEL

A. The model
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2 These are in addition to the standard quintessence Lagiamgih a linear
EOt(e”ﬁa'EfOEg;f ;Cla'arfﬁe'd, Whic;?ht a_'IS? respects the Eailshift symme- i which R is the Ricci scalary is the determinant of the met-
ry (see Eq| elow for more details). : ; : : .

3 Although this might merely be due to the terms which are regtkin the ric tf(.enlzorg“’}f]’ Lo, is the L.agrant?lan densnx forlgoémzl mat
quasi-static and weak-field approximations used to deniedi¢ld equation ter fie S (p otons, neutrlnos_, aryons and co ar matter
(as we shall discuss below), it could also imply a breakdoh@model ~ andZ; (i = 1,--- ,5) are the five allowed components of the
itself. Furthermore, these terms make the full equatioris@fjuartic and ~ Galileon Lagrangian density specified by the constant coeffi

quintic Galileon models too complicated and not tractablpractice. ClentS,c“ which are free parameters ofthe model. These terms



are given by
Ly = Mo,
Lo = VeV 0,

2
£3 = WDQOV#(PVHQO,

1
Lo = WVMNWP (Op)? — 2VAVY 4V, V0
1
- SRV*oV,g),
1
Ly = 25V oVap| (O0) - 30pV* V6V, 7,0
+2VIVY oV, V ,,0VPV 0
- 6Gpuv'uvy(pv,u(pvp90:|v (3)

whereG),,, is the Einstein tensor, is the Galileon field and
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in which p,,, is the background density of matter (radiation
is neglected because we consider only the late-time umivers
throughout this paper}{ = a/a is the Hubble expansion rate
andy is the background value of the Galileon field (we do not
write overbars here to lighten the notation, see below). A do
is the physical time derivative. Note that from here on weehav
made a redefinition of the Galileon field

%2
i I 6
Mp; 14 ( )

so that the new Galileon field is dimensionless. Correspond-
ingly, M3 = HZ Mp, has been used to derive Ed4.[5).

B. Equations in the quasi-static and weak-field limit

In N-body simulations of modified gravity models, we usu-

M is a new mass scale characterising the onset of the accaly work under the quasistatic limit, which means thatiatlt

learation epoch, which is defined By = H2 Mp,, with H,
being the present-day Hubble expansion rate.

derivatives of the scalar field perturbations are assumée to
small compared with their spatial derivativé&f| < |5 ;|)

Note thatl, 5 are the Lagrangian densities for the normaland can therefore be dropped. In the cases of Galileon models

guintessence field with a linear potential. The remainimgeh
terms, L35, are characterised by the exponentofvhich
appears in them, e.gCs is called the quintic Galileon model
because it contains the fifth powerofLikewise,L; is called
the cubic Galileon and, the quartic Galileon. Note, however,

the quasi-static approximation has been shown to workyprett
well on small and intermediate scales in the linear perturba
tion regime[[72]. For the quartic Galileon, we shall in adtit
assume that the time derivatives of the gravitational gatkn
are much smaller than their corresponding spatial deviesti

that when we talk about the quartic Galileon model we gen-

erally setcy # 0, c3 # 0, and similarly the quintic model has
co,c3,cq4 7 0. ¢y IS always set td in our study.

B ~ W] <[] ~ W], &~ HE <[], (7)

Nonlinear structure formation for the cubic Galileons haswhere®, ¥ are the Newtonian gauge potentials in the metric

been systematically studied in_[84], which demonstrated th i1
the Vai?:shtein mec¥1anism is%ry Lfﬁcient in suppressieg th d%s = (1+29)de* — a*(1 = 2@)y;yda’da?,  (8)
modified gravity on small scales. As for the quintic Galilepn  and ; denotes derivative with respect to the comoving coor-
[85] showed that the strongly nonlinear equation does not ackjinates. +,; is the metric of the three-dimensional Euclidian
mit real physical solutions in regions where the density-congspace with signaturer, +, +).

trast s higher tha(1) (at least in the quasi-static and weak- | addition to the quasi-static approximation, we also work
field limit), and so the model does not merit or support a fullyin the weak-field limit, which amounts to dropping terms such
nonlinear _study. Co_nseque_ntly, the quartic model is thg onl ;¢ ©ip,; compared withy"' . Note that relaxing the quasi-
cosmologically feasible Galileon model that hasn'tbeewist  giatic and weak-field approximations will result in many new
ied with N-body simulations, and this will be the main goal {grms entering the final equations, making them much more

of this paper. _ _ difficult to deriveor solve We will comment more on the im-
The fully covariant expressions of the Galileon energy MO-plications of these approximations later.

mentum tensor that the Galileon equation are extremely 1ong |, the rest of the paper, we USg to denote partial spatial
and we shall not present them here. Interested readers-are {gurjyatives. After some tedious calculation, we find that th
ferredto, e.g., the appendix &[_72] for the complete foraeul 00)-component of the perturbed Einstein equation, when th
In what follows we shall only give the simplified versions of Gajileon contributions are included, can be written asofed

these equations under appropriate limits. _ _ in the quasi-static limit (some useful expressions arergige
The background Friedmann and quartic Galileon equanng\ppendi)@ and note tha¥’? = ViV;)

are respectively given by

V20 = 4nGpma’ — C—3¢2V2<p
1 45 m 5
3H2 = 87Gpm + =c23? + 62 H? + = SL [1204 (4) Hg
2 HO 2 H() 3 Cy4 1 .2 2 2 iv7j
5@@%’ {(V ‘P) - V'VpViV p
and 0 3
C4q .32 C4 .42
. 6L HPV2p 4 2 g2, 9
0= co(¢p + 3HQ) + % (12H<p¢ L 6HP? + 18H2¢72) it eVt o ©)

0

(54H2<p2¢ 4 S6HH + 54H3gb3) ’ Note that to lighten the notation we choose not to digeas

C4
T the Galileon perturbation; instead denotes the full Galileon

o (5)
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field in Vy and its background value ip (the latter is ex- Similarly, the diagonal part of thei{)-component of the
pressed according to the quasi-static approximation,onith Einstein equation reads
which the above equation would have been much longer).
At this point, it is useful to introduce some new notation.
The quantityV;V ;¢ can be decomposed into a trace part and

a trace-less part in the following way V(U - @)
1 Cq 1 2 3 == = =
1 S = ——— = | (V%) = SVIVIpV,V;
ViV = 3% V2e + ViV,e. (10) 3HIa2" (Vi)™ = 5 VIVieVivye
_ C4 .2 .3 2
The above equation serves as a definition of the opeRator +H_§ (6£°¢ +2HQ?) Vi
which satisfiesy” V;V ;¢ = 0. To write down the above de- 3 ¢y 1 ¢y

composition we have used the fact thafV ;o is symmet- +§m¢>4V2\IJ + §m¢>4V2<I>, (12)
ric as partial derivatives commute with one another (withou 0 0

such a property we would have to add an anti-symmetric part

to the decomposition). An advantage of using this decompo-

sition is that, as we shall see below, when we discretise-quaRyhere we have used the fact that dust-like matter and:the

tities containingV;V ;¢ on a 3-dimensional mesh, the trace {eym Galileon do not contribute to the total pressure pbetur
part involves only the central cell and its 6 direct neighisou +ion in this limit.

(i.e., the cells with a common face with the central cell)jlerh

the traceless part involves the 6 direct neighbours and2he 1 The off-diagonal part of thei{)-component of the Einstein
neighbouring cells with a common edge with the central cellequation is

Indeed, we shall see below that this decomposition guagante

that the central cell only enters the Einstein and Galileprae

tions via the quantit}’2, which is why the operator-splitting

techniquel[80] works for simulations of the DGP model [82] ViV;(¥ - ®)
and the cubic Galileon modé| [84]. el oo ooy 2., -
With the above decomposition, we have = H_{}ﬁw 2ZViVipV;iVip = 2V ViVip
L 2 o 2¢c4 1 . =g = =
(V20)? = VIVIpV,V,p = S (V2%)* = ViV V0, —EH—tpﬁﬁz%jvkvl@kaZW
0
and thus the (00)-component of the Einstein equation can be +% (60°3 +2H@?) ViV
rewritten as 0
3cC e = lea e =
c3 . 22 ALY 2 AT
V2® = 4nGopa® — H_%ﬁv?(p +5 ¥ ViVi¥ g ¢ V.V, ®. (13)
B R R AL
H§ ag‘P ¥ 2 PViV;p
—6%H¢3V2<p + g%&v?cp. (11) Finally, the Galileon equation can be written as follows
0
|
0= —V2p — 2 (45 + 8Hp) V2 + 283 1 (V) — 3oV | — 22 52V
2 ¥ Hg ¥ ¥ ¥ 3Hg a2 ¥ 2 PViV;p Hg‘ﬁ

1 4 . _ o .
+% b ( -5 (v2<p)3 +2V2pV' VIOV, Vi — 4viv,,-<pv3vk<pvkv%p)
0

1 Bcici o < 1 Bcici < <
+ 5 (4g +4HQ) ((V2<p)2 — §v1wwing@) + 4¥<p2 (v%v%p - ivzv-hpvivjxy)

— %a—12¢2 (v%v% — gvivwvivj@) — (24Hpp + 12H? + 26H?¢*) V3
— 12HP*V?U + (12¢%¢ + 4H¢3)V2<I>] : (14)
[
where we have used and
ViVjpVIVEVVip V2V VIpViVp = V2oV VoV, V 0 + % (V23p)".

