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Abstract. For Bose-Einstein condensates in double wells, N -particle Rabi-like

oscillations often seem to be damped. Far from being a decoherence effect, the apparent

damping can indicate the emergence of quantum superpositions in the many-particle

quantum dynamics. However, in an experiment it would be difficult to distinguish

the apparent damping from decoherence effects. The present paper suggests using

controlled periodic shaking to quasi-instantaneously switch the sign of an effective

Hamiltonian, thus implementing an “echo” technique which distinguishes quantum

superpositions from statistical mixtures. The scheme for the effective time-reversal is

tested by numerically solving the time-dependent N -particle Schrödinger equation.
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Small Bose-Einstein condensates (BECs) of some 1000 [1] or even 100 atoms [2] have

been a topic of experimental research for several years. Recently, the investigation of

many-particle wave-functions of BECs in phase space became experimentally feasible [3].

This experimental technique will lead to further investigations of beyond-mean-field

(Gross-Pitaevskii) behaviour for small BECs.

For a BEC initially loaded into one of the wells of a double-well potential, the many-

particle oscillations often seem to be damped compared to the mean-field behaviour.

Figure 1 shows such an apparent damping, which in fact is a collapse which will

eventually be followed by at least partial revivals [cf. Refs. [4, 5], Fig 1 (c)], for N = 100

particles. This apparent damping coincides with an increase of the fluctuations of the

number of particles in each well [Fig. 1 (b)].

In order to numerically calculate the many-particle dynamics, the Hamiltonian in

the two-mode approximation [6] is used,

Ĥ0 = − J
(

ĉ†1ĉ2 + ĉ†2ĉ1
)

+
U

2

2
∑

j=1

n̂j (n̂j − 1) , (1)

where ĉ
(†)
j are the boson creation and annihilation operators on site j, n̂j = ĉ†j ĉj are

the number operators, J is the hopping matrix element and U the on-site interaction

energy.

The experimentally measurable [7] population imbalance is useful to quantify the

oscillations depicted in Fig. 1:

〈z〉(τ)
2

≡ 〈n2〉(τ)− 〈n1〉(τ)
2N

, (2)

where τ is the dimensionless time:

τ ≡ tJ

h̄
. (3)

The variance of the population imbalance can be quantified by using the experimentally

measurable [7] quantity

Fz ≡
〈(n̂1 − n̂2)

2〉 − 〈n̂1 − n̂2〉2
N

, (4)

with 0 ≤ Fz ≤ N . If all atoms are in the same single-particle state, this can be expressed

by using the atomic coherent states [8],

|θ, φ〉N =
N
∑

n=0

(

N

n

)1/2

cosn(θ/2) sinN−n(θ/2)

× ei(N−n)φ|n,N − n〉 . (5)

For the product wave-functions defined by Eq. (5), Fz can be calculated using properties

of the classical binomial distribution, with probabilities

Pn1
=

(

N

n1

)

pn1(1− p)N−n1 , p = cos2(θ/2) .
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Figure 1. (Colour online) a) Population imbalance 〈z〉/2 [Eq. (2)] as a function

of dimensionless time τ (3) for small BEC in a double-well potential. Initially,

N = 100 atoms are in well 1, the quantum dynamics is given by the Hamiltonian (1)

(NU/J = 0.4). b) Variance of the population imbalance (4). c) Same curve as in panel

(a) but for longer times. The time-evolution appears to be damped up to τ ≈ 200 and

is then followed by a partial revival for times above τ ≈ 300. Experimentally, it will be

difficult to distinguish the apparent damping and the increased fluctuations (which are

both triggered by a collapse and revival phenomenon) from true damping introduced,

e.g., by decoherence.

