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Abstract

A range of problems is investigated, involving the gravity-driven inertial flow of a
thin viscous liquid film over an inclined planar surface containing topographical features,
modelled via a depth-averaged form of the governing unsteady Navier-Stokes equations.
The discrete analogue of the resulting coupled equation set, employing a staggered mesh
arrangement for the dependent variables, is solved accurately using an efficient full ap-
proximation storage (FAS) algorithm and a full multigrid (FMG) technique; together with
error-controlled automatic adaptive time-stepping and proper treatment of the associated
nonlinear convective terms. An extensive set of results is presented for flow over both one-
and two-dimensional topographical features, and errors quantified via detailed comparisons
drawn with complementary experimental data and predictions from finite element analyses
where they exist. In the case of onedimensional (spanwise) topography, moderate Reynolds
numbers and shallow/short topographical features, the results obtained are in close agree-
ment with corresponding finite element solutions of the full free-surface problem. For the
case of flow over two-dimensional (localised) topography, it is shown that the free-surface
disturbance is influenced significantly by the presence of inertia leading, as in the case of
spanwise topography, to an increase in the magnitude and severity of the resulting cap-
illary ridge and trough formations: the effect of inclination angle and topography aspect
ratio are similarly explored.

1 Introduction

Numerous manufacturing processes require the deposition of thin liquid films, involving a bal-
ance between viscous and surface tension forces, on a variety of surfaces. In the coating indus-
tries for example, several devices exist which have been optimised specifically for the continuous
production and fast throughput of uniform, defect free, films on flat homogeneous substrates,
made from plastic, metal, paper, etc. These encompass a wide range of applications and about
which much of the underpinning basic science is now reasonably well documented [1].

In contrast, the problem of thin film flow on surfaces containing man-made, micro-scale
topographical features, with a pre-determined functionality, such as displays, printed circuits
and sensors, is less well understood. Indeed, the areas in which such flow is encountered are
endless, encompassing latterly the rapidly evolving area of microfluidics, see for example [2],
and the need to manipulate flow on an ever decreasing scale in the context of lab-on-chip
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devices. In addition, one should not forget the consequence(s) associated with the presence of
unwanted surface topography, contaminates such as dust specks or irregularities resulting from
a particular stage in a manufacturing process.

From a traditional standpoint the overall goal might arguably be one of identifying the
parameters that influence the planarity of such films and thus guide its effective control, which
represents a considerable challenge in itself given the diversity and nature of the surface to-
pography encountered in practice. On the other hand, the realisation that naturally occurring
surface patterns, regular and randomly distributed, are a key feature of numerous biological
systems provides a different impetus; thin liquid films being important in areas as diverse as the
redistribution of liquid lining the lung [3], plant disease control [4], biofilms [5] and water snail
locomotion [6]. Plus the strong driver towards ultimately mimicking the behaviour of nature’s
surfaces [7], has brought the subject of film flow over topography into even sharper focus.

Accurate prediction of the associated three-dimensional freesurface flow by solving the gov-
erning unsteady Navier-Stokes (N-S) equations remains elusive; not from the standpoint of
being unable to develop suitable discrete analogues, simply that the computational resource re-
quired to solve them is currently prohibitive. Accordingly, the bulk of the theoretical work that
has appeared to date has relied on the assumption that creeping flow conditions prevail allied to
the fact that for many thin film flows the ratio of the undisturbed asymptotic film thickness to
that of the characteristic in-plane length-scale of the flow is small. Accordingly, if the velocity
and pressure fields are expanded in terms of this small parameter and substituted into the N-S
equations [8] then, retaining leading order terms, a fourth-order nonlinear degenerate partial
differential equation for the film thickness, referred to as the lubrication approximation, results.

It is no surprise that the above long-wave approximation has proved popular, and the
equations involved solved using a variety of numerical methods, with semi-implicit, alternating
direction, time-splitting schemes [9, 10] enjoying wide usage. The argument used for employing
such schemes is that they combine some of the stability properties of implicit schemes with
the cost efficiency of explicit ones. However, when fine meshes are required to ensure mesh
independent solutions the choice of time-step is severely restricted. With this in mind an
investigation concerning droplet motion underpinned by lubrication theory [11] showed that the
alternative approach of adopting a fully implicit multigrid formulation to: (i) be more robust;
(ii) return an order of magnitude improvement in the rate of convergence for the levels of grid
refinement required for accuracy; and (iii) utilise far less memory. The point was reinforced by
Gaskell et al. [12] who combined the same multigrid approach with error-controlled adaptive
timestepping. This same solution strategy was used in a detailed study of the flow of gravity-
driven thin liquid films on non-porous substrates with topography, showing that the long-wave
approximation leads to very good solutions, even in regions of parameter space where it is not
strictly valid [13]. The methodology has subsequently been refined to embody error-controlled
automatic mesh adaption [14, 15], leading to significant further improvement in solution times
without loss of accuracy, and the inclusion of additional physics such as evaporation [16].

In addition and from the point of view of completeness it is important to mention that
for Stokes flow the boundary element method has proven effective as a means of investigating
threedimensional continuous thin film flow over a small particle adjacent to a flat surface [17, 18].
A Stokes flow perturbation analysis has also been used to study the particular case of gravity-
driven flow over doubly-periodic surface corrugations, and extended to consider cases with finite
Reynolds number [19, 20].

Unfortunately, few complementary experimental investigations involving thin film flow over
discrete, steep topographical features have appeared in the literature affording direct compari-
son with theory, due to the formidable practical challenges involved. Early examples, featuring
complementary long-wave analyses, include [21, 22, 23] and [24] who considered radial outflow
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during spin coating and gravity-driven flow down an inclined plane, respectively. A key find-
ing by both sets of authors was that lubrication theory proved surprisingly accurate for their
modelling purposes; in addition [23] are credited as being the first to obtain a one-dimensional
analytic expression for the standing capillary wave which forms at the leading edge of a trench
topography and its associated downstream exponential decay. This problem was subsequently
revisited by Fernandez-Parent et al. [25]; their Green’s function formulation showed good agree-
ment, with the second order term contained therein having the effect of locating the capillary
ridge further upstream of the topography the deeper the trench. In a similar vein, Peurrung
and Graves [26, 27] have reported both experimental and numerical results for spin coating
that are in qualitative agreement. Considerable time then lapsed before a more useful batch of
experimental data materialised [28, 29, 30]; culminating ultimately in the results presented by
Décré and Baret [31] and which arguably currently form the experimental benchmark against
which predictions may be compared.

As an alternative to employing lubrication theory, the influence of inertia for the partic-
ular case of gravity driven two-dimensional film flow over a plane containing steep spanwise
topography only, has begun to be explored in terms of the so-called integral-boundary-layer
approximation, a key feature of which is the assumption that the velocity profile across the film
is parabolic. Its mathematical formulation, in which the resulting equations are expressed in
terms of the film thickness and mean flow rate, can be traced back to Shkadov [32, 33] who used
it to predict solitary waves in a thin viscous liquid layer on a uniform vertical surface. Recently,
Saprykin et al. [34] extended the above idea to explore the influence of inertia and viscoelastic-
ity on a thin film falling down such a surface and encountering a steep step-down topography.
Of particular interest to them was examining the interaction between capillary ridges and ex-
cited non-equilibrium inertia/viscoelasticity-driven solitary pulses. Another approach worth
mentioning is the depth averaged kinetic energy balance or energy integral method based on a
velocity weighted average of the N-S equations was offered by Usha 2004 [39]. It is shown to be
a reasonable alternative to a standard IBL avaraging of the N-S equations. Following a different
path, Bontozoglou and Serifi [40] carried out a numerical investigation of the flow of a thin film
down a plane containing steep step topography, once again in vertical alignment. They solved
the steady-state form of the full N-S equations using a finite element method, showing that
for large capillary numbers increasing inertia first amplifies and then diminishes the capillary
features - an effect that would be difficult to capture with the integral-boundary-layer approach
which is valid for small capillary numbers only.

Although not considered here, it is essential not to lose sight of the fact that inertial effects
cause the free-surface flows of interest to become unstable when the Reynolds number exceeds
a critical value; several analyses of the instability mechanism for the case of laminar flow down
an inclined uniform surface have emerged, see for example [41, 42, 43], but very few have
appeared that consider the influence of topography. Recent experiments have demonstrated,
however, that there is a strong coupling between inertia and topography in gravity-driven
flow over surfaces containing periodic rectangular corrugations [44] or wavy undulations [45].
The significant rise in critical Reynolds number that occurs due to the presence of surface
topography, as observed experimentally, has also been predicted theoretically [46]. Recently,
Trifonov [47] examined the stability of a viscous film flowing over a vertically aligned wavy
surface, showing that there is a region of corrugation geometry (amplitude and period) where
disturbances decay resulting in a stabilising effect, outside this region the flow is unstable. In
addition, the reader is directed to the work of Khayat et al. [50] who provide a detailed account
of the influence of inertia, topography and gravity on transient axisymmetric thin film flow,
and to the recent investigations by Wierschem et al. [48] and Heining et al. [49] in connection
with resonance effects in viscous films on inclined wavy planes.
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The approach adopted in the present work involves the efficient solution of a depth-averaged
form, akin to the integral-boundary-layer approximation, of the governing unsteady N-S equa-
tions: in particular, in the case of the three-dimensional flow associated with thin films en-
countering steep, localised topography. The mathematical formulation and solution strategy
implemented to achieve accurate mesh-independent solutions of the reduced equation set are
provided in Sections 2 and 3, respectively. A comprehensive set of results is presented in
Section 4, including comparison of computed free-surface profiles with experimental data and
corresponding finite element solutions of the full freesurface problem where they exist. Conclu-
sions are drawn in Section 5.