= @i@jtpﬁjvktp@kviw + Vztp@iﬁjwﬁivﬂp
1 3
+§ (VQQO) 5



In principle, the time-dependent coefficients in EGZ 2, C. Equations on the tracker
[I3 [19) depend on space as well, but as mentioned above the
quasi-static approximation allows us to ignore their spale- The background Galileon equation, EE),(admits an at-

pendence. Rigorously speaking, the time dependence ia thegactor tracker solutior [66], which can be expressed as
coefficients is determined by the initial conditiongfwhich

means that they must be first solved numerically somewhere H¢ = const. = ¢HE, (18)
else and then used when solving the above equations. As Weh i a di ol hi be checked b
will see in the next subsection, however, the Galileon modeY/N€re€¢ is a dimensionless constant. This can be checked by

has certain properties which allow us to calculate thesé coeSuPStituting EqIg into Eq. §). .
ficients analytically. Observational constraints using linear perturbation obse

o . . bles[[74] show that the best-fitting Galileon model does fol
Before leaving this subsection, let us mention that we woul h K lution in th This all
like to eliminate the term&2®, V¥, ViV,;® andV,;V;¥ ovlv t Ie tra;]: er so gtlon "&t ¢ rec;n'; past. This a OWES us to
from Eq. [[d) such that it contains only the matter terms, th calculate the time-dependent coefficients in EfiSl 12

. . : L . as follows.
Galileon field and its derivatives. However, by using EAd ( Multiplying both sides of EqZ) by H2, using Eq.[[) to
12 [I3) we can only remove three of them.. Ehrqmatethe eliminatey and dividing the resulting equation B, we get
fourth, we can use th&-component of the Einstein equation, '
which is 1 15
E* = Qa3 E* + 60252 + 2¢3€% + 7c4§4, (19)
Goi = Roi = 2Vi®+2HV,V = 8rGTy, in which E = H/H, and(,, is the fractional energy density

. . for matter today. Setting = 1 in the above equation gives
whereT); has contributions from both matter and the Galileon Y 9 q 9

field. The problem of this approach is that it involves thegim 1, 3 15

derivative ofv® which is not negligible (V) | ~ H|V ) g2t T2+ Sl =1-0y, (20)
but which is not straightforward to evaluate in the quaatist
approximation. An alternative approach is to make use of th
Euler equation for dark matter which, in the quasi-statiutlj

reads E*=Q,a3E?*+1-Q,, (21)

gvhich can be used to determine the valu& givenc,, c3, ¢4
andQ,,,. Substituting EqZ0) back into Eq.[T9), we get

'+ 2HV + 0k V0t = _Pvlqj’ (15) which gives the Hubble expansion ratezanalytically as

H) _1 -3 7,76
in which v’ = da?/dt (recall thatz? is the comoving coordi- (FO) T2 {Qma VOO A=) (22)
nate) is the peculiar velocity of the dark matter fluid. Lower

ing the indices using;; and taking the partial derivative with Given the solution td (a), one can then use EdL8 to find
respect tar’, we get solution top(a) analytically. We will not present this solution

explicitly here.

1. Taking the time derivative of EqIB), we further obtain
-V, V., ¥
a? ! H 1. 59"
= V;0; +2HV ju; + Vj’l}kvk’l}i + ’Ukvj‘vk’l}i Y = _EQO = §§H0?a (23)
_ig

[V -0+ 20V -0+ V5! Vi + 0"V V0] (168) e d/dIn(a).

Now, on the tracker, the (00)-component of the Einstein
inwhichV - v = V'v;. This equation is neater than tf@)-  equation becomes
component of the Einstein equation, which also has contribu
tions from the Galileon field. Furthermore, M-body simu-

3

V2 = a147TG5pma2 + a2V2cp

lations the termy*Vv* in the Euler equation is usually ne- Qs 2 V2 Soigi ot

: . —_— - = TV Vel , (24
glected, which gives us +(H0a)2 (V%) 2v VIeViVie| . (24)

1. where

—;Vz-vjklf 1
.. al = — R
= Vb +2HV 0 = 2LV 9+ 2HV o] (17) 1= Seag?e”
= 3y’ +6cafy’
Eq. [[D allows us to eliminat&/; vV, ¥ in Eq. {I3) to obtain an 1— 3,829
equation which contains only the Galileon field and its deriv B calp’
tives. The drawback of this approach, however, is that ir sim as = 1— 3c,e202° (25)
2

ulations it is not always possible to have tracers of theaiglo
field, especially in low-density regions. are time-dependent dimensionless functions.



The diagonal portion of the {)-component of the Einstein
equation can be used to expras%V in terms of the Galileon
field and matter density perturbation, as

V2w
= o4 Gopma® + (as + azay) Vi (26)
1 a3 2 \2 3_._ . _ _
—=— | — |[(V — =V'V'oV,;V,pl|,
+ (0[4 3> (HOG)2 |:( (p) 2 ' JQO
where
1+ c4€2p"
Qg = 3 2, 127
1- 5045 ¥
3 2 1 2 2,7
s = ca§ 9" + 2487 @)

1— %C4§2<p’2

are time-dependent dimensionless functions.

The off-diagonal part of thei{)-component of the Einstein
equation could be used to expré&ssv,; ¥ in terms ofV;V,; ®
and the Galileon field:

V.V;®

Qy

2 043/ = =
- =V2oViV;p

3 (H()a)

1o - fe o
— V.V, - 2,V +
(6%} (6%}

203/ 0y

=5 e 1 e = =
(Hopa)? VNWVJ'V%—E%J-VZV%VNW . (28)

With the above expressions, one can elimirfated, V2 ¥
andV;V ;@ in the Galileon field equation, whil&;V; V¥ re-

mains. As discussed above, there are at least two ways to get

rid of this:

¢ Using the(0:)-component of the Einstein equation and
its derivatives, which will however introduce undesired

vivj\l/ = a1a4?iﬁj\IJGR + (a5 + 042044) vingo
3_ay (a
A (Hoay \

3

From a practical point of view, the use @fyr instead ofl

1 o o o o
) [ViV; (pV¢) — ViV V20 — V;V; (VFeVip) + V2oV V 0] .

derivative terms ofd (and its time derivatives) into the
Galileon equation.

e Using Eq.[[9 and its derivatives, which will introduce
the velocity field and its time and spatial derivatives into
the Galileon equation; alas the velocity field itself is of-
ten poorly reconstructed in low-density regions.

Given that neither of the above approaches is ideal, we need

to think of other alternatives. One option is to repldcevith

War, Which is the gravitational potential for the same matter
distribution but in standard gravity. To see this, we retizt
U qg satisfies

V2UqRr = 47Gop,a’. (29)

With this expression, Eq26) can be rewritten as

ViU
= a1044v2\I/GR + (045 + a2a4)V29@

3 1N ,
a5 (a4 - g) Vi (V2oVip — VIpV,V,0)

9 (Hoa)?
where we have used
(V20)* = V, (VipV2p) — VipV, V20,

ViVIeViVe =V, (V;pV'Vip) — VoV, V3.
Integrating the above equation once, we get

AV
= masViVar + (a5 + asas) Vi

2
g4 —

2 (Hoa)®
Then,V,;V,; ¥ can be obtained by taking the derivative of this
and subtracting the diagonal part, as

(30)

a3

1 .
3> (V2oVip — VIpV;Vp) .

(31)

ing the equation using a relaxation algorithm, provided tha

in the Galileon equation is indeed more convenient, becausthe boundary conditions are set carefully. However, the dis
¥ andy are interdependent such that the coupled differentiatretisation of the fourth-derivative terms involves moefic
equations for them need to be solved simultaneously, whickthan that of the second-derivative terms, which can make it

is impossible inV-body simulations. On the other hanklgr
does not depend ap, so that one can first solegg as usual,
and then use its value in the Galileon equation to find’he
problem with this method is that it involves fourth derivat
of ¢, such asv;V,; V2, and therefore the resulting Galileon

harder for the relaxation algorithm to converge (we checked
this explicitly by implementing EqEJ) into our numerical
code and confirmed that the convergence property for a few
simple tests was worse than that of the method used below).
Therefore, we shall not go for this option, though we will re-

field equation can no longer be regarded as an algebraic equasit this point in the final remarks in[€Il

tion for V2. Of course, this should not prevent us from solv-

The Galileon field equation, with all terms involving? ¥,
V2® andV,V;® eliminated, reads