The result reads:

Fz = 4
[

cos2(θ/2)− cos4(θ/2)
]

= sin2(θ) , (6)

and hence 0 ≤ Fz ≤ 1. Thus, while Fz < 1 would not be sufficient to distinguish

product states, as in Eq. (5), from “spin-squeezed states” [7], for which Fz < 1 is also

true, a pure state with Fz > 1 has to be in a quantum superposition. For numeric

solutions of the Schrödinger equation corresponding to Hamiltonians like the one given
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in Eq. (1), one always knows that the system is in a pure state and thus that any state

with Fz > 1 is a quantum superposition. In an experiment, the situation would be

more complicated. The focus of the present paper lies on providing a way to distinguish

quantum superpositions with Fz > 1 from statistical mixtures with Fz > 1 via an ‘echo’

technique.

For pure states, Eq. (4) coincides with a quantum Fisher information [9]. Like

the spin-squeezed states investigated in Ref. [7] (and references therein), quantum

superpositions with large fluctuations are also relevant to improve interferometric

measurements beyond single-particle limits. A prominent example of a quantum

superposition relevant for interferometry are the NOON-states [10]

|ψNOON〉 =
1√
2
(|N, 0〉+ |0, N〉) , (7)

i.e., quantum superpositions of all particles either being in well one or in well two;

|n1, n2〉 refers to the Fock state with n1 particles in well 1 and n2 particles in well 2.

Suggestions how such states can be obtained for ultra-cold atoms can be found in

Refs. [5, 11, 12, 13, 14, 15, 16, 17] and references therein. For pure states, Fz > 1

indicates that this quantum superposition is relevant for interferometry [9]. However, it

remains to be shown that the increased fluctuations are really due to pure states rather

than statistical mixtures.

It might sound tempting to use the revivals investigated in Refs. [4, 5] to identify

pure quantum states. However, while such revivals can be observed, e.g., for two-particle

systems [18], the situation for a BEC in a double well is more complicated. In principle,

very good revivals of the initial wave-function should occur as long as the system is

described by the Hamiltonian (1). While partial revivals [cf. Fig 1 (c)] can easily be

observed, (nearly) perfect revivals might occur for times well beyond experimental time-

scales – in particular if the experiment is performed under realistic conditions subject

to decoherence effects ‡. It is thus not obvious how such an apparent damping might be

distinguished experimentally from decoherence effects which would lead to statistical

mixtures with (now truly) damped oscillation similar to Fig. 1. The focus of this

paper thus lies on an experimentally realisable “echo” technique to distinguish statistical

mixtures from quantum superpositions by using periodic shaking.

Periodic shaking [19] is currently being established experimentally to control

tunnelling of BECs [20, 21, 22, 23, 24, 25]. For the model (1), periodic shaking can

be included via

Ĥ = Ĥ0 +
K

2
cos(ωt)(n̂2 − n̂1) , (8)

where K is the strength of shaking and ω its (angular) frequency. For large shaking

frequencies § and not-too-large interactions, the time-dependent Hamiltonian (8) can

‡ For computer simulations, numerical errors might produce an effective decoherence which would

again prevent nearly perfect revivals from occurring at very long time-scales.
§ While the validity of this approximation also depends on the values chosen for the interaction, driving

frequencies as low as h̄ω ≈ 6J can sometimes be considered large. Choosing higher frequencies will
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Figure 2. (Colour online) a) Sketch of a double well which is shaken periodically to

control tunnelling for ultra-cold atoms. b) For high shaking frequencies, the tunnelling

rate is modified by the J0-Bessel function [see Eq. (10)]. The two squares indicate a pair

of shaking amplitudes for which the Bessel function has equal modulus and opposite

sign (x1 ≃ 1.69 and x2 ≃ 3.83 with |J0 (x1,2)| ≃ 0.403 – it will be shown in Fig. 5 (d)

that it is not essential to determine the values of x1 and x2 with very high accuracy).

be replaced by a time-independent effective Hamiltonian:

Ĥeff = − Jeff
(

ĉ†1ĉ2 + ĉ†2ĉ1
)

+
U

2

2
∑

j=1

n̂j (n̂j − 1) (9)

with

Jeff = JJ0 (K0) ; K0 ≡
K

h̄ω
(10)

where J0 is the Bessel-function depicted in Fig. 2 (b). Such effective Hamiltonians

have been successfully tested experimentally in optical lattices, see, e.g., Refs. [20, 26];

negative Jeff have been experimentally investigated in Refs. [22, 25]. While numerically

it is much easier to investigate the two-site Hamiltonian (9) or its time-dependent

counterpart (8), experimentally it might be preferable to realise such models in optical

lattices for parameters in which the one-band approximation is good [20, 21]. There

are, however, also examples [27, 28] for which two or more Bessel function are needed

to understand the tunnelling dynamics.