2 Mathematical Formulation

Consider, as illustrated in Fig. 1, the case of time-dependent gravity-driven thin film flow
down a planar surface containing a trench topography of depth S0, length LT and spanwise
width WT , that is inclined at an angle θ( 6= 0) to the horizontal. The liquid is assumed to be
incompressible and to have constant density, ρ, viscosity, µ, and surface tension, σ. The chosen
Cartesian streamwise, X, spanwise, Y , and normal, Z, coordinates are as indicated and the
solution domain bounded from below by the planar surface, Z = S (X, Y ), from above at time
T by the free-surface, Z = F (X, Y, T ), upstream and downstream by the inflow, X = 0, and
outflow, X = Lp, planes, respectively, and to the left and right by the side planes at Y = 0 and
Y = Wp. The film thickness, H (X, Y, T ), at any point in the (X, Y ) plane at time T is given
by H = F − S. The resulting laminar flow is described by the N-S and continuity equations,
namely:

ρ

(

∂U

∂T
+U · ∇U

)

= −∇P +∇ · T + ρG, (1)

∇ ·U = 0, (2)

where U = (U, V,W ) and P are the fluid velocity and pressure, respectively;

T = µ
(

∇U + (∇U )T
)

is the viscous stress tensor, G = g0 (sin θ, 0,− cos θ) is the acceler-

ation due to gravity where g0 is the standard gravity constant.
Taking the reference length-scale in all directions to be the asymptotic, or fully developed,

film thickness, H0, and scaling the velocities by the free-surface (maximum) velocity, U0 =
ρg0H

2
0 sin θ/2µ apropos the classic Nusselt solution [51], pressure (stress tensor) by P0 = µU0/H0

and the time by T0 = H0/U0, equations (1) and (2) can be rewritten in non-dimensional form
as:

Re

(

∂u

∂t
+ u · ∇u

)

= −∇p+∇ · τ + Stg, (3)

∇ · u = 0, (4)

where u = (u, v, w), τ and g = G/g0 are the non-dimensional velocity, viscous stress tensor and
gravity component, respectively; x, y, z, h, s, f, t, p together with s0, lt, wt, lp, wp correspond to
their dimensional counterparts. Re = ρU0H0/µ is the Reynolds number and SSt = 2/ sin θ the
Stokes number; alternatively, the latter can be written as St = Re/Fr2, where Fr = U0/

√
H0g0

is the Froude number.
The general problem definition is complete following the specification of appropriate no-slip,

inflow, kinematic, free-surface normal and tangential stress boundary conditions [52]:

u|z=s = 0, (5)
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u|x=0 = (z (2− z) , 0, 0) , (6)

∂f

∂t
+ u|z=f

∂f

∂x
+ v|z=f

∂f

∂y
− w|z=f = 0, (7)

−p|z=f + (τ |z=f · n) · n =
κ

Ca
, (8)

(τ |z=f · n) · t = 0, (9)

where Ca = µU0/σ is the capillary number, n =
(

−∂f
∂x
,−∂f

∂y
, 1
)

·
[

(

∂f
∂x

)2
+
(

∂f
∂y

)2

+ 1

]−1/2

is the unit normal vector pointing outward from the free surface, t =
(

αt, βt, αt
∂f
∂x

+ βt
∂f
∂y

)

·
[

α2
t + β2

t +
(

αt
∂f
∂x

+ βt
∂f
∂y

)2
]−1/2

is the unit vector tangential to the free surface, αt, βt are

variables that define the direction of the vector at any point in the tangent plane and κ = −∇·n
is the free-surface curvature.

2.1 Mathematical formulation

Although in principle the above system of equations and boundary conditions, (3)-(9), could be
solved for the problem of interest using, for example, an appropriate finite element formulation,
the memory and computational resources required to obtain the accuracy necessary to produce
mesh independent solutions remains a formidable stumbling block. In addition, this constraint
becomes further exacerbated, even in the Stokes flow limit, when one has to handle very small
topographical features and/or when the same are sparsely distributed [14]. The task is simplified
greatly by adopting a long-wave approximation [8], effectively reducing the dimensionality of
the problem by one; the main assumption being that e ε = H0/L0 ≪ 1, where L0 is the
characteristic in-plane length scale.

Formulating the governing equations (3) and (4) in terms of L0 is equivalent to the following
change of non-dimensional variables (x, y, lt, wt, lp, wp, t, p) → (x, y, lt, wt, lp, wp, t, p) /ε, w →
εw, leading to:

εRe

(

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)

= −∂p
∂x

+ ε2
(

∂2u

∂x2
+
∂2u

∂y2

)

+
∂2u

∂z2
+ 2, (10)

εRe

(

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)

= −∂p
∂y

+ ε2
(

∂2v

∂x2
+
∂2v

∂y2

)

+
∂2v

∂z2
, (11)

ε3Re

(

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)

= −∂p
∂z

+ ε4
(

∂2w

∂x2
+
∂2w

∂y2

)

+ ε2
∂2w

∂z2
− 2ε cot θ, (12)

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (13)

while the boundary conditions (8) and (9) become:

−p|z=f +















2ε2
(

−∂u
∂z

∂f
∂x

− ∂v
∂z

∂f
∂y

+ ∂w
∂z

)

+O(ε4)

1 + ε2
[

(

∂f
∂x

)2
+
(

∂f
∂y

)2
]















|z=f =
ε3

Ca
∇ ∇f
√

1 + ε2
[

(

∂f
∂x

)2
+
(

∂f
∂y

)2
]

, (14)

(

αt
∂u

∂z
+ βt

∂v

∂z

)

|z=f + ε2
{(

αt
∂f

∂x
+ βt

∂f

∂y

)(

−∂u
∂z

∂f

∂x
− ∂v

∂z

∂f

∂y
+ 2

∂w

∂z

)
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+ αt

[

−2
∂u

∂x

∂f

∂x
−
(

∂u

∂y
+
∂v

∂x

)

∂f

∂y
+
∂w

∂x

]

+ βt

[

−2
∂v

∂y

∂f

∂y
−
(

∂u

∂y
+
∂v

∂x

)

∂f

∂x
+
∂w

∂y

]}

|z=f+O(ε
4) = 0.

(15)
By neglecting all terms of O(ε2) and smaller the above system simplifies considerably and

can be averaged over the depth of the film. As in the case of a lubrication approach [8] the
depth-averaged form (DAF) derived below can be thought of as a first-order accurate long-wave
approximation but with no Reynolds number limitation.

For thin film flows the capillary pressure is of the same order as the fluid pressure; to be
consistent with [13, 31, 53] the capillary number is defined as:

Ca =
ε3

6
=

H3
0

6L3
0

, (16)

where L0 = (σH0/3ρg sin θ)
1/3 represents the associated capillary length-scale; the resulting

DAF is therefore valid for the case of small capillary numbers, Ca ∼ O(ǫ3) ≪ 1, only.
Equation (12) results in a balance between the acceleration arising from the pressure and

that from gravity, which when integrated with respect to z and applying boundary condition
(14), leads to the following familiar equation [13] for pressure:

p = − ε3

Ca
∇2f + 2ε (f − z) cot θ. (17)

Integrating the continuity equation (13) using Leibniz’s rule and applying boundary condi-
tions (5) and (7) leads to the following depth-averaged equation for the conservation of mass:

∫ f

s

(

∂u

∂x
+
∂v

∂y
+
∂w

∂z

)

dz =
∂h

∂t
+
∂ (hū)

∂x
+
∂ (hv̄)

∂y
= 0, (18)

where the over-bar denotes the x and y depth-averaged components of velocity, namely:

ū =
1

h

∫ f

s

udz, v̄ =
1

h

∫ f

s

vdz, (19)

The DAF of the momentum equations (10) and (11) is obtained in three stages: first the
pressure gradient, then the diffusion terms and finally the advection terms are averaged. In the
case of the u-momentum equation (10), making use of boundary conditions (5), (7), (15) and
equation (13), while noting that fluctuations about the average are zero, in order:

∫ f

s

∂p

∂x
dz = h

∂p

∂x
, (20)

∫ f

s

∂2u

∂z2
dz =

∂u

∂z
|z=f −

∂u

∂z
|z=s = −∂u

∂z
|z=s, (21)

∫ f

s

(

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)

dz =

∫ f

s

(

∂u

∂t
+
∂ (uu)

∂x
+
∂ (vu)

∂y
+
∂ (wu)

∂z

)

dz

= h

(

∂ū

∂t
+ ū

∂ū

∂x
+ v̄

∂ū

∂y

)

+
∂

∂x

∫ f

s

(ū− u)2 dz +
∂

∂y

∫ f

s

(ū− u) (v̄ − v) dz. (22)