c it 8TGOpma®  Bact e
0=—(V?0)® + { + s ViVIipV,Vip| V2
(Hoa)4 ( (p) (HO ) ( ) ﬂQ 53 ( a)2 (Ho(l) i¥ 2
B G I LT 4 G0, o+ T G0, 4 BesnGopa®, (32)
(Hoa)* """/ (Hoa)? 7T (Hoa)? ’ ’
where we have restored the speed of ligahd defined the following time-dependent functions
4 o 2
Bo = g +4—3 (a4 - §) ;
1 (4 1
Br=— [_c3 +deab + 2c4§— 4602 6220 (a4 - —)} ,
BO 3 o aq 3
1 1
By = — [—Cg — 8es — 26467 — (2056 + 60487) T 42225 4 20‘20‘4} ,
Bo aq a1
2 1
B3 = 5008 (a4 - g) ;
1 4 a3 a? 2
=_ 192 28 _g= _Zz
54 ﬂo |: “ + 30[10[4 a1 (044 3):| ’
4 2
BSE__ (C4+ % )a
Bo Q104
3 [4 o’ 4 1
Bs = —55 |gos et + 2045— p o2 A8 L 2 (1, — 2 )
260 3 a1y oy a; 3
o 6 a3 1
pr = Bo aron <Oé4 3> )
ﬂg = — (Oé2044 + 045) . (33)
|
It can be checked that this equation reduces to that of théollows (tilded quantities are expressed in code unit):
cubic Galileon model when, = 0. In Eq. B82), the term in-
volving V;V; ¥ can be expressed in terms of the velocity field
of dark matter, as discussed above, but we shall leave & in it .z . pd av
current form for reasons which will become clear below. In =5 P~ 0l BHy'
Fig.[[, we show the time evolution of the- and 3-functions, ~ 22U di 2a2p
from which we can see that all of them are of order unity at UV =__—— _ df = Hy—, ¢ = 34
y (BHO)27 00/2’ (BHO)27 ( )

late times, bupis, 3; ands are close to zero at early times.

Eq. 32 can be considered as a cubic equatiorNérp, of
which one can analytically write down the solution. Thislwil
be done explicitly in the next section, where we will re-eegs
the equation in theAMSES code unit.

in which x is the comoving coordinate,. is the critical den-
sity today,(2,,, the fractional energy density for matter today
andv the particle velocity. In addition3 is the comoving size
of the simulation box in unit ok —'Mpc. Note that with these
conventions the average matter density is 1. All the above

IIl. DISCRETISED EQUATIONS AND ALGORITHM quantities are dimensionless.

In the code unit, Eq[@2) can be written as

In this section we describe the discretised field equations i
appropriate units that thecosmoGcode solves to carry out 3 )
cosmological simulations. 0= (Vch) +m (V2<p)

+ (92 +7130mad + VIV V0) Vi
+75?i?jcp?j?kcp?kvis0 + ’YGvivj(P@iﬁj(p

A. The simplified Galileon equation _i_,w@i@j(p@i@jw T 5Qmad,

(39)

The code units used in our code are based on the superco-
moving coordinates of [44, B6], which can be summarised ag which we have defined = p — 1 and the following time-
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FIG. 1. (Color online) The time evolution of the (left) and 3 (right) functions which appear in the field equations, E8%,[32), from which

we can see that all these quantities @@ — 10) today.

dependent functions
71 = Brat,
Y2 = Baa®,
V3 = 3Psa”,
V4 = Pa,
V5 = Bs,
Y6 = Bsa’,
V7 = Brat,
Vs = 3fsa®. (36)

check numerically)
1 1/2 0 2
3 {71 +2A7"" cos (3 37r)} . (38)

whereO is defined by

V2<p

cosO = A/ (2&1”/2) . 0cn) (39)
This solution is obtained under the condition that
4AT - A3 >0, (40)

in which case we find threeal solutions to Eq[35), but only

Note that, to lighten the notation, from here on we ignore thehe above branch gives the correct homogeneous limit.df thi

tildes and unless otherwise stated all variables are indbe c
unit.

condition is violated, there exists only one real solutidrick
does not give the correct physical limit, and this denotesa t

Being a cubic equation 67, Eq. B has three branches preakdown of the model or the approximations which are used
of solutions, and not all of them are necessarily real. THus, to derive ourN-body equations.

is useful to decide which branch to follow prior to solvingsth
equation numerically to fing. It is evident that the physical
branch of the solutions must reproduce the reSdlp = 0 in

a homogeneous density field, namely whes 0 in Eq. (35).
To write down this solution, let us define

X = 75%%@@'?%%?% + %‘@ivjcpvi@jgo
+77VIVI OV, V¥ + 750,00,

22 =72 +132mad + UV VoV,Vjo,

Ay =7 — 3%,

Ao =273 — 97Dy + 275, (37)

Then the physical branch of solution is given by (as one could

Note the condition EqE0) automatically guarantees, >
0. However, whether Eq40) itself is satisfied or not depends
on several factors. There are at least two situations whege i
not satisfied (for the best-fit parameters given below):

e where the density is low (e.g., in voids) — this is a gen-
uine problem of the quasi-static and weak-field approx-
imations under which our Galileon equation is derived,
as demonstrated in a spherical top-hat study of the same
model [85] and in the numerical tests discussed below.
This is similar to the problem of imaginary square root
in the cubic Galileon model, the cure of which would re-
quire us to write down the full Galileon equation drop-
ping all these approximations, which is too complicated
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and thus beyond the scope of the present work. Here wequation which correspond to the fifth force, but also a time-
follow [84] and take a simple way out of this problem dependent rescaling of Newton’s constant (characteriged b
by settingtA$ — A2 = 0 whenever EqHQ) is violated;  the coefficientv; oy in front of ,,,ad). This fact has impor-

o ) ) tant implications for the behaviour of this model, as we will
o where the density field does have physical solutions, bugae pelow.

the initial guess of the Galileon field values in the relax-
ation procedure is bad — this is a numerical fluke which
can be cured, again, by settingh? — AZ = 0 in situa-

tions where EqH40) is violated. As the relaxation pro- B. Discretisation
ceeds, the scalar field moves to its true value and the
problem disappears automatically. We shall use the Gauss-Seidel relaxation algorithm to solve

Eq. 39, which must be discretised beforehand. Let us rewrite

The new definitions in Eq38) make the physics rather ob- this equation in the following form

scure, but one can still read certain information from itsée
how the screening works, for example, note that when 1

the terms containing dominateA;, A, so that Lo = Vip+ % [71 +2AY2 cos (% - gw)} = 0,(42)
Ay~ Ay~ 0,
— cosO ~ 512 50 where/ is a differential operator (note that in this subsection
1 ’ L doesnotdenote the Lagrangian density).
=0 — 3™ We will consider a 3-dimensional mesh consisting of cubic
1 cells on which we are to solve the differential equation. ket
= Cos [—(9 — 27r)] ~ 53 denote the side length of each cell and yse, to denote the
3 value of the Galileon field in the cell whichigh, j-th andk-
1 th in thex, y, z directions respectively, then the discretisation
= VA cos [g(@ B 27T)} — const., of some simple field derivatives are given by
which means tha¥?¢ becomes spatially homogeneous (with Voo 1
atime-varying value). This can also be observed from[E). ( o = 5p (Pit14k = Qi-1,k)
with the s g terms dominating. )
In a similar way, the modified Poisson equation, Ef) Vap = 2 (Pit1,k + Pim1k = 20i4k) 5
written in the code unit, becomes 1
VaVyp = —5 (Pit1j+1k + Pic1j-1k — Pit1 -1k
VA 4h
3 — Qi-1,j4+1,k)-
= —aqpayQnad + (as + a2a4)V2<p " )

2
Starting from these, discretised versions of the more cempl

+a—z <a4 — %) [(Vggﬁ)Q — ngVJ(PVivj‘P . (41)  cated derivative terms which appeabin, X, can be obtained
“ after a tedious derivation. The expressions are too lonthtor

Note that, unlike the cases of the cubic Galileon or DGP modmain text and are put in AppendBifor interested readers.
els, here we have not only the additional terms in the Poisson The Galileon differential operator can then be written as

1
Eh%‘,j,k = 5 (@it1,5.k + Pim1,k + i1k + Pij1k + ©ijkt1 + Qij k-1 — 69i k)

1 1/2 Oijk 2
+§ v + 2A1_’/i7j_’k cos (T7 - gw)} , (43)

in which all the derivative-coupling terms are incorpodhite  the convergence property for the quartic Galileon equation

%1 2,1,k (through®;, ; ). As discussed in AppendB], these necessarily as good as that of the standard Poisson equation
terms do not involvep; ; .. Therefore, as far as the discrete because the quantiti&s - ; ; » change during each relaxation
equation is concerned, the differential operatbiis linear so  sweep, and are not fixed (this is in contrast to the source term
that linear Gauss-Seidel relaxation, or fast Fourier fans,  of the Poisson equation).

can be used to solve the discretised Galileon equation.ihis

the advantage of splitting’; V ;¢ into a trace and a trace-less

part, and it is essentially how the operator-splittingkrigd]

works for the DGP model. However, this does not imply that
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FIG. 2. (Color online) Tests of the algorithm to solve theif@ah equation. The horizontal axis is the x-coordinateletiie vertical axis is the
Galileon field value (shifted in the vertical direction drhrily to make the plots clearet)eft one-dimensional matter density fields, including
a sine-type field, the numerical and analytical (i.e., Eq)Y4olutions of which are shown as blue squares and blueegespectively, and

a Gaussian-type field, the numerical and analytical (i.e.,(E9)) solutions are shown as red circles and red cuvedle: spherical tophat
densities — the symbols mark our numerical algorithm anditieerlying solid curves denote a direct integration of B){ this test is done
for both underdensities and overdensities, at differeatrio times labelled by the expansion factoiRight test of refinement levels — the
Galileon equation is solved on a regular level (level 8, greguares) and a refinement level (level 9, red circles) forttbphat overdensities,
and the refinements have spherical geometry. For all theteaeegular mesh witth6 cells in each direction is used. The agreement with the
analytical solutions is excellent, showing that our altiori works very well.