In the present situation, the effective description (9) offers the possibility to quasi-

instantaneously switch the sign of both the kinetic energy (via shaking, cf. Fig. 2) and

the interaction (via a Feshbach-resonance [29]). Contrary to special cases where the

wave-function [30, 31] can be changed to obtain time-reversal, for periodically driven

systems the Hamiltonian can be changed by quasi-instantaneously changing both the

tunnelling term [by switching the shaking amplitude, e.g., between values shown in

Fig. 2 (b)] and the sign of the interaction via a Feshbach-resonance [29];

Ĥideal ≡
{

+Ĥeff(τ=0) : τ < τ0
−Ĥeff(τ=0) : τ ≥ τ0

. (11)

improve the approximation. However, as this will, in general, also increase the driving amplitude, for

too high frequencies the two-mode approximation (1) no longer is valid.
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Figure 3. (Colour online) Two-dimensional projection of the modulus-squared of the

scalar product of the wave-function with the product states (5) as a function of both φ

and z = cos(θ). a) Parameters as in Fig. 1 except for K0 ≃ 1.6917 and h̄ω = 32J . The

wave-function after the apparent damping is displayed for τ ≃ 42.41. This quantum

superposition can be characterised by Fz ≃ 38.8 and it could thus be used to improve

interferometric measurements. b) If all 100 atoms occupy the same single-particle state

(here: z = 0, φ = π/2), the wave-function is much narrower [see Eq. (6)]. Furthermore,

no product state would be interesting for quantum enhanced interferometry.

The corresponding unitary time-evolution is given by

U(0, τ) =















exp
(

− iτĤeff (τ=0)
h̄J

)

: τ < τ0

exp
(

i(τ−2τ0)Ĥeff (τ=0)
h̄J

)

: τ ≥ τ0
, (12)

with perfect return to the initial state at τ = 2τ0. However, the turning point τ0
has to be chosen with care: only by taking τ0 close to the maximum of the shaking can

unwanted excitations be excluded (cf. Refs. [32, 33, 34]). Recent related investigations of

the influence of the initial phase of the driving [replacing cos(ωt) in the Hamiltonian (8)

by cos(ωt+ φ)] can be found in Refs. [35, 36, 37].

In the following, the time-reversal is demonstrated by numerically solving

the full, time-dependent Hamiltonian (8) corresponding to the ideal time-reversal

Hamiltonian (11) using the Shampine-Gordon routine [38]. Contrary to time-reversal

schemes on the level of the Gross-Pitaevskii equation [39, 40], here time-reversal is

used to distinguish interesting quantum superpositions from statistical mixtures. Before

implementing the time-reversal, Fig. 3 shows the wave-function for N = 100 particles

which were initially in one well. After several oscillations, the wave-function no longer

is in a product state. Both the population imbalance and the phase can be measured

experimentally [7]; in Fig. 3 the squared modulus of the scalar product with the atomic
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coherent states (5) is plotted. The angle θ corresponds to a population imbalance of

〈z〉
2

=
cos(θ)

2
(13)

Ideally, it should be possible to show that the wave-function of Fig. 3 (a) indeed is

a quantum superposition by using the time-reversal of Eq. (11) and then investigating

〈zend〉 ≡ 〈z〉(2τ0) . (14)

Firstly, there is only one many-particle wave-function which fulfils

〈zend〉 = 1 . (15)

Secondly, the unitary evolution of solutions of the Schrödinger equation guarantees

that for two different solutions |ψ1(2τ0)〉 = U(τ0, 2τ0)|ψ1(τ0)〉 and |ψ2(2τ0)〉 =

U(τ0, 2τ0)|ψ2(τ0)〉, the scalar product would be the same at τ = τ0 and at τ = 2τ0
(as U †U = 1).