The DAF of the v-momentum equation is derived similarly.
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After substitution of the pressure equation (17) into the momentum equations and dividing
through by the film thickness, the resulting governing system of equations for the unknown
averaged velocities ū (x, y, t), v̄ (x, y, t) and the film thickness h (x, y, t) is:

εRe

[

∂ū

∂t
+ ū

∂ū

∂x
+ v̄

∂ū

∂y
+

1

h

∂

∂x

∫ f

s

(ū− u)2 dz +
1

h

∂

∂y

∫ f

s

(ū− u) (v̄ − v) dz

]

=
∂

∂x

[

ε3

Ca
∇2 (h+ s)− 2ε (h+ s) cot θ

]

− 1

h

∂u

∂z
|z=s + 2, (23)

εRe

[

∂v̄

∂t
+ ū

∂v̄

∂x
+ v̄

∂v̄

∂y
+

1

h

∂

∂x

∫ f

s

(ū− u) (v̄ − v) dz +
1

h

∂

∂y

∫ f

s

(v̄ − v)2 dz

]

=
∂

∂y

[

ε3

Ca
∇2 (h+ s)− 2ε (h+ s) cot θ

]

− 1

h

∂v

∂z
|z=s, (24)

∂h

∂t
+
∂ (hū)

∂x
+
∂ (hv̄)

∂y
= 0. (25)

The above system of equations contains four dimensionless parameters: ε, Re, Ca and cot θ;
however, due to the nature of the length-scale L0 it is possible to avoid one spare parameter -
either Ca or ε as per equation (16). Therefore the similarity of the results obtained by solving
the DAF depends on two dimensionless groupings only: an inertia parameter I = Ca1/3 · Re
and gravity parameter N = Ca1/3 · cot θ.

The problem is closed in terms of specified averaged inflow conditions and the assumption
of fully developed flow both upstream and downstream, namely:

ū|x=0 = 2/3, v̄|x=0 =
∂ū

∂x
|x=lp =

∂v̄

∂x
|x=lp =

∂ū

∂y
|y=0,wp

=
∂v̄

∂y
|y=0,wp

= 0. (26)

h|x=0 = 1,
∂h

∂x
|x=lp =

∂h

∂y
|y=0,wp

= 0. (27)

2.2 Friction and Dispersion Terms

Equations (23)-((25) contain friction and dispersion terms of the form ∂zu|z=s, ∂zv|z=s and
∫ f

s
(ū− u)2 dz,

∫ f

s
(v̄ − v)2 dz,

∫ f

s
(ū− u) (v̄ − v) dz, respectively. For the thin film flows of

interest, these terms can be determined explicitly by assuming that the velocity profile within
the film has the same and consistent self-similar form as the classical Nusselt solution [51],
namely:

u = 3ū
(

ξ − 1/2ξ2
)

, v = 3v̄
(

ξ − 1/2ξ2
)

, (28)

where ξ = (z − s) /h.
Note that, proceeding as above is commensurate with the key assumption of the integral-

boundary-layer approximation discussed earlier, namely that the velocity profile across the film
is parabolic. Although not explored here, various authors suggest alternative ways forward.
For the problem of two-dimensional film flow down an incline uniform plane, [35, 36, 37] have
proposed the following models: (i) a first-order one which involves approximating the velocity
profile using high-order polynomials whose coefficients are determined by gradient expansion
of the solution; (ii) a second-order variant which retains terms of second-order-accuracy in
the long-wave expansion of the N-S equations and the free-surface stress balance boundary
condition, leading to a system of equations for three unknowns - the film thickness, mean flow
rate and shear stress at the surface. The latter model has been refined further still [38] by
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retaining terms of third-order-accuracy and approximating the velocity profile by polynomials
up to eighth-order whose coefficients are obtained by Galerkin projection.

The validity and robustness of using the velocity profiles given by equation (28) in the
present work is established in Section 4, even for flow over deep topographic features, by com-
parison with complementary experimentally measured and numerically predicted freesurface
disturbances.

Accordingly, using relations (28) and equation (18) leads to the following analytical expres-
sions for the friction and dispersion terms:

∂u

∂z
|z=s =

3ū

h
, (29)

∂v

∂z
|z=s =

3v̄

h
, (30)

∂

∂x

∫ f

s

(ū− u)2 dz +
∂

∂y

∫ f

s

(ū− u) (v̄ − v) dz =
1

5

(

hū
∂ū

∂x
+ hv̄

∂ū

∂y
− ū

∂h

∂t

)

, (31)

∂

∂x

∫ f

s

(ū− u) (v̄ − v) dz +
∂

∂y

∫ f

s

(v̄ − v)2 dz =
1

5

(

hū
∂v̄

∂x
+ hv̄

∂v̄

∂y
− v̄

∂h

∂t

)

. (32)

Note too, that the above forms for the friction and dispersion terms ensure that the DAF of
the governing equations reduces to the familiar lubrication equations [8] when Re = 0.

2.3 Topography Definition

Attention is restricted to flows involving simple, well-defined topography, namely one-dimensional
(spanwise) trench, step-up, and step-down features, and in two-dimensions (localised) rectan-
gular trenches. Note, however, that the DAF can be applied to flows over more complex
topographies - see for example [54]. Since the topography profile appears as a function in the
governing equations, it is not possible to consider completely sharp features. Following previous
authors [13, 23, 27], the topography is therefore specified via arctangent functions; for example,
a rectangular trench (or peak if desired) is defined as follows:

s (x∗, y∗) =
s0

4 tan−1 lt
2δ
tan−1 wt

2δ

[

tan−1

(

x∗ + lt/2

δ

)

− tan−1

(

x∗ − lt/2

δ

)]

×
[

tan−1

(

y∗ + wt/2

δ

)

− tan−1

(

y∗ − wt/2

δ

)]

, (33)

where s0 (= S0/H0) is the dimensionless depth (s0 < 0) or height (s0 > 0), with lt (= LT/L0),
wt (= WT/L0) and δ the non-dimensional streamwise length, spanwise width and steepness
factor, respectively. The coordinate system (x∗, y∗) = (x− xt, y − yt) has its origin at the
centre of the topography, (xt, yt).

3 Method of Solution

3.1 Spatial Discretisation

Equations (23) to (25), incorporating expressions (29) to (32), are solved, subject to boundary
conditions (26) and (27), on a rectangular computational domain, (x, y) ∈ Ω = (0, lp)× (0, wp),
subdivided using a regular spatially staggered mesh arrangement of cells having sides of length
∆x and width ∆y. The unknown variables, film thickness, h, and the velocity components, ū,
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v̄, are located at cell centres, (i, j), and cell faces, (i+ 1/2, j), (i, j + 1/2), respectively. The
use of a staggered mesh arrangement avoids the well known checkerboard instability [57] that
results if central differencing is applied to first-order pressure term derivatives and to the terms
in the continuity equation when pressure and velocity components are collocated.

Solving the momentum equations (23) and (24) at cell faces with the convection and time
derivative terms grouped together to simply their numerical treatment following the inclusion
of the friction and dispersion terms, the continuity equation (25) at cell centres, and omitting
for the sake of convenience the overbar denoting velocity averaging, results in the following
second-order accurate discretisation scheme:

εRe

(

∂u

∂t
− u

5h

∂h

∂t
+

6

5
F [u]

)

|i+1/2,j −
ε3

Ca

(

fi+1,j+1 − 2fi+1,j + fi+1,j−1 − fi,j+1 + 2fi,j − fi,j−1

∆x∆y2

+
fi+2,j − 3fi+1,j + 3fi,j − fi−1,j

∆x3

)

+ 2ε cot θ
fi+1,j − fi,j

∆x
+

3ui+1/2,j

h2i+1/2,j

− 2 = 0, (34)

εRe

(

∂v

∂t
− v

5h

∂h

∂t
+

6

5
F [v]

)

|i,j+1/2 −
ε3

Ca

(

fi+1,j+1 − 2fi,j+1 + fi−1,j+1 − fi+1,j + 2fi,j − fi−1,j

∆x2∆y

+
fi,j+2 − 3fi,j+1 + 3fi,j − fi,j−1

∆y3

)

+ 2ε cot θ
fi,j+1 − fi,j

∆y
+

3vi,j+1/2

h2i,j+1/2

= 0, (35)

∂h

∂t
|i,j +

hi+1/2,jui+1/2,j − hi−1/2,jui−1/2,j

∆x
+
hi,j+1/2vi,j+1/2 − hi,j−1/2vi,j−1/2

∆y
= 0, (36)

where F [ω] = u∂xω+ v∂yω is the convective operator and the following terms are interpolated
as shown from neighbouring nodes: hi±1/2,j = (hi±1,j + hi,j) /2, hi,j±1/2 = (hi,j±1 + hi,j) /2.

In the above discrete DAF analogue, as is the case for convection-diffusion problems, proper
numerical treatment of the convection terms is very important [55, 56]. The mesh Péclet
number, Pe, stability condition (see [57], for example), defined as the ratio of the convection to
friction term in the momentum equation, is given by:

Pe =
2εReh2max (u, v)

5min (∆x,∆y)
≤ 2 ⇒ Re ≤ Recr =

15min (∆x,∆y)

2ε
. (37)

For typical mesh spacings of ∆x = ∆y = 0.05 and with ε = 0.1 the value of the critical Reynolds
number, Recr, is small and equal to 3.75, illustrating the restrictiveness of this constraint
apropos the accurate solution of the thin film flows of interest.