The Gauss-Seidel relaxation updatgs ;, according to In all tests, we use the best-fit value€df, and the Galileon
parametersd, cs3, ¢4, &) as given below. Further technical de-
h ( f“_‘"d) tails can be found in the caption of FB.
h,new __hyold .5,k (44)
Pigk — Pijk 6701(%?;?1;1) )
CES A. One dimensional density fields
wherep ' andp " are, respectively, the values of ; . . . )
Vijik Vi jk P Y O 5w As in the case of DGP and cubic Galileon models, it can

before and after a relaxation sweep, and be shown that if the density field is one dimensional (&.¢s,

8/:’1(99}?101‘1) 6 allowed to vary only in the: and not they, z-directiong, then
# =——. (45) all nonlinear terms in the Galileon field equation vanish and
00,k h we are left with the following linearised equation
The discretisation of the modified Poisson equation is sim- d_2 () = 80 45 (46)
ilar, and we shall not present the details here. a2 P\ T T, me

(note that throughout this section all quantities are esged
in the code units). This equation is straightforward to satv
simple density configurations, enabling one to find anadytic

) ) ) solutions. Here, we consider two representative examples.
In this section we carry out several tests to confirm that the |, the first case, we make the ansatz

above algorithm implemented in tlcOsMoGcode indeed
works properly. Such tests are important for us to be confiden p(x) = Asin(27z), 47)
about the reliability and accuracy of our numerical soluio
Following [43], the simplest nontrivial test one can do te t
code is to check that in a homogeneous density field the sol
tion is constant everywhere. In such a test, the initial gués
the scalar field values on the simulation mesh is set randoml
It is then desired that after a few Gauss-Seidel relaxatioss o 472 A
field approaches the same value across the whole mesh. We (z) = —
have checked that our code passes this test, but we shall not
show the results here. Instead, in the rest of this section wand in the test we také = 0.002 for illustration purposes (we
will focus on other more sophisticated tests. have checked other values dfand found similar results).

IV. CODE TESTS

h inwhichz € [0, 1] andA is a constant, use E¢®) to obtain
Jhe corresponding|(z), which we then plug into the code and
check the solution tp(z) agrees with the original ansatz. The
)gensity field is given by

a sin(2mx), (48)
V8 ma
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In the second case, the anstaz is that) has a Gaussian Eq. B]) is a third-order algebraic equationlrf‘— and, of
form, its three solutions, the physical one (i.e., the one whitissa

(v~ 05)2 fies1d2 5 0ass — 0) is given by (see aIsbf[BS])
<p(x)—A{1—ozexp [—L}}, (49)

5 .
. 771—%—2\/2005 (9_2W>1 ,  (53)

1d<p 1

rdr

for which the density field is given by

24 —05)? in which we have defined
o(x) = _204 [1 - 2@} exp [ w} .(50) .
w . A,
cosO = —,
We takeA = 0.002, e = 0.9999 andw = 0.2. 2y/ A3
The left panel of Fig2 shows the results of these 1D tests, 5 s
in which the blue squares and red circles are, respectivaly, Ar=ny—3 (772 + m38ma 5) 5
numerical solutions t@(x) in the sine and Gaussian tests. The . 5 3z .
analytical solutions, Eqi{) and Eq.[9), are shown as solid Ag =217 = 9Im (772 + 1382ma 5) + 271480a0.(54)

curves with the same colours. One can see that the numerical
and analytical solutions are in excellent agreement withea EQ- (&9 could then be easily integrated to obtaifr). Par-
other. ticularly, §, and thereforc—:} ‘fif is a constant inside a spherical
top-hat density configuration, making it easy to find
In our numerical implementation using a mesh wif6?
B. Spherical overdensity cubic cells, we put the spherical top-hat of radiuat the cen-

tre of the simulation box. The density value inside and olatsi
In the 1D tests above, all nonlinear terms do not contribute the top-hatis setin different ways: if the top-hatis ov

_ I
to the Galileon equation, and to check the behaviour of thes}Q’n alleéilg ou(zsll d(gfgtgggiﬁea\?;3ea:§s?é§r|§nér?§saenr?tsliir)1
terms it is necessary to do tests in which these terms do Co'1t1hat the values of in all cells add to zero: if the top-hat is
tribute. The simplest possibility which satisfies thiserion is P

a spherically symmetric density configuration, such as a tOPUQE,zrgE?;g eRVVE (?S;)s,_en_sgghl?hgltl tﬁzll\?allzseggﬁ aalllngeﬁrsle
hat overdensity or underdensity.

With a lengthy but trivial derivation, it can be shown that in gﬁ'faelpe’ridtg t?hz?;('). Correspondingly, we have done tests for 4
the spherically symmetric case the Galileon field equatéon ¢ P '

be reduced to o 6in A 23.77, dows = —0.10, R = 0.10 anda = 1.0,
1do\? 1do\2 wheredi, oyt are, respectively, the values 6finside
— (=52} 4, (222 and outside the top-hat;
rdr rdr

dy e 0y ~ 190.9, douy = —0.10, R = 0.05 anda = 1.0;
et mafa8] (152) 4 maOmad, (62
" e 0in ~ 190.9, §ouy = —0.10, R = 0.05 anda = 0.5;

in whichn;_, are time-dependent functions defined by e 51, = —0.30, Sou ~ 0.000157, R = 0.10 anda = 1.0.
_ 1 2 The numerical solutions to these cases are plotted in the mid
o = —4ecy + 36— oy — = . . .
a8 dle panel of Figl2, respectively as blue squares, cyan cir-

cles, green diamonds and red triangles. The corresponding
} semi-analytical solutions, obtained by integrating BE&) (are
shown as solid curves with the same colours. Again, the agree
+ 1 [180‘30‘5 g 203 (a4 _ _)] ment is rather good, except at large radii where the effects o
noa* Q@ the finite simulation box and periodic boundary conditioas b

m [403 4+ 12¢4& + 6045

1 9 o\ comes non-negligible.
2 = N ca + 8e3€ + 26ca€” + (2638 + 6¢48”) o These tests already reveal some physical behaviour of the
Galileon field. For example,

2 (6%}
+——(2a5 + a204), . . . . .
Mo Q1 e given the same overdensity, the Galileon field profile is
6 1 much deeper at late times than at early times;
N3 = —a3 | g — 3/
e at a given time, increasing the overdensity value makes
Ny = x (o5 + anony) (52) the Galileon field profile steeper;
Mo

R ¢ the slopes of the Galileon field have opposite signs in
ando is the average densityithin (not at) radius-. overdense and in underdense regions.
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More importantly, we find that the numerical code fails to-con V. COSMOLOGICAL SIMULATIONS

verge for very low-density tophats (e.gw, < —0.5). This is

because in such casess© > 1, which has no solutions at  Next let us turn to cosmological simulations of the quar-
all: the physical branch of solutions to EGIj becomes com-  tic Galileon model. Because the field equations for this rhode
plex, marking the breakdown of the existence of solutions taare considerably more complicated than any of other modified
the Galileon field equation (there is still one real solution  gravity models which have been studied with simulations so
Eq. &) but unfortunately this is not the physical solution andfar, several new issues arise here which we shall discuss firs
therefore cannot be taken). This problem is very similah® t \We then describe the simulations and discuss the physical re
imaginary-value problem found in cubic Galileon simulagp  sylts.

which also appeared in low-density regions [84]. As we men-

tioned above, the origin of this problem probably lies in the

guasi-static and weak-field approximations which have been A. Implementations in the cosmological setup

used to derive thév-body equations: although the terms we

dropped are negligible in high-density regions, they cdadd 1. Calculation of the modified gravity force

important in low-density regions where other terms are kmal

too (and may also cancel one another to some exfent) The ultimate purpose of solving the Galileon equation in

The derivation of the full equation with all terms included, N-body simulations is to compute the modified gravity force
however, is toacomplicatedfor the quartic Galileon model. and use it to update particle positions and velocities. Adco
Therefore, despite the above problem, we shall keep workinghg to Eq. [[9), the total gravitational force is given By, ¥
in the quasi-static and weak-field limits. Instead, we simall  (and notv,;®!).
troduce some simple fixes to the problem in the cosmological |n Newtonian gravity and certain modified gravity theories
simulations below. (such as the DGP and cubic Galileons), the two gravitational

potentialst and® are identical due to the lack of anisotropic
stress, and therefore one usually needs to solve the (nadifie
Poisson equation feb. In the quartic Galileon moded # ¥
C. Refinements and so it is more straightforward to solve Hg6Y to obtain®
than to solve the modified Poisson equation B4 (or ®.
Because of the appearance of derivative self couplings of
e scalar field, Eq[2E), or its code-unit version, EJ41), is
more complicated than the Poisson equation in other theorie
There are two methods to deal with these derivative-cogplin