However, the Hamiltonian (11) is a high-frequency approximation and it has thus

to be shown that this works for realistic driving frequencies (cf. Fig. 4). Furthermore,

although there is only one wave-function at τ = τ0 which exactly leads to the value

〈z〉end = 1 at τ = 2τ0, other (less interesting) wave-functions might lead to values close

to 〈z〉end = 1 (cf. Fig. 5).

Figure 4 shows that the time-reversal dynamics is indeed feasible. On time-scales for

which there is not even a partial revival [cf. Fig 1 (c)] of the initial state characterised by

〈z〉 = 1, the proposed time-reversal dynamics leads to final values above 〈zend〉/2 = 0.45

(Fig. 5 shows that this is enough to show that the wave-function at τ = τ0 was indeed a

quantum superposition). In order to show that the scheme does not rely on the switching

to be truly instantaneous at t = t0 [where t0 is linked to τ0 via Eq. (3)], the amplitude

in Fig 4 (d) was switched according to

K0(t) = K
(1)
0 +

(

K
(2)
0 −K

(1)
0

) 1 + tanh
(

ω(t−t0)
γ

)

2
; (16)

the switching between the two interaction values was chosen analogously (for

instantaneous switching, the switching time can also slightly deviate from the ideal

switching time, it just has to be close to the shaking maximum).

Figure 4 shows that the time-reversal dynamics is feasible. If one implements the

time-reversal dynamics without decoherence, one will get a reasonably good return to

the initial state. However, does this imply the statement that if at τ = 2τ the system

has approximately returned to the initial state, it automatically has been in a quantum

superposition at τ = τ0? In order to answer that question, Figure 5 investigates the

dynamics of states which are in a product state (5) at τ = τ0:

|ψ(τ0)〉 = |θ0, φ0〉N , (17)

and are subject to the same shaking as Fig. 4 (b). Figure 5 (a) shows that

〈zmax〉 ≡ max {〈z〉(τ)}|1.99τ0≤τ≤2τ0
(18)
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Figure 4. (Colour online) Time-reversal of the quantum dynamics of a small Bose-

Einstein condensate in a periodically shaken double well [Eq. (8)]. a) Population

imbalance (2) as a function of time τ = tJ/h̄ for the same parameters as in

Fig. 3 (a). b) Red/dark solid line: all other parameters as in panel (a) except for

τ > τ0 = 13.5π ≃ 42.41: K0 = 3.8317 J and U = −0.4J/N ; the revival of the initial

state is visible near τ ≈ 85. c) Population imbalance for the same situation as in panel

(a) but for much longer time-scales. d) If the switching takes place continuously rather

than instantaneously [Eq. (16)], the revival of the initial state can still be observed

[same parameters as for panel (b)] (γ = 0 corresponds to instantaneous switching; in

the limit h̄ω/J → ∞ the maximum of this curve would be at γ = 0).

[shown as a two-dimensional projection as a function of both cos(θ0) and φ0] lies well

below the values achieved in time-reversal [Fig. 4 (b)]. Furthermore, it does not change

dramatically on short time-scales, as can be seen in Fig. 5 (b) which uses a 〈zmin〉 which
is analogously defined to Eq. (18) to calculate:

∆z ≡ 〈zmax〉 − 〈zmin〉
2

, (19)

which indicates how accurately 〈z〉max can be determined. In addition to not

approaching 〈z〉 = 1, many product states lead to very large fluctuations [Fig. 5 (c)];
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Figure 5. (Colour online) a) For the Hamiltonian which leads to the curve in

Fig. 4 (b), at τ = τ0 product states [Eqs. (5) and (17); z0 = cos (θ0)] are implemented.