To alleviate this restriction the convective operator F [ω] is discretized using a second-order
accurate total variation diminishing (TVD) scheme [58]. As such, the first term of the convective
operator, u∂xω, at a general point (i, j) takes the form:

∂ω

∂x
|i,j =

u+i,j
4∆x

{

(ωi,j − ωi−1,j)

[

2 + ψ

(

ωi+1,j − ωi,j

ωi,j − ωi−1,j

)]

− (ωi−1,j − ωi−2,j)ψ

(

ωi,j − ωi−1,j

ωi−1,j − ωi−2,j

)}

+
u−i,j
4∆x

{

(ωi+1,j − ωi,j)

[

2 + ψ

(

ωi,j − ωi−1,j

ωi+1,j − ωi,j

)]

− (ωi+2,j − ωi+1,j)ψ

(

ωi+1,j − ωi,j

ωi+2,j − ωi+1,j

)}

, (38)

where u+i,j = ui,j + |ui,j|, u−i,j = ui,j −|ui,j|, and ψ (η) = (η2 + η) / (η2 + 1) is the well known van
Albada flux limiter [57]; the second term, v∂yω, in F [ω] is expressed similarly. The formulation
is easily shifted to the appropriate staggered grid location to obtain F [u]i+1/2,j or F [v]i,j+1/2

and the following terms can be interpolated from neighbouring nodes:

ui,j+1/2 =
(

ui−1/2,j + ui+1/2,j + ui−1/2,j+1 + ui+1/2,j+1

)

/4, (39)

vi+1/2,j =
(

vi,j−1/2 + vi,j+1/2 + vi+1,j−1/2 + vi+1,j+1/2

)

/4. (40)
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To simplify the description of the calculation procedure presented below, it is convenient to
separate the leading temporal u, v and h terms from the discretized u-momentum, v-momentum
and continuity operators and to express them as functions Mu

i+1/2,j , Mv
i,j+1/2 and Mh

i,j , respec-

tively. This enables equations (34)-(36) to be rewritten as:

εRe
∂u

∂t
|i+1/2,j +Mu

i+1/2,j (u, v, h) = 0, (41)

εRe
∂v

∂t
|i,j+1/2 +Mv

i,j+1/2 (u, v, h) = 0, (42)

∂h

∂t
|i,j +Mh

i,j (u, v, h) = 0, (43)

The discrete form of the ∂h
∂t

term, which appears in Mu and Mv, of equations (34) and (35),
is obtained at the appropriate staggered mesh location via equation (43). The locations of the
independent variables (u, v, h), when determining the functions Mu

i+1/2,j , Mv
i,j+1/2 and Mh

i,j

are shown in Fig. 2.
Clearly, when Re = 0 the solution procedure simplifies considerably since the terms contain-

ing time derivatives on the left hand side of the momentum equations (41) and (42) disappear.

3.2 Temporal Discretisation

The automatic adaptive time-stepping procedure adopted employs an estimate of the local
truncation error (LTE) obtained from the difference between an explicit predictor stage and
the current solution stage to optimise the size of time steps and minimise computational waste.

Fully explicit, second order accurate in time discretisations of equations (41) - (43) can be
used to predict (pr) values for u, v and h, as follows:

upr|n+1
i+1/2,j = γ2un−1

i+1/2,j +
(

1− γ2
)

uni+1/2,j −
∆tn+1

εRe
(1 + γ)Mu

i+1/2,j (u
n, vn, hn) , (44)

vpr|n+1
i,j+1/2 = γ2vn−1

i,j+1/2 +
(

1− γ2
)

vni,j+1/2 −
∆tn+1

εRe
(1 + γ)Mv

i,j+1/2 (u
n, vn, hn) , (45)

hpr|n+1
i,j = γ2hn−1

i,j +
(

1− γ2
)

hni,j −∆tn+1 (1 + γ)Mh
i,j (u

n, vn, hn) , (46)

where n and n + 1 denote values at the end of the nth and (n + 1)st time steps, t = tn and
t = tn+1 respectively, and γ = ∆tn+1/∆tn = (tn+1 − tn) / (tn − tn−1).

Adaptive time-stepping is performed by keeping the LTE for upr within a specified toler-
ance that in practice automatically restricts the LTE for vpr and hpr and provides a means of
increasing the time step in a controlled manner. The LTE for upr at the predictor stage can be
expressed via a Taylor series expansion of equation (44) in the form:

(LTE)pr|i+1/2,j =
(∆tn+1)∆tn(1 + γ)

6

∂3u

∂t3
|i+1/2,j,t=tp , (47)

with the third-order time derivative term evaluated at time tp ∈ (tn, tn+1).
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In the present work, an implicit β-method [58] is used to advance the solution in time:

un+1
i+1/2,j +

β∆tn+1

εRe
Mu

i+1/2,j

(

un+1, vn+1, hn+1
)

= uni+1/2,j +
(β − 1)∆tn+1

εRe
Mu

i+1/2,j (u
n, vn, hn) , (48)

vn+1
i,j+1/2 +

β∆tn+1

εRe
Mv

i,j+1/2

(

un+1, vn+1, hn+1
)

= vni,j+1/2 +
(β − 1)∆tn+1

εRe
Mv

i,j+1/2 (u
n, vn, hn) , (49)

hn+1
i,j + β∆tn+1Mh

i,j

(

un+1, vn+1, hn+1
)

= hni,j + (β − 1)∆tn+1Mh
i,j (u

n, vn, hn) . (50)

Note that for β = 1/2 the method reduces to the second order accurate in time, but
conditionally stable Crank-Nicolson scheme, whereas β = 1 leads to the fully implicit first
order accurate in time unconditionally stable Laasonen method.

The LTE for u at the solution (sol) stage is similarly given by a Taylor series expansion of
equation (48):

(LTE)sol|i+1/2,j = −(∆tn+1)3

12

∂3u

∂t3
|i+1/2,j,t=ts , ts ∈ (tn, tn+1). (51)

As described in [59], the assumption that the third order derivative term varies by only a small
amount over the time step enables the LTE to be estimated as:

(LTE)i+1/2,j =
un+1
i+1/2,j − upr|n+1

i+1/2,j

1 + 2[(1 + γ)/γ]
, (52)

which, following [60], is used to obtain an estimate of the overall truncation error by finding its
Euclidean norm that, in turn, is used to specify the next time step ∆tn+2 via:

∆tn+2 = 0.9∆tn+1

(

TOL

||LTE||

)1/3

, (53)

if ||LTE|| ≤ TOL. The iteration is restarted with half the current time step if ||LTE|| > TOL,
where TOL is a user prescribed tolerance.

3.3 Multigrid Solver

At the solution stage of the temporal discretisation, the system of the equations (48) to (50) is
solved using a multigrid formulation that enables a system with N unknowns to be solved in
only O (N) operations. The basis of this approach, as described in several comprehensive texts
– see for example [57], exploits the convergence rates of iterative solvers, such as Gauss-Seidel or
Jacobi smoothers, to effectively reduce local (high-frequency) errors present in the solution on
a particular computational grid, while global (low-frequency) errors are reduced by employing
a hierarchy of successively finer grids, G0, . . . , Gk, . . . , GK , where G0 denotes the coarsest and
GK the finest grid level.

For a specified number of cells on the coarsest grid G0, n0
x and n0

y in the x and y directions
respectively, the number of cells on an arbitrary grid Gk say, is nk

x = n0
x2

k, nk
y = n0

y2
k. This

results in grid spacings on Gk of ∆xk = lp/n
k
x = ∆x02−k, ∆yk = wp/n

k
y = ∆y02−k, where

∆x0 = lp/n
0
x and ∆y0 = wp/n

0
y are the grid spacings on G0.
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To simplify the explanation and the steps taken in the multigrid process, the system of
discrete equations (48) to (50) is rewritten in the following way:

N u
i+1/2,j

(

un+1, vn+1, hn+1
)

= Fu
i+1/2,j (u

n, vn, hn) , (54)

N v
i,j+1/2

(

un+1, vn+1, hn+1
)

= Fv
i,j+1/2 (u

n, vn, hn) , (55)

N h
i,j

(

un+1, vn+1, hn+1
)

= Fh
i,j (u

n, vn, hn) , (56)

where N u
i+1/2,j , N v

i,j+1/2 and N h
i,j are the time-dependent nonlinear operators and Fu

i+1/2,j ,

Fv
i,j+1/2 and Fh

i,j are the right-hand side functions that are defined by the solution on the
previous time step.