Finally, as our code employs adaptive-mesh refinerheht [44t]h
to achieve high resolutions in high-density regions, itnpor-
tant to check that it works properly on the refinements as.well
For this test, we again use spherical top-hats as the uriaigrly

density configurations. But instead of having a regular mesﬁerms'

with 256 cells, we refine a region which fully covers the top- ¢ use Eq.[B0) to compute the total gravity force once the
hat (by ‘refine’ we mean split a cubic cell into 8 equal-sized Galileon field has been obtained — this approach is very
cubic sub-cells) and also solve the Galileon field equation o straightforward in terms of the force calculation, but it
the refinement. We call the two levels ‘level 8’ and ‘level 9’ does not givel, which is needed to solve the Galileon
respectively, because they hatfeand2® cells in one dimen- equation, because E@Q) cannot be further integrated.

sion. On these two levels, the density field is set up in exact!
the same way. The boundary conditions on level 9 is set up by
fixing the values of the Galileon field in all boundary cells.

e compute all the new terms in E@T), which we define
as per, and addp.g to the source term of the standard
Poisson equation in th&'-body solver to obtain and

In the right panel of Fig2, we compare the solutions on the the total gravity. More explicitlyp.s is defined (in code
two levels for two density configurationg;, ~ 23.77, R = units) as
0.10 (lower) andé;,, ~ 190.9, R = 0.05 (upper), both at
a = 1.0. Numerical solutions on levels 8 and 9 are represented Peft
by green squares and red circles respectively, while thekbla 3

_ 2
solid curves are the solutions by directly integrating &) ( =3 (aroy — 1) Qpad + (as + agoy) Vg

with respect ta. In both cases, we find very good agreement o 1 o 3. _ _
between the solutions on different levels, which showsttieat +t7 (Oz4 - §) [(Vgsc?) - §VZV'7<pViVj<p . (55)
code works well on refinements.

In our simulations, we follow the second approach.

2. Winthe Galileon equation
4 Or this can be an inherent problem of the quartic Galileonehahd even

if all terms are included there are still portions of the pagter space which . o o
have no physical solutions. In general, nonlinear difféatrequations do Until now, we have not been able to eliminate the derivative

not always have solutions and even if they have, the soltioay not be  terms of ¥ from the Galileon equation. As mentioned earlier,
unique. there are at least three ways to do this:
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e using the(07)-component of the Einstein equation and Because the residual at a given refinement level is the root-
its derivative, which will, however, introduce undesired mean-squared of the residuals for all its cells, this ingolieat
derivative terms ofd (and its time derivatives) into the in some cells the scalar field value is not as accurate asém oth
Galileon equation; cells. We have checked explicitly and found that this hagpen

mostly when some of the terms in the Galileon equation (i.e.,

e using Eq.[[3 and its derivatives, which will introduce g, 6"0f the terms specified by — ) are much larger than
the veIO_C|ty field an_d its time and spatllal d.er|vgt|ves Nt iher terms, and this appears only for a small fraction of all
the Galileon equation; also the velocity field is usually the cell§

paorly reconstructed in low-density regions; Fortunately, one does not have to rely on the residual being

e using Eq.[B]) to eliminateV,;V,; ¥, which makes the extremely small to decide on the convergence of the relaxati
Galileon equation higher order and therefore more dif-method. When the residual is smaller than the truncation er-
ficult to converge in the numerical solutions. ror, which is essentially the numerical discretisatioroeat a
o given refinement level, further reducing the residual dass n
As none of the above approaches is ideal, we shall follow gea)ly help because it cannot beat the error caused by gplvin
more straightforward alternative, namely using the valles g jiscreteversion of acontinuousquation|[87]. In our cases,
}IJ directly in the Gglileon gquatipn. Be_cause the Galileowfiel \yhen the residual stops decreasing and begins oscillattisg,
is solved beforel in the simulation, this means that we have \ready at least one or two orders of magnitude smaller than
to utilise ¥ from the previous time step to solve the Galileon ie truncation error — this more than satisfies the convegen
equation in the current step. This approximation, hOweser, criterion advocated by [87], namely the residual being tenal
not a disadvantage of using this method, because than about one third of the truncation error. Thereforehia t
e even if we use the first two methods above, we still neecfimulations, we stop the relaxation in practice when thieires
to know either® or v at the current time step (which we Ual starts to oscillate. The fact that we do not require telre
do not know at the time of solving the Galileon equa- Yal to become very small makes the overall performance of the
tion) to evaluateb ands, and therefore some approxi- Galileon simulations better since, for.examplef.(m) simu-
mations are needed anyway; lations a lot of time is spent on reducing the residual towelo
atleastl0—12 ~ 10719,
e the values ofl’ at the previoustime step are only needed | what follows, we will also find that the spatial variation
for the regular simulation mesh, and on refinements wey the Galileon field is strongly suppressed in high-density

can instead use interpolated values from coarser levelgjions, so that its effect on structure formation in theséores
because the Galileon equation on refinements are solvad minimal anyway.

after ¥ is obtained on the coarser level.

Indeed, we shall discuss later, the error caused by thiappr

imation is small. 4. Time integration
In our simulations, we store the valuesWffor the current
time step to be used for the next time step. The update of particle positions and velocities is done us-

ing a second-order midpoint time integration scheme as-s im
plemented in the defauitAMSES code [44]. This reduces to
standard second-order leapfrog scheme but allows the extra
freedom of varying lengths of time steps. The lengths of time
The standard Newton-Gauss-Seidel relaxation method hageps are determined by the Courant-Friedrich-Levy stabil
been used in all versions @cosmog and there is no need condition.
to repeat its introduction here. Interested readers aeersef Since the inclusion of the fifth force in the quartic Galileon
to [43] for more detail. Instead, here we shall only briefly de model amounts to a change of the Newtonian potential in stan-
scribe the new features of the new code, the mostimportant ¢fard ACDM simulations, the above time-integration scheme
which is the convergence criterion. also works for our simulations provided that the properltota
In simulations off (12) gravity, the chameleon, dilaton and gravitational potential is used. Note that, in cases whese-g
symmetron models, and the DGP and cubic Galileon modelsy is stronger than that in GR, the time steps are made shorte
we have seen very good convergence properties of the scalgy satisfy the stability condition: this ensures that theuaacy

field solver: as more relaxation sweeps are done, the rdsidugf the time integration is similar to that iRAMSES ACDM
(which is the modulus of the difference of the two sides of thesjmulations.

scalar field equation) could become very smgli0~1%). In
the quartic Galileon case, due to the higher degree of nonlin
earity (e.g., terms such 85 Vo VI V*pV, Vip), we cannot

decrease the residual by as much, and below some value t

3. Convergence criterion

h’%Ne note that in the simple tests above the residual can oéieorbe much

residual starts to O_SC'”ate' The Pmb'em IS not aIIewaltw;é smaller. This indicates that the fact that the residual énsimulations can-
change the colouring scheme (i.e., the order for updatiag th not get arbitrarily small could be because of the complita@nlinear den-
scalar field in different cells), or use other algorithmstsas sity field in real simulations (and the approximation usedéaling with

successive over-relaxation. ViV; ).
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B. The cosmological models that these models have the same behaffiaVie generated five
realisations of initial conditions with different phaseach of

Following most previous Vainshtein simulations, we shallWhich with 256” particles.

perform simulations for three different models in this work The simulations are started on a regular 3D mesh @it
cubic cells in each direction, and the density field on thetmes

e thefull quartic Galileonmodel; is constructed using the triangular-shaped cloud schegiks. C
are refined when the effective number of particles insidmthe
exceeds3.0. We have two different box sizes of the simula-

e thelinearised Galileonmodel, in which all nonlinear . e ,
= 200h~*Mpc andB = 400h~*Mpc respectively.

terms of the Galileon equation and the modified Poissorion: B

equation are suppressed, such that there is no Vainshtein

screening; here the clustering of matter is governed by ) )

a scale-independent effective Newton constant given by C. Firstnumerical results

Goit 27 As this is primari_ly a methodology paper, we wiII_ focus_ on

=aag — — (a5 + asay) ; (56) some of the most important features of the quartic Galileon
G 372 model. In particular, we shall look at the effect of the Gadih
field on large-scale matter clustering, and try to undersian
k- physically. More detailed studies, with higher-resolotgm-
ulations, will be left for future work.

e the so-calledQCDM model, which has the same bac
ground expansion history as the full Galileon model but
in which gravity is not modified.