Displayed is the two-dimensional projection of 〈zmax〉/2 as a function of both the

initial phase and the initial population imbalance. This lies well below the values

obtained in Fig. 4 (b), thus indicating that any wave-function which leads to values of

〈z〉end τ = 2τ0 comparable to Fig. 4 (b) was indeed a quantum superposition at τ = τ0.

b) Two-dimensional projection of ∆z [Eq. (19)], which indicates how accurately 〈z〉max

can be determined, shows that 〈z〉 [as for Fig. 4 (b)] does not change dramatically on

short time-scales. Thus, choosing the time of observation is not that crucial. c)

Fz(τ0) (4) as a two-dimensional projection. Many product states lead to considerably

larger fluctuations than obtained for the curve in Fig. 4 (b) (which goes below Fz = 1

near τ = 2τ0). d) If the time-reversal scheme of Fig. 4 (b) for the red/dark curve

is repeated with non-ideal driving amplitudes, 〈zend〉/2 (shown as a two-dimensional

projection as a function of both driving amplitudes, normalised by their ideal values -

cf. Fig. 2) still lies well above the values shown in panel (a).
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these fluctuations are particularly large if one compares them with the tiny values

of Fz(2τ0) ≃ 0.4 for the curve in Fig. 4 (b) ‖. Carefully investigating how the

product states (5) with large contributions to Fig. 3 (a) behave offers an additional

route to distinguish quantum superpositions as in Fig. 3 (a) from statistical mixtures.

Figure 5 (d) shows that the time-reversal scheme is feasible even if the driving amplitudes

only approximately meet the ideal values [Fig. 5 (d)]. Many of the features displayed

Fig. 5 (a)-(c) could be understood by comparing them to the mean-field behaviour -

including the fact that the fluctuations are large for some parameters and low for others

(cf. Ref. [41]). However, the main focus within this paper lies on showing that the return

to the initial state displayed in Fig. 5 (a) is much lower than what can be obtained in

Fig. 5 (b). In addition, the fluctuations displayed in Fig. 5 (c) are much larger than

would be obtained by the time-reversal dynamics displayed in Fig. 5 (b).

To conclude, time-reversal via quasi-instantaneously changing the sign of the

effective Hamiltonian is experimentally feasible for ultra-cold atoms in a periodically

shaken double well. The change of the sign of the Hamiltonian is achieved by changing

both the driving amplitude and the sign of the interaction; a particularly useful initial

state is the state with all particles in one well. The numeric investigations show that the

revival of the initial state can be used to distinguish damping introduced via decoherence

from the apparent damping related to a collapse phenomenon. Even if the revival of the

initial state is not perfect, the scheme clearly distinguishes product states from quantum

superpositions with potential interferometric applications. While the present paper

focuses on on an experimentally relevant example for which the time-reversal dynamics

can distinguish intermediate quantum superpositions from statistical mixtures, a perfect

return to the initial state would prove that for all initial states. For general cases [which

might include general product states (5)], more precise measurements [3] of both the

initial and the final state including both population imbalance and fluctuations as well

as measuring the phase distribution will be necessary.
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[16] M. A. Garćıa-March, D. R. Dounas-Frazer, and L. D. Carr. Phys. Rev. A, 83:043612, 2011.

[17] G. Mazzarella, L. Salasnich, A. Parola, and F. Toigo. Phys. Rev. A, 83:053607, 2011.

[18] S. Folling, S. Trotzky, P. Cheinet, M. Feld, R. Saers, A. Widera, T. Muller, and I. Bloch. Nature,

448:1029, 2007.

[19] M. Grifoni and P. Hänggi. Phys. Rep., 304:229, 1998.

[20] C. Sias, H. Lignier, Y. P. Singh, A. Zenesini, D. Ciampini, O. Morsch, and E. Arimondo. Phys.

Rev. Lett., 100:040404, 2008.

[21] E. Haller, R. Hart, M. J. Mark, J. G. Danzl, L. Reichsöllner, and H.-C. Nägerl. Phys. Rev. Lett.,
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