In the present work a combined full approximation storage (FAS) and full multigrid (FMG)
technique is employed. The latter is based on the fact that an initial guess (Gs) for the multigrid
solver on each grid Gk ∈

[

G1, GK
]

is provided by FMG interpolation of the solution (Sl) from
the coarser grid Gk−1 (see Fig. 3) using bilinear interpolation operators on a staggered grid
system Iuk−1→k, I

v
k−1→k, I

h
k−1→k (see Appendix A):

uGs
k = Iuk−1→k

(

uSlk−1

)

, vGs
k = Iuk−1→k

(

vSlk−1

)

, hGs
k = Ihk−1→k

(

hSlk−1

)

, (57)

where, for the sake of simplicity, the coordinate and time indices have been omitted.
The solution process consists of performing a fixed number of FAS V-cycles on intermediate

grid levels Gk ∈ [G1, GK−1] (usually 1 to 3 V-cycles) and up to 10 V-cycles on the finest grid
level GK (that is, sufficient V-cycles are executed until the residuals have been reduced to a
specified tolerance). The structure of a single FAS multigrid V-cycle on an arbitrary grid level
Gk may be described in the same pseudo-code formalism as in [12]:

(

uSlk , v
Sl
k , h

Sl
k

)

= FASCYC
(

k, uGs
k , v

Gs
k , hGs

k ,Fu
k ,Fv

k ,Fh
k , νpre, νpost

)

, (58)

where νpre and νpost are number of pre- and post-relaxations of the multigrid cycle (usually νpre
= νpost = 2).

1. Pre-smoothing stage

• Apply the relaxation scheme (see next subsection) νpre times to obtain first corrected
appproximation (Rl):

(

uRl
k , v

Rl
k , h

Rl
k

)

= RELAXνpre
(

uGs
k , v

Gs
k , hGs

k ,Fu
k ,Fv

k ,Fh
k

)

, (59)

2. Coarse-grid correction stage

• Compute the defects:

duk = Fu
k−N u

k

(

uRl
k , v

Rl
k , h

Rl
k

)

, dvk = Fv
k−N v

k

(

uRl
k , v

Rl
k , h

Rl
k

)

, dhk = Fh
k−N h

k

(

uRl
k , v

Rl
k , h

Rl
k

)

,
(60)

• Restrict the defects to the next coarser grid level using full-weighting restriction operators
for staggered grids Ru

k→k−1, R
v
k→k−1, R

h
k→k−1 (see Appendix A):

duk−1 = Ru
k→k−1 (d

u
k) , dvk−1 = Rv

k→k−1 (d
v
k) , dhk−1 = Rh

k→k−1

(

dhk
)

, (61)

• Restrict the solution to get the initial guess for the next coarser grid level:

uGs
k−1 = Ru

k→k−1

(

uRl
k

)

, vGs
k−1 = Rv

k→k−1

(

vRl
k

)

, hGs
k−1 = Rh

k→k−1

(

hRl
k

)

, (62)
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• Compute the right-hand side on the next coarser grid level:

Fu
k−1 = duk−1 +N u

k−1

(

uGs
k−1, v

Gs
k−1, h

Gs
k−1

)

, Fv
k−1 = dvk−1 +N v

k−1

(

uGs
k−1, v

Gs
k−1, h

Gs
k−1

)

,

Fh
k−1 = dhk−1 +N h

k−1

(

uGs
k−1, v

Gs
k−1, h

Gs
k−1

)

, (63)

If k = 0 a coarsest grid solver is employed (equations (54) to (56) can be solved directly
or, as is the case here, using relaxation – see section 3.4). If k > 0 the FAS cycle is used
to update the next k − 1 coarser grid solution:
(

uSlk−1, v
Sl
k−1, h

Sl
k−1

)

= FASCYC
(

k − 1, uGs
k−1, v

Gs
k−1, h

Gs
k−1,Fu

k−1,Fv
k−1,Fh

k−1, νpre, νpost
)

, (64)

• Compute the corrections:

euk−1 = uSlk−1 − uGs
k−1, evk−1 = vSlk−1 − vGs

k−1, ehk−1 = hSlk−1 − hGs
k−1, (65)

• Interpolate the corrections on the fine grid level using bilinear interpolation operators for
staggered grids Iuk−1→k, I

v
k−1→k, I

h
k−1→k (see Appendix A):

euk = Iuk−1→k

(

euk−1

)

, evk = Ivk−1→k

(

evk−1

)

, ehk = Ihk−1→k

(

ehk−1

)

, (66)

• Compute the second corrected approximation (Cr):

uCr
k = uRl

k + euk , vCr
k = vRl

k + evk, hCr
k = hRl

k + ehk, (67)

3. Post-smoothing stage

• Apply the relaxation scheme νpost times to get the final solution (Sl):
(

uSlk , v
Sl
k , h

Sl
k

)

= RELAXνpost
(

uCr
k , v

Cr
k , h

Cr
k ,Fu

k ,Fv
k ,Fh

k

)

. (68)

3.4 Relaxation Methodology

Due to the staggered nature of the discretisation involved, the relaxation methodology employs
a lexicographic box smoothing Gauss-Seidel scheme [57] to define a collective local relaxation
which encompasses the associated variables u, v and h; this efficiently retains the diagonal
dominance of the relaxation scheme. The set of algebraic equations (54) to (56) is written in
a linearised form using the Newton-Raphson method. For each cell, see Fig. 2, five coupled
equations (two each from the u-momentum and v-momentum equations and one from the
continuity equation, given in Appendix B) are solved for the unknown increments ∆ui+1/2,j ,
∆ui−1/2,j , ∆vi,j+1/2, ∆vi,j−1/2, ∆hi,j with the new approximations given by:

ũi+1/2,j = ui+1/2,j +∆ui+1/2,j ,

ũi−1/2,j = ui−1/2,j +∆ui−1/2,j ,

ṽi,j+1/2 = vi,j+1/2 +∆vi,j+1/2, (69)

ṽi,j−1/2 = vi,j−1/2 +∆vi,j−1/2,

h̃i,j = hi,j +∆hi,j,

updated simultaneously; and where each velocity component is updated twice, while the film
thickness is updated only once per relaxation sweep. Dirichlet boundary conditions are assigned
as exact values at the boundary points, whereas Neumann boundary conditions are implemented
by employing ghost nodes at the edge of the computational domain.
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4 Results

All of the solutions generated were obtained using the implicit time-stepping scheme described
above, with β = 3/4, starting with the initial condition of a flat free-surface (h = 1 − s) and
velocity profile u = 2

3
h2, v = 0 (commensurate with Re = 0). A computational domain with

lp = wp = 100, was chosen, large enough to ensure fully developed flow both upstream and
downstream of the topography and of sufficient extent to negate edge effects. The coarsest
multigrid level G0 had n0

x = n0
y = 64 (n0

x = 64 in one-dimension) and a finest grid level G4 had
n4
x = n4

y = 1024 (G5 with n5
x = 2048 in one-dimension) uniformly spaced cells. At each time step

sufficient multigrid V-cycles are performed to reduce residuals on the finest mesh level to below
10−6. A typical value of the time adaptive tolerance used in the computations is TOL ≈ 10−3.
The choice of steepness parameter, δ, is also important in ensuring the mesh independence of
solutions; for all the topography types considered (one-dimensional trench, step-up, step-down
and two-dimensional trench), the results obtained were found to be independent of δ provided
δ ≤ δcr = 10−3.

In order to facilitate direct comparison with experiment [31], the focus of the ensuing
investigation is that of gravity-driven flow of thin water films with fixed fluid properties
ρ = 1000kg · m−3, µ = 0.001Pa · s and σ = 0.07N · m−1. As such, θ is taken to be 30◦ unless
stated otherwise, with spanwise topography located with its centre at xt = 50 and localised
topography shifted upstream slightly and centred on (xt, yt) = (30.77, 50). Consequently, for
specified values of θ and Re the other parameters appearing in the calculation can be easily
derived in terms of them and the fixed fluid properties; for example, H0 and Ca, can be written
as:

H0 =

(

2µ2

ρ2g0

)1/3 (
Re

sin θ

)1/3

, Ca =

(

g0µ
4

2ρσ3

)1/3
(

Re2 sin θ
)1/3

. (70)

Two detailed sets of results are presented; Table 1 summarises the range of flow parameters
investigated and how, for fixed fluid properties, the non-dimensional groupings involved change
in concert. Accordingly, other than for simple step-up and step-down spanwise features, it is
convenient to utilise a coordinate system scaled by the fixed streamwise dimension of the topog-
raphy, namely (xo, yo) = (x∗, y∗) /lt; in all cases the planar incline containing the topography
and free-surface location is scaled with respect to the fixed height/depth of the topography,
namely s∗ = s/s0 and f ∗ = (f − 1) /s0, respectively.

Before investigating the flows in detail it is useful to comment on the efficiency of the chosen
method of solution, in particular since the equation set involved is hyperbolic in nature. Fig. 4
shows how the CPU time for a typical time step depends on the grid density - the problem used
as a benchmark is that of three-dimensional flow over a square, trench topography as considered
later in Section 4.2, for the same flow parameters. The slope of the quasi-linear plots in Fig.
4, for both values of Re which differ by an order of magnitude, show that a solution efficiency
of O(N), where N is the number of unknowns, is achieved by the multigrid strategy adopted.