By simulating the linearised Galileon model, one can under- 1. The matter power spectra

stand the effect of the Vainshtein mechanism, and by working

with the QCDM model one picks out the effects of having the One of the most useful statistics to quantify the clustering

Galileon background evolution history only. of matter is the two-point correlation function, or equiatly
The full Galileon model we consider is the same as the onéls Fourier transform — the nonlinear matter power spectrum

studied in [85], which has been shown to fit the CMB tem-ss (k) or P(k). We used the publicly availablowMEs[90]

perature power s ectrum data from WMAEb [7]’ Supernova@Ode to meaSUr@(k) for all the simulations and the results

data from SNLS[[3] and BAO data from SDSS DRY [6], 6dF are illustrated in Fid3 To see more clearly the effects of mod-

[5] and BOSSI([4] very well. Its cosmological parameters are ified gravity, we only show the relative difference Bfk) in
the full and linearised simulations from that in the corasg-

{Qch27 Qh?, h, 7, log [1010145}} ing QCDM simulation; all results are averaged over the five
realisations and binned logarithmically/n
={0.126,0.02182,0.7334,0.0791, 0.945, 3.152}, (57 .

{ ’ ’ ’ ’ ’ b (57) The left panel of Fig3 shows the results from thé = 200
whereh = Hy/(100km/s/Mpc), Q.. are the fractional en- h~'Mpc simulation box. The red curves and circles, from top
ergy densities for baryons and cold dark matter respegtivel to bottom, ShowWPlinearised (k)/ Pocom (k) — 1 ata = 1.0, 0.8
7 is the reionisation optical depth,,, A, the slope and am- a.nd 0.5.respect|vely. From this we see that in the linearised
plitude (at the pivot scalé = 0.02Mpc—1) of the primordial simulations

power spectrum; the Galileon model parameters are o on linear scalesi( < 0.1AMpc—1) the simulation result

agrees very well with the linear-theory prediction (black

{Cz/cg/g, cs, C4/C§/3} = {-4.55,20.0, —0.096} . (58) dashed horizontal lines) at all times, as expected;
For these parameters, our modifizeie code [72] 88] calcu- e 0N smgll scales mode coupling grea_tly enhances the
lates that the age of the Universe is 13.77 Gyrane- 0.998. clustering of matter compared to the Ilnear-theo% pre-
Although in general the initial condition of the Galileonléie diction, and this could b&(100%) atk ~ 10hMpc

i, IS also a free parameter, the fact that we follow the tracker today;
solution allows us to fix its value — using the above parame-
ters of the quartic Galileon model we found that the tracker
solution is characterised lgy= 0.4133. Note however that in
this model the matter density is higher than the best@bM
model for the same data sets, so that even the QCDM model
(i.e., without any modification of gravity) gives strongeam
ter CIUStering than the latter. - . 6 This means that beforg; the growth of density perturbations is governed
To understand t_h?_eﬁeCt O_f _mOd'f'e_d g_raV|ty better, all _mOd' by ACDM (or rather CDM because the effect of the Galileon fieldaglia
els use the same initial condition, which is generated usiag gible). However, the matter density and other cosmologieahmeters are
MPGRAFIC [@] code at an initial redshift; = 49. We can do given by the best-fit Galileon model, which are differentirthose of the
this because the modified gravity effect is negligible aso WMAP9 best-fitACDM model.

e the deviation from QCDM increases with time, which
is because the effective Newton constéft, which is
given in Eq.[E8), grows with time, as we will see below.
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The blue curves with squares, from bottom to togat 10

hMpc~!, are results for the full quartic Galileon simulations

ata = 1.0, 0.8 and0.5 respectively, and they follow very dif-
ferent behaviour from that of the linearised simulationsr
explicitly,

e even though on large scales the full Galileon model pre-
dicts stronger clustering of matter than QCDM, the en-

hancement decreasesfagrows, and fron0.1 < k£ <
0.2RMpc~! on the matter clustering is actuallyeaker
in the full model;

o this trend grows with time;
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e the situation becomes more complicated in the full sim-

ulations, in whichG.¢ sensitively depends on the den-
sity inside the sphere. As an example, evervfer 0.1
there has been significant deviation@®fs /G from its
linear-theory value at > 0.6;

more interestingly, fob > 5.0, Gegr /G is smaller than
1.0 at late times, implying a weakening of the total grav-
ity. This is because, even though in high-density regions
the spatial variations of the Galileon field have been ef-
ficiently smoothed out by the Vainshtein mechanism, so
that the last two terms in Ed4]) can be neglected, the

time-dependent rescaling 6f, caused by the curvature
coupling of the Galileon field and specified by the coef-
ficientayay in Eq. @), persists and makes.q < G

at late times when; anday start to vary [cf. Fig(].

e at scales such ds ~ 0.03hMpc—!, where linear per-
turbation theory is conventionally believed to still hold,
the full Galileon simulations give a notably low&xk)

than both linear theory and the linearised simulationsyg 5 comparison, we also plot the same results for the best-
ata > 0.5, WhIC.h indicates that nonlinearity is already it cubic Galileon model [4] (right panel of Fid), in which
important there; Gz /G is always larger thah and approachelswhere matter

e ata < 0.5, however, the full Galileon simulations agree density is high. Also,

with linear-theory predictions very well on those large

e the deviation of7.¢ /G from unity starts at a later time
scales.

than in the quartic case, and becomes much larger than
the latter — this indicates that density perturbations grow
faster on large (linear) scales in the quartic model than
in the cubic model;

To confirm these observations, we did the same calculation
for the B = 400h~'Mpc simulation box (not shown here
to make the figure less busy), and found good agreement be-
tween the results from the two boxes.

To give physical explanations to the above observations, we
need to know how the effective Newton constéf: changes
with local matter density. This has been studied in [85] in de
tails for spherical top-hat configurations (see the cokuate
plot Fig. 3 of [85]). Here we give a simplified account for the
results and refer the interested reader [85] for moraldet
Let us start with the definition af .¢:

e ato > 0.1 the difference in the values 6f.¢ /G given
by linear theory and by the full cubic Galileon model is
not as pronounced as in the quartic case — this indicates
that for the quartic Galileons the nonlinearty strikes in at
lower densities and therefore affects larger scales more
than in the cubic case (which explains why evek at
0.02 hMpc~! the full model and linear-theory results
do not fully agree with each other; c.f. FIg).

e inthe linearised simulations and linear perturbation the- 1, quartic Galileon model is different from all other mod-
ory, Gert is given by Eq.[B8), and is independent of the jfie gravity models we know of, in the sense that the devia-
matter density; tions from standard gravity can be either positive or negati

depending on the local matter density or the length scalis. Th

5nakes the model unique and therefore deserving of more de-
tailed study. As this paper is mainly focused on the methodol
ogy, we will undertake such studies in a follow-up paper.

¢ inthe full Galileon model (spherical caséj,s depends
on local matter density inside the sphere, and is define

by

Gcﬁ'5pm =G (5pm + pcﬁ') y (59)

. . . . 2. The velocity divergence power spectra
wheredp,, is the matter density perturbation apg; is velocty civerg power sp

given by £q.B3. In the right panel of Fig3 we show the results for the ve-
The left panel of Figdlcontains a few slices taken from Fig. 3 locity divergence power spectrum, which is defined by
of [85], and it shows the time evolution Of.r /G for a spheri- )
cal tophat overdensity with different values of densitpgiag Pyo(k) = (|0x["), (60)
from § = 10~* (which is basically Eq.B9), i.e, the linear-
theory prediction) at the top t = 10* at the bottom. From
this plot we can see that o, =

k= (2m)3/2

where

/d3x9(x) exp(—ik - x), (61)

e in the linearised simulations (the top curv&); grows
in time, regardless of the density value, which explainsfor the velocity divergence field(x) = V - v/H, and(---)
why matter clustering is stronger than in QCDM on all denotes the ensemble average. Here we have assumed that the
scales, especially small scales; velocity filed is irrotational on the scales of interest, aaah
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be described by the scaléfx) as a pure potential flow. This VI. SUMMARY AND CONCLUSIONS
assumptions breaks down at small scales, however any poten-

tial effects of non-vanishing vorticity are beyond the seo A. Summary of this work

this work.

To measure the dark matter velocity field and its divergence e quartic Galileon model is the next higher-order reali-

from the particles’ positions and velocities, we have used t gation of the Vainshtein mechanism to the cubic Galileon and
Delaunay Tessellation Field Estimator (DTFE) code desdib pGp models, and the nonlinearity in its field equation is ex-
in [91]. The use of the Delaunay tessellation has the advarhected to restore GR near massive objects. Previous résearc
tage that the field calculated using this method is volume- 55 shown that this model could fit the combined CMB, su-
averaged instead of mass-averaged. It also avoids thespnobl pernovae and BAO data very wéll [72] 74], but studies have so
of empty cells containing no particles, which could appear i ¢4, heen restricted to the linear perturbation regime. Waigk
direct assignment methods to measure the velocity field [92];s devoted to the development of the methodology needed to
The results oy show qualitatively similar behaviour and study the nonlinear structure formation in this model. Tis th
patterns as we saw in the DGP simulatidns [82] (Fig. 3 there)end, we first derived the simplified Galileon field equation in
In particular, we can see that the quasi-static and weak-field limits, which contains leigh
order derivative-couplings of the Galileon field than in the
e on scales as large &s~ 0.04hMpc—!, there is already  cases of the DGP and cubic Galileon models.
substantial difference between results of the linearised We then generalised the algorithm for numerically solving
and full simulations, which indicates that the nonlinear-the DGP and cubic Galileon equations to this model. The algo-
ity due to the Galileon field can affect larger scales forrithm is based on the splitting of the second-order derieati
the velocity field; indeed, this difference is much largerof the Galileon fieldy into a trace part?¢) and a trace-
than what was found in the DGP simulations lofl [82], less part¥V;V ), so that the equation can be considered as a
confirming that the model here has stronger nonlinearthird-order algebraic equation &?2¢, the solutions to which
ity; can be obtained analytically. We explained which of theghre
branches of the solution is the physical one, and discussed t
o atk ~ 0.2— 1hMpc-!, Py is smaller in the full quartic required_ condi';ions for the physical s.oluﬁon to be realgTh
Galileon model than in QCDM, because of the fact thatSXpression ok in terms of the density field and quantities
Ger/G < 1in this regime; co_ntalnlngvinga enab_led usto m_ake a very easy implemen-
tation of the Gauss-Seidel relaxation method to calcutaia
(both regular and adaptively refined) meshes. Various plessi

o for k > 1hMpc™!, the deviation ofPy, in the full  nymerical issues which are new to the quartic Galileon model
Galileon model from the QCDM result decreases, andyere also discussed.

-1 i . . . .
atk > 2h Mpc™ the former can even be slightly larger.  oyr numerical Galileon-equation solver was then tested in

different matter configurations, such as 1D sine and Gaussia

The above results paint a physical picture thatin the lisedr  density fields and spherical over(under)densities. Weddnn
simulations the velocity field is boosted on all scales, @hil  all these cases that the Galileon field can be accuratelggolv
the full simulations the situation becomes more complitate We also identified a problem where no solution can be found
on large scales the velocity divergence is enhanced butynot tfor deep spherical underdensities, which is probably bezau
as much as the linear theory predicts because of the nonlineaf those terms which had been neglected under the quaisi-stat
ity of the quartic Galileon model; on scales corresponding t and weak-field limits. As the derivation of the full Galileon
the infall regions near halos and filaments, the weakened gra N-body equation is extremely complex and therefore beyond
itational strength makes the velocity divergence smaliant  the scope of the current work, a simple and approximate cure
in the case of standard gravity; on small scales correspgndi of this problem was introduced to prevent the simulatiomfro
to the substructures of halos, the virialisation processdd-  crashing. The samfix was introduced in the cubic Galileon
ified by the weaker gravity: judging from th&; results, one  simulations to avoid a similar problem, and was found to work
would expect that halos become less concentrated in the fulkasonably well [84].
simulations, because their potential is shallower but #réi{p To study how large-scale structures can be affected by a
cle velocities are not necessarily much lower than in QCDMgquartic Galileon field, we carried out a suite &¥tbody sim-
— this could lead to a more complicated behaviour of the veylations, for both the full Galileon model and two of its vari
locity divergence on those scales. ants under certain simplifying assumptions, with diffeaox

The fact that the velocity field is seriously affected by thesizes and therefore mass (and force) resolutions. These sim
nonlinearity on (supposedly) linear scalés< 0.04hMpc—1) lations showed an interesting and unique feature of thisahod
suggests that one should be careful in making conclusiens remamely it predicts stronger/weaker matter clustering gtan-
garding statistics such as the redshift space distortigrapb ~ dard gravity (i.e., the QCDM model) on large/small scales.
plying linear perturbation theory in models like the quarti The behaviour would be completely different if one artifi-
Galileons. Fully consistent nonlinear simulations areesal  cially suppresses the Vainshtein mechanism, such as in our
to draw rigorous conclusions, and we will leave these toritu linearised simulations, which show enhancement of the mat-
work. ter clustering on all scales (and especially at small stales



18

We ascribed the distinct behaviour of the quartic Galileon Therefore, the nonlinearity becomes more important mov-
model to the curvature coupling of the Galileon field, whiching from the cubic to the quintic Galileons. Furthermoregon
makes the effective Newtonian constafits, dependent on  should bear in mind the problem in low-density regions iden-
time. Similar to the DGP and cubic Galileon models, the Vain-tified for the cubicl[84] and quartic ([85] and this work) case
shtein mechanism could efficiently suppress the spatial varwhich is another consequence of such nonlinearity. All¢hes
ations of the Galileon field in high-density regions, but theindicate that linear perturbation studies of the Galileaydm
Vainshtein mechanism itself does not affect the rescaling oels can only be trusted for very large scales and/or verylsmal
G, and thus GR isiotrecovered in dense regions. This also density perturbations (e.g., the CMB), and that for mosénth
has impacts on the large-scale velocity field, as illusttég  cases fully consistent nonlinear investigations are disden
our results on the velocity divergence power spectrum. The time variation ot in high-density regions is another

important feature of the quartic (and quintic) Galileon rabd
This effect has been previously foundinl[61] and in a slightl

B. Discussions and outlook different contextinl[93]. If this conclusion also appliesélly,
such as in the Solar system, then the quartic Galileon model
1. A summary of the Galileon models would be stringently constrained by local bounds on the time

variation of G, G/G [94], such as those from the lunar laser

The Galileon models (except for the cubic one) have beef@nging experimentﬂbS]. However, without a rigorous gtud
shown to fit the CMB, supernovae and BAO data rather welft 1S not clear how reliable our calculation, which is perfead

[74,/84]85]. However, linear theory predicts that these etod N @ cosmological setup, can be used to make predictiongabou

generally strongly enhance the growth of structures oratine the behavior of the model in much smaller systems [85]. It is
5], which can be in tension with observationclear that more work is needed to clarify this pﬂmt

scales

unless the galaxy bias is closelt® on those scales:(~ 0.1 Admittedly, the above conclusions are made for the best-fit

hMpc—1). One then wonders if the nonlinearity can suppres$alileon models using the CMB, supernovae and BAO data,

this enhancement &t~ 0.1AMpc™". and they can change if one adopts other Galileon and cosmo-
From the studies so far, we know the following: logical parameters. However, as the CMB and expansion data

has been so powerful in constraining the Galileon pararseter
e N-body simulations of [§4] showed that for the best-fit [74], there seems to be no point to consider parameters which
cubic Galileon model, the nonlinearity does not affectare drastically different from the best-fit values, and withe
scales larger thak ~ 0.1AMpc™*; note that this model parameter space allowed by CMB data, we doubt that things
causes a large excess of the integrated Sachs Wolfe efrould change fundamentally (for example,|[85] checked that
fect, which makes it disfavoured by CMB datal[84];  the problem of no physical solutions for the quintic Galileo

. . " . model persists for other reasonable parameter choices).
e N-body simulations in this work showed that nonlinear- P P )

ity can influence larger scales than it does in the cubic
case — as an example, fat~ 0.02hMpc~! linear the- 2. The numerical algorithm
ory and simulations of the full model predist7% and

~ 5% enhancements of matter clustering respectively. The numerical algorithm proposed in this work to solve the
But this still does not provide enough suppression of the 9 prop

linear matter power spectrum on large scales to make iguartic Galileon equation is an extension of that for the DGP

comparable to the prediction of the best-fittinG DM and cubic Galileon ;imulationsi 84], folIov_ving thersp
modgl (note howevgrthat the difference frmﬁgM is of the operator-splitting technique [80]. By splitting; V; ¢

2 VAVZ i i ird- -
mainly due to the different matter density and expansiontO v ¥ andVllnga, ag‘d solving th? resulting third-order al
history than the Galileon models, rather than the law Ofgebram equation fov” ¢, the equation can be reduced o the

L . : : form V2¢ = - -, the right-hand side of which contains com-
gravitational interaction between particles|[84, 85]). plicated terms for the derivatives gfso that in principle these

o the study of spherical collapse In [85] demonstrated thaterms depend op. However, when the equation is discretised
the quintic Galileon model admits no real physical so-on a mesh, it turns out that the right-hand side no longer con-
lutions for spherical tophat overdensities whose densityiains ¢; j x, which is the value ofy in the central cell to be
contrasts are higher than~ (0.1 — 1) at late times. ~ solved by the relaxation method.