4.1 Thin film flow over spanwise topography

The accuracy of the DAF for predicting two-dimensional flow over spanwise topography is
quantified by comparison with experimental data [31] and accurate finite element solutions of
the full N-S problem - see [61] for a description of the methodology involved. Fig. 5 reveals
the effect of Re on the streamwise free-surface profile for the flow of a thin water film over a
trench topography of width Lt =1.2 mm and depth S0 = 20µm. Figs. 5(a) and (b) show the
evolution of the solution towards steady-state for (a) Re = 5 and (b) Re = 15. Such solutions
are obtained in a matter of minutes, with higher Reynolds number flows taking longer to reach
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steady-state due to the increased inherent non-linearity. Fig. 5(c) demonstrates the influence
of inertia on the free-surface profile, showing predictions for the cases Re = 5, 15 and 30,
corresponding to H0 = 126.8, 182.9 and 230.5 µm, respectively. They reveal that increasing Re
leads to amplification and widening of both the capillary ridge and the free-surface depression
over the trench. Note also the exacerbated free-surface disturbance upstream of the capillary
ridge with increasing Re.

Fig. 6 compares steady-state free-surface profiles obtained using the DAF and corresponding
FE solutions for the experimental cases considered by Decre & Baret [31]. Figs. 6(a) and
6(b) consider flow of a thin water film, with Re = 2.45, over spanwise step-up and step-
down topographies respectively of depth/height |s0| = 0.2, while Fig. 6(c) considers flow with
Re = 2.84 over a spanwise trench of depth s0 = 0.19 and width lt=1.51. In all three cases,
the DAF and FE predictions are indistinguishable from each other, while the agreement with
their experimentally measured counterparts is excellent as exemplified in the blown-up insert
of Fig. 6(c) showing the free-surface shape across and upstream of the capillary ridge. Indeed
the r.m.s. error between the predicted DAF and experimentally obtained free-surface profiles
is approximately 1.5% for all three spanwise topographies, which lies well within the reported
experimental accuracy of 2% [31].

A wider range of parameter space is now considered by retaining the same fluid properties
as used by [31], i.e. those of water, while changing Re - see Table 1. Figs. 7 and 8 show the
effect of increasing inertia and/or topography amplitude on the free surface profiles for flow
over step-up and step-down topography, respectively, for cases with Re = 15 and Re = 30 and
|s0| = 0.2 and |s0| = 1.0. The corresponding predictions from lubrication theory [14] are also
given for comparison purposes. These figures show that increasing inertia results in a widening
and amplification of the free-surface disturbance, leading to larger free-surface depressions and
capillary ridges upstream of the step-up and step-down topography respectively. It is evident
that: (i) the DAF and FE predictions are in close agreement; (ii) lubrication theory, although
capturing the essential features, significantly under predicts the associated capillary ridges and
depressions; (iii) the discrepancy between the lubrication predictions and the DAF and FE ones
is exacerbated by increasing either Re or |s0|.

These findings are quantified in greater detail in Figs. 9(a)-(d), which show contour plots of
the discrepancy between lubrication [14] and DAF predictions and corresponding FE solutions
of the full N-S equations. Following [13], the error is quantified by the maximum percentage
discrepancy between the lubrication or DAF predictions, measured normal to the N-S profile.
This measure is preferred to a r.m.s. error since the latter would be unduly biased by the
extensive asymptotic flow regions where all free-surface profiles are indistinguishable. Note that
the maximum error occurs close to the peak of the topography, over the steeply sloping section
of the free-surface, whereas the predicted errors in the vicinity of the free-surface depression
(step-up) and capillary ridge (step-down) are typically much less [13].

For both sets of contours, the discrepancies associated with the step-down flow become larger
once the values of Re and |s0| become significant. The errors in the lubrication predictions are
consistently greater than those obtained with the DAF, being typically 3 times and 1.5 times
larger for the step-up and step-down cases, respectively. For example, for the extreme step-up
case with Re = 30 and |s0| = 1.0, the DAF error is only 5.5% compared to lubrication theory’s
16%, while for a step-down these errors are 12% and 22% respectively.

Although different in magnitude, the upper two discrepancy contours have roughly the
same shape suggesting that the source of error for both step-up and step-down configurations
is predominately one of the neglect of inertia, consistent with the basis of lubrication theory.
The lower discrepancy contours paint a different picture; the step-up ones being much steeper
but lower in magnitude than the step-down ones (which are consistent in shape and form,
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though not magnitude, with their lubrication counterpart) suggesting that for the former the
relative step height is the more dominate cause of discrepancy.

The source of the greater discrepancy associated with the stepdown can be traced to the
underlying flow structure as Re and |s0| are increased. Under Stokes flow, Re = 0, conditions
the eddy structure associated with an equivalent step-up and step-down would be mirror images
of each other. Figs. 10 and 11 show that increasing Re reduces (enlarges) the lateral and vertical
extent of the corner eddy which is present in the case of a step-up (step-down); as can be seen,
the effect becomes more pronounced the larger the value of |s0|. Accordingly, it is arguably
the neglect of vertical velocity terms of O(ε2) and the use of the classical Nusselt solution in
determining the friction and dispersion terms in regions of the flow where a large eddy exists, as
a consequence of the nature of the topography present [61], that leads to a greater discrepancy.
That said, except at the extreme values of Re and |s0| over the range considered, the free-surface
profiles obtained with the DAF and from FE solutions of the full N-S equations are comparable
and encouragingly good.

Taking the finite element solution of the full N-S as the benchmark, the relative difference
in the magnitude of the error associated with the corresponding solutions obtained with the
DAF and lubrication equations is shown more concisely in Figs. 9(e) and (f) as contours of the
ratio of the latter to the former. For the step-up topography, Fig. 9(e) shows that for fixed
|s0|, the relative error increases substantially as Re increases but that increasing |s0| for a fixed
value of Re the effect is less dramatic. For the step-down topography, Fig. 9(f) reveals that
the dependence on |s0| and Re is more subtle and, for example, increasing |s0| for a fixed Re
can reduce the ratio of the errors significantly.

4.2 Thin film flow over localised topography

The DAF is now used to predict the effect of inertia on three-dimensional thin film flow over
localised (two-dimensional) topography based on the square trench used by [31] with Lt =
Wt = 1.2mm and |S0| = 25µm. For a topography of this depth and the Re range considered,
see Table 1, according to Fig. 9 it is not unreasonable to expect the maximum discrepancy in
the predicted free-surface profiles to be of the order of 1% only (since |s0| = 0.197 and 0.092
for Re = 5 and 50, respectively).

Fig. 12 shows the effect of Re on the three-dimensional free-surface disturbance caused
by this square trench. Each case exhibits a characteristic ’horseshoe’-shaped ’bow-wave’, free-
surface depression over the trench, a downstream peak or ’surge’ caused by the fact that, for
three-dimensional flow, liquid exits the trench across a narrower length than across which it
enters [13], and ’comet-tail’. Note that no such ’surge’ mechanism exists for two-dimensional
flow over a completely spanwise trench, which explains the lack of a downstream surge in the
profiles given in Figs. 5(c) and 6(c). Increasing inertia causes a gradual rise in and widening of
the free surface disturbance and reduction in the extent of the ’comet-tail’. These effects are
seen more clearly in Fig. 13 which gives the corresponding streamwise and spanwise free-surface
profiles through the centre of the topography. Fig. 13(a) shows that increasing Re from 5 to 50
more than doubles the magnitude of the capillary ridge (f ∗ = 0.015 compared with f ∗ = 0.037)
and roughly trebles the size of the downstream surge (f ∗ = 0.023 compared to f ∗ = 0.067).

The effect of inertia on the downstream surge can be explored in more detail as follows. For
small Re, fluid enters the trench across its upstream side and both spanwise sides due to lateral
pressure gradients resulting from the spanwise curvature of the free-surface. Since the flow is
steady, fluid entering the trench must leave it on the downstream side. As the Re is increased
the downstream surge becomes more focused; by the time Re = 50 it creates a free-surface
disturbance larger than that of the downstream capillary ridge, Fig. 13(a); in addition it is
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positioned further upstream. A plausible explanation for what is observed is that increasing
inertia gradually overcomes the lateral pressure gradients causing the flow to become essentially
streamwise; in which case fluid enters and exits the trench topography principally across its
upstream and downstream sides respectively, and only fractionally if at all via its spanwise
sides.

Figs. 14 and 15 analyse how inertia affects the transition to two-dimensional, spanwise flow
as the trench width in the spanwise direction, Wt, is increased for fixed Lt=1.2mm. The free-
surface profiles given in Fig. 14, viewed from the downstream side, show that increasing trench
aspect ratio A = Wt/Lt, causes the bow wave to broaden while increasing Re leads to larger
free-surface disturbances that are more sharply focussed around the streamwise centreline. For
the cases shown, increasing A from 5 to 10 causes the downstream surge to bifurcate into two
smaller ones lying either side of the streamwise centreline. The progression to two-dimensional
flow can be seen more clearly by the streamwise and spanwise free-surface profiles shown in
Fig. 15 for Re = 5 and 50 and trench aspect ratio A = 1, 5, 10 and ∞ (i.e. spanwise
topography). Increasing A from 1 to 5 has a dramatic effect on the free surface depression and
on the upstream capillary ridge, while for A = 10 the streamwise profiles have much reduced
downstream surges. The sharper focus of the Re = 50 flow around the streamwise centreline is
shown by the spanwise free-surface profiles in Fig. 15(d) and by the fact that a larger aspect
ratio is needed for its streamwise profile to approximate that of the two-dimensional case shown
in Fig. 5. This is reinforced by calculating the difference in the streamwise free-surface profiles
obtained for finite A and the case A→ ∞ in the same way as the discrepancy contours of Fig.
9 were generated. For Re = 5, these are found to be 0.74% and 0.24% for A = 5 and A = 10,
respectively; whereas for Re = 50 they are 0.97% and 0.31%, respectively. This behaviour can
be explained in physical terms by noting that the Re = 50 case has larger streamwise inertia
and therefore will have less of a tendency than the Re = 5 case to spread across a given trench
geometry.