As physical solutions do exist for the linearised quintic
equation, it implies that nonlinearity has a more drastic
effect on the quintic model than it does on the cubic and7 Another point which needs more clarification, as pointedmtle original

quartic models. Galileon papef[86], is related to the sub-luminal propagesf the angular
We suspect that even if the approximations used to de- excitations of the Galileon field around the spherical sofytwhich makes

; TR ; SR the quasi-static approximation unreliable for certainaslystem observ-
rive the quintic field equations are dropped (WhICh IS a ables. However, such restrictions for the model are obtafoe spherical

highly _Cha"eng'ng task itself) _there IS S_U” no guarantee configurations and in the Minkowski spacetime, and thesefoay not ap-
that this model has real physical solutions everywhere. piy to the cosmological setup, in which sphericity is a pogpraximation
As a result, we decide not to investigate this model fur- and the fully covariant Galileon equation [57] is signifidgrmore com-
ther. plicated.
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Therefore, as far as the relaxation method is concerned, the 4. Future work
discrete version o¥?p = - - - is indeed dinear equation for

¢i,j.1» making the numerical implementation straightforward.  thig paper is devoted to the development of methodology,
Since the right-hand side of this equation (i.e., the) does 5 therefore does not contain an in-depth analysis of the ef
hot containy ; ., we c_io_not even_need a closed-form expres-o o the quartic Galileon field may have on different cosmo-
sion of it: all we need is its numerical values for all meshscel logical observables. Because a distinct feature of thisatied
This implies that the algorithm here can be generalised@ ev a1 gravity is strengthened on large scales (or in low-igns
hlg_her-02rder theories, such as theintic Galileon model, in  yo4i0ns) and weakened on small scales (or in dense regions),
which V*y satisfies a S|xth_-order algebralc_ equaﬂﬂ [85] and,, o expect that it could have a big impact on the formation and
thus does not have analytical solution (this is differentifr 1 oqerties of dark matter halos (such as the halo concentra-
the cubic and quartic cases). Of course, as the equation g%%ﬁns). On the other hand, we also show that the velocity field
more nonlinear, we expect that the convergence properiies W is i qre strongly affected by the Vainshtein mechanism, tvhic
_be Worse in such h_|gher—ord(_ar theories, just as they areeworgap haye important effects on the redshift space distatibn

in the quartic than in the cubic models. would thus be of interests to run high-resolution or large-b
simulations for this model in the future, and study thesedss

in greater details.

Moreover, the development of the excursion set approach
[85,(96] provides a powerful complementary tool to analyse
We have seen that the complexity of the field equations imonlinear structure formation in the quartic Galileon miede

the quartic Galileon model requires us to make certain appro |ts predictions for the halo mass function and halo biasosic.

imations, but is is worth stressing that the approximatisas be tested with high-resolution simulations. With some axtr

made are not the only possibilities and one can follow aétern work, one can also build up a halo modell[97] for the quartic

tives as well. o Galileons, which will enable us to predict other observable
An example is the treatment 8f; V; W in the Galileon field  such as the matter power spectrum, and compare with the full

equation: although there are different ways to do this, r@dne simulations.

them is ideal. The approach we followed is a practical one, in

which we took the values of from the previous time step as

a source term for the Galileon equation at the current step. W

can think of other variants of this approach, e.g., the foithg

steps

3. N-body implementations
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efficient and therefore better for large simulations. and weak-field approximations, the only nonzero components

3. solve¥ g before solving the Galileon equation so that
when the latter is being solved the value\ofV ;W ar
at thecurrentstep is already known, and

Appendix A: Useful expressions
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of the Christoffel symbol afe appear in the field equations are
Pgi _‘I’;’ Dep=¢+3Ho— 3¢
% = a®H~,j,
1] . Y J VHQOVHQO - st’
Foo = 227 W.s) VEOV eV, Vg = 57,
i qrgi D ; 2 .
To; = s, | o VYOV = 7 4+ BH?Q? — S Hop',
Tl = =@ 400 — @ ;04 + 7y ®y, (A1) T
' — A3)
+a4‘:0 Pijs (

in which ; = 9/0z" (z* being the comoving coordinate) and

&% is the Kronecker delta. and
With these quantities, the components of curvature tensors

which are used in the derivation of the field equations are

1. .
Roo = — 0", — 3 (H + H2) ,
=V

VENY oV, V ,,oVPV Lo
. U VU S
- s03 4 3H3 3 _ §H2S0290,71’ + ;HSOSZT '790,7;_7
1 k
. — Wy " A4
Rij = (H + 3H2) a*yij + ® i + (D - 0) a0 I 4D

) , .
Ri—Q(\I/—2<I>)’ZZ.—6(H+2H2),
- ,

)ig 7
Appendix B: Discretisation of derivative terms
2 .
Goo = — &', +3H? : , . : .
00 g2 + ’ In this appendix we show the discrete versions of the deriva-
(A2) tive coupling terms involved in the Galileon field equations

These are (note again that the subscrjgts are the cell in-
and the elementary derivative terms of the Galileon field thadices along the:, y, ~ directions)

Gij = i (¥ — (I))i,i +(@-9)

)]0

P 1
V'V pV;V o = 3t (Pit1,.k F©im15.k) (20it15k + 20i-1,5.k — Pijt1k — Pij—1,k — Pijk+1 — Pijk—1)

1

+W (Pijt1,k + Pij—1k) i1k +20i -1k — Pit1jk — Pie1jk — Pi,jkt1 — Pijk—1)
1

+W (Pij k1 + ©igk—1) (20 j 1 + 200 j k-1 — Pit1,.k — Pie14k — Pij+1,k — Pij—1.k)
1

2
+w (Pit1,j4+1,k + Pic1,j—1,k — Pit1,j—1,k — Pi—1,j+1,k)

1
+w (Pit1,j,k+1 F Pic1jk—1 — Pit1,j,k—1 — ‘Pifl,j,kJrl)Q

+$ (Pij+1,k41 + Pij—1,k—1 = Pij41k—1 — %_’jilka)Q 7 -

VIVIpViV;¥

= ﬁ (‘Pi+1,j+1,k + Qio1,j-1,k = Pitl -1,k — <Pi71,j+1,k) (‘I’i+1,j+1,k + U q i1k — Wig1 -1k — Wi717j+17k)
+# (Pit1,5.k+1 + Qic1,jk—1 — Pit1gk—1 — Lie1,4.k+1) (Wit k41 + Vic1 k-1 — Yir1jki—1 — Yio1,j,k+1)
+# (@i j+1,h+1 T ij—1,k-1 — Pijja1h—1 — Pij—1,k+1) (P ja1mr1 + Yijo1e-1 — Yigare—1 — Yij-1k+1)
+$ (Uigrgk +Wis1jk) Coit1,4k +20i-1jk — Pijrik — Pij—1,k — Pijk+1 — Pijk—1)
+$ (Wijt1k + Vij—1,k) (2005416 + 20i5-1.k — Pit1,5k = Pi-1,5,k — Pijk+1 — Pijk—1)

+$ (Wigirr + Wijn-1) 20igae1 + 20ijk—1 = Pit1ik ~ Piclik = Pij+1hk ~ Pig—1k) (B2)

8 Note that terms such ab are neglected in these approximations.
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ViV;oVivFEevVip
1 2 2 2
~ 9p6 (Pit1,5,k + Pi-1,jk) {2 (Pit15.k FQim15k) + (Qijr1k + Qij—1.k) + (i1 + Pijk—1) }
1
+one (@i g1k + Pig—1.k) {2 (@ij+1k + Pija1.k)” + (Pit1gk + Cic1k)” + (Pigar1 + sDi,j,k—l)Q}

1
958 (Pigk+1 + Pijk—1) [2 (i1 + Pijik—1)" + (Pir1gk + Pi1.4k)” + (Pigrie + @i,.j—l,k)ﬂ

2

~Ono (Pit1,.k + @i—l,j,k)2 (Pij+1,k + Pij—1,k + Pijkt1 + Pijhi—1)
2 2

~9ne (@i g1k T Pii—1,k)" (Pit1,5k T Pim1,5k + Pijk+1 T Pijk—1)
2 2

~9ne (Pigk+1 + Pijik—1)" (Pit1,4k + Pi-14k + Pij+1k + Pij—1,k)
2 2

~ons (Pit1.5k + Pi-1,4.k) (Pij+1k + Pij—1k = Pijkt+1 — Pirjk—1)
2 2

~ons (Pij+1k + Pig—1k) (Pit1jk T Pi-1.4k = Pijk+l — Pijk—1)
2 2

“Ons (Pijkt1 + Cigk—1) (Qit15k + i1,k — Pijt1.k — Pij—1,k)

+ﬁ (Pit1,4k + Pic1jk T Pijr1k + Pij—1.k — 200 k+1 — 204 5,k—1)
X (Qid1,j+1,k + Pic1,j—1.k — Pit1,j—1k — SDi—l,j-i-l,k)Q
+ﬁ (Pit1,j,k T ©ie14.k + Pijht1 + Pijk—1 — 20 jr1.k — 205 j—1.k)
X (Pit1,4, k41 T Pic1,j,k—1 — Pit1,jk—1 — SDi—l,.j,kJrl)Q
+ﬁ (ijr1k + Qij—1k + Pijrt1 + Pijk—1 = 20it1,5k — 20i1,j,k)
X (Pi g1kl T Pig—1k—1 = Pijtlh—1 — SDi,j—l,k-i-l)Q
+W (<Pz‘+1.,j+1.,k + Pic1,j-1,k = Pit1,j—1,k — ‘Pifl.,jJrl.,k) (‘Pi+1,j,k+1 + QPi—1,5,k—1 = Pit1,jk—1 — (Pifl_,j,kJrl)

X (‘Pi,j+1,k+1 + Qij—1,k—1 — Pij+1k—1 — ‘Pi,jfl.,kJrl)- (B3)

|
We can observe two important features of these terms: the same everywhere.
e none of them contaip; ; x;

The first property, in particular, is the benefit of defining th
o all of them vanish in the homogeneous case, wheise  barred derivative/;V ;.
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