The final two figures consider the competing effects of inertia and the normal component
of gravity on the free-surface disturbance induced by the square trench topography considered
above. The parameter measuring the relative importance of the normal component of gravity
is N = Ca1/3 cot θ; since the fluid properties are fixed, the influence of N is explored via changes
to the inclination angle θ of the planar surface - see Table 1. Fig. 16 shows how decreasing θ
(increasing N) suppresses all free-surface disturbances, reducing considerably the magnitude of
the bow wave, downstream surge and free-surface depression over the trench. The streamwise
and spanwise free-surface profiles given in Fig. 17 show more clearly that the bow wave migrates
upstream as θ decreases while the downstream surge is more resistant to changes in θ and its
location remains effectively constant.

5 Conclusions

Gravity-driven thin film flow over various spanwise and local topographical features is explored
to ascertain the influence of inertia, via the numerical solution of a model system of coupled
equations formed by depth-averaging the governing general N-S and continuity equations. The
velocity profile within the film is assumed to have the same self-similar form as the classical
Nusselt solution in order to close the problem. The solution strategy purposely developed to
generate accurate mesh independent solutions to their discrete analogue employs multigridding,
error-controlled automatic adaptive time-stepping, a staggered mesh arrangement for the de-
pendent variables and proper treatment of the nonlinear convective terms via a second order
accurate TVD scheme in conjunction with a suitable flux limiter. The corresponding solution
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efficiency achieved is found to be of O(N), where N is the number of unknowns.
Solutions for spanwise topographies and flow conditions for which corresponding experimen-

tal data exists show the two to be in very good agreement with each other and with predictions
of the same from corresponding finite-element solutions of the full N-S problem. A subsequent
detailed numerical investigation of flow over spanwise step-up and step-down topography, in-
volving varying the step height/depth and Reynolds number range, is used to quantify the
accuracy of solutions viz. the depth-averaged equation set. To this end comparisons are made
with the N-S solution, taken as the benchmark, and with ones obtained using lubrication the-
ory. The results are summarised as contour plots in one of two ways: (i) the discrepancy which
arises, measured relative to the N-S solution; (ii) the relative magnitude of the error associated
with the ratio of discrepancies. These clearly show the benefits of the depth-averaged approach
over the use of lubrication theory, for increased step-height/depth and Reynolds number, and
that the former provides a reasonably good approximation to the flow when compared to its
finite element generated counterparts. Furthermore, investigation of the underlying flow struc-
ture in the form of streamline plots reveals why a step-down topography leads to a greater
maximum error as the step height/depth and Reynolds number become significant, compared
to a step-up topography.

For thin film flow over a localised square trench topography, it is found that the general
shape of the predicted free-surface disturbance agrees well with its experimentally obtained
counterpart, while revealing the subtle effects of increasing inertia. Attention is focused on
changes in the characteristic ’horseshoe’-shaped ’bow-wave’ and ’comet-tail’ features and the
effect on the accompanying downstream surge which is not present for flow over spanwise
topography. Increased inertia leads to a rise in and sharper focusing of the disturbances in
the vicinity of the topography, since streamwise inertia reduces their tendency to spread in the
spanwise direction. This finding is consistent with free-surface instabilities arising at critical
values of the Reynolds number.

Considered also is the effect of the aspect ratio of the trench topography and substrate
inclination angle on the free-surface disturbance as inertia is increased. The results show that
despite the tendency of inertia to amplify and focus the associated features, decreasing the
inclination angle, and hence the normal component of gravity, suppresses them, with the down-
stream surge proving to be more resilient to decreasing inclination angle than the upstream
bow-wave. Increasing the trench aspect ratio leads to a broadening of the upstream capil-
lary ridge and an eventual bifurcation of the surge; the latter divides to form two decoupled
surges and when the aspect ratio is large enough the mid-plane streamwise freesurface profile
approaches its spanwise equivalent.

Based on the above observations concerning the effects of inertia apropos the thin film flow
over both spanwise and local topography, together with the efficiency of the strategy devised
to solve the governing DAF, the methodology is readily extensible for the investigation of a
wealth of related three-dimensional flow phenomena. For example, free-surface planarisation
with respect to photolithography together with droplet spreading and coalescence on patterned
(topographically and/or chemically) surfaces. Furthermore, it is a relatively simple task to
include additional physics such as evaporation and thermal effects.
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Appendix A

Full weighting restriction operators Ru
k→k−1 (for u), Rv

k→k−1 (for v), Rh
k→k−1 (for h):

uk−1
i+1/2,j =

1

32

[

uk2i−1/2,2j−1 + uk2i−1/2,2j+2 + uk2i+3/2,2j−1 + uk2i+3/2,2j+2 + 2
(

uk2i+1/2,2j−1 + uk2i+1/2,2j+2

)

+3
(

uk2i−1/2,2j + uk2i+3/2,2j + uk2i−1/2,2j+1 + uk2i+3/2,2j+1

)

+ 6
(

uk2i+1/2,2j + uk2i+1/2,2j+1

)]

,

vk−1
i,j+1/2 =

1

32

[

vk2i−1,2j−1/2 + vk2i+2,2j−1/2 + vk2i−1,2j+3/2 + vk2i+2,2j+3/2 + 2
(

vk2i−1,2j+1/2 + vk2i+2,2j+1/2

)

+3
(

vk2i,2j−1/2 + vk2i,2j+3/2 + vk2i+1,2j−1/2 + vk2i+1,2j+3/2

)

+ 6
(

vk2i,2j+1/2 + vk2i+1,2j+1/2

)]

, (71)

hk−1
i,j =

1

64

[

hk2i−1,2j−1 + hk2i−1,2j+2 + hk2i+2,2j−1 + hk2i+2,2j+2 + 3
(

hk2i,2j−1 + hk2i,2j+2

+hk2i+1,2j−1 + hk2i+1,2j+2h
k
2i−1,2j + hk2i−1,2j+1 + hk2i+2,2j + hk2i+2,2j+1

)

+9
(

hk2i,2j + hk2i+1,2j + hk2i,2j+1 + hk2i+1,2j+1

)]

.

Bilinear interpolation operators Iuk−1→k (for u), Ivk−1→k (for v), Ihk−1→k (for h):

uk2i+1/2,2j =
1

4

[

3uk−1
i+1/2,j + uk−1

i+1/2,j−1

]

,

uk2i+3/2,2j =
1

8

[

3
(

uk−1
i+1/2,j + uk−1

i+3/2,j

)

+ uk−1
i+1/2,j−1

+ uk−1
i+3/2,j−1

]

,

uk2i+1/2,2j+1 =
1

4

[

3uk−1
i+1/2,j + uk−1

i+1/2,j+1

]

,

uk2i+3/2,2j+1 =
1

8

[

3
(

uk−1
i+1/2,j + uk−1

i+3/2,j

)

+ uk−1
i+1/2,j+1

+ uk−1
i+3/2,j+1

]

,

vk2i,2j+1/2 =
1

4

[

3vk−1
i,j+1/2 + vk−1

i−1,j+1/2

]

,

vk2i+1,2j+1/2 =
1

4

[

3vk−1
i,j+1/2 + vk−1

i+1,j+1/2

]

, (72)

vk2i,2j+3/2 =
1

8

[

3
(

vk−1
i,j+1/2 + vk−1

i,j+3/2

)

+ vk−1
i−1,j+1/2 + vk−1

i−1,j+3/2

]

,

vk2i+1,2j+3/2 =
1

8

[

3
(

vk−1
i,j+1/2 + vk−1

i,j+3/2

)

+ vk−1
i+1,j+1/2 + vk−1

i+1,j+3/2

]

,
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hk2i,2j =
1

16

[

9hk−1
i,j + 3

(

hk−1
i−1,j + hk−1

i,j−1

)

+ hk−1
i−1,j−1

]

,

hk2i+1,2j =
1

16

[

9hk−1
i,j + 3

(

hk−1
i+1,j + hk−1

i,j−1

)

+ hk−1
i+1,j−1

]

,

hk2i,2j+1 =
1

16

[

9hk−1
i,j + 3

(

hk−1
i−1,j + hk−1

i,j+1

)

+ hk−1
i−1,j+1

]

,

hk2i+1,2j+1 =
1

16

[

9hk−1
i,j + 3

(

hk−1
i+1,j + hk−1

i,j+1

)

+ hk−1
i+1,j+1

]

.

Appendix B

Coupled equation set solved for the unknown increments ∆ui+1/2,j , ∆ui−1/2,j , ∆vi,j+1/2, ∆vi,j−1/2,
∆hi,j.

∂N u
i+1/2,j

∂ui+1/2,j

∆ui+1/2,j +
∂N u

i+1/2,j

∂ui−1/2,j

∆ui−1/2,j +
∂N u

i+1/2,j

∂vi,j+1/2

∆vi,j+1/2

+
∂N u

i+1/2,j

∂vi,j−1/2

∆vi,j−1/2 +
∂N u

i+1/2,j

∂hi,j
∆hi,j = dui+1/2,j ,

∂N u
i−1/2,j

∂ui+1/2,j

∆ui+1/2,j +
∂N u

i−1/2,j

∂ui−1/2,j

∆ui−1/2,j +
∂N u

i−1/2,j

∂vi,j+1/2

∆vi,j+1/2

+
∂N u

i−1/2,j

∂vi,j−1/2

∆vi,j−1/2 +
∂N u

i−1/2,j

∂hi,j
∆hi,j = dui−1/2,j ,

∂N v
i,j+1/2

∂ui+1/2,j

∆ui+1/2,j +
∂N v

i,j+1/2

∂ui−1/2,j

∆ui−1/2,j +
∂N v

i,j+1/2

∂vi,j+1/2

∆vi,j+1/2 (73)

+
∂N v

i,j+1/2

∂vi,j−1/2

∆vi,j−1/2 +
∂N v

i,j+1/2

∂hi,j
∆hi,j = dvi,j+1/2,

∂N v
i,j−1/2

∂ui+1/2,j

∆ui+1/2,j +
∂N v

i,j−1/2

∂ui−1/2,j

∆ui−1/2,j +
∂N v

i,j−1/2

∂vi,j+1/2

∆vi,j+1/2

+
∂N v

i,j−1/2

∂vi,j−1/2

∆vi,j−1/2 +
∂N v

i,j−1/2

∂hi,j
∆hi,j = dvi,j−1/2,

∂N h
i,j

∂ui+1/2,j

∆ui+1/2,j +
∂N h

i,j

∂ui−1/2,j

∆ui−1/2,j +
∂N h

i,j

∂vi,j+1/2

∆vi,j+1/2

+
∂N h

i,j

∂vi,j−1/2

∆vi,j−1/2 +
∂N h

i,j

∂hi,j
∆hi,j = dhi,j.

(74)
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Tables

Table 1: Range of flow parameters investigated showing how, for fixed fluid properties, they
and the non-dimensional groupings change in concert.

θ,◦ Re H0, µm L0,mm U0,mm/s Ca, 10−3 N I
30 0.15 39.4 0.572 3.8 0.05 0.07 0.01
30 2.45 100.0 0.781 24.5 0.35 0.12 0.17
30 2.84 105.0 0.794 27.0 0.39 0.13 0.21
30 5 126.8 0.845 39.4 0.56 0.14 0.41
30 15 182.9 0.955 82.0 1.17 0.18 1.58
30 30 230.5 1.032 130.2 1.86 0.21 3.69
30 50 273.3 1.092 183.0 2.61 0.24 6.88
10 5 180.5 1.353 27.7 0.40 0.42 0.37
10 50 388.8 1.747 128.6 1.84 0.69 6.13
5 5 227.0 1.838 22.0 0.31 0.78 0.34
5 50 489.2 2.373 102.2 1.46 1.30 5.67
1 5 388.0 3.754 12.9 0.18 3.25 0.28
1 50 836.0 4.848 59.8 0.85 5.44 4.74
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Figures

Figure 1: Schematic diagram of gravity-driven flow over a well-defined trench topography,
showing the coordinate system adopted and surface geometry.
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Figure 5: DAF predictions of free-surface profiles for thin film flow over a spanwise trench
(width Lt = 1.2 mm, depth S0 = 20µm): progression from an initial flat surface to predicted
steady-state for (a) Re = 5, (b) Re = 15; (c) steady-state solutions for Re = 5, 15, 30. The
associated trench topography profile, s∗, is as indicated.
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Figure 6: Comparison between predicted (DAF and FE) and experimentally obtained [31] free-
surface profiles for thin film flow over a spanwise: (a) step-up (height |s0| = 0.2 and Re = 2.45);
(b) step-down (depth |s0| = 0.2 and Re = 2.45); (c) trench topography (depth s0 = 0.19, width
lt = 1.51 and Re = 2.84). The associated trench topography profile, s∗, is as indicated.
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Figure 7: Comparison between predicted (DAF and FE) free-surface profiles for thin film flow
over a step-up topography when Re = 15 (left) and 30 (right) for two step heights, |s0| = 0.2
(top) and 1.0 (bottom). The corresponding prediction given by lubrication theory [14] is shown
in each case. The topography profile, s∗, is as indicated.
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Figure 8: Comparison between predicted (DAF and FE) free-surface profiles for thin film flow
over a step-down topography when Re = 15 (left) and 30 (right) for two step heights, |s0| = 0.2
(top) and 1.0 (bottom). The corresponding prediction given by lubrication theory [14] is shown
in each case. The topography profile, s∗, is as indicated.
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Figure 9: Flow over spanwise step-up (left) and step-down (right) topography with Re ∈
[0.15, 30] and |s0| ∈ [0.1, 1]. Contours illustrating the maximum percentage discrepancy in the
free-surface profiles obtained with lubrication theory (top) and the DAF (middle), taking corre-
sponding finite element solutions of the full N-S problem as the benchmark. Relative difference
in the magnitude of the error expressed as the ratio of solutions obtained via lubrication theory
to those found using the DAF (bottom) - for example, a value of 2 indicates the error from
lubrication theory to be twice that expected with the DAF.
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(a)    Re = 0.15  |s
0
| = 0.2 (b)    Re = 0.15  |s

0
| = 0.2

(c)    Re = 15  |s
0
| = 0.2 (d)    Re = 15  |s

0
| = 0.2

(e)    Re = 30  |s
0
| = 0.2 (f)    Re = 30  |s

0
| = 0.2

Figure 10: Streamlines showing the effect of inertia on two-dimensional flow over a step-up
(left) and a step-down (right) topography, |s0| = 0.2, for: (a),(b) Re = 0.15; (c),(d) Re = 15;
(e),(f) Re = 30.
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(a)    Re = 0.15  |s
0
| = 1.0 (b)    Re = 0.15  |s

0
| = 1.0

(c)    Re = 15  |s
0
| = 1.0 (d)    Re = 15  |s

0
| = 1.0

(e)    Re = 30  |s
0
| = 1.0 (f)    Re = 30  |s

0
| = 1.0

Figure 11: Streamlines showing the effect of inertia on two-dimensional flow over a step-up
(left) and a step-down (right) topography, |s0| = 1.0, for: (a),(b) Re = 0.15; (c),(d) Re = 15;
(e),(f) Re = 30.
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Figure 12: Three-dimensional free-surface plots for flow over a localised (two-dimensional)
square trench topography (Lt = Wt = 1.2mm, S0 = 25µm): (a) Re = 5; (b) Re = 15; (c)
Re = 30; (d) Re = 50. The arrow shows the direction of flow.
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Figure 13: Flow over a localised (two-dimensional) square trench topography (Lt = Wt =
1.2mm, S0 = 25µm. Streamwise (left) and spanwise (right) free-surface profiles through the
centre (xo = 0, yo = 0) of the topography for Re = 5, 15, 30and50. The associated streamwise
and spanwise topography profiles, s∗, are as indicated.
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(f) Re = 50
A = 15

Figure 14: Three-dimensional free-surface plots for flow over a localised trench topography
(Lt = 1.2mm, S0 = 25µm) showing the effect of aspect ratio, A = Wt/Lt, on the resulting free
surface disturbance. From top to bottom, A = 5, 10 and 15; Re = 5 (left) and Re = 50 (right).
The arrow shows the direction of flow and the case when A = 1 can be viewed in Figs. 11(a)
and 11(d).
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Figure 15: Streamwise (top) and spanwise (bottom) free-surface profiles through the centre of
the topography (xo = 0, yo = 0) for flow over a localised trench topography (Lt = 1.2mm,
S0 = 25µm) showing the effect of aspect ratio, A = Wt/Lt for Re = 5 (left) and Re = 50
(right). The associated streamwise topography profile, s∗, is as indicated.
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Figure 16: Three-dimensional free surface plots for flow over a localised square trench topog-
raphy (Lt = Wt = 1.2mm, S0 = 25µm) showing the effect of θ on the resulting free surface
disturbance. From top to bottom, θ = 10◦, 5◦ and 1◦; Re = 5 (left) and Re = 50 (right). The
arrow shows the direction of flow and the corresponding free-surface disturbances when θ = 30◦

can be viewed in Figs. 12 (a) and (d).
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Figure 17: Streamwise (top) and spanwise (bottom) free-surface profiles through the centre of
the topography (xo = 0, yo = 0) for flow over a localised square trench topography (Lt = Wt =
1.2mm, S0 = 25µm) for four different inclination angles θ; Re = 5 (left) and Re = 50 (right).
The associated streamwise and spanwise topography profiles, s∗, are as indicated.